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A B S T R A C T

Multi-block datasets are widely met in the chemometrics domain, and several data fusion approaches have
recently been proposed to treat them. Apart from exploratory and predictive modelling, a key task in this context
is feature selection which involves finding key complementary variables across multiple data blocks that jointly
provide a good explanation of the response variables, revealing the key variables of the system. In that direction, a
new method called response-oriented covariate selection (ROCS) is proposed here. ROCS is a direct extension of
the covariance selection (CovSel) approach to multi-block scenarios, where the choice is based on a competition
between variables in different blocks, as is done in the response-oriented sequential alternation (ROSA) method.
The uniqueness of the ROCS method is its simplicity, fast execution speed, insensitivity to block order and scale-
invariance. The evaluation of ROCS is presented using several multi-block modelling cases and by comparison
with other variable selection methods.
1. Introduction

In the domain of analytical chemistry, there is now a growing interest
in combining different sensor modalities to better understand the sam-
ples or to achieve better predictive models, as in many cases a single
modality carries only partial information about the response variables
[1–3]. For example, jointly using different spectral sensing modes such as
near-infrared, mid-infrared, and Raman spectroscopy [4] leads to mul-
tiple data matrices, that is multi-block datasets. In fact, multi-block
datasets can have data from any analytical technique which generates
multivariate signals and meta-data coming from any other knowledge
about the samples, as variety, origin, physical structure, etc. More details
on multi-block data and modelling techniques in the chemometric
domain can be found in Refs. [2,3].

To analyse multi-block datasets, several latent space based ap-
proaches are available; for example, the multi-block variants of tradi-
tional principal component analysis (MB-PCA) and partial least-squares
regression (MB-PLS) can be used for exploratory and predictive data
a).
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modelling [5–7], respectively. However, multi-block extensions such as
MB-PCA andMB-PLS are highly scale-dependent andmay not be of use in
cases where the scales of data blocks are different [8–11]. Several ap-
proaches to pre-process the datasets in order to “equalize” their range of
variability have been proposed [12], but it is still a challenge to find the
best normalization approaches for data with different scales. Data with
different scales here means data with either different signal intensity
ranges or with differences in total amount of variability. To cope with
these and other limitations, a growing number of methods for the anal-
ysis of multi-block data have been put forward. For instance, in the
regression context, advanced chemometric approaches such as sequen-
tial- or parallel- orthogonalized partial least-squares regression (SO-PLS
and PO-PLS) have been proposed. The former (SO-PLS) [10] is based on
sequential PLS models between individual blocks and the response(s),
interbedded with orthogonalization steps, allowing to evaluate whether
the addition of further blocks provides a significant improvement in
modelling. On the other hand, the latter (PO-PLS) [11] extracts compo-
nents which are either common to all or part of the blocks, or specific to a
22 March 2022
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single block (distinctive). In both cases, the algorithmic structure is such
that, besides providing a higher amount of information, especially about
the contribution of individual blocks, the models are scale-invariant,
though, for SO-PLS, the results can be dependent on the order of the
blocks. A wide range of applications can be found in the scientific liter-
ature on the use of SO-PLS and PO-PLS, ranging from predictive model-
ling such as classification [13] and regression [10], as well to their
extensions for pre-processing ensembles such as sequential [14] and
parallel [15] pre-processing through orthogonalization. The main benefit
of the SO-PLS model is when the data block order is meaningful and
known so that the important data blocks can be modelled first and the
less useful ones later [10]. The data block order is not a problem for
PO-PLS approaches in terms of extracting common and distinct infor-
mation from different data blocks [10,11]. Although both the sequential
and parallel PLS based approaches have shown promising potential to
analyse multi-block datasets, there is still a big challenge related to the
optimisation of such models. By optimisation, we mean the identification
of the optimal number of latent variables from each data block to avoid
model under- or over-fitting. Furthermore, although the challenge is
limited when there are a small number of data blocks such as two or three
[16], it does become a problem when there is a substantial number of
data blocks since all combinations of latent variables from the different
data blocks need to be explored [14], exponentially increasing the
computational cost [16]. To deal with the challenges of current
sequential and parallel PLS approaches, a new method called
response-oriented sequential alternation (ROSA) [16] has recently been
proposed. ROSA is a direct extension of PLS modelling to multi-block
scenarios and is a scale- and order-independent technique capable of
handling many data blocks for the prediction of a single response [16].
However, due to the heuristic it uses, the ROSA algorithm can fall into a
local minimum and provide solutions less efficient than SO- and PO-PLS
[17].

Apart from predictive modelling based on multi-block techniques,
one of the key tasks of multi-block modelling is variable selection [3].
Variable selection serves many purposes in chemometric data analysis,
ranging from finding the key variables that are of importance to under-
stand the background chemistry involved in the models or to develop
application-oriented low-cost multi-spectral sensors [18,19]. In tradi-
tional single block chemometric modelling, a wide range of methods are
available for variable selection involving wrapper, filter, embedded, and
hybrid approaches [18,19], while in the multi-block domain, there is
currently only a limited number of methods available. Two main ap-
proaches for variable selection in the multi-block scenario are the use of
filters on indices such as variable importance on the projection (VIP) or
selectivity ratio (SR), calculated on multi-block models, such as SO-PLS
[20] or orthogonal n-block partial least-square (OnPLS) [21], and the
extension of the single block covariance selection (CovSel) method [22]
to the multi-block scenario, called sequential and orthogonalized
covariance selection (SO-CovSel) [23]. SO-CovSel has the advantage over
filter approaches based on VIP or SR, that it does not need
post-processing/thresholding, since it is a hybrid method that directly
extracts individual variables stepwise [23]. However, a key point to note
is that since CovSel [22] is a special case of PLS regression relying on
covariance maximisation, the SO-CovSel [23] approach is also a special
case of SO-PLS [10] which means that SO-CovSel inherits both the ad-
vantages and disadvantages of SO-PLS. For example, SO-CovSel is
powerful when the block order is important, data blocks are in different
scales and only a small number of data blocks are to be processed.
However, when there is not a “natural” order of the blocks and there are
many data blocks, then the optimisation of the SO-CovSel model becomes
even more challenging than for the SO-PLS models. Therefore, to have
block order independence and to facilitate model optimisation for many
data blocks, the present study proposes a new method called
response-oriented covariate selection (ROCS), inspired by both the
SO-CovSel [23] and the ROSA [16] methods. The ROCS method inherits
from ROSA the advantages of being insensitive to the order of the blocks
2

and being able to easily handle many data blocks [16], while at the same
time keeping the scale-invariance resulting from the modelling of each
data block independently.

The ROCS method has the advantages of its simplicity, its fast
execution speed when processing many blocks, its block order-
insensitivity and scale-independence, but it does not guarantee to give
the best solution. Examples of ROCS analysis are shown using several
multi-block modelling cases. Some out of the box applications of the
multi-block variables selection are also shown. Just like CovSel, the
ROCS analysis only ranks variables and later a separate cross-validation
must be performed using multi-linear regression (MLR) or PLS modelling
to select the optimal number of variables to develop predictive models.

2. Theory

A typical CovSel model aims to extract variables from a predictor data
block X ðn�pÞ concerning a response y ðn�1Þ by the process of repeated
covariance maximisation and orthogonalization. ROCS is a modification
of the CovSel approach inspired by ROSA to include B � 1mean-centered
data blocks X1; X2;…:;XB of sizes ðn � p1Þ; ðn � p2Þ; …:; ðn � pBÞ,
respectively. ROCS is yet only defined for a single response y, as is ROSA.
The selection of the variables is organised as a competition between
blocks, where in the first step, the variable carrying maximum covariance
with the response variable is selected from each data block; successively,
in a competition to minimise the residuals, the block variable giving the
smallest residuals is declared the winner and the selected variable is used
to orthogonalize all the data blocks and the process is repeated until the
desired number of variables is selected or a model optimisation criterion
is achieved e.g., minimum RMSECV (Root Mean Squared Error of Cross
Validation). The orthogonalization step ensures that all the extracted
variables are complementary and carry unique information. The ROCS
algorithm on mean-centered data blocks is as follow:

The first step of ROCS i.e., argmaxðXTy yTXÞ is a close estimate of the
first latent variable of PLS. To reach this aim, PLS allows any linear
combinations of the columns ofX, while the CovSel engine inside ROCS
aims at performing a similar optimisation by allowing only linear com-
binations of the columns of X in the form ½0; 0; ::1::;0�, to carry out var-
iable selection. Finally, the orthogonal projections in step 4 ensure that
variances of X and y are captured cumulatively by each step of the al-
gorithm. In a predictive modelling case, the selected variables can also be
used for performing tasks such as regression and classification. The codes
of the technique will be made available at: https://github.com/puneet
mishra2.

3. Datasets

3.1. Prediction of moisture content in pear fruit by fusing information from
two portable spectrometers

The dataset consisted of spectral measurements performed on 240
pear fruit samples using two portable spectrometers. The pear dataset
was used to show the capability of ROCS to extract variables from
spectral fingerprints. More details on samples and the experimental setup
can be found in an earlier study [24]. Spectral measurements were per-
formed on intact fruit first using a portable visible and near-infrared
(Vis-NIR) spectrometer Felix F-750 (Camas, WA, USA) and then using a
short-wave infrared (SWIR) dynamic light projection (DLP) spectrometer
NIR Scan Nano (Texas Instrument, USA). After the spectral measure-
ments, a cylindrical disc was cut out at the position of the largest diam-
eter of the fruit and divided into four equal quadrants. One quadrant was
used to estimate moisture content (MC) by weighing (XS10001L,
Mettler-Toledo GmbH, Giessen, Germany) the samples before and after
hot-air oven drying (at 80 �C for 24 h with FP 720, Binder GmbH, Tut-
tlingen, Germany). The spectral ranges used for ROCS modelling were
720–1000 nm for the Vis-NIR and 1000–1700 nm for the SWIR
spectrometer.

https://github.com/puneetmishra2
https://github.com/puneetmishra2
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3.2. Spectral data from different sampling forms of rice

The dataset consisted of NIR spectral measurements performed on
200 rice samples, in three different forms i.e., rice with coat, rice kernel
and rice flour [25]. The same samples were used for all three measure-
ments; hence, the data becomes a three-block dataset. At first, the spec-
tral measurements were performed on rice with coat, then on the rice
kernel and then on the rice flour of the same kernels. The spectra were
acquired with a multi-purpose analyzer (MPA) Fourier transform
near-infrared (FT-NIR) (Bruker, Germany) spectrometer. The reference
property was the protein content, which according to the primary study
was measured using the Dumas combustion method [25].

3.3. Reflection and transmission measurements on milk to predict fat
content

The dataset consisted of 300 milk samples from 300 cows from all
over Flanders (Belgium) [26]. The dataset was used to show the potential
of the ROCS method to use the complementary information in the
reflection and transmission data to predict milk fat content. The dataset
consisted of Vis-NIR (306.5–1710.9 nm) data measured with a Zeiss
Corona 45 VISNIR 1.7 diode array spectrometer. The Vis-NIR (350–2500
nm) transmission measurements were performed with a LabSpec spec-
trophotometer from ASD. The reference measurement for fat content was
3

performed within the 3 days following the spectral measurements [26].

4. Data analysis

ROCS, just like CovSel [22], extracts variables from multi-block
datasets. Selected variables can later be used for any kind of analysis,
for example regression or classification. The possibility of predictive
modelling on the extracted variables has already been proven in earlier
works [22,23]. Since ROCS is a special case of the ROSA [16] modelling
approach, the performances of ROSA and ROCS models were compared
using the three presented data sets. Furthermore, the performance
comparison of the models using variables selected by ROCS and
SO-CovSel is presented. The ROCS and ROSA optimal models were
calculated with a 5-fold cross-validation to judge the optimal number of
variables for ROCS and latent variables for ROSA. For SO-CovSel, the
optimal number of variables was determined by exploring all combina-
tions of variables in the range of [0-20] using a 5-fold cross-validation.
The variable combination leading to the lowest root mean square error
of cross-validation (RMSECV) was selected as the optimal combination.
The results obtained by ROCS were also compared with the outcomes of a
filter approach resulting from the combination of multi-block PLS with
variable importance in projection (MBPLS þ VIP) [20,23], a fast strategy
which is scale-dependent but block order-independent. TheMBPLSþ VIP
includes two main steps: first building a cross-validated MBPLS model
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and ranking the variables according to the values of the resulting VIP
indices and subsequently, building a new model including only the
relevant predictors according to the VIP selection. All data sets were
partitioned into calibration (70%) and test sets (30%) using the
Kennard-Stone algorithm [27], where all model optimisation and cali-
bration was performed with the calibration set, while the final models
were evaluated using the test set. All analyses were performed in MAT-
LAB 2018b (The Mathworks, Natick, MA, USA). The computing system
used has an Intel ® Xeon ® W-2133 CPU @ 3.60 GHz with 64 GB of
random-access memory.

5. Results and discussion

5.1. ROCS vs SO-CovSel

Firstly, ROCS was compared with the SO-CovSel approach. This was
done since SO-CovSel and ROCS are similar in their operation as they
both rely on identifying the predictors that carry high-covariance with
the response variables. The primary difference in the methods is that SO-
CovSel requires a pre-defined block order while ROCS does not, as it
extracts variables through a competition among data blocks. But another
major difference between the two methods lies in the heuristics used for
achieving optimal variable selection. One of the heuristics (also used in
this study) for SO-CovSel is to explore all repartitions of variables be-
tween blocks and search for the repartition that leads to the minimum
RMSECV. The main benefit of this heuristic is that it allows exploring all
possible combinations of variables in the defined range and can avoid
local minima. However, the approach has the drawbacks that it is time
consuming, particularly when the number of blocks is large, and it re-
quires blocks to be ordered beforehand. On the contrary, ROCS uses a
faster heuristic based on parallel competition between blocks, however,
with drawback of being more prone to falling into a local minimum.

To demonstrate these differences, the ROCS and SO-CovSel analyses
were performed on the pear dataset where the aim was to use NIR and
SWIR data to predict MC in intact pear fruit. Fig. 1A shows the explained
variance in the response variable obtained with ROCS and SO-CovSel.
Fig. 1. SO-CovSel and ROCS analysis on Felix and DLPNIR spectrometer data to pred
NIR data block by ROCS, (C) variables selected from the SWIR data block by ROCS, (D
from the SWIR data block by SO-CovSel, (F) winning order of variables and blocks
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The number of variables selected by SO-CovSel and ROCS to explain
up to 90% of variance in the response variable were different, where SO-
CovSel selected only 9 variables from the NIR data block (Fig. 1D and E
and Fig. 1G) while ROCS selected 17 variables from both the NIR and
SWIR data blocks (Fig. 1B and C and Fig. 1F). The variables selected by
both analyses can be seen to be of chemical significance to predict
moisture in pear fruit [28]. For example, the variable selected by ROCS
and SO-CovSel can be related to the overtones of the OH bond which is
directly related to the H2O present in high abundance in fresh fruit and
the overtone of the CH and CH2 bonds which can be related to the sugar
molecules present in fresh fruit. To understand the predictive ability of
the variables selected by ROCS and SO-CovSel, separate MLR and PLS
analysis were carried out on the reduced data set containing only the
selected variables (Fig. 2). MLR analysis suggests that the models based
on ROCS achieved lower RMSEP compared to the SO-CovSel based
models. The results of the PLS cross-validation analysis are shown in
Fig. 2C. The cross-validation suggests that although the initial number of
variables selected by SO-CovSel and ROCS were 9 and 17, with the PLS
analysis, 8 and 11 latent variables were retained. Considering the final
PLS models, the one based on ROCS selected variables achieved lower
RMSEP than the SO-CovSel one. However, it is to be noted that in the
cross-validation plot (Fig. 2C) for ROCS it appears that the total number
of latent variables was lower compared to the total number of selected
variables, indicating that it may be useful to carry out PLS analysis on the
ROCS selected variables to handle the multi-collinearity in ROCS selected
variables instead of direct MLR analysis. For SO-CovSel, the simple MLR
models should suffice.

To build on the findings from the pear data analysis, the SO-CovSel
and ROCS data analyses were also performed on the rice and the milk
data sets. The results are shown in Table 1. ROCS either extracted the
same number of variables as SO-CovSel or more. However, the optimal
PLS models were achieved with fewer latent variables than extracted
variables. The performances of the final models for both ROCS and SO-
CovSel for the rice and milk data sets were similar. Some results from
the ROCS and SO-CovSel analyses of the rice data set suggested that the
optimal physical form of the rice samples was the rice flour as all the
ict moisture content. (A) Explained variance plot, (B) variables selected from the
) variables selected from the NIR data block by SO-CovSel, (E) variables selected
for ROCS, and (G) order of variables selected by SO-CovSel.



Fig. 2. A summary of MLR (top row) and PLS (bottom row) analyses carried out on the ROCS and SO-CovSel selected variables. MLR analysis: (A) SO-CovSel selected
variables, and (B) ROCS selected variables. PLS analysis: (A) cross-validation plots, (D) PLS analysis on SO-CovSel selected variables, and (E) PLS analysis on ROCS
selected variables.

Table 1
A summary of SO-CovSel and ROCS analysis performed on rice and milk data set.

Dataset Variables RMSEP MLR PLS-LVs 5-fold CV RMSEP PLSR

SO-CovSel ROCS SO-CovSel ROCS SO-CovSel ROCS SO-CovSel ROCS

Rice 12 (0 þ 0þ12) 25 (0 þ 0þ25) 0.36 0.41 6 13 0.40 0.41
Milk 19 (18 þ 1) 19 (7 þ 12) 0.08 0.08 15 16 0.08 0.08
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variables were selected from the corresponding data block. For milk data
set, the selection of variables from both the reflection and transmission
data blocks suggests that the two modes play a complementary role in
predicting fat content in milk.
5.2. Block order independence of ROCS vs SO-CovSel

ROCS uses the parallel variable selection heuristic which gives nat-
ural independence to block order. This means that the user does not need
to worry about the arrangement of the blocks prior to the variable se-
lection. To demonstrate that ROCS is block order independent, the
Fig. 3. Model performance on variables selected when changing block order for m
selected by SO-CovSel following the block order of reflection then transmission, a
following the block order of transmission then reflection. The latent variables (LVs)

5

analysis was carried out on milk data set by changing the order of blocks.
For example, at first the ROCS analysis was carried out with a block order
of reflection followed by transmission and then with transmission fol-
lowed by reflection. As can be noted in the results (Supplementary
Fig. 1), the selected variables were the same irrespective of the block
order. On the contrary, the outcomes of SO-CovSel performed on the milk
data set with changing block order led to the selection of one different
variable. Although the predictive performance of the model was intact
(Fig. 3) as the overall objective of the SO-CovSel heuristic was to find the
global minimum, the selection of a different set of variables (Fig. 3) due
to changing block order shows that, unlike the ROCS, the selection
ilk data set by SO-CovSel. (A) Prediction plot for MLR calibrated on variables
nd (B) prediction plot for MLR calibrated on variables selected by SO-CovSel
are calculated from the variables selected in each block.
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provided by SO-CovSel models is inherently affected by the changing
block order (Fig. 4). This is not necessarily a drawback, since it was
demonstrated in the original paper how such characteristics can be
exploited to investigate which variables carry common, local, or unique
information. However, one should note that such exploration will come
with a cost of high computation time and with large number of data
blocks may become impractical unless high end computers are available.
5.3. Comparison of ROCS with MBPLS þ VIP

The pear data set was processed with the MBPLPSþ VIP analysis for a
comparison with the results of ROCS in Section 6.1. The MBPLS þ VIP
analysis on the pear data was performed on two versions of the pear data.
The first version was the unscaled, mean-centered data and the other was
the block-scaled data, where each block was normalised by its Frobenius’
norm to bring the two blocks to similar data scale. This is also one of the
drawbacks of MBPLS-based approaches where the model outcome is
highly dependent on the scales of data blocks and requires some form of
initial normalization. Conversely, both ROCS and SO-CovSel treat each
block separately and so do not require any prior data scaling. The results
of 5-fold cross-validation MBPLS analysis on the concatenated pear data
blocks suggested different optimal LVs for unscaled (11 LVs) and scaled
(16 LVs) forms of data. The different numbers of LVs can be related to the
scaling effect as without scaling, the data block with higher scale will be
dominant in the model as PLS models involve the step of covariance
maximisation and the scale of the data is directly proportional to the
covariance estimation. The effect of different LVs used for the construc-
tion of the final MBPLS models influence the shape of the VIP vectors as
can also be noted in Fig. 5. Furthermore, it can be noted that for the
unscaled data where the scale of the NIR data block was higher compared
to the SWIR data block, the VIP vector captured finer information for the
NIR part of the data (see peaks from 700 to 1000 nm)), while mainly
capturing the peak around 1450 nm from the SWIR data block. After
block-scaling, several new peaks can also be noted in the SWIR part of the
spectrum. In comparison to the ROCS and SO-CovSel analysis presented
for same data set in Fig. 1, several regions in the VIP plots are the same as
the discrete variables selected by ROCS and SO-CovSel. Note that,
although the MBPLS þ VIP was explored as the comparative technique,
however, in terms of operation, the MBPLS þ VIP is very different from
the stepwise technique ROCS and SO-CovSel. For example, ROCS, at each
forward step of operation, selects a discrete variable and provides
parsimonious information such as covariance, explained variances of
predictor and responses to judge the importance of each variable. On the
other hand, the use of VIP calculated by MBPLS is a filter approach and,
as such, shares all the pros and cons of that family of methods. Indeed, the
user is still required to use some threshold or exhaustive forward or
backward approaches to select the optimal number of variables in the
model.

For VIP analysis, a common approach to select the variables is by
setting the threshold at 1 and selecting all the variables with VIP score of
>1. In the plots presented in Fig. 5, it can be noted that setting a
Fig. 4. Influence of changing block order on selected variabl
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threshold of 1 will results in the selection of variables from both the NIR
(<1000 nm) and the SWIR (>1000 nm) spectral regions. However, the
selection of variables from both data block was only noted for ROCS
analysis, while for SO-CovSel the selected variables were only from the
NIR data block.

5.4. Speed of the ROCS method

SO-CovSel and ROCS rely on different heuristics for optimal variable
selection. The cross-validation step is the most time-consuming step for
SO-CovSel, and it increases exponentially as the number of blocks in-
creases, becoming almost impractical when there are more than just 3
blocks to model. To have a practical comparison between the time re-
quirements for SO-CovSel and ROCS to select the optimal variables, the
time recording was performed for all the three data sets during the
implementation of the heuristics. As expected, the ROCS heuristic is
naturally faster than that of SO-CovSel as there is no pre-defined explo-
ration of variable combinations (Table 2). For all three data sets, ROCS
selected the optimal variables in <2 s. The time requirements for data
sets with 2 and 3 blocks were similar for ROCS, while for SO-CovSel, the
time required for data with 3 blocks was very much higher than for the
two blocks data set. Such a high time requirement was due to a direct
increase in the number of combinations to be explored. Since ROSA is
also a direct extension of CovSel to multiblock scenario, there are no
extra steps that would make ROSA slower than CovSel and MBPLS on
concatenated data block.

5.5. ROCS vs. ROSA

The ROCS method is a special case of the ROSA method, just as the
original CovSel method is a special case of PLS. The only difference be-
tween ROCS and the ROSA is that ROCS loading weights are of the form
[0,0,0,..1, …0,0], where 1 indicates the selected variable. For data sets
with a limited number of samples, as is commonly encountered in the
chemometrics domain, the models based on selected variables can ach-
ieve similar predictive ability to that of models based on the full spectral
range [18,19]. Hence, a comparison of the PLS models calibrated on the
ROCS selected variables and the ROSA models based on full spectral
ranges was carried out (Fig. 6). The results for the pear data set suggest
that the models based on variables selected by ROCS had better predic-
tive ability than the ROSA model based on the full spectral range. For the
rice data set, the performance of models based on selected variables was
slightly lower than the ROSA models. For the milk data set, the perfor-
mance of PLS model based on variables selected by ROCS was like that of
the ROSA model.

6. Extended discussion

In the domain of multi-block data analysis, one of the challenges in
developing a new technique is to consider its ability to handle data of
different scales [12]. Such an ability is necessary as in many real-life
es of SO-CovSel. The x-axis variables are in nanometres.



Fig. 5. Variable importance in projection vectors
for MBPLS models obtained on unscaled and scaled
data blocks. The data are a two blocks data set with
NIR (<1000 nm) and SWIR (>1000 nm) data
blocks. (A) ROCS variables are highlighted as ver-
tical lines, and (B) SO-CovSel selected variables are
highlighted as vertical lines. The green horizontal
line indicates the threshold of VIP score 1. (For
interpretation of the references to colour in this
figure legend, the reader is referred to the Web
version of this article.)

Table 2
A comparison for time requirements for SO-CovSel and ROCS for variable se-
lection on different data sets. All analyses were performed on a desktop computer
with an Intel ® Xeon ® W-2133 CPU @ 3.60 GHz and 64 GB of random-access
memory.

Data
sets

Data matrices size ROCS for 20
variables (Seconds)

SO-CovSel for 20
variables (Seconds)

Pear 2 blocks (161 � 90 and
161 � 203)

1.2 10.46

Rice 3 blocks (140 � 304
each)

1.35 376

Milk 2 blocks (210 � 299
and 210 � 1876)

1.66 46
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situations the data generated by the different analytical instruments may
have quite different scales [3,12]. In that direction, one of the most
powerful methods is SO-PLS [10,29] which allows handing data of
different scales by modelling each data block separately. Akin to SO-PLS,
SO-CovSel [23] also allows handling data with different scales by
Fig. 6. Performance of ROCS and ROSA models. PLSR model based on ROCS selected
(C) fat prediction in milk. ROSA models for (D) moisture prediction in pear, (E) pro
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selecting variables from each data block separately. The ROCS method
proposed in this study, being like ROSA, is also a scale-independent
technique treating each block separately. In ROCS, the first step of
covariance maximisation is used for each block. Using the covariance
criterion, as in PLS, allows ROCS to find variables which carry large
variance and at the same time are related to the response. Although
covariance maximisation is scale-dependent, since it is limited to the
level of each block, the scale of the blocks does not affect it. To select the
winning block in the second step of ROCS, the Y residuals, which are
insensitive to the individual scales of the predictor blocks, are used.

Using methods such as SO-PLS [10,29] and SO-CovSel [23], it can be
preferable to define the data block order when the user is aware of the
importance of each data block and is capable of ordering them before
doing the sequential modelling. However, if the order of the block is not
known then different orderings of blocks may lead to different combi-
nations of selected predictors and/or suboptimal accuracy [15]. To avoid
the block ordering problem, the ROSA approach to multi-block modelling
gives equal chances to all blocks [16]. Akin to ROSA, the ROCS approach
proposed in this study also gives equal chances to all data blocks by
variables for (A) moisture prediction in pear, (B) protein prediction in rice, and
tein prediction in rice, and (F) fat prediction in milk.
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sending their best variable to the global competition of minimising the
residuals. The ROCS method gains its order independence by giving
equal chances to all data blocks.

Also, just as in SO-CovSel [23], the ROCS selected variables are as
little as possible correlated to each other. This low dependency is
maintained both within and among data blocks. In the case of a single
data block, the ROCS method converges to CovSel [22].

Optimisation of a total number of variables to be selected with the
ROCSmethods can be achieved with a global optimisation approach such
as using ROCS cross-validation, as was done for CovSel in earlier studies
and as shown in the results section of this study. For example, at first
ROCS can be performed to extract several variables and then using ROCS
cross-validation, the effectiveness of the selected variables can be judged
(Example Fig. 1B). Note that the global cross-validation of ROCS is per-
formed to judge the total number of variables to keep for use in the
predictive modelling. Such a global optimisation approach is different
from what is done in the SO-CovSel approach where the aim is to find the
best combination of variables from data blocks. In the SO-CovSel, the
variable combinations leading to lowest cross-validation errors are usu-
ally selected, however, the criterion to select the variables stays the same
i.e., covariance maximisation.

ROCS, as well as all methods belonging to the CovSel [22] family, can
handle multiple responses in the within block variable selection step.
However, the second step, dedicated to the choice of the winning block,
is directly inherited from ROSA [16], and does not handle multiple re-
sponses. Research is needed to adapt ROSA's block selection work to with
multiple responses. The key point in this step is the definition of re-
siduals, which can be done with many combinations of the Y columns.
The interaction between how the residuals is calculated and how ROSA
works needs to be studied in detail. This is however beyond the scope of
this paper. Furthermore, since ROSA and ROCS are sensitive to local
minima, as they use a simple stepwise heuristic, more research should be
carried out to modify this heuristic to cope with this problem. In ROCS,
the multiblock information is handled by selecting a winner using the
minimum residuals at a particular step. One can assume that if multiple
blocks at a particular step have similar residuals, then the winner selec-
tion is based on the order in which the blocks carrying similar residuals
are arranged (particularly in MATLAB implementation). This is also one
of the drawbacks of ROSA strategy which is the backbone of ROCS. To be
cautious for such cases, as described in ROSA method, it is advised to
keep the record of residuals for each block at each step of the ROCS al-
gorithm run. Later, such record of residuals (using plots) can help in
diagnosing cases where blocks may have similar residuals.

In the current demonstration of ROCS, all the datasets were spectral
data sets which have comparable scales. The final predictive MLR and
PLSR models were built directly by concatenating the variables selected
from the different data blocks. However, one can assume that if the scales
of data varies then the user need to be cautious while building the final
predictive models. In that case, the user can build the final predictive
models by either using autoscaling of the data or by using scale inde-
pendent modelling techniques such as SO-PLS or ROSA.

7. Conclusions

A new multi-block method called response-oriented covariates se-
lection (ROCS) was presented. The new method is a block order- and
scale-independent technique which can handle many data blocks when
selecting variables. The evaluation of the method on real multi-block
datasets showed that the method was able to capture chemically rele-
vant features from the different blocks. Furthermore, the selected fea-
tures were highly predictive of the response variables. The selected
features can then be used for a range of tasks such as regression and
classification. The applications showed that multi-block variable selec-
tion can be used to answer several research questions such as finding the
best physical forms of samples for spectral measurements, selecting
optimal spectral sensors for dedicated applications, and combining
8

different optical geometries of spectroscopy to predict sample properties.
The applications of the method can be foreseen in many domains of
sciences where multi-block datasets are encountered and where it is often
necessary to find key covarying features to either understand the system
or to develop predictive models. The ROCSmethod also inherits the main
drawback of ROSA, namely that the heuristic it uses does not guarantee
to find a global optimal solution.
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