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Abstract13

In recent years, climate fluctuations have been increasingly extreme, af-14

fecting agricultural production. The development of digital agriculture driven15

by new intelligent sensors is one of the privileged paths to improve farm man-16

agement. Assessing transpiration E and stomatal conductance gs in real time17

with optical instruments is a real challenge to detect water stress. In this18

study, the objective is to evaluate VIS-NIR spectroscopy to predict transpi-19

ration E and stomatal conductance gs of grapevine plants (Vitis vinifiera20

L.). For this purpose, a water stress gradient was obtained using vine pots21

of three varieties (Syrah, Merlot, Riesling) tested under two water condi-22

tions where precise monitoring of physiological variables has been carried23

out. Hyperspectral images were acquired to form a spectral database and24

a weather station provided radiation (Rg), relative humidity (RH), tem-25
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perature (Ta) and wind speed (Ws). First, Partial Least Squares (PLS)26

models were established to relate spectral data to physiological variables.27

Then, Sequential Orthogonalized-Partial Least Squares (SO-PLS) was used28

to predict these physiological variables with two blocks: spectral and climate29

data. PLS models are obtained for gs (R
2= 0.656, bias=8.76 mmol.m−2.s−1,30

RMSE=64.7 mmol.m−2.s−1) and E (R2= 0.625, bias=-0.02 mmol.m−2.s−1,31

RMSE=0.67 mmol.m−2.s−1). For E, improved results (R2= 0.699, bias=0.05532

mmol.m−2.s−1, RMSE=0.614 mmol.m−2.s−1) are obtained by using climate33

data with SO-PLS. Generic PLS models achieved good predictive quality34

despite different coloured berry varieties. Quality of these prediction models35

could be improved by defining varietal models on a larger data set. Merging36

spectral data with climate data improves prediction quality of transpiration37

variable providing insights by adding further information with the aim of38

improving predictive qualities.39

Keywords: Spectroscopy, Water Stress, Physiological variables, Digital40

Agriculture, Multivariate Data Analysis, Fusion data41

1. Introduction42

In recent years, climate fluctuations have been increasingly extreme, af-43

fecting agricultural production (Lobell et al., 2011). In this context, one44

of the biggest challenges for agriculture is to adapt agricultural practices to45

these constraints.46

Moreover, resulting abiotic stresses may modify crop sensitivity to dis-47

eases (Mittler, 2006). In the event of a severe and persistent stress episode,48

the consequence is an inexorable reduction in yield. Therefore, it becomes49
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critical to provide new methods to manage crops in order to avoid episodes50

of severe abiotic stresses (Olesen et al., 2011).51

The development of digital agriculture driven by new intelligent sensors52

is one of the privileged paths to improve farm management (Fountas et al.,53

2020; Zhai et al., 2020). The increasing adoption of sensors for agriculture54

provides valuable data driving farm actions such as input use (pesticides,55

irrigation, fertilisers) or harvest planning.56

In crop production, soil drying is especially at stake on plant status. In57

fact, water stress induces several physiological markers on plants (Simonneau58

et al., 2017). At the leaf level, transpiration and stomatal conductance are59

two physiological parameters closely related to the plant water status. These60

physiological variables are highly influenced by multiple environmental fac-61

tors, such as soil water availability, air humidity, radiation and temperature62

(Damour et al., 2010).63

Assessing such physiological parameters in real time with optical instru-64

ments is a real challenge (Schultz and Stoll, 2010). Thermography has long65

been studied as an optical instrument that gives an indication of transpi-66

ration rate (Romano et al., 2011; Zhou et al., 2021). Indeed, a decrease in67

transpiration, e.g. following a soil drying, leads to vegetation warming, which68

is a consequence of stomatal closure.69

Alternatively, visible and near-infrared (VIS-NIR) spectroscopy has been70

widely used to evaluate vegetation status. In this spectral region (VIS-NIR),71

information is related to both pigments and cell structure parameters (Xu72

et al., 2019; Ryckewaert et al., 2021) which are parameters altered by wa-73

ter stress. Moreover, maintaining a high spectral resolution in the VIS-NIR74
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region improves the description of vegetation responses to water stress (Ryck-75

ewaert et al., 2021). This technology indirectly reveals different properties76

that can describe water stress such as a decrease in chlorophyll content (Stei-77

dle Neto et al., 2017) and water content (Zhang et al., 2012) in leaves. The78

use of VIS-NIR spectroscopy provides the capability to study spectral bands79

most related to the prediction of physiological variables such as stomatal80

conductance (Rapaport et al., 2015; Dao et al., 2021).81

Methodological efforts using chemometrics are expected to further exploit82

spectral information from the vegetation (Mulla, 2013). A reference regres-83

sion method called Partial Least Squares (PLS) (Wold et al., 2001) provides84

models to predict response variables from spectral data. Recently, data fu-85

sion methods, also called multiblock methods, have been developed to com-86

bine several data sources. Adding an additional block such as climate data to87

spectral data can potentially improve the performances of prediction models.88

The most commonly used multiblock method is Sequential Orthogonalized-89

Partial Least Squares (SO-PLS) regression (Naes et al., 2011) which sequen-90

tially exploits information from different blocks i.e. types of data. With this91

method, the association of spectral data with climate data has the potential92

to improve physiological variable prediction.93

The objective of this paper is to study the potential of VIS-NIR spec-94

troscopy combined with climate data to predict physiological markers of wa-95

ter stress such as transpiration and stomatal conductance of grapevine plants96

(Vitis vinifiera L.).97

For this purpose, an experimental campaign with precise monitoring of98

physiological variables has been carried out. First of all, physiological vari-99
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ables are predicted by using spectral data exclusively. Then, spectral and cli-100

mate data combination is used for predictions using the data fusion method101

called SO-PLS method.102

2. Materials and methods103

2.1. Experimental design104

The experiment took place in summer 2020 at ”Institut Agro” in Mont-105

pellier, France (fig. 1). The objective of this experiment was to obtain a106

water stress gradient on three grape varieties, Syrah, Riesling and Merlot, of107

different ages (Syrah: two years old; Riesling: three years old; Merlot: four108

years old) treated with two irrigation conditions also called modalities. Each109

plant was grafted and pruned to bear only one main axis, then potted in a110

9L pot filled with 3800 ± 1 g of a dry mixture of 70 % peat and 30 % clay111

(custom-made potting soil, Klasmann-Deilmann), and staked vertically. The112

plants were arranged in rows oriented almost north-south with a density of113

2.8 plants/linear meter along the row. The main branch of each plant was114

pruned at 22 leaves and all secondary branches were retained.115

The first irrigation condition, called well-watered (WW), consisted of116

irrigating the pots several times a day to maintain the weight of each pot117

at a level that did not constrain plant growth (this level was determined in118

previous experiments). The second irrigation condition was defined in order119

to induce a water deficit (WD). This second condition consisted of stopping120

irrigation during one week. Each modality contained 6 plants per variety,121

representing a total of 36 pots. The experiment was repeated in its entirety122

twice with new pots at one-week interval with suspension of irrigation on123
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06/22/2020 for the first experiment, and on 07/06/2020 for the second.124

Figure 1: Vine pots used for experimentation

2.2. Physiological measurements125

The transpiration of each plant was determined from the weight evo-126

lution of each pot placed on a strain gauge load cell (Micro Load Cell127

model CZL635, range 20 kg, mean error ± 70 g), recorded every 30 sec-128

onds (data logger CR1000 Campbell Scientific, Leicestershire, UK). Transpi-129

ration rate was given by a linear regression of weight versus time over a 4h130

time-frame. Transpiration per leaf surface (E), corresponding to water loss131

through leaves only, was then adjusted to the total leaf area of each plant, es-132

timated from planimeter measurements (LI-3100C LI-COR Biosciences Inc.,133

Nebraska, USA), and vein size measurements, which were converted to area134

from previously established charts.135

Stomatal conductance was measured with a porometer (Model AP4, Delta-136

T Devices, Burwell, Cambridge, UK) on young mature leaves with good sun137

exposure (east side of the row in the morning and west side in the afternoon).138
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This measurement was carried out on one leaf per plant chosen at random139

three times a day (9am, 11.30am and 3.30pm, UTC+2). The porometer was140

calibrated before each series of measurements (three times a day).141

2.3. Climate data142

Four climate parameters were measured: Air temperature (Ta), relative143

humidity (RH), global radiation (Rg) and wind speed (Ws).144

T and RH were measured with a capacitive thermohygrometer (HMP35A145

Vaisala; Oy, Helsinki, Finland) placed in a naturally aspirated radiation146

shield at 2.5m height. Rg was measured with a PPFD sensor (LI-190SB;147

LI-COR, Lincoln, NE, USA). Ws was measured with a 3-cup anemometer148

(A100L2, Vector Instruments, Denbighshire, UK). Data were collected every149

30 seconds, averaged over 1800 seconds and stored in a datalogger (CR10X;150

Campbell Scientific Ltd, Shepshed, Leicestershire, UK).151

2.4. Hyperspectral acquisitions152

Hyperspectral images were acquired using a hyperspectral camera (Specim,153

Specim IQ, Finland) covering the spectral range from 400 nm to 1000 nm154

with 204 spectral bands. Spectral regions were cut off after 800 nm due to155

the high level of noise in this experiment. The distance between the camera156

and vine pots was set to approximately 1 meter. Images were acquired each157

day for each modality at three different times (8am, 2pm and 4pm, UTC+2)158

producing a set of 160 hyperspectral images. Camera orientation during im-159

age capture was defined to minimise direct sunlight. Thus, west side was160

privileged at 8am and 2pm and east side at 4pm (see fig. 2).161
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Figure 2: Camera orientation during hyperspectral image capture: towards west (or-

ange arrows) at 8am and 2pm and east (red arrows) at 4pm. Source: https://www.

geoportail.gouv.fr/
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Figure 3: Typical scene where hyperspectral images were acquired. One image corre-

sponded to one of the modalities of the experimental design with 6 pots of vines. The

reference is placed in the scene.

A white reference (SRS99, Spectralon ®) was used to measure natural in-162

cident light (I0(λ)) to standardise all measured images from non-uniformities163

of all instrumentation components (light source, lens, detector). This refer-164

ence was systematically placed in the scene for each image acquisition (see165

fig. 3). From these measurements, reflectance (Rs(λ)) was calculated for166

each image:167

Rs(λ) =
Is(λ)− Ib(λ)

I0(λ)− Ib(λ)
(1)

where Is(λ) is the reflected light intensity, Ib(λ) the dark current image168

recorded by the camera.169
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2.5. Data analysis170

All computations, data processing and multivariate data analysis were171

performed with MATLAB software v.R2015b (The Mathworks Inc., Nat-172

ick,MA, USA).173

2.5.1. Image preprocessing workflow174

The presented workflow was established to generate a spectral database.175

This workflow was defined in three main steps:176

The first step was to manually extract an area corresponding to foliage177

to obtain a reference spectrum sref . The second step was to identify, for178

all images, vegetation pixels that present similar spectra to the reference179

vegetation spectrum. For this purpose, the Spectral Angle Mapper (SAM)180

(Kruse et al., 1993) was used as an indicator that describes spectral similarity181

between two spectra. Expressed in degrees, this indicator calculates the angle182

formed between sref and all spectra of an image in the vector space defined183

by the wavelengths. For a given pixel i, the SAM between sref and si is184

written as follows:185

SAM(sref , si) = arccos

(
⟨sref , si⟩
∥sref∥ ∥si∥

)
(2)

With ∥.∥ being euclidean norm. Spectra are similar when angle value is186

close to 0◦. Conversely, the larger the SAM value, the higher the difference187

between the two spectra. This indicator value has the advantage of being188

independent of signal intensity.189

After identifying vegetation-related pixel in one image, the third step190

was to create a subset of 500 vegetation pixels without any outlier based191
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on their spectra. For this purpose, a principal component analysis (PCA)192

was applied on all vegetation spectra of one image. Then, Q-residuals and193

T2 criteria were computed in order to identify potential outlier spectra. 500194

pixels were randomly selected excluding outliers.195

Finally, the 500 collected spectra were averaged by modality (i.e. per196

image) forming a total of 160 spectra.197

2.5.2. PLS predictions based on spectral data198

In chemometrics, PLS regression (Wold et al., 2001) is the widely used199

method to predict a reference variable y from spectral data X. X dimension200

is n x p where n is the total number of observations and p the number of201

variables or wavelengths. y dimension is n x 1. The final equation of PLS202

regression can be written as follows:203

y = Xb+ rX (3)

Where b is the vector containing regression coefficients and rX is a vector204

containing residuals of the model.205

To do so, a model is established between intermediate variables, called la-206

tent variables computed respectively from X and y. The adjustment of these207

latent variables is performed according to different iterative algorithms. Es-208

sentially, X is decomposed into scores represented by a matrixT of dimension209

n x k, and into loadings P of dimension p x k, where k represents the number210

of latent variables retained for the model. Similarly, y is decomposed into211

a matrix of scores U and loadings q of dimension n x k and of 1 x k. This212

intermediate variables can be defined by these equations:213
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X = TPt + Ex (4)

y = Uqt + ey (5)

Where T and U are the scores of X and y respectively. P and q represent214

loadings for X and y respectively. Ex and ey represent residuals in the215

decomposition of X and y.216

2.5.3. SO-PLS predictions with both spectral and climate data217

SO-PLS (Naes et al., 2011) regression is a multi-block method where218

prediction model is built sequentially from each data block. First, the SO-219

PLS algorithm started as PLS method with the first block containing spectral220

data, as previously described (eq. 3).221

Then, an orthogonalisation procedure was performed to remove informa-222

tion (already exploited from the first regression) on the second block contain-223

ing climate data, defined by the matrix Z. This orthogonalisation, providing224

Z⊥, can be written as follows:225

Z⊥ = Z−T(TtT)−1TtZ (6)

Where T represented scores of X described eq. 4. Then, a second PLS226

model is established between the residual matrix, corresponding to the matrix227

rX (eq. 3) and the matrix Z⊥. This regression is established by following228

the same procedure as previously for the regression between X and y (eq. 3229

4 and 5). At the end of this procedure, a vector c containing the regression230
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coefficients is obtained. The final equation of the SO-PLS multiblock method231

can be written as follows:232

y = Xb+ Z⊥c+ rX,Z (7)

With rX,Z , the residual matrix of the SO-PLS model.233

2.6. Evaluation strategies of prediction models234

The spectral data set was divided into two independent data sets: a235

calibration set of 106 images and a test set. The test set was formed with236

the 54 remaining hyperspectral images. This test set was constructed to237

reflect all modalities of the experimental design.238

A cross-validation step was performed to select the number of latent vari-239

ables per block using a k-fold validation procedure (Camacho and Ferrer,240

2012) performed with five blocks repeated twice. The maximum number of241

latent variables was set at 20 for the spectral data and 3 for the climate data.242

The validation errors were then calculated and used to determine the243

optimal number of latent variables. The parameters chosen for the evaluation244

of the models are the root-mean-square error (RMSE), the bias and the245

coefficient of determination R2. These parameters were calculated as follows:246

Bias =
1

N

N∑
i=1

(ŷi − yi) (8)

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2 (9)

R2 = 1−
∑N

i=1(ŷi − yi)
2∑N

i=1(yi − ym)2
(10)
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Where ŷi denotes the predicted value, yi the observed value, ym the mean247

value and N the total number of observations.248

3. Results and discussion249

3.1. Data visualisation250

3.1.1. Y variables: transpiration and stomatal conductance251

Value distributions of transpiration (E) and stomatal conductance (gs)252

are shown in figure 4b and figure 4a.253
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Figure 4: Histograms of response variable values of (a) stomatal conductance gs

(mmol.m−2.s−1) and (b) transpiration E (mmol.m−2.s−1) .

gs values range from 0 to 350 mmol.m−2.s−1 (fig. 4a). Values above 250254

mmol.m−2.s−1 correspond to well-watered plants and optimal sun exposition.255

Then, a high frequency around 200 mmol.m−2.s−1 appears. This range of256

values corresponds to plants in water deficit and/or to lower sun radiation257

at the beginning or end of the day. A majority of low values between 0 and258

25 mmol.m−2.s−1 are observed corresponding to closed stomata. This occurs259

when there is a complete cessation of the photosynthetic process. Plants are260
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then considered as stressed and correspond to individuals whose irrigation261

has been stopped for a long time.262

E values range from 0 to 4 mmol.m−2.s−1 (fig. 4b). High values (≥ 2.5263

mmol.m−2.s−1) of E correspond to a transpiration level expected when no264

water stress is applied. Low values, lower than 1, mean that plant transpira-265

tion is reduced. With such values during the day, the metabolic activity of266

the plant is considered as suboptimal.267

For both physiological variables, test sets have similar value distributions268

than those of the corresponding calibration set and cover the whole range of269

values.270

3.1.2. Spectral data271

The figure 5 shows average spectra obtained by modality (WD and WW)272

and by grape variety.273
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Figure 5: Spectral data, mean spectra per modality

These spectra corresponds to typical vegetation spectra (Xu et al., 2019;274

Ryckewaert et al., 2021) with specific characteristics at 450 nm, 550 nm,275
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650 nm related to pigments (carotenoids, chlorophyll and anthocyanins) and276

the red-edge, which corresponds to a slope between the visible and near-277

infrared range towards 720 nm.278

Average spectra are very close to each other regardless the irrigation279

regime both for Merlot and Riesling but substantially differ from these of280

Syrah. Reflectance values are higher for Syrah over the whole spectrum281

when irrigated but lower in the NIR domain when non-irrigated.282

The spectrum in irrigated condition differs from the spectrum in non-283

irrigated condition only for Syrah. The visualisation of average spectra is not284

sufficient to observe significant differences between the irrigation conditions285

for other varieties.286

3.2. PLS with one block using spectral data287

3.2.1. Cross-validation procedure288

Table 1 shows criterion values obtained with the cross-validation step to289

predict variables E and gs using the PLS method.290

Table 1: PLS criteria obtained after the cross validation procedure.

Variable LV R2
cv biascv (mmol.m−2.s−1) RMSEcv (mmol.m−2.s−1)

gs 9 0.639 5.41 67.3

E 8 0.625 -0.02 0.67

With the PLS method, the cross-validation suggests 8 LV for E and291

9 LV for gs. For gs, R2
cv, biascv and RMSEcv have values of 0.639, 5.41292

mmol.m−2.s−1 and 67.3 mmol.m−2.s−1 respectively. For E, R2
cv, biascv and293

RMSEcv have values of 0.625, -0.02 mmol.m−2.s−1 and 0.67 mmol.m−2.s−1 re-294

spectively. RMSEcv values obtained for the prediction of these two variables295
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are to be compared with the observed values (fig. 4a and 4b).296

3.2.2. Model evaluation297

.298

E and gs PLS models calibrated with calibration set are applied to the299

independent test set. Figures 6b and 6a show predicted values according to300

observed values.301
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Figure 6: PLS-model evaluation on the test set of (a) stomatal conductance gs

(mmol.m−2.s−1) and (b) transpiration E (mmol.m−2.s−1). Symbol indicates irrigation

condition: • well-watered and * without irrigation. Colour identifies varieties: red: Mer-

lot; green: Riesling; violet: Syrah.

Figure 6a shows criterion values obtained for gs prediction. The separa-302

tion between the irrigated and non-irrigated modalities is clearly observed.303

For this variable, criteria (R2= 0.656, bias=8.76 mmol.m−2.s−1, RMSE=64.7304

mmol.m−2.s−1) are close to the calibration model with a larger bias (tab.305

1). Some observed values below 50 mmol.m−2.s−1 seem more difficult to pre-306

dict. On the other hand, above 50 mmol.m−2.s−1, satisfying predictions are307

obtained.308
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As previously observed, separation between the irrigated and non-irrigated309

modalities is clearly identified for E. Criteria values obtained for E prediction310

are 0.664 for R2, -0.0366 mmol.m−2.s−1 for the bias and 0.635 mmol.m−2.s−1
311

for the RMSE. These values are close to values obtained during the cross-312

validation procedure (tab. 1).313

Error values of these two variables are sufficient to identify occurrence of314

water stress on plants.315

It is interesting to note that the error is of the same nature for irrigated316

plants, at the beginning of desiccation, or in more severe desiccation, i.e. in317

the complete range of variation of the studied variables.318

3.2.3. Regression coefficients: contribution of the different wavelengths to319

models320

Figure 7 shows regression coefficients (B-coefficients) of the two PLS mod-321

els to predict gs (fig. 7a) and E (fig. 7b).322
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Figure 7: Regression coefficients of the PLS-models predicting (a) stomatal conductance

gs and (b) transpiration E.

Regression coefficients are given by PLS models according eq. 3. These323
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coefficients provide the contributions of wavelengths or spectral regions con-324

sidered in the PLS model.325

For gs, a very high peak is observed around 531 nm. At this wavelength,326

spectra are sensitive to anthocyanin content (Ryckewaert et al., 2021). Thus,327

difference observed in the stomatal conductance values is probably related328

to a difference in anthocyanin content in leaves. An acute metabolic use of329

anthocyanins or a disturbance in the xanthophyll cycle seems to occur when330

water status deteriorates. Besides, high values of these regression coefficients331

are also observed around 680 nm. This spectral region is known to be related332

to chlorophyll content (Ryckewaert et al., 2021). As a consequence, the333

combination of spectral information related to chlorophyll and anthocyanin334

contents seem to be important for stomatal conductance predictions.335

Negative peaks are also visible. A negative peak is visible at 714 nm,336

corresponding to the middle of the red-edge slope (fig. 5). Another negative337

contribution can be found in the spectral region at 570 nm. This wave-338

length is often used as a reference to 533 nm to compute the Photochemical339

Reflectance Index. Beyond 750 nm, regression coefficients vary rapidly some-340

times with abrupt reversals of sign, suggesting the complexity or the absence341

of a significant interpretation.342

In the case of E (fig. 7b), two positive peaks are observed around 533 nm343

and 675 nm. These peaks are located at the same wavelengths previously344

observed (fig. 7a). However, slight differences are noticeable for the variable345

E such as a change in ratio between peak values at 533 nm and 675 nm or a346

sign change occurring at a lower wavelength (before 700 nm for E coefficients347

and after 700 nm for gs coefficients). Negative peaks are also visible as348
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described for gs around 570 nm. Other negative coefficients are visible in349

the carotenoid region, around 426 nm. This result could be related to the350

decrease in concentration of some carotenoids with increasing water stress as351

reported in other works (Salazar-Parra et al., 2015). In the same figure (fig.352

7b), noise seems to appear in the near-infrared region between 700 and 800353

nm.354

The anthocyanin and chlorophyll contents are the two pigments most355

closely related to the values obtained for transpiration E and stomatal con-356

ductance gs.357

When experiencing sudden water deficit, stomatal conductance changes358

very rapidly. A complex relationship between anthocyanin and chlorophyll359

occurs as a response to this water stress and is linked to stomatal conductance360

to regulate the photosynthetic process. These results are consistent with the361

well-known effect of water stress on stomatal closure (and the resulting de-362

crease in transpiration), but also on chlorophyll degradation and xanthophyll363

cycling (Doupis et al., 2020). The stability of the model for predicting gs or364

E from hyperspectral data therefore depends a priori on the stability of the365

relationships between gs or E and pigment concentrations. The behaviour of366

the model for the three varieties, suggests a similar evolution of their phys-367

iological characteristics, that influence the reflectance spectrum in response368

to the water regime.369

3.3. SO-PLS using a second block with climate data370

3.3.1. Cross-validation procedure371

Table 2 shows results of optimal parameters obtained with cross-validation372

step for the prediction of variables gs and E using the SO-PLS multi-block373
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method.374

Table 2: Number of latent variables (LV) obtained after cross validation procedure for the

first block (spectral data) and the second block (climate data).

Variable LV 1st block (spectral data) LV 2nd block (climate data) R2
p biasp (mmol.m−2.s−1) RMSEp (mmol.m−2.s−1)

gs 9 0 0.639 5.41 67.3

E 8 3 0.684 0.02 0.613

Regarding gs model, cross-validation suggests 9 latent variables for the375

first block and 0 for the second block corresponding respectively to spectral376

data and climate data. Information from the second block does not improve377

the gs prediction model. SO-PLS parameterisation then corresponds to the378

PLS model calculated previously using only the spectral data (table 1).379

This result is surprising because radiation level is known to influence380

stomatal opening (Jones, 2013). However, considering the environmental381

conditions of the measurements, only relatively high level of radiation (ex-382

posed leaves and sunny days) were encountered. Therefore, the stomatal383

conductance was not driven by this factor during experiments.384

Regarding E model, the number of latent variables retained is 8 for the385

first block and 3 for the second block. In this case, both blocks are exploited386

to estimate the prediction model. The climate data seem to provide addi-387

tional information to the spectral data for transpiration prediction. This388

result is consistent with the fact that transpiration depends on the one hand389

on gs and on the other hand on the evaporative capacity of the air, which390

is itself determined by relative humidity, temperature, radiation and wind391

speed (Jones, 2013).392

From a theoretical point of view, a relationship was primarily expected393
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between VIS-NIR signature and leaf water status (with possible, additional394

influences of changes in leaf pigment composition and other constituents dur-395

ing soil drying). Considering that stomatal conductance fairly well correlates396

with leaf water status (Damour et al., 2010), our observation that stom-397

atal conductance also correlated with VIS-NIR characteristics is in line with398

the theoretical expectation. Regarding transpiration, which is roughly equal399

to the stomatal conductance multiplied by the evaporative demand (mostly400

vapour pressure deficit), a stronger influence of climate on the relationship401

with VIS-NIR characteristics could also be expected.402

3.3.2. Model evaluation403

As mentioned before, SO-PLS model of gs corresponds to PLS model404

previously studied in section 3.2.2 (fig. 6a and 7a).405

SO-PLS results for E prediction are shown in figure 8.406
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Figure 8: Model evaluation on a test set for the prediction of transpiration E

(mmol.m−2.s−1). Symbol indicates irrigation condition: • well-watered and * without

irrigation. Colour identifies varieties: red: Merlot; green: Riesling; violet: Syrah

R2, bias and RMSE criteria obtained have values of 0.699, 0.0555 mmol.m−2.s−1
407

and 0.614 mmol.m−2.s−1, respectively. These criteria are improved compared408

to the results obtained with PLS method (fig. 6b). Including the second block409

corresponding to climate data in the model improves the E prediction. In a410

perspective of use for agronomic diagnosis, it is worth noticing that the same411

model is used for all three grape varieties tested here, despite the slightly412

different spectral signature of Syrah.413

3.3.3. Regression coefficients for each block414

Figures 9a and 9b show regression coefficients for spectral and climate415

data, respectively.416
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Figure 9: Regression coefficients of SO-PLS model to predict transpiration E (a) for the

first block (spectral data) and (b) for the second block (climate data)

These vectors show variables involved in E prediction. For the first block417

corresponding to spectral data (fig. 9a), the same coefficients are obtained as418

previously (fig. 7b). Indeed, models are established with 8 latent variables419

in both cases.420

Coefficients obtained from the second block show non-zero values for all421

four climate variables: radiation (Rg), relative humidity (RH), temperature422

(Ta) and wind speed (Ws). These parameters are then taken into account in423

the prediction model.424

Both coefficients related to Rg and Ta have positive signs while those of425

RH and Ws have negative signs. This shows that for given spectral charac-426

teristics, an increase of Rg or Ta induces an increase of E. This result could427

be expected as the evaporative capacity of the air increases with Rg and428

Ta. It can be noted, however, that Rg has a lower impact compared to Ta.429

This was probably due to a lower range of variation of Rg at the time of our430

measurements (as commented above). Conversely, increasing values of RH431
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and Ws will tend to decrease transpiration. This result was also expected432

for RH, because when RH increases, the evaporative capacity of the air de-433

creases. The effect of wind is more complex, because, on the one hand, it434

decreases leaf temperature, which reduces transpiration. But, on the other435

hand, it increases aerodynamic conductance, which increases transpiration.436

It seems that the first effect dominates here. This effect should be tested un-437

der other radiation conditions (especially lower level of radiation on leaves)438

and other wind speed ranges.439

Furthermore, absolute values of these coefficients show the impact of the440

associated variables in the prediction model. Thus, Ta and Ws have a greater441

impact than Rg and RH on transpiration.442

4. Conclusion443

This article proposed a study of prediction models established from spec-444

tral data, for two major variables related to water stress, namely stomatal445

conductance gs and transpiration E. Despite different coloured berry vari-446

eties (one white and two red), generic PLS models achieved good predictive447

quality. Quality of these prediction models could be improved by defining448

varietal models on a larger data set. Combining predictions of these two449

variables is a promising solution to assess plant water stress.450

In addition, merging spectral data with climate data improves prediction451

quality of the transpiration variable. Moreover, if additional information452

from other sensors is available, multi-block methods could improve predictive453

qualities of physiological variables. The proposed methodology enables to454

consider coupling spectral point acquisitions with connected objects in the455
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field in order to improve the prediction of agronomic variables.456
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