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Abstract.  
 

Amazonian forest plays a crucial role in regulating the carbon and water cycles in the global 

climate system. However, the representation of biogeochemical fluxes and forest structure in 25 

dynamic global vegetation models (DGVMs) remains challenging. This situation has 

considerable implications to simulate the state and dynamics of Amazonian forest. This study 

aims at simulating the dynamic of the evapotranspiration (ET), productivity (GPP), biomass (AGB) 

and forest structure of wet tropical forests in the Amazon basin using the updated ORCHIDEE land 

surface model. The latter is improved for two processes: stand structure and demography, and plant 30 

water uptake by roots. Stand structure is simulated by adapting the CAN version of ORCHIDEE, 

originally developed for temperate forests. Here, we account for the permanent recruitment of young 

individual trees, the distribution of stand level growth into 20 different cohorts of variable diameter 

classes, and mortality due to asymmetric competition for light. Plant water uptake is simulated by 

including soil-to-root hydraulic resistance (RS). To evaluate the effect of the soil resistance alone, we 35 

performed factorial simulations with demography only (CAN) and both demography and resistance 

(CAN-RS). AGB, ET and GPP outputs of CAN-RS are also compared with the standard version of 

ORCHIDEE (TRUNK) for which eco-hydrological parameters were tuned globally to fit GPP and 

evapotranspiration at flux tower sites. All the model versions are benchmarked against in situ and 

regional datasets. We show that CAN-RS correctly reproduce stand level structural variables (as CAN) 40 

like diameter classes and tree densities when validated using in-situ data. Besides offering the key 

advantage to simulate forest’s structure, it also correctly simulates ET and GPP and improves fluxes 

spatial patterns when compared to TRUNK. With the new formulation of soil water uptake, which is 
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driven by soil water availability rather than root-biomass, the simulated trees preferentially use water 

in the deepest soil layers during the dry seasons. This improves the seasonality of ET and GPP 45 

compared to CAN, especially on clay soils for which the soil moisture potential drops rapidly in the 

dry season. Nevertheless, since demography parameters in CAN-RS are constant for all evergreen 

tropical forests, spatial variability of AGB and basal area across the Amazon remains too uniform 

compared to observations, and are very comparable to the TRUNK. Additional processes such as 

climate driven mortality and phosphorus limitation on growth leading to the prevalence of species with 50 

different functional traits across the Amazon need to be included in the future development of this 

model. 

1 Introduction 

Even though the Amazonian rainforest is of an essential importance for the carbon cycle 

[Eltahir and Bras, 1994; Werth and Avissar, 2002] large uncertainties impede future 55 

projections of changes in net carbon uptake over Amazonia [Poulter et al., 2010; Arora et al., 

2013; Jones et al., 2013]. An analysis of variance on simulation outputs from 12 Earth System 

models (ESM) showed that uncertainties in projections of terrestrial carbon uptake are 

primarily driven by model structure [Lovenduski and Bonan, 2017]. These uncertainties arise 

from both the climate projections, especially rainfall [Ahlström et al., 2012] and simulations 60 

of the land carbon cycle processes [Booth et al., 2012; Sitch et al., 2015]. 

 

In land surface models, sources of uncertainty include the vegetation response to droughts 

[Restrepo-Coupe et al., 2016], and tree demographic processes [Fisher et al., 2010; Rödig et 

al., 2018]. Most models simulate the effect of water limitation on plant functioning by 65 

lowering leaf gas exchange rates using a stress factor [Christoffersen et al., 2014] and by 

including atmospheric water stress from high vapor pressure deficit in their parameterization 

of stomatal conductance. Models typically fail to capture tropical carbon and water flux 

seasonality [Poulter et al., 2009; Restrepo-Coupe et al., 2016], and the response to drought 

[Powell et al., 2013; Joetzjer et al., 2014]. A few regional ecosystem models [Bonan et al., 70 

2014; Christoffersen et al., 2016; Xu et al., 2016] and one DGVM [Kennedy et al., 2019] 

recently adopted a more explicit representation of the soil-plant-atmosphere water column by 

including formulations of soil-to-root and plant xylem resistances to water transfer.  

 

In the Amazon forest, water uptake is sustained during the dry season, and some forests were 75 

even recorded to increase their evapotranspiration and canopy photosynthesis rate in the dry 

season [Paca et al., 2019], thanks to deep-root water uptake (Maeda et al., 2017). In most 

global land surface models, water available for transpiration in the root zone is quantified 

using a root biomass-weighted sum of moisture in different soil layers, with a decreasing root 

biomass profile at depth. Under this assumption, the upper soil layers with higher root 80 

biomass contribute more to soil water uptake, which may lead to an overestimation of the 

water stress when those layers dry out. In the reality, the soil-to-root water flow depends on 

soil and root hydraulic properties, which vary in time and with depth [Sperry et al., 2002]. 

Tree water potentials were observed to preferentially equilibrate with the wettest part of the 

soil [Schmidhalter, 1997], a process controlled not only by the density of roots but also by the 85 
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variability of both the soil-to-root resistance and the root activity within the soil profile. In 

turn, the soil-to-root resistance is non-linearly related to soil water content [Gardner, 1960]. 

In this study, we introduced a new root water uptake scheme that includes a soil-to-root 

resistance, in the soil hydrology module of the ORCHIDEE model and tested it over the 

Amazon for evapotranspiration (ET (mm d-1) or LE (W m-2)) and photosynthesis (gross 90 

primary productivity, GPP), as well as above ground biomass (AGB).  

 

Most current global land surface models simulate forest wood biomass as a single pool of 

carbon that receives input from the fraction of primary productivity allocated to wood and 

losses carbon from mortality. Mortality is often assumed to be a fixed fraction of biomass, but 95 

some models include a climate-dependent mortality, based e.g. on empirical relations. 

Photosynthesis is usually simulated using a big-leaf approximation. In the reality, field 

observations have highlighted the importance of competition between individuals leading to 

stand structure and demography [Farrior et al., 2016], which control stand level height, 

biomass and productivity of tropical forests [Johnson et al., 2016a]. Forest stand models have 100 

been developed to include competition-dependent growth and mortality [e.g. Sakschewski et 

al., 2016; Maréchaux and Chave, 2017; Longo et al., 2018]. They explicitly represent forest 

dynamics via tree demography and vertical competition for light. In some models, forest 

structure and tree demography emerge from a mechanistic representation of competition and 

recruitment schemes with different individuals or species or groups of species having various 105 

functional traits. Differentiation between traits in a stand model can bring insights on forests 

resilience [Zhang et al., 2015; Levine et al., 2016; Sakschewski et al., 2016; Xu et al., 2016; 

Fisher et al., 2018; Longo et al., 2018].  

 

At face value, stand models have complex parameterizations and require multiple drivers that 110 

make them difficult to run at large scale. They also generally lack detailed soil hydrology and 

energy budget calculations, as implemented in land surface models. In this study, we adapt an 

intermediate complexity approach to simulate stand structure in the land surface model 

ORCHIDEE, based on the representation of different tree cohorts among which stand-level 

simulated growth is distributed and mortality is calculated from the density of trees, using 115 

self-thinning principles. This approach pioneered by Bellassen et al., [2010, 2011] was further 

developed in the CAN version of ORCHIDEE by Naudts et al., [2015] for temperate and 

boreal forests. Here we extend it to tropical rainforests by adding recruitment of young trees 

following gap formation, by revisiting the self-thinning law, that is observed to be an 

emerging property of tropical stands [Pillet et al., 2017].   120 

 

To improve wet tropical forest over the Amazon structure and seasonal fluxes dynamic 

simulation, we propose an improved version of the ORCHIDEE land surface model. 

ORCHIDEE is improved for two processes: (1) stand structure and demography, and (2) plant 

water uptake by roots including a soil-to-root water resistance. This study aims at simulating 125 

the water, and carbon (GPP) fluxes, biomass (AGB) and forest’s structure of wet tropical 

forests over the Amazon. Both processes were incorporated in the ORCHIDEE-CAN-RS 

model code here-after being called CAN-RS. The differences in simulation output between 

CAN-RS and CAN allow us to evaluate the effect of soil-root (RS) hydraulic processes. The 
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differences between CAN-RS, CAN and the standard version of ORCHIDEE, called TRUNK, 130 

allow us to evaluate the effect of forest demography. We used the TRUNK version updated 

for the CMIP6 exercise (Peylin et al., in prep). Data used for evaluation over the Amazon 

include eddy-covariance measurements of GPP and ET (LE) as well as soil moisture, site-

level forest inventory data for biomass, density and stand structure, and gridded GPP and ET 

products from observation-based models across the entire basin. 135 

 

2. Methods 

2.1 Model description and experimental design 

2.1.1 Transpiration and biomass dynamics in TRUNK, CAN and CAN-RS 

 140 

The ORCHIDEE land surface model first described by Krinner et al., [2005] represents 

energy, water, and carbon exchanges within the soil-plant-atmosphere continuum on a half-

hourly time step. In the TRUNK version, carbon assimilation is based on the leaf-scale 

equation of Farquhar et al., [1980] for C3 plants and the stomatal conductance formulation of 

Yin and Struijk (2009), with an analytical equation to compute assimilation and stomatal 145 

conductance (gS) at each time-step. Evapotranspiration is the sum of evaporation from bare 

soil, evaporation of water intercepted by the canopy, and transpiration. Transpiration is 

controlled by gS and by the evaporative demand of potential evapotranspiration. Stomatal 

conductance is reduced by atmospheric water stress with a decreasing function of vapor 

pressure deficit (VPD) and by soil-moisture water stress using an empirical function of the 150 

root biomass-weighted soil moisture [de Rosnay and Polcher, 1998] (see SI section D).  

 

In the CAN version [Naudts et al., 2015; McGrath et al., 2016] the big-leaf approach was 

replaced by a dynamic three-dimensional representation of the canopy based on Haverd et al., 

[2012]. Carbon assimilation and leaf transpiration are scaled from each leaf layer to the 155 

canopy based on light intercepted by leaf area (leaf area index, LAI) layers, with an 

exponential attenuation of light from the top of the canopy to the ground. The soil moisture 

stress function differs from the TRUNK. The constrain on transpiration is based on the 

amount of water plants can transport from the soil to their leaves. If the transpiration rate 

exceeds the plant water supply, the stomatal conductance is reduced until equilibrium is 160 

reached. This approach accounts for the total hydraulic resistance of the water transport from 

roots to leaves, through the sapwood xylem flow, described by Hickler et al., [2006] and 

Naudts et al., [2015]. Both CAN and TRUNK have the same 12-layer soil diffusion model 

[Guimberteau et al., 2014]. Changes made to the root water uptake formulation with the 

inclusion of a new soil-to-root resistance formulation in CAN-RS are described in section 165 

2.1.3 

 

In TRUNK the dynamics of woody biomass is modelled as a single pool with constant loss 

due to mortality and a weather-dependent input from the fraction of NPP allocated to woody 

tissues. The model distinguishes sapwood and heartwood to compute tree woody respiration, 170 

with a constant fraction of sapwood becoming heartwood at each time step. In CAN, forest 

biomass is calculated with tree demography, which is simulated by distributing stand-level net 
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primary productivity (NPP) to a user-defined number of tree diameter classes (20 classes) 

following the diameter-dependent allocation rule of Deleuze et al., [2004], as originally 

implemented by Bellassen et al., [2010]. This rule gives more NPP to the largest diameter 175 

classes, thus demoting smaller trees. Mortality due to the competition between diameter 

classes is based on an empirical relationship between biomass and diameter known as self-

thinning [Reineke, 1933]. There is good evidence for self-thinning in -aged temperate and 

boreal forests in the literature, but less so for wet tropical forests. Here, we assumed that self-

thinning can be applied over Amazon tropical forests, based on data from [Kohyama, 1992; 180 

Phillips et al., 2002; Pillet et al., 2017] that show a decrease of the logarithm of stand tree 

density as a function of the logarithm of mean tree diameters, although with site-specific 

slopes and larger noise than in temperate and boreal stands. Because CAN was originally 

parameterized and evaluated for temperate an boreal latitude forests [Naudts et al., 2015], we 

recalibrated the self-thinning equation (based on [Yoda et al., 1963])and added the 185 

recruitment of young trees, which is a key process controlling the demography and biomass of 

tropical forests. These changes are described below in section 2.1.2, and evaluated in the 

manuscript (section 3.4). Additional parameter values adjustments are listed in the 

Supplementary Information. 

 190 

2.1.2 Self-thinning and recruitment (CAN and CAN-RS) 

In CAN, the competition for light among tree diameter classes is based on the self-thinning 

equation that relates the maximum number of trees (Nmax) to the mean stand diameter Dg (m)  

 

���� = ���	 
� �⁄
          (1) 195 

 

The parameters � = 1100  (m) and � = −0.57  were estimated for tropical forests using 

publicly available plot-level data from the RAINFOR forest inventory network [Brienen et 

al., 2015]. This tropical self-thinning relationship is represented in Fig 1a. 

 200 

In unmanaged tropical forests, the recruitment of small trees is fostered by gap creation due to 

the death of large trees which locally increases light availability [Denslow et al., 1998]. While 

gaps are not explicitly represented in CAN, to account for this natural forest regeneration, we 

implemented a recruitment scheme where the number of recruited new trees (��������� per 

hectare and per year, Fig. 1b) is a function of the LAI of the remaining trees using the 205 

following equation: 

 ��������� = 100��� −0.15!"#$          (2) 

 

This parameterization assumes, following Ruger et al., (2009) that the number of recruits 210 

depends on mean-stand LAI because a higher LAI will reduce light availability in the 

understory and hence hinder sapling recruitment and growth. The order of magnitude of the 

computed number of recruited trees is comparable to those observed in Amazonia [Phillips 

and Gentry, 1994; Lewis et al., 2004, Phillips et al., 2004]. The effects of the inclusion of 
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recruitment on forest structure and carbons fluxes are detailed in the Supplementary 215 

Information (section B2). The recruitment formulation is illustrated in Fig. 1b. 

 
Figure 1. (a) Self-thinning relationship (equation 1) and (b) recruitment function of new 

trees (equation 2) implemented in this study 

 220 

2.1.3 Dynamic root water uptake with variable soil-to-root resistance (CAN-RS) 

 

In CAN, the soil water potential in the rooting zone (%�&, MPa) is calculated as the sum of the 

soil water potentials per layer (%�, MPa) weighted by the relative proportion of root biomass 

in each layer ('�((�), with a fixed root biomass profile that decreases exponentially with 225 

depth. Processes controlling the water transfer from soil to roots, which are not explicitly 

represented, are accounted for by adding a tuning factor ()*) to the modeled soil water 

potential to simulate the root zone water potential [Naudts et al., 2015] :  

 %�& = ∑ ,%� -$'�((� -$. + )*012�         (3) 230 

 

where L is the number of layers (L=12) and l the index of the considered layer. 

 %� is calculated for each soil layer l as a function on the simulated volumetric water content of 

that layer (345 -$,m3 m-3) following the Mualem - van Genuchten model [Mualem, 1976; 235 

van Genuchten, 1980]: 

 

%� -$ = )7� 8 �9:; <�=>? 1$@ABAB@AC 
 DEFG; − 1H
EFG; ; −5J        (4) 

 

where SWC(l) is the relative soil water content in layer l; K� and K� (m3 m-3) are the residual 240 

and saturated soil water contents, respectively; and L�M , LNM are the van Genuchten 

parameters. These parameters are soil texture-dependent (see Table S1). %� cannot be lower 

than a minimum soil water potential for hygroscopic water of -5 MPa [Larcher, 2003]. 
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The use of root biomass-weighted soil water potentials in the soil profile in Eq. (3) ignores the 245 

dependence of soil-to-root water flow on soil and roots hydraulic properties. Besides, the 

fixed value of the )*tuning parameter may lead to incorrect positive hydraulic potentials in 

the soil. We implemented in this study a different computation of %�& , whereby %�  is 

weighted by O��� -$ (mmol m2 s-1), the maximum amount of water that can be absorbed by 

the roots in each layer, which itself depends on the soil-to-root resistance P�� (MPa s mmol-1 250 

m-2) and on a minimum root water potential %�((�,� (MPa) [Williams et al., 2001; Fisher et 

al., 2006; Duursma and Medlyn, 2012]. This is given by replacing Eq. (3) by the following 

equation:  

 %�& = ∑ QC 1$RS:TUE  1$∑ RS:T  W$UE   with  O��� -$ = X%Y YZ -$ − %�((�,�[ P��⁄  -$     255 

   (5)  

 

The minimum root water potential %�((�,�is set at -3 MPa [Duursma and Medlyn, 2012]. The 

soil-to-root resistance P�� estimates the effective path length for water transport from the soil 

matrix to the root surface [Gardner, 1960], and is computed as follows: 260 

 

P�� -$ = 1N�BC W$BB 

\]1B 1$^C_`W 1$ab 1$        (6) 

 

where -� (m-2) is the root length per unit of soil volume, a function of the specific root length 

(SRL), here set at 10 m g-1 [Metcalfe et al., 2008]. -� also depends on the fine root biomass 265 

density per layer ( cde)7ZZf�((�� -$ , in g m-3) and is calculated as follow  -� -$ =cde)7ZZf�((�� -$3P! . g�  (m) is one-half of the mean distance between roots, computed 

following [Newman, 1969]:  

 

g� = � �]1B 1$
h.i
            (7) 270 

 

In equation (6), g�(m) is the mean fine root radius, set at 0.29 10-3 m [Bonan et al., 2014]; j�(�1  (mmol m-1 s-1 MPa-1) is the soil saturated hydraulic conductivity. cde)7ZZf�((�� 

represents the sum of fine root biomass of all the cohorts calculated following the allocation 

scheme relying on the pipe model theory as implemented originally in CAN [Shinozaki, 1964; 275 

Sitch et al., 2003] and it is vertically discretized per soil layer by multiplying by '�((� -$. k� -$ (m) represents the thickness of the soil layer l.  

 

2.1.4 Soil hydraulic parameters defining texture-dependent soil water potentials 

In all three versions of ORCHIDEE considered in this study, the relationships between 280 

saturated hydraulic conductivity (j�(�1 ), volumetric water content (345 ), and soil water 

potential (%� ) are described by the Mualem–van Genuchten model [Mualem, 1976; van 

Genuchten, 1980], using the parameters estimated by Carsel and Parrish, [1988] for the 12 

soil texture classes of the United States Department of Agriculture (USDA) classification. 
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TRUNK has been calibrated and evaluated at global scale and specifically over Amazonia 285 

[Getirana et al., 2014; Guimberteau et al., 2014] using this USDA parameterization. To 

ensure consistency between the different model versions compared in this study, and model’s 

development traceability, we used the same parameter values to define soil water potential as 

a function of soil moisture in each layer (equation 4; parameter values are given in Table S1).  

.  290 

 
Figure 2. (a) USDA soil types interpolated at 1-degree resolution over the Amazon. The 

regions in the black squares denoted GS and BS are part of the Guiana and Brazilian 

Shields where the model was evaluated; (b) soil water retention curves defining the soil 

water potential %� versus the volumetric water content SWC predicted by the Mualem-295 

van Genuchten equation (Eq. 4) for the three dominant soil classes in Amazonia.  

 

The spatial heterogeneity of soil structure in Amazonia is related to the geology of the area 

with old, highly weathered soils (Precambrian substrates) over the Brazilian and Guiana 

Shields contrasting with much younger Cenozoic soils of the Andes and western Amazonia 300 

[Quesada et al., 2011]. This is reflected in the USDA map of soil types, with mainly clay (12) 

over the shields, and loam (6) and clay-loam (9) over the rest of Amazonia (Fig. 2a). The 

Mualem-van Genuchten equation (Eq. 4) implies a lower water availability for plants in clay 

soils than in loamy or clay-loamy soils, at a given soil water content, that is, more negative 

values of %� for the same SWC, as shown in Fig. 2b.   305 

 

2.1.5 Simulations 

We compared outputs from the TRUNK version used in the 6th Model Intercomparison 

Project (CMIP6), from CAN (v2290) with self-thinning, recruitment and parameters modified 

for tropical forests as presented in section 2.1.2, and from CAN-RS which additionally 310 

includes the new root water uptake module. Note that even though, ORCHIDEE-CAN 

simulates forest structures, it does not yet include species co-existence and competition 

between species. ORCHIDEE is a global land surface model that describes vegetation using a 

gridded classification of land cover represented by 13 plant functional type (PFTs) (one for 

bare soil, eight for forests, two for grasslands and two for croplands), each characterized by a 315 

specific set of parameters. Most of the Amazon forest is represented by the evergreen tropical 

forest plant functional type (Fig. 12a), with the multi-layer soil water diffusion scheme [de 
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Rosnay et al., 2002] parameters given in section 2.1.4 and a 4-meter uniform soil depth 

[Campoy et al., 2013].  

 320 

Site level simulations were performed for three tropical evergreen forests for which eddy-

covariance measurements were available (da Rocha, 2004): Santarem KM67 (K67), Manaus 

KM34 (M34) [da Rocha et al., 2009] and Paracou (GFG) [Bonal et al., 2008]. All simulations 

used hourly local meteorological forcing. Each site corresponds to one of the major soil 

texture classes of the USDA soil classification (Fig. 2 and Table 1). Secondly, historical 325 

simulations were performed at 1-degree spatial resolution over the Amazonian forest using 

gridded climate forcing data from CRU-NCEP, which combine monthly data from the 

Climate Research Unit (CRU) and 6-hourly fields from the National Center for 

Environmental Prediction (NCEP) [Wei et al., 2014] (Table 1). All simulations started from a 

semi-analytical spin-up [Lardy et al., 2011] to equilibrate carbon and hydrological variables 330 

by recycling climate data from 1981 to 2000 under a constant CO2 concentration set to 350 

ppm. 

 

Table 1. Summary of the simulations performed with the three versions of ORCHIDEE.  

 
Simulation 

name 
Soil type USDA Meteorological data Period 

local 

K67 clay-loam 9 
In situ meteorological 

measurements (hourly) 

2002-2004 

M34 loam 6 2003-2005 

GFG clay 12 2007-2009 

regional REGIONAL USDA texture maps (Fig. 2) CRU-NCEPv7.1 (6 hourly) 1981-2016 

 335 

2.2 Evaluation data 

2.2.1 Site data  

At all three flux tower sites, we used eddy-covariance measurements of hourly sensible (H) 

and latent (LE) heat fluxes, and net ecosystem carbon exchange (NEE). LE (W m-2) is 

equivalent to the evapotranspiration (mm d-1) [Bonal et al., 2008; da Rocha et al., 2009]. To 340 

convert LE in ET, LE is multiplied by the latent heat of vaporization (λ) that is a factor 

depending on air temperature. Gross primary productivity (GPP) and ecosystem respiration 

were separated from NEE using the algorithm of Reichstein et al., [2005].. Flux data are 

noisy, and Hollinger and Richardson, [2005] evaluated the relative uncertainty of H, LE and 

CO2 fluxes derived from eddy-covariance measurements to be around 25% for a temperate 345 

forest. For eddy-covariance data, energy balance closure is a good proxy for data quality 

[Wilson, 2002]. We therefore calculated the overall energy balance ratio as the ratio of the 

sum of outgoing radiation (LE + H) divided by the sum of incoming radiation averaged over 

the study period [Wilson, 2002] (Table. 1). K67 and GFG showed a good energy closure (ratio 

of 1.008 and 0.96 respectively), but at M34 this ratio was only of 0.69, suggesting that LE 350 

or/and H are underestimated.  
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Field observations of LAI, basal area (BA), and canopy height (Table 2), were used to 

evaluate the models at each site. At K67, vertical soil moisture measurements [Nepstad et al., 

2007] were used to test the soil water temporal dynamics in the CAN-RS version. At GFG, 355 

old-growth forest plots were surveyed [Gourlet-Fleury et al., 2004; Ho Tong Minh et al., 

2016]. We used tree diameter and height measurements (for 1592 trees) from the 2014 

inventory on a 6.25 ha plot in order to evaluate CAN and CAN-RS forest structure 

representation. Forest inventories used in this study only included trees with a diameter at 

breast height (DBH) above 10 cm. Statistically time-extended data from a site near to GFG 360 

that was clear-cut in 1976 and then left to regenerate were also used to evaluate forest 

biomass and stand density dynamics in CAN and CAN-RS [Chave et al., in prep].  

 

2.2.2 Regional data 

To evaluate GPP patterns and seasonality across the Amazon, we used monthly outputs of the 365 

observation-based GPP FLUXCOM model ensemble from 1981 to 2013 at a 0.5° resolution, 

obtained by using different methods to upscale eddy-covariance data by Tramontana et al., 

[2016] and Jung et al., [2017]. We calculated the median of three FLUXCOM models, 

namely ANNs (artificial neural networks), RF (Random Forest) and MTE (Model Tree 

Ensemble) that all used the method proposed by Lasslop et al., [2010] to retrieve GPP by 370 

fitting a respiration model to nighttime NEE values. Compared to the global network of flux-

tower measurements, the FLUXCOM models performances were reasonable in terms of 

annual mean and spatial pattern representation (R2 > 0.7) and mean seasonal cycle (0.67 < R2 

< 0.77), but the models showed a low predictive power for inter-annual variability (R2 = 0.13) 

[Tramontana et al., 2016]. Also, GPP was better predicted by FLUXCOM models at 375 

temperate sites compared to tropical ones, given the scarcity of tropical sites to train models 

[Table C3, Tramontana et al., 2016]. For ET, we used the remotely-sensed GLEAM v3.1a 

product [Martens et al., 2017 and references within] interpolated at a 1° resolution from 1981 

to 2016. GLEAMv3.1 was compared to site-level ET measurement at K67 (M34) between 

2000 and 2006 by Moreira et al., [2018] who found a relatively strong bias of 0.77 (0.99) mm 380 

d-1 and low correlation -0.08 (0.32), suggesting that this dataset is uncertain for the Amazon. 

To evaluate large scale biomass and stand structure, we used the data from 413 ground 

inventories across Amazonia presented by Mitchard et al., [2014]. Basal area (BA) was 

directly calculated from diameter measurements, and aboveground biomass (AGB) was 

calculated at each site using the three-parameter moist tropical forest allometric model of 385 

Chave et al., [2005].  

 

3. Results 

3.1 Site-level evaluation of the models  

3.1.1 Yearly means 390 

 

CAN and CAN-RS outperform TRUNK to simulate yearly mean of LE at K67 and GFG 

(Table 2). Note that CAN-RS simulates the annual mean being simulated with a bias of about 

3.5%. However at M34, CAN and CAN-RS overestimated LE with a large bias (> 60 %) 

(Table 2), but we should keep in mind that the energy budget is not closed at this site (see 395 
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2.2.1). For GPP, TRUNK slightly outperformed CAN and CAN-RS at K67, but CAN and 

CAN-RS outperformed TRUNK at the two other sites. Note that at GFG, CAN-RS 

outperformed CAN for both LE and GPP. TRUNK simulated a lower AGB than observed, 

while CAN and CAN-RS generally overestimated AGB, especially at K67, where the 

overestimate by CAN and CAN-RS was 25% and 31%, respectively. This overestimation of 400 

AGB may possibly result from previous disturbances such as the droughts associated with the 

strong El Niño events of the 1990s (Pyle et al., 2008) that these simulations forced by 3 years 

meteorological forcing cannot represent. At the two other sites AGB is better captured by 

CAN and CAN-RS. Finally, CAN and CAN-RS tended to underestimate tree height and 

overestimate basal area (Table 2). Height and basal areas are not modeled in TRUNK.    405 

 

Table 2. Comparison of the three versions of ORCHIDEE against site observations. 

Mean absolute percentage bias between observations and model results are indicated in 

italic 
VARIABLE Site OBS TRUNK CAN CAN-RS Refs and remarks 

LE 

(W m-2) 

K67 86 70 (18.6) 87 (1.2) 89 (3.5) 

Eddy-covariance 

measurements [Bonal et al., 

2008; da Rocha et al., 2009] 

 

M34 79 91 (15.2) 132 (67.1) 131 (65.8) 

GFG 119 92 (22.7) 102 (14.3) 115 (3.4) 

GPP 

(μmol CO2 

m2 s-1) 

K67 8.2 7.7 (6.1) 6.3 (23.2) 7.4 (9.8) 

M34 7.9 7.5 (5.1) 8.1 (2.5) 8.1 (2.5) 

GFG 9.7 7.6 (21.6) 7.8 (19.6) 9.6 (1.0) 

AGB 

(tC ha-1) 

K67 148 ± 3 101 (31.8) 198 (33.8) 214 (44.6) 
[Pyle et al., 2008] recently 

disturbed plot  

M34 180 ± 10 99 (45.0) 221 (22.8) 221 (22.8) [Malhi et al., 2009b]  

GFG 203 102 (49.8) 206 (1.5) 228 (12.3) 
[Dubois-Fernandez et al., 

2012] 

LAI 

(m2 m-2) 

K67 6.4 ± 0.1 4.9 (23.4) 6.2 (3.1) 6.6 (3.1) [Malhi et al., 2009a]  

M34 5.6 ± 0.2 4.8 (14.3) 6.7 (19.6) 6.7 (19.6) [Malhi et al., 2009a]  

GFG 8.6 ± 0.7 5.0 (41.9) 6.5 (24.4) 7.3 (15.1) [Granier et al., 1996]  

Canopy 

Height 

(m) 

K67 29.1 ± 7.2 - 19 (34.7) 19.1 (34.4) [Meyer et al., 2018] mean 

canopy height model (CHM) 

at 1 m resolution from LIDAR 

and associated standard 

deviation 

M34 26.7 ± 6.8 - 19.5 (27.0) 19.6 (26.6) 

GFG 29.7 ± 9.5 - 19.4 (34.7) 20.2 (32) 

Basal Area 

(m2 ha-1) 

K67 31 - 36.1 (16.5) 36.2 (16.8) [Hunter et al., 2008] 

M34 27 - 36.6 (35.6) 36.6 (35.6) [Rodrigues et al., 2001] 

GFG 31.6 - 36.5 (15.5) 37.3 (18) [Ferry et al., 2006] (Table 4) 

 410 

3.1.2 Seasonal water and carbon fluxes  

Analyzing the time series of LE, GPP and NEE at the three sites through Taylor diagrams 

[Taylor, 2001], the three models performed reasonably well with temporal correlations 

between observations and simulations varying from 0.5 to 0.8 and the normalized standard 

deviation and RMSE both going from 0.5 to 1 (Fig. 3). CAN-RS outperformed CAN at K67 415 

and GFG, and both models showed similar performances at M34 (Fig. 3). CAN and CAN-RS 

did not exhibit systematically better correlations with the data compared to TRUNK, but did 

have a lower standard deviation. 
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 420 
Figure 3. Taylor Diagrams for: (a) LE, (b) GPP and (c) NEE, at three Amazonian sites 

equipped with an eddy-flux tower system. These quantities were calculated among 

hourly values removing nighttime values (defined by downwelling shortwave radiation ≤ 

5 W m−2). In a Taylor diagram, equal correlation extends radially from the origin. The 

blue concentric lines indicate identical ratios of standard deviation of the simulated flux 425 

to the observed flux. The grey lines represent identical root mean square errors (RMSE) 

of the centered fluxes.  

 

The effect of the soil-to-root resistance scheme on LE and GPP was strongly dependent on the 

soil type (Table 1 and Fig. 2). Little difference between CAN and CAN-RS was observed at 430 

site M34, where the soil is loamy, implying a low water stress most of the year. At site GFG 

however, soil is clayey implying a higher water stress during the dry season, and CAN-RS 

performed better than CAN, which underestimated LE and GPP by 31% and 54%, 

respectively, during the dry season. For site K67 with a clayey-loamy soil, implying an 

intermediate water stress, CAN-RS buffered the dry season drop in LE and GPP simulated by 435 

CAN during the first (2002) and third years (2004). In 2003, CAN-RS simulated a decrease in 

LE and GPP two months sooner than CAN (Figs. 4 and 5). In summary, we found that CAN-

RS and CAN had very similar results during the wet season, but CAN-RS better simulated the 

seasonality of LE and GPP than CAN for soils prone to water stress during the dry season. 

This is because the new root water uptake module alleviated drought stress by allowing a shift 440 

in water uptake from drier superficial layers to wetter deeper soil layers. On the other hand, 

CAN-RS and CAN simulated a midday depression for GPP during dry seasons, which is not 

apparent in the data, resulting in a lower hourly correlation between observations and 

simulations than for the TRUNK version (Fig. 5).  

 445 
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Figure 4. Observed and simulated LE (W m-2) at the three sites. Left panels show the 

average diurnal cycle for each month over three years; and right panels, monthly mean 

time series. Grey shaded areas indicate dry seasons (here defined as periods with 

precipitation less than 100 mm per month).  450 

 

 
Figure 5. Observed and simulated GPP (µmolCO2 m-2 s-1) at the three sites. Left panels 

show the average composite monthly diurnal cycle for each month over 3 years; and 

right panels, monthly mean time series. Grey shaded areas indicate dry seasons (here 455 

defined as periods with precipitation less than 100 mm per month). 
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3.1.3 Soil volumetric water content and transpiration 

 

To better understand the effect of the new root water uptake scheme, we focus here on the 460 

K67 site, where the soil water content was measured at different depths. Deviations between 

observations and simulations may be due to using soil texture and van Genuchten parameters 

from the USDA soil parameterization : these may be different from actual soil at K67 (Figs. 

6b-d). Besides, soil water content tended to be lower in CAN-RS than in CAN, especially 

during the dry seasons, in agreement with the higher LE simulated by CAN-RS (Fig. 4). 465 

 

 
Figure 6. Daily times series from 2002 to 2004 at K67 of (a) precipitation, (b) observed 

soil moisture profile, (c) soil moisture (SWC) profile simulated in CAN (d) and soil 

moisture (SWC) profile simulated in CAN-RS, (e) soil water potential in the rooting 470 

zone (%�&), and (f) simulated soil profile of the contribution of each layer to total root 

water uptake Efrac(l) from CAN-RS, defined as Emax(l) divided by the sum of Emax across 

all layers. 
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For the years 2002 and 2004, the new root water uptake module allowed CAN-RS to 475 

overcome the too strong tree water stress simulated by CAN during dry seasons (see Figs. 4 

and 5) and %�& stayed close to zero (Fig. 6e). Wet season rainfall restored soil moisture in all 

soil layers from top to bottom (Fig. 6d), and most layers then contributed to the transpiration 

flux (Fig. 6f). As the dry season progressed, the topsoil layers became drier due to stronger 

evaporation, which induced a shift of water uptake towards deeper and wetter soil layers (Fig. 480 

6f), where the soil-to-root resistance is lower (Eq. 6), and, therefore, Emax is higher (Eq. 7). 

Since the 2003 wet season was drier (1276 mm) than in 2002 (1683 mm) and 2004 (1849 

mm) (Fig. 6a), the amount of precipitation was insufficient to recharge the soil after the dry-

season depletion in the model (Fig. 6c-d) but not in the observations (Fig. 6b) explaining the 

mismatch between the observed and simulated fluxes (Fig 4 and 5). This delay in recharging 485 

the soil in the wet season may be due to underestimated vertical infiltration (e.g. an 

underestimation of the current parameters for soil conductivity, ignored preferential 

drainage/infiltration along plant roots) or to the lack of groundwater storage mechanisms in 

the model. This translates into strong hydrological stress during the 2003 dry season, with 

daily %�& reaching -2.3 MPa (Fig. 6e). This failure of the model to completely recharge the 490 

soil profile during the wet season of 2003 caused a significant reduction in the simulated LE 

and GPP in that year (Figs. 4 and 5).  

 

 

3.1.4 Forest biomass and structure  495 

 

We found that CAN and CAN-RS correctly reproduced forest establishment from bare soil 

based on statistically time-extended empirical data from the site in French Guiana (Chave et 

al., in prep) where biomass and basal area were measured for 32 years after clear-cut and 

natural regeneration (Fig. 7), starting with a fast increase in AGB and BA, which levelled off 500 

as self-thinning began. The higher AGB simulated by CAN-RS (and CAN) compared to 

TRUNK is mainly explained by a higher carbon use efficiency, that is a higher ratio of NPP to 

GPP, which is discussed in section 3.2.2 and shown in Fig. S3.  

 
Figure 7. Dynamics of (a) the aboveground biomass (AGB) and (b) basal area simulated 505 

by the different versions of ORCHIDEE during the first hundred years after clear-cut, 
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compared to pseudo-data (REF) for a forest site (ARBOCEL) that was clear-cut and left 

regenerating in French Guiana (Chave et al., 2020).  

 

In CAN-RS and CAN, the representation of stand dynamics is much more realistic than in 510 

TRUNK where woody biomass is considered to be a single pool. CAN and CAN-RS model 

versions allow evaluating the model for stand density and height, whereas TRUNK only 

produces biomass. CAN and CAN-RS have nevertheless approximations because they 

consider only 20 classes of tree diameter and mono-specific vegetation parameters for all trees 

within a stand. When comparing the simulated and measured forest structure at GFG using a 515 

forest inventory and measured tree heights (Fig. 8), CAN-RS and CAN showed a realistic 

diameter-height allometric relationship (Fig. 8a) and a diameter-size distribution with many 

small trees, and few large trees (Fig. 8b). We also found that CAN-RS underestimated 

medium size trees with DBH ranging from 10 to 50 cm but overestimated the size of large 

trees with DBH above 60cm (not clearly visible in Fig 8b but shown Fig. S4).  520 

 
Figure 8. Forest structure modelled in CAN-RS compared to forest inventory data over 

non-disturbed plots at GFG (Paracou, French Guiana), with (a) allometric relationship 

between tree diameter and tree height for the 20 simulated diameter classes in CAN-RS 

plotted in colours compared to 1592 measurements; plotted in grey, the diameter-height 525 

allometric equation for tropical forest proposed by Chave et al., [2014]; Eq. (6a); (b) 

mean diameter distribution per hectare for CAN-RS compared to data from a forest 

inventory of 6.25 ha plot in Paracou, French Guiana. 

 

CAN simulates a higher number of trees than observed in the Paracou inventory (930 vs 800 530 

trees ha-1), but with a smaller mean diameter (Fig. 9a). Higher GPP in CAN-RS than in CAN 

(especially during the dry season; Fig. 4) results into larger large trees in CAN-RS (Fig. 9a), 

leading to a higher self-thinning effect, and slightly fewer saplings than in CAN (Fig. 9b). 

This difference in forest structure translates into a higher AGB than in CAN (228 versus 206 

tC ha-1, Table 2). 535 
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Figure 9. Comparison of the difference (Δ) between CAN-RS and CAN for: (a) mean 

tree diameter per cohort , here numbered from 1 to 20 and colored from green to red, 

and (b) the number of trees per diameter class at the GFG site (Paracou, French 540 

Guiana).  

 

3.2 Regional evaluation  

 

3.2.1 Carbon and water fluxes  545 

 

TRUNK and CAN-RS simulation of averaged transpiration over the basin is 3.2 mm d-1 and 

match the FLUXCOM product (3.2 mm d-1 ) (Fig. S5). While this result is encouraging, it is 

important to note that large uncertainties exist in gridded evapotranspiration data, and the 

GLEAM product indicates an ET of 2.4 mm d-1). CAN-RS better captured the GPP (8 gC m2 550 

d-1) than TRUNK (9.1 gC m2 d-1) when compared to the FLUXCOM GPP product (7.2 gC m2 

d-1) (Figs. S6 and S7).  

 

ET simulated by CAN-RS better reproduced the spatial pattern from GLEAM than TRUNK, 

as indicated by an increase of the Pearson spatial correlation increasing from 0.74 to 0.82. 555 

GPP simulated by CAN-RS also better reproduced the spatial pattern from FLUXCOM data 

than TRUNK, as indicated by an increase of the Pearson spatial correlation from 0.69 to 0.88. 

CAN-RS represents higher annual fluxes in the northeast and southwest of Amazonia, and 

lower GPP along the southeast limit of the forest (Figs. S6 and S7) that are in better 

agreements with the observations than TRUNK. In CAN-RS, regional maxima of ET and 560 

GPP were mainly driven by relatively high downwelling shortwave radiation, and higher 

precipitation (Fig. S10). TRUNK simulated a more homogeneous pattern and was less 

sensitive to climate gradients of the input forcing data than CAN-RS.  

  

CAN-RS simulated higher annual mean ET and GPP than CAN over the Guiana and Brazilian 565 

Shields (the regions shown in Fig. 2) as shown in Fig. 10a and Fig. 11a. Comparison of 

monthly time series averaged across those two regions (Figs. 10a and 11a) shows that CAN-

RS is closer to reality than CAN for both ET (R2 = 0.81 versus 0.21 in the Guiana Shield, and 

0.52 versus 0.40 in the Brazilian Shield) and GPP (R2 = 0.42 versus 0.32 in the Guiana Shield, 

and 0.73 versus 0.67 in the Brazilian Shield). Indeed, CAN simulates a drastic reduction in 570 

LE and GPP during dry seasons (indicated in Fig. S11) compared to regional benchmarks  

(Figs. 10b-c, Figs. 11b-c). We also found that CAN-RS has a tighter relationship between 
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GPP and soil water moisture than CAN for which, in the range 700 to 1300 kg m-3 of soil 

water, GPP is nearly independent of soil moisture (Fig. S8). 

 575 
Figure 10. (a) Difference in annual mean evapotranspiration (ET) between the 

simulations of CAN-RS and CAN from 1982 to 2016. (b) Comparison of the three model 

versions with GLEAM and FLUXCOM (MTE) for evapotranspiration over the Guiana 

Shield (GS) region, and (c) same for the Brazilian Shield (BS) region. All pixels with at 

least 50% cover of evergreen tropical forest were included for the comparison. The 580 

shaded areas represent monthly minimum and maximum values over the entire period 

of simulation. 

 

 
Figure 11. Same than Fig. 10 but for modeled GPP compared to FLUXCOM (MTE). 585 

 

 

3.2.2 Carbon stocks 

 

AGB stocks simulated by TRUNK were only half of those simulated by CAN-RS (Fig. S9a 590 

and b) over the Amazon. CAN-RS predicted a higher AGB than CAN over the Guiana and 

Brazilian shields regions (Fig. S9c), due a higher GPP during the dry seasons (Fig. 11). CAN-

RS overestimated AGB, in the southwest part of the basin, which may reflect the fact that the 

model was calibrated using forest inventory data from sites with relatively high AGB in the 

northeast of Amazonia (Table 1, Fig. 2 and Fig. 12). The three model versions appear to lack 595 

mechanisms controlling the observed increasing SW-NE gradient in AGB (Fig. 12). The 

differences between TRUNK and CAN-RS are explained by differences in both woody NPP 

and tree mortality. Regarding NPP, in Amazonia, the simulated carbon-use efficiency (CUE) 

defined by the ratio of NPP to GPP was higher in CAN-RS (0.42) than in TRUNK (0.30), 

because of a lower maintenance respiration (RA,m) in CAN-RS (3.1 versus 5.3 gC m2 d-1) 600 

whereas the growth respiration was slightly higher (1.4 versus 1.1 gC m2 d-1) in CAN-RS. 

Results from both models for CUE are in the range of field observations ranging between 
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from 0.27 to 0.52 [Malhi et al., 2009a, 2015].  In CAN-RS and CAN, RA,m is calculated for 

each living compartment as a function of temperature, biomass, prescribed carbon/nitrogen 

ratio and kcmaint, the fraction of photosynthates consumed for maintenance and growth 605 

respiration (see Table S2). The parameter kcmaint is poorly constrained by observations [Sitch 

et al., 2003], and it can be optimized (e.g., as by Naudts et al. (2015)) for each site or adjusted 

as in this study. Thus, one of the reasons of the low AGB in TRUNK could be its low CUE 

(Table 1, Fig. S3 and S9). Regarding mortality, contrary to CAN in which mortality is an 

emerging result of modelled competition processes via self-thinning (Fig. 1), in TRUNK, 610 

mortality is a constant fraction of the woody carbon pool, defined by a “residence time” 

parameter [Sitch et al., 2003]. Thus, it is possible to capture a realistic AGB with TRUNK by 

adjusting this residence time value, while in CAN-RS and CAN tuning the model to 

reproduce AGB is less trivial.  

 615 

 
Figure 12.  (a) Fraction of evergreen tropical forests (PFT2) in the model and location of 

the in situ inventories plots collected by Mitchard et al., [2014]; (b) comparison of 

simulated and observed aboveground biomass (AGB)  and (c) basal area.  

 620 

4. Discussion  

 

4.1 Root water uptake module and soil hydraulic parameters 

 

In this study, we implemented a mechanistic root water uptake module that accounts for the 625 

soil-to-root resistance and its variation with soil depth and across season in the DGVM 

ORCHIDEE (CAN-RS). We hypothesized that a dynamic representation of plant water 

uptake would allow a better representation of the flux seasonality across the Amazon forest. 

In particular, previous models didn’t simulate the sustained, or even increased, fluxes during 

the dry season in some part of the basin by overestimating the dry season water stress 630 

(Restrepo-Coupe et al. 2017). With the root water uptake module implemented in CAN-RS, 

simulated tree water uptake shifts from the drier superficial top soil layers to the wetter deeper 

soil layers during the dry season. Through this process, the model better captured the 

seasonality of GPP and LE than in CAN. The effect was strongest for sites with a constraining 

soil water retention curve, like for the clay-dominated USDA soil type 12 of our French 635 

Guiana site (GFG). A similar root water uptake model was successfully validated within 

another ecosystem model under severe drought conditions in Amazonia [Fisher et al., 2006] 

and for other ecosystems by Williams et al. (2001), and appears to be more appropriate  to 
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simulate transpiration during the dry season that the standard formulation based on a root 

biomass-weighted soil water potential. The latter indeed imposes a constant water uptake 640 

profile through seasons and years, with stronger water uptake in top soil layers that present 

larger root biomass. CAN-RS and TRUNK show similar performances. However, TRUNK 

uses an empirically calibrated formulation of soil water stress on stomatal conductance 

through Vcmax (see section D in SI), while in CAN-RS water supply is calculated via a more 

realistic hydraulic architecture inspired from Hickler et al. (2006). Having a mechanistic 645 

representation of soil water stress is crucial for DGVMs to understand the vegetation response 

to drought. Because of its mechanistic approach CAN-RS has more potential to simulate 

forest dynamics and fluxes under extreme conditions such as droughts.  

 

Previous studies using land surface models with a bucket soil hydrology model and a root 650 

biomass-weighted water stress obtained a better seasonal variation of fluxes in Amazonia by 

setting the soil depth to 10 meters, suggesting the importance of such deep roots to sustain 

dry-season fluxes [Poulter et al., 2009; Verbeeck et al., 2011]. Evidence for such deep roots 

over the Amazon basin is however really scarce [Nepstad et al., 1994; Fan et al., 2017]. Such 

a setting may actually compensate for a bias in model structure due to the lack of an explicit 655 

dynamic root water uptake module, as here implemented in CAN-RS with a 4-meter soil 

depth. Increasing soil depth in TRUNK will always increase the water storage capacity, but it 

will not shift tree water uptake to the deepest layers during dry seasons since the root biomass 

profile is fixed to exponentially decrease from top to bottom in the soil column. With a root 

uptake module and a 4-meter soil depth that contains most of the fine roots (as observed by 660 

Markewitz et al. (2010); Nepstad et al. (1994); Schenk and Jackson (2005)), CAN-RS sustains 

transpiration and GPP by a shift of water uptake to deeper and wetter soil layers during the 

dry season, which is consistent with observations [Moreira et al., 2000]. Root depth is poorly 

documented, as in situ investigations are highly destructive and labour intensive, and as result 

a great part of our knowledge derives from modelling approach [Kleidon and Heimann, 1998; 665 

Ichii et al., 2007]. Our results suggest that model structure may have a profound effect on 

these model-derived estimations, and great care should be taken to avoid equifinality issues 

[Medlyn et al., 2005].  

 

Because they represent an explicit hydraulic architecture CAN-RS and CAN are more 670 

sensitive than TRUNK to the parameters of the Mualem-van Genuchten Model for simulating 

soil water stress on transpiration [Mualem, 1976; van Genuchten, 1980]. They produce a 

midday depression of GPP which is not observed during the dry season months (Fig. 5), 

suggesting an over-sensitivity to soil moisture deficits when the demand is the largest (e.g. 

overestimated stomatal closure or lack of tree water capacitance). It is also well known that 675 

changes in the spatial resolution of the soil input data by aggregating small-scale information 

causes bias in models [Van Looy et al., 2017], as well as the use of a simplified classification 

of soil texture into few classes [Kishné et al., 2017]. Thus, along with improving model 

representation of the hydraulic gradient from the soil to the plant in DGVMs [this study, 

Sperry et al., 2002; Fisher et al., 2006], it is important to improve the parameterization of the 680 

soil , including hydraulic parameters [Marthews et al., 2014] and groundwater access. 
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4.2 Modeling forest structure and demography 

 

As for most land surface models [Castanho et al., 2015; Johnson et al., 2016], the three 685 

versions of ORCHIDEE did not capture the observed increasing SW-NE gradient of AGB and 

BA across Amazonia (Fig. 12). The models simulate a flat AGB across the basin (Fig. S7). 

The observed AGB gradient can be attributed either to productivity or tree mortality, or a 

combination of both [Johnson et al., 2016]. Spatial variation in wood productivity were 

empirically linked to spatial variability in soil properties [Quesada et al., 2012], like soil 690 

fertility [ter Steege et al., 2006 ; Malhi et al., 2004, Turner et al., 2018] and soil hydraulic 

parameters. Therefore, the incorporation of detailed soil hydraulic parameters maps e.g., 

[Marthews et al., 2014] and of nutrient cycles into ORCHIDEE should improves the 

simulation of the productivity gradient compared to measured observations. Besides, a 

negative relationship was observed between soil fertility and wood density [Baker et al., 695 

2004; ter Steege et al., 2006; Patiño et al., 2009]. Wood density is variable across the 

Amazon basin, unlike being fixed like in ORCHIDEE, that could thus be improved by 

prescribing observed wood density maps [ter Steege et al., 2006]. 

 

Besides variation in productivity, tree mortality has been identified as a key driver of AGB 700 

across Amazonia [Johnson et al., 2016 and references within], although the processes 

controlling mortality variations are poorly known, and may reflect complex interactions 

between evolutionary selection of phenotypes and species leading to ‘grow fast, die fast’ 

emerging forest properties, with regional differences in disturbance regimes, and soil 

hydraulic properties and fertility [Phillips et al., 2004] . We found that the three versions of 705 

ORCHIDEE used in this study produce a quasi-linear positive relationship between NPP and 

AGB, despite their differences in the representation of forest NPP and mortality (Fig. 13a). 

Linear emerging relationships between AGB and NPP were also found for different regions of 

the Amazon (Figs. S12 and S13), contrarily as showed by the observations (Johnson et al., 

2016). For increasing precipitation, CAN-RS and CAN showed a sharp increase in AGB 710 

followed by a saturation   at around 250 tC ha-1 (Fig. 13a) when precipitation is larger than 

2000 mm yr-1 (Fig. 13b). A similar behavior was also identified by Ahlström et al., [2017] 

over the Amazon using biomass estimated from vegetation optical depth [Liu et al., 2011], 

which was attributed to a shift between water and radiation limited regimes, but it was not as 

pronounced as simulated with CAN. This result suggests that when precipitation exceeds a 715 

threshold, water limitations are completely alleviated and biomass becomes controlled by 

other factors.   

 

Overall, our results indicate that AGB in CAN-RS is at the upper range of observed values 

and in the lower range for the TRUNK. An over-estimation of AGB is more ‘realistic’ 720 

because the three model versions do not include tropical forest disturbances (windstorms, 

droughts) and nutrient limitations which cause lower AGB. If these processes were to be 

added in TRUNK, AGB would become even lower and fall outside of the observed range. 

Matching biomass observations in a model like TRUNK with a well-mixed woody pool 

formulation is very simple, and can be achieved by adjusting the constant mortality 725 

parameter. This could however lead to compensate for structural model errors such as non-
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represented stand demography, and does not ensure trust in historical analysis and future 

projections of biomass. On the other hand, the representation of demography in a land surface 

model like CAN-RS is a step forward as it allows the model to be evaluated against observed 

AGB and AGB trends  while being additionally constrained by observed basal area and stand 730 

density (e.g. Joetzjer et al., [2017]). 

 

Nevertheless, since demography parameters in CAN-RS are set constant for a single PFT 

describing all evergreen tropical forests, spatial variability of AGB, mortality and basal area 

(Fig. 12, 13, S13) across the Amazon remains rather uniform compared to observations, and 735 

are very comparable to the “big-leaf” version (TRUNK). Additional processes such as climate 

driven mortality and nutrient (phosphorus) limitation on growth leading to the prevalence of 

species with different functional traits across the Amazon would need to be included in the 

future development of this model. Besides adding PFTs, the ultimate challenge is to simulate 

the co-existence of several PFTs over a grid cell to take into account species’ diversity for 740 

above (via light) and below (water and nutrient access) ground species competition with 

different structures and traits (Fisher et al., 2018).   

 

 
 745 

Figure 13. (Left) scatter plots of mean AGB from 1981 to 2016 plotted against mean 

annual NPP and (Right) annual precipitation averaged over the same time period for 

Amazonia.   

 

4.3 Conclusion 750 

 

The new description of tropical forest demography in CAN-RS (and CAN) presented in this 

study allows to simulate observable stand structure variables (diameter and height 

distributions, and stand density) and go beyond the simulation paradigm of treating biomass 

as a single carbon pool with a constant mortality rate, as done in many global land surface 755 

models, including the TRUNK version of ORCHIDEE. Including recruitment, differentiated 

diameter classes growth rates and density dependent mortality allows to evaluate tree 

mortality and stand level growth using forest inventory data. Overall, CAN-RS reasonably 

simulates in-situ forest’s structure. On the whole, CAN-RS better captures ET and GPP 
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annual mean fluxes at 2 sites, reduces the positive bias in GPP at regional scale and improves 760 

the spatial representation of GPP and ET when compared to the TRUNK. Nevertheless, 

additional processes such as climate driven mortality and nutrient (phosphorus) limitation on 

growth leading to the prevalence of species with different functional traits across the Amazon 

would need to be included in the future development of this model. We can note that CAN-

RS tends to over-estimate regional AGB stocks observations, since the model lacks mortality 765 

processes induced by drought and other disturbances. The new formulation of soil water 

uptake by deep-rooted trees implemented in CAN-RS indicates that the hypothesis of 

preferential soil water use better matches the data than the hypothesis of root-biomass-driven 

water uptake (in CAN), meaning that trees preferentially use water in the deepest soil layer 

during the dry season which led to improve the seasonality of evapotranspiration and canopy 770 

photosynthesis, especially for clay soils for which the soil moisture potential drops rapidly 

when soil moisture decreases in the dry season.  

 

Aknowledgments 

Data acquisition in French Guiana was supported by an “Investissement d’Avenir” grant from 775 

the Agence Nationale de la Recherche (CEBA, ref ANR-10-LABX-25-01). J.B. 

acknowledges support from (CR)2 Chile (CONICYT/FONDAP/15110009). M.G., D.G. and 

P.C. are funded by the European Research Council Synergy grant ERC-2013-SyG-610028 

IMBALANCE-P. We also acknowledge the European Union Climate KIC grant FOREST 

Specific Grant Agreement EIT/CLIMATE KIC/SGA2016/1CNES (TOSCA program) for 780 

funding. 

 

References  

 

Ahlström, A., J. G. Canadell, G. Schurgers, M. Wu, J. A. Berry, K. Guan, and R. B. Jackson 785 

(2017), Hydrologic resilience and Amazon productivity, Nat. Commun., 8(1), 1–9, 

doi:10.1038/s41467-017-00306-z. 

Arora, V. K. et al. (2013), Carbon–Concentration and Carbon–Climate Feedbacks in CMIP5 

Earth System Models, J. Clim., 26(15), 5289–5314, doi:10.1175/JCLI-D-12-00494.1. 

Baker, T. et al. (2004), Increasing biomass in Amazonian forest plots, Philos. Trans. R. Soc. 790 

Lond. B. Biol. Sci., doi:10.1098/rstb.2003.1422. 

Bellassen, V., G. Le Maire, DhôteJ.F., P. Ciais, and N. Viovy (2010), Modelling forest 

management within a global vegetation model-Part 1: Model structure and general 

behaviour, Ecol. Modell., 221(20), 2458–2474, doi:10.1016/j.ecolmodel.2010.07.008. 

Bellassen, V., G. le Maire, O. Guin, J. F. Dhôte, P. Ciais, and N. Viovy (2011), Modelling 795 

forest management within a global vegetation model-Part 2: Model validation from a tree 

to a continental scale, Ecol. Modell., 222(1), 57–75, 

doi:10.1016/j.ecolmodel.2010.08.038. 

Bonal, D. et al. (2008), Impact of severe dry season on net ecosystem exchange in the 

Neotropical rainforest of French Guiana, Glob. Chang. Biol., 14(8), 1917–1933, 800 

doi:10.1111/j.1365-2486.2008.01610.x. 

Bonan, G. B., M. Williams, R. a. Fisher, and K. W. Oleson (2014), Modeling stomatal 

conductance in the earth system: linking leaf water-use efficiency and water transport 

along the soil–plant–atmosphere continuum, Geosci. Model Dev., 7(5), 2193–2222, 

doi:10.5194/gmd-7-2193-2014. 805 

Booth, B. B. B., C. D. Jones, M. Collins, I. J. Totterdell, P. M. Cox, S. Sitch, C. Huntingford, 



24 

 

R. a Betts, G. R. Harris, and J. Lloyd (2012), High sensitivity of future global warming 

to land carbon cycle processes, Environ. Res. Lett., 7(2), 024002, doi:10.1088/1748-

9326/7/2/024002. 

Brienen, R. J. W. et al. (2015), Long-term decline of the Amazon carbon sink, Nature, 810 

519(7543), 344–348, doi:10.1038/nature14283. 

Campoy, A., A. Ducharne, F. Cheruy, F. Hourdin, J. Polcher, and J. C. Dupont (2013), 

Response of land surface fluxes and precipitation to different soil bottom hydrological 

conditions in a general circulation model, J. Geophys. Res. Atmos., 118(19), 10725–

10739, doi:10.1002/jgrd.50627. 815 

Carsel, R. F., and R. S. Parrish (1988), Developing joint probability distributions of soil water 

retention characteristics, Water Resour. Res., 24(5), 755–769, 

doi:10.1029/WR024i005p00755. 

Castanho, A. D. A., D. Galbraith, K. Zhang, M. T. Coe, M. H. Costa, and P. Moorcroft 

(2015), Changing Amazon biomass and the role of atmospheric CO2 concentration, 820 

climate, and land use, Global Biogeochem. Cycles, 30, 18–39, 

doi:10.1002/2015GB005135.Received. 

Chave, J. et al. (2005), Tree allometry and improved estimation of carbon stocks and balance 

in tropical forests., Oecologia, 145(1), 87–99, doi:10.1007/s00442-005-0100-x. 

Chave, J. et al. (2014), Improved allometric models to estimate the aboveground biomass of 825 

tropical trees, Glob. Chang. Biol., 20(10), 3177–3190, doi:10.1111/gcb.12629. 
Chave, J., et al. (2020). Slow rate of secondary forest carbon accumulation in the Guianas compared 
with the rest of the Neotropics. Ecological Applications, 30(1), e02004. 
Christoffersen, B. O. et al. (2014), Mechanisms of water supply and vegetation demand 

govern the seasonality and magnitude of evapotranspiration in Amazonia and Cerrado, 830 

Agric. For. Meteorol., 191(February), 33–50, doi:10.1016/j.agrformet.2014.02.008. 

Christoffersen, B. O. et al. (2016), Linking hydraulic traits to tropical forest function in a size-

structured and trait-driven model (TFS v.1-Hydro), Geosci. Model Dev. Discuss., 

0(June), 1–60, doi:10.5194/gmd-2016-128. 

 835 
Denslow, J. S., Ellison, A. M., & Sanford, R. E. (1998). Treefall gap size effects on above‐and below‐
ground processes in a tropical wet forest. Journal of Ecology, 86(4), 597-609. 
 

Deleuze, C., O. Pain, J. Dhote, and J.-C. Hervé (2004), A flexible radial increment model for 

individual trees in pure age stands, Ann. For. Sci., 61(4), 327–335, doi:10.1051/forest. 840 

Dubois-Fernandez, P. C., T. Le Toan, S. Daniel, H. Oriot, J. Chave, L. Blanc, L. Villard, M. 

W. J. Davidson, and M. Petit (2012), The tropiSAR airborne campaign in French 

Guiana: Objectives, description, and observed temporal behavior of the backscatter 

signal, IEEE Trans. Geosci. Remote Sens., 50(8), 3228–3241, 

doi:10.1109/TGRS.2011.2180728. 845 

Duursma, R. A., and B. E. Medlyn (2012), MAESPA: A model to study interactions between 

water limitation, environmental drivers and vegetation function at tree and stand levels, 

with an example application to CO2 drought interactions, Geosci. Model Dev., 5(4), 919–

940, doi:10.5194/gmd-5-919-2012. 

Eltahir, E. a. B., and R. L. Bras (1994), Precipitation recycling in the Amazon basin, Q. J. R. 850 

Meteorol. Soc., 120(518), 861–880, doi:10.1002/qj.49712051806. 

Fan, Y., G. Miguez-Macho, E. G. Jobbágy, R. B. Jackson, and C. Otero-Casal (2017), 

Hydrologic regulation of plant rooting depth, Proc. Natl. Acad. Sci. U. S. A., 114(40), 

10572–10577, doi:10.1073/pnas.1712381114. 

Farquhar, G., S. von Caemmerer, and J. Berry (1980), A biochemical model of photosynthetic 855 

CO2 assimilation in leaves of C3 species, Planta, 90, 78–90. 

Farrior, C. E., S. A. Bohlman, S. Hubbell, and S. W. Pacala (2016), Dominance of the 



25 

 

suppressed: Power-law size structure in tropical forests, , 351(6269), 2014–2016, 

doi:10.1126/science.aad0592. 

Fisher, R., N. McDowell, D. Purves, P. Moorcroft, S. Sitch, P. Cox, C. Huntingford, P. Meir, 860 

and F. I. Woodward (2010), Assessing uncertainties in a second-generation dynamic 

vegetation model caused by ecological scale limitations., New Phytol., 187(3), 666–81, 

doi:10.1111/j.1469-8137.2010.03340.x. 

Fisher, R. A. et al. (2018), Vegetation demographics in Earth System Models: A review of 

progress and priorities, Glob. Chang. Biol., 24(1), 35–54, doi:10.1111/gcb.13910. 865 

Fisher, R. a, M. Williams, R. L. Do Vale, A. L. Da Costa, and P. Meir (2006), Evidence from 

Amazonian forests is consistent with isohydric control of leaf water potential., Plant. 

Cell Environ., 29(2), 151–65. 

Gardner, W. R. (1960), Dynamic aspects of water availability to plants, Soil Sci., 89(2), 63–

73, doi:10.1097/00010694-196002000-00001. 870 

van Genuchten, M. T. (1980), A Closed-form Equation for Predicting the Hydraulic 

Conductivity of Unsaturated Soils1, Soil Sci. Soc. Am. J., 44(5), 892, 

doi:10.2136/sssaj1980.03615995004400050002x. 

Getirana, A. C. V. et al. (2014), Water Balance in the Amazon Basin from a Land Surface 

Model Ensemble, J. Hydrometeorol., 15(6), 2586–2614, doi:10.1175/JHM-D-14-0068.1. 875 

Gourlet-Fleury, S., B. Ferry, J.-F. Molino, P. Petronelli, and L. Schmitt (2004), Paracou 

expérimental plots : keys features, in Ecology and management of a neotropical 

rainforest : lessons drawn from Paracou, a long-term experimental research site in 

French Guiana, pp. 3–60. 

Guimberteau, M., P. Ciais, A. Ducharne, J. P. Boisier, S. Peng, M. De Weirdt, and H. 880 

Verbeeck (2014), Two soil hydrology formulations of ORCHIDEE (version 

Trunk.rev1311) tested for the Amazon basin, Geosci. Model Dev., 7(1), 73–129, 

doi:10.5194/gmdd-7-73-2014. 

Haverd, V., J. L. Lovell, M. Cuntz, D. L. B. Jupp, G. J. Newnham, and W. Sea (2012), The 

Canopy Semi-analytic P gap And Radiative Transfer (CanSPART) model: Formulation 885 

and application, Agric. For. Meteorol., 160, 14–35, 

doi:10.1016/j.agrformet.2012.01.018. 

Hickler, T., I. C. Prentice, B. Smith, M. T. Sykes, and S. Zaehle (2006), Implementing plant 

hydraulic architecture within the LPJ Dynamic Global Vegetation Model, Glob. Ecol. 

Biogeogr., 15(6), 567–577, doi:10.1111/j.1466-8238.2006.00254.x. 890 

Ho Tong Minh, D. et al. (2016), SAR tomography for the retrieval of forest biomass and 

height: Cross-validation at two tropical forest sites in French Guiana, Remote Sens. 

Environ., 175, 138–147, doi:10.1016/j.rse.2015.12.037. 

Hollinger, D. Y., and A. D. Richardson (2005), Uncertainty in eddy covariance measurements 

and its application to physiological models., Tree Physiol., 25(7), 873–85. 895 

Ichii, K., H. Hashimoto, M. A. White, C. Potter, L. R. Hutyra, A. R. Huete, R. B. Myneni, and 

R. R. Nemani (2007), Constraining rooting depths in tropical rainforests using satellite 

data and ecosystem modeling for accurate simulation of gross primary production 

seasonality, Glob. Chang. Biol., 13(1), 67–77, doi:10.1111/j.1365-2486.2006.01277.x. 

Joetzjer, E. et al. (2014), Predicting the response of the Amazon rainforest to persistent 900 

drought conditions under current and future climates: a major challenge for global land 

surface models, Geosci. Model Dev., 7(6), 2933–2950, doi:10.5194/gmd-7-2933-2014. 

Joetzjer, E. et al. (2017), Assimilating satellite-based canopy height within an ecosystem 

model to estimate above ground forest biomass, Geophys. Res. Lett., 1–10, 

doi:10.1002/2017GL074150. 905 

Johnson, M. O. et al. (2016), Variation in stem mortality rates determines patterns of above-

ground biomass in Amazonian forests: implications for dynamic global vegetation 



26 

 

models, Glob. Chang. Biol., 22(12), 3996–4013, doi:10.1111/gcb.13315. 

Jones, C. et al. (2013), Twenty-First-Century Compatible CO 2 Emissions and Airborne 

Fraction Simulated by CMIP5 Earth System Models under Four Representative 910 

Concentration Pathways, J. Clim., 26(13), 4398–4413, doi:10.1175/JCLI-D-12-00554.1. 

Jung, M. et al. (2011), Global patterns of land-atmosphere fluxes of carbon dioxide, latent 

heat, and sensible heat derived from eddy covariance, satellite, and meteorological 

observations, J. Geophys. Res., 116, 1–16, doi:10.1029/2010JG001566. 

Jung, M. et al. (2017), Compensatory water effects link yearly global land CO 2 sink changes 915 

to temperature, Nature, 541(7638), 516–520, doi:10.1038/nature20780. 

Kennedy, D., R. A. Fisher, S. Swenson, and K. W. Oleson (2019), Implementing plant 

hydraulics in the Community Land Model, version 5, J. Adv. Model. Earth Syst., 

doi:10.1029/2018ms001500. 

Kishné, A. S., Y. T. Yimam, C. L. S. Morgan, and B. C. Dornblaser (2017), Evaluation and 920 

improvement of the default soil hydraulic parameters for the Noah Land Surface Model, 

Geoderma, 285, 247–259, doi:10.1016/j.geoderma.2016.09.022. 

Kleidon, A., and M. Heimann (1998), A method of determining rooting depth from a 

terrestrial biosphere model and its impacts on the global water and carbon cycle, Glob. 

Chang. Biol., 4(3), 275–286, doi:10.1046/j.1365-2486.1998.00152.x. 925 

Kohyama, T. (1992), Density-size dynamics of trees simulated by a one-sided competition 

multi-species model of rain forest stands, Ann. Bot., 70(5), 451–460, 

doi:10.1093/oxfordjournals.aob.a088502. 

Krinner, G., N. Viovy, N. de Noblet-Ducoudré, J. Ogée, J. Polcher, P. Friedlingstein, P. Ciais, 

S. Sitch, and I. C. Prentice (2005), A dynamic global vegetation model for studies of the 930 

coupled atmosphere-biosphere system, Global Biogeochem. Cycles, 19(1), 

doi:10.1029/2003GB002199. 

Larcher, W. (2003), The environment of plantst, in Physiological Plant Ecology, pp. 1–67. 

Lardy, R., G. Bellocchi, and J. F. Soussana (2011), A new method to determine soil organic 

carbon equilibrium, Environ. Model. Softw., 26(12), 1759–1763, 935 

doi:10.1016/j.envsoft.2011.05.016. 

Lasslop, G., M. Reichstein, D. Papale, A. D. Richardson, A. Arneth, A. Barr, P. Stoy, and G. 

Wohlfahrt (2010), Separation of net ecosystem exchange into assimilation and 

respiration using a light response curve approach: critical issues and global evaluation, 

Glob. Chang. Biol., 16(1), 187–208, doi:10.1111/j.1365-2486.2009.02041.x. 940 

Levine, N. M. et al. (2016), Ecosystem heterogeneity determines the ecological resilience of 

the Amazon to climate change., Proc. Natl. Acad. Sci. U. S. A., 113(3), 1511344112-, 

doi:10.1073/pnas.1511344112. 

Liu, Y. Y., R. A. M. De Jeu, M. F. McCabe, J. P. Evans, and A. I. J. M. Van Dijk (2011), 

Global long-term passive microwave satellite-based retrievals of vegetation optical 945 

depth, Geophys. Res. Lett., 38(18), 1–6, doi:10.1029/2011GL048684. 

Longo, M. et al. (2018), Ecosystem heterogeneity and diversity mitigate Amazon forest 

resilience to frequent extreme droughts, New Phytol., 219(3), 914–931, 

doi:10.1111/nph.15185. 

Van Looy, K. et al. (2017), Pedotransfer Functions in Earth System Science: Challenges and 950 

Perspectives, Rev. Geophys., 55(4), 1199–1256, doi:10.1002/2017RG000581. 

Lovenduski, N. S., and G. B. Bonan (2017), Reducing uncertainty in projections of terrestrial 

carbon uptake, , 12, doi:10.1088/1748-9326/aa66b8. 

 
Maeda, E. E., Ma, X., Wagner, F. H., Kim, H., Oki, T., Eamus, D., & Huete, A. (2017). 955 
Evapotranspiration seasonality across the Amazon Basin. Earth System Dynamics, 8(2), 439-454. 
 

Malhi, Y. et al. (2009a), Comprehensive assessment of carbon productivity, allocation and 



27 

 

storage in three Amazonian forests, Glob. Chang. Biol., 15(5), 1255–1274, 

doi:10.1111/j.1365-2486.2008.01780.x. 960 

Malhi, Y., S. Saatchi, C. Girardin, and L. Aragão (2009b), The production, storage, and flow 

of carbon in Amazonian forests, Geophys. Monogr. Ser., 355–372. 

Malhi, Y. et al. (2015), The linkages between photosynthesis, productivity, growth and 

biomass in lowland Amazonian forests, Glob. Chang. Biol., 21(6), 2283–2295, 

doi:10.1111/gcb.12859. 965 

Maréchaux, I., and J. Chave (2017), An individual-based forest model to jointly simulate 

carbon and tree diversity in Amazonia: description and applications, Ecol. Monogr., 0(0), 

1–33, doi:10.1002/ecm.1271. 

Markewitz, D., S. Devine, E. a Davidson, P. Brando, and D. C. Nepstad (2010), Soil moisture 

depletion under simulated drought in the Amazon: impacts on deep root uptake., New 970 

Phytol., 187(3), 592–607, doi:10.1111/j.1469-8137.2010.03391.x. 

Martens, B., D. G. Miralles, H. Lievens, R. Van Der Schalie, R. A. M. De Jeu, D. Fernández-

Prieto, H. E. Beck, W. A. Dorigo, and N. E. C. Verhoest (2017), GLEAM v3: Satellite-

based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10(5), 1903–

1925, doi:10.5194/gmd-10-1903-2017. 975 

Marthews, T. R., C. A. Quesada, D. R. Galbraith, Y. Malhi, C. E. Mullins, M. G. Hodnett, 

and I. Dharssi (2014), High-resolution hydraulic parameter maps for surface soils in 

tropical South America, Geosci. Model Dev., 7(3), 711–723, doi:10.5194/gmd-7-711-

2014. 

McGrath, M. J., J. Ryder, B. Pinty, J. Otto, K. Naudts, A. Valade, Y. Chen, J. Weedon, and S. 980 

Luyssaert (2016), A multi-level canopy radiative transfer scheme for ORCHIDEE 

(SVN~r2566), based on a domain-averaged structure factor, Geosci. Model Dev. 

Discuss., 2016(November), 1–22, doi:10.5194/gmd-2016-280. 

Medlyn, B. E., A. P. Robinson, R. Clement, and R. E. McMurtrie (2005), On the validation of 

models of forest CO2 exchange using eddy covariance data: Some perils and pitfalls, 985 

Tree Physiol., 25(7), 839–857, doi:10.1093/treephys/25.7.839. 

Metcalfe, D. B. et al. (2008), The effects of water availability on root growth and morphology 

in an Amazon rainforest, Plant Soil, 311(1–2), 189–199, doi:10.1007/s11104-008-9670-

9. 

Meyer, V., S. Saatchi, D. B. Clark, M. Keller, G. Vincent, A. Ferraz, F. Espírito-Santo, M. V. 990 

N. d&amp;apos;Oliveira, D. Kaki, and J. Chave (2018), Canopy Area of Large Trees 

Explains Aboveground Biomass Variations across Nine Neotropical Forest Landscapes, 

Biogeosciences Discuss., (January), 1–38, doi:10.5194/bg-2017-547. 

Mitchard, E. T. a. et al. (2014), Markedly divergent estimates of Amazon forest carbon 

density from ground plots and satellites, Glob. Ecol. Biogeogr., n/a-n/a, 995 

doi:10.1111/geb.12168. 

Moreira, A. A., D. Santini, and A. L. Ruhoff (2018), Avaliação dos produtos de 

evapotranspiração baseados em sensoriamento remoto MOD16 e GLEAM em sítios de 

fluxos turbulentos do Programa LBA Evaluation of remotely sensed evapotranspiration 

products MOD16 and GLEAM in eddy covariance flux sites from LBA Pro, Cienca e 1000 

Nat., 112–118, doi:10.5902/2179460X30714. 

Moreira, M. Z., L. D. L. Sternberg, and D. C. Nepstad (2000), Vertical patterns of soil water 

uptake by plants in a primary forest and an abandoned pasture in the eastern Amazon: an 

isotopic approach, Plant Soil, 222(1–2), 95–107, doi:10.1023/A:1004773217189. 

Mualem, Y. (1976), A new model for predicting the hydraulic conductivity of unsaturated 1005 

porous media, Water Resour. Res., 12(3), 513–521. 

Naudts, K. et al. (2015), A vertically discretised canopy description for ORCHIDEE (SVN 

r2290) and the modifications to the energy, water and carbon fluxes, Geosci. Model 



28 

 

Dev., 8(6), 2035–2065, doi:10.5194/gmdd-7-8565-2014. 

Nepstad, D. C., C. R. de Carvalho, E. A. Davidson, P. H. Jipp, P. A. Lefebvre, G. H. 1010 

Negreiros, E. D. da Silva, T. A. Stone, S. E. Trumbore, and S. Vieira (1994), The role of 

deep roots in the hydrological and carbon cycles of Amazonian forests and pastures, 

Nature, 372, 666–669, doi:10.1038/372666a0. 

Nepstad, D. C., I. M. Tohver, D. Ray, P. Moutinho, and G. Cardinot (2007), Mortality of 

large trees and lianas following experimental drought in an Amazon forest., Ecology, 1015 

88(9), 2259–69. 

Newman, E. I. (1969), Resistance to Water Flow in Soil and Plant . I . Soil Resistance in 

Relation to Amounts of Root : Theoretical Estimates Author ( s ): E . I . Newman 

Source : Journal of Applied Ecology , Vol . 6 , No . 1 ( Apr ., 1969 ), pp . 1-12 Published 

by : British E, J. Appl. Ecol., 6(1), 1–12. 1020 

Paca, V. H. da M., G. E. Espinoza-Dávalos, T. M. Hessels, D. M. Moreira, G. F. Comair, and 

W. G. M. Bastiaanssen (2019), The spatial variability of actual evapotranspiration across 

the Amazon River Basin based on remote sensing products validated with flux towers, 

Ecol. Process., 8(1), doi:10.1186/s13717-019-0158-8. 

Patiño, S., J. Lloyd, and R. Paiva (2009), Branch xylem density variations across the Amazon 1025 

Basin, Biogeosciences, (May 2008), 545–568. 

Phillips, O. L. et al. (2002), Changes in growth of tropical forests: Evaluating potential biases, 

Ecol. Apr 2002; 12  576-587, 12(2), 576–587. 

Phillips, O. L., & Gentry, A. H. (1994). Increasing turnover through time in tropical 

forests. Science, 263(5149), 954-958. 1030 
 
Phillips, O. L., Baker, T. R., Arroyo, L., Higuchi, N., Killeen, T. J., Laurance, W. F., ... & Vinceti, B. 
(2004). Pattern and process in Amazon tree turnover, 1976–2001. Philosophical Transactions of the 
Royal Society of London. Series B: Biological Sciences, 359(1443), 381-407. 
 1035 

Pillet, M., E. Joetzjer, C. Belmin, J. Chave, P. Ciais, A. Dourdain, M. Evans, B. Hérault, S. 

Luyssaert, and B. Poulter (2017), Disentangling competitive versus climatic drivers of 

tropical forest mortality, J. Ecol., (July), 1–15, doi:10.1111/1365-2745.12876. 

Poulter, B., U. Heyder, and W. Cramer (2009), Modeling the Sensitivity of the Seasonal 

Cycle of GPP to Dynamic LAI and Soil Depths in Tropical Rainforests, Ecosystems, 1040 

12(4), 517–533, doi:10.1007/s10021-009-9238-4. 

Poulter, B., L. Aragão, U. Heyder, M. Gumpenberger, J. Heinke, F. Langerwisch, A. 

Rammig, K. Thonicke, and W. Cramer (2010), Net biome production of the Amazon 

Basin in the 21st century, Glob. Chang. Biol., 16(7), 2062–2075, doi:10.1111/j.1365-

2486.2009.02064.x. 1045 

Powell, T. L. et al. (2013), Confronting model predictions of carbon fluxes with 

measurements of Amazon forests subjected to experimental drought., New Phytol., 

doi:10.1111/nph.12390. 

Prentice, I. C., X. Liang, B. E. Medlyn, and Y. P. Wang (2015), Reliable, robust and realistic: 

The three R’s of next-generation land-surface modelling, Atmos. Chem. Phys., 15(10), 1050 

5987–6005, doi:10.5194/acp-15-5987-2015. 

Pyle, E. H. et al. (2008), Dynamics of carbon, biomass, and structure in two Amazonian 

forests, J. Geophys. Res., 113, doi:10.1029/2007JG000592. 

Quesada, C. A., J. Lloyd, L. O. Anderson, N. M. Fyllas, M. Schwarz, and C. I. Czimczik 

(2011), Soils of Amazonia with particular reference to the RAINFOR sites, 1055 

Biogeosciences, 8(6), 1415–1440, doi:10.5194/bg-8-1415-2011. 

Reichstein, M. et al. (2005), On the separation of net ecosystem exchange into assimilation 

and ecosystem respiration: review and improved algorithm, Glob. Chang. Biol., 11(9), 

1424–1439, doi:10.1111/j.1365-2486.2005.001002.x. 



29 

 

Reineke, L. H. (1933), Perfecting a stand-density index for even-aged forests, J. Agric. Res., 1060 

46(7), 627–638. 

Restrepo-Coupe, N. et al. (2016), Do dynamic global vegetation models capture the 

seasonality of carbon fluxes in the Amazon basin? A data-model intercomparison, Glob. 

Chang. Biol., 191–208, doi:10.1111/gcb.13442. 

Rocha, H. Da (2004), Diel and seasonal patterns of tropical forest CO2 exchange, Ecol. Appl., 1065 

14(4), 22–32. 

da Rocha, H. R. et al. (2009), Patterns of water and heat flux across a biome gradient from 

tropical forest to savanna in Brazil, J. Geophys. Res., 114, G00B12, 

doi:10.1029/2007JG000640. 

Rödig, E., M. Cuntz, A. Rammig, R. Fischer, F. Taubert, and A. Huth (2018), The importance 1070 

of forest structure for carbon flux estimates in the Amazon rainforest, Environ. Res. Lett., 

in press, doi:https://doi.org/10.1088/1748-9326/aabc61. 

de Rosnay, P., and J. Polcher (1998), Modelling root water uptake in a complex land surface 

scheme coupled to a GCM, Hydrol. Earth Syst. Sci., 2(2/3), 239–255, doi:10.5194/hess-

2-239-1998. 1075 

de Rosnay, P. De, J. Polcher, M. Bruen, and K. Laval (2002), Impact of a physically based 

soil water flow and soil-plant interaction representation for modeling large-scale land 

surface processes, , 107(2). 

Rüger, N., Huth, A., Hubbell, S. P., & Condit, R. (2009). Response of recruitment to light   

availability across a tropical lowland rain forest community. Journal of Ecology, 97(6), 1360-1080 

1368. 

 

Sakschewski, B., W. von Bloh, A. Boit, L. Poorter, M. Peña-Claros, J. Heinke, J. Joshi, and 

K. Thonicke (2016), Resilience of Amazon forests emerges from plant trait diversity, 

Nat. Clim. Chang., 6(11), 1032–1036, doi:10.1038/nclimate3109. 1085 

Schenk, H. J., and R. B. Jackson (2005), Mapping the global distribution of deep roots in 

relation to climate and soil characteristics, Geoderma, 126(1–2 SPEC. ISS.), 129–140, 

doi:10.1016/j.geoderma.2004.11.018. 

Schmidhalter, U. (1997), The gradient between pre-dawn rhizoplane and bulk soil matric 

potentials, and its relation to the pre-dawn root and leaf water potentials of four species, 1090 

Plant, Cell Environ., 20(7), 953–960, doi:10.1046/j.1365-3040.1997.d01-136.x. 

Shinozaki, K. Y. K. H. K. K. T. (1964), A quantitative analysis of plant form - the pipe model 

theory I. Basic analyses, Japanese J. Ecol. 

Sitch, S., B. Smith, and I. Prentice (2003), Evaluation of ecosystem dynamics, plant 

geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model, 1095 

Glob. Chang. Biol., 161–185. 

Sitch, S. et al. (2015), Recent trends and drivers of regional sources and sinks of carbon 

dioxide, Biogeosciences, 12(3), 653–679, doi:10.5194/bg-12-653-2015. 

Sperry, J. S., U. G. Hacke, R. Oren, and J. P. Comstock (2002), Water deficits and hydraulic 

limits to leaf water supply, Plant. Cell Environ., 25(2), 251–263. 1100 

ter Steege, H. et al. (2006), Continental-scale patterns of canopy tree composition and 

function across Amazonia., Nature, 443(7110), 0–2, doi:10.1038/nature05134. 

Taylor, K. E. (2001), in a Single Diagram, J. Geophys. Res., 106(D7), 7183–7192. 

Tramontana, G. et al. (2016), Predicting carbon dioxide and energy fluxes across global 

FLUXNET sites with regression algorithms, Biogeosciences, 13(14), 4291–4313, 1105 

doi:10.5194/bg-13-4291-2016. 

Verbeeck, H., P. Peylin, C. Bacour, D. Bonal, K. Steppe, and P. Ciais (2011), Seasonal 

patterns of CO 2 fluxes in Amazon forests: Fusion of eddy covariance data and the 

ORCHIDEE model, J. Geophys. Res., 116(G2), 1–19, doi:10.1029/2010JG001544. 



30 

 

Wei, Y. et al. (2014), The north american carbon program multi-scale synthesis and terrestrial 1110 

model intercomparison project - Part 2: Environmental driver data, Geosci. Model Dev., 

7(6), 2875–2893, doi:10.5194/gmd-7-2875-2014. 

Werth, D., and R. Avissar (2002), The local and global effects of Amazon deforestation 

David, Geophys. Res. Lett., 107(55), 1–7, doi:10.1029/2001JD000717. 

Williams, M., B. J. Bond, and M. G. Ryan (2001), Evaluating different soil and plant 1115 

hydraulic constraints on tree function using a model and sap flow data from ponderosa 

pine, Plant, Cell Environ., 24(7), 679–690, doi:10.1046/j.1365-3040.2001.00715.x. 

Wilson, K. (2002), Energy balance closure at FLUXNET sites, Agric. For. Meteorol., 113(1–

4), 223–243, doi:10.1016/S0168-1923(02)00109-0. 

Xu, X., D. Medvigy, J. S. Powers, J. M. Becknell, and K. Guan (2016), Diversity in plant 1120 

hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in 

seasonally dry tropical ... Diversity in plant hydraulic traits explains seasonal and inter-

annual variations of vegetation dynamics in seasonally, New Phytol., 212(May), 80–95, 

doi:10.1111/nph.14009. 

Yoda, K., Kira, T., Ogawa, H., and Hozumi, K.: Self-thinning in overcrowded pure stands 1125 

under cultivated and natural conditions, J. Inst. Polytech. (Osaka University), 14, 107–

129, 1963 

Zhang, K. et al. (2015), The fate of Amazonian ecosystems over the coming century arising 

from changes in climate, atmospheric CO2, and land use, Glob. Chang. Biol., 21(7), 

2569–2587, doi:10.1111/gcb.12903. 1130 

 

 

 

Code availability 

 1135 

The code of ORCHIDEE-CAN r2290 (Naudts et al., 2015) can be accessed from 

http://dx.doi.org/10.14768/06337394-73A9-407C-9997-0E380DAC5595 

 




