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Abstract 17 

Woody encroachment and forest progression are widespread in forest-savanna transitional areas 18 

in Central Africa. Quantifying these dynamics and understanding their drivers at relevant spatial 19 

scales has long been a challenge. Recent progress in open access imagery sources with 20 

improved spatial, spectral and temporal resolution combined with cloud computing resources, 21 

and the advent of relatively cheap solutions to deploy laser sensors in the field, have 22 

transformed this domain of study. We present a study case in the Mpem & Djim National Park 23 

(MDNP), a 1,000 km² protected area in the Centre region of Cameroon. Using open source 24 

algorithms in Google Earth Engine (GEE), we characterized vegetation dynamics and the fire 25 

regime based on Landsat multispectral imagery archive (1975-2020). Current species 26 

assemblages were estimated from Sentinel 2 imagery and the open source biodivMapR 27 

package, using spectral dissimilarity. Vegetation structure (aboveground biomass; AGB) was 28 

characterized using Unmanned Aerial vehicle (UAV) LiDAR scanning data sampled over the 29 

study area. Savanna vegetation, which was initially dominant in the MDNP, lost about 50% of 30 

its initial cover in less than 50 years in favor of forest at an average rate of ca. 0.63%.year-1 (6 31 

km².year-1). Species assemblage computed from spectral dissimilarity in forest vegetation 32 

followed a successional gradient consistent with forest age. AGB accumulation rate was 3.2 33 

Mg.ha-1.year-1 after 42 years of forest encroachment. In savannas, two modes could be 34 

identified along the gradient of spectral species assemblage, corresponding to distinct AGB 35 

levels, where woody savannas with low fire frequency store 40% more AGB than open grassy 36 
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savannas with high fire frequency. A fire occurrence every five year was found to be the fire 37 

regime threshold below which woody savannas start to dominate over grassy ones. A fire 38 

frequency below that threshold opens the way to young forest transitions. These results have 39 

implications for carbon sequestration and biodiversity conservation policies. Maintaining 40 

savanna ecosystems in the region would require active management actions to limit woody 41 

encroachment and forest progression, in contradiction with global reforestation goals. 42 

Keywords: Forest-savanna transition, Google Earth Engine, fire, UAV-LiDAR, aboveground 43 

biomass, species assemblage. 44 

1. Introduction 45 

Understanding long term ecosystem dynamics, their drivers and effects on ecosystem state at a 46 

given point in time is a major challenge in ecology (Bastin et al., 2019; Estes et al., 2018; 47 

Valentini et al., 2014). Transitional areas between tropical forests and savannas form a 48 

widespread ecotone separating two of the most productive terrestrial ecosystems (Beer et al., 49 

2010). Within a rather large domain of environmental conditions, both systems constitute 50 

alternative stable states (Hirota et al., 2011), each one generating the feedback loops ensuring 51 

its own maintenance. However, under all sufficiently wet climates where annual rainfall 52 

exceeds ≈ 650 mm, water availability is sufficient for woody canopy closure but disturbance 53 

mechanisms inherent to savannas, notably fire suppress trees and allow for their coexistence 54 

with grasses (Aleman et al., 2020; Sankaran et al., 2005; Staver et al., 2011b, 2011a). This 55 

balance has likely been shifted by ongoing climate change, as long term woody encroachment 56 

and forest progression into savannas have been described for forest-savanna ecotones (FSE) in 57 

Central Africa (Mitchard and Flintrop, 2013; Stevens et al., 2017, 2016; Youta-Happi et al., 58 

2003). 59 

These dynamics induce profound changes in ecosystem function and composition (Oliveras and 60 

Malhi, 2016; Zeng et al., 2013). Although tropical forests benefit from a good public image 61 

because of their high tree diversity (Sosef et al., 2017; Sullivan et al., 2017), aboveground 62 

carbon stocks (Mitchard et al., 2011; Santoro et al., 2021; Sullivan et al., 2017) and attributed 63 

aesthetic value (Niklas and Spatz, 2010; Panshin and De Zeeuw, 1980), they do not replace the 64 

specific fauna and flora of savannas, not to mention savanna’s consequent belowground carbon 65 

stock (Blaum et al., 2007; Buisson et al., 2019; Sirami et al., 2009; Veldman et al., 2015). 66 

Moreover it will likely take centuries to attain a successional stage giving the newly formed 67 

forests a level of biomass and a floristic composition typical of old growth forests (Rüger et al., 68 

2020). Conversely, recovering a typical grassland/savanna structure and composition, exempt 69 



of invasive exotic species, may prove very difficult (Cava et al., 2020, 2018; Machida et al., 70 

2021). Woody encroachment and forest progression at the expanse of savannas is thus neither 71 

desirable from the viewpoint of climate change mitigation policies, like the Bonn Challenge 72 

and the Reducing Emissions from Deforestation and Degradation (REDD+) initiative nor from 73 

that of the biotope conservation or restoration agenda (Abreu et al., 2017; Dinerstein et al., 74 

2020; Thomas et al., 2013). The main questions a manager needs to answer are therefore: 1/ 75 

what are the tipping points for bush encroachment and forest transition in the current climatic 76 

conditions, considering the main mitigating tool at his disposal: the fire regime; 2/ what are the 77 

consequences of past ecosystem dynamics on the current distribution of carbon and 78 

biodiversity.  79 

If field data provide an irreplaceable level of detail, notably for the characterization of 80 

vegetation structure and composition, they rarely provide the spatial and temporal hindsight 81 

necessary to understand ecosystem dynamics at a relevant scale. Currently available remote 82 

sensing approaches bring complementary and unique answers to the above questions. Thanks 83 

to its potential capacity for systematic observations at various scales, remote sensing (RS) offers 84 

practical and economical means to study vegetation cover changes over several decades, 85 

especially for large areas (Xie et al., 2019). Long term satellite imagery archives are now 86 

available globally, at a relatively high spatial and temporal resolution (Landsat, and now 87 

Sentinel 2) as well as open-access storage and computing facilities, such as the Google Earth 88 

Engine (GEE) computing platform (Gorelick et al., 2017). With these game-changing tools it 89 

is easy to monitor the transition from one biome to another, especially those with distinct 90 

spectral signatures as forest and savanna (DeVries et al., 2015; Dutrieux et al., 2015), at a 91 

meaningful spatiotemporal scale (Banskota et al., 2014). Mapping fire scars, which leave 92 

conspicuous and relatively long lasting marks in the landscape is also relatively easy (Daldegan 93 

et al., 2019, 2014; Liu et al., 2018) even using imagery with  imperfect radiometric and 94 

atmospheric corrections. 95 

Characterizing more subtle changes in species composition or vegetation structure (biomass), 96 

requires other data sources and algorithms. The Sentinel 2 constellation, carrying optical 97 

sensors of improved temporal, spectral and spatial resolutions have shown interesting prospects 98 

for detecting compositional gradients in the vegetation, notably in terms of the abundance of 99 

broad functional/optical plant types (Grabska et al., 2019; Ma et al., 2019). The unsupervised 100 

method for spectral species diversity analysis proposed by Féret and Asner (2014) for instance, 101 

provides preliminary assessment of such compositional gradients, loosely referred to as spectral 102 



dissimilarity gradient (analogous to β-diversity), which could prove useful to detect sharp 103 

compositional changes occurring within transitioning pixels at the forest-savanna boundary, 104 

notably. However the capability of passive optical sensors to discriminate aboveground 105 

biomass (AGB) gradients is limited, especially in dense forests where AGB density frequently 106 

exceeds 200 Mg ha-1 (Jha et al., 2020; Sagang et al., 2020). Airborne LiDAR has become the 107 

reference method for the characterization of vegetation structure (Duncanson et al., 2021), but 108 

cost can be prohibitive. The arrival on the market of low-cost LiDAR scanners, which can be 109 

carried on Unmanned Aerial Vehicles (UAV), is now democratizing this crucial tool for 110 

vegetation structure assessment in tropical countries. 111 

The objective of this study is twofold: the first aim is to advance our understanding of the 112 

dynamics and drivers of forest-savanna transitions, and their consequences in terms of above-113 

ground carbon storage and tree species diversity. The second aim is to provide land managers 114 

(conservationists, as well as infrastructure investors in need for science-based compensation 115 

strategies) with reliable open tools allowing them to quantify the impact of different 116 

management strategies on ecosystem dynamics. To this end we combined the historical 117 

perspective on forest-savanna transition and fire regime provided by the Landsat archive to 118 

current day maps of spectral β-diversity and UAV-LiDAR derived AGB maps to obtain a 119 

coherent framework that could be generalized to similar transition areas for supporting and 120 

complementing traditional field campaigns. Our underlying hypotheses were the following: 1/ 121 

changes in fire regimes induce woody encroachment and forest transition below a specific fire 122 

frequency threshold; 2/ forest transition age results in changes in species composition and AGB 123 

detectable using integrative remote sensing data. 124 

2. Methods 125 

2.1.  Study area 126 

The study was conducted within the Mpem & Djim National Park (MDNP) located in a forest 127 

savanna mosaic of the Guineo-Congolian transitional area in the Centre region of Cameroon 128 

(Fig. 1). The MDNP was established in 2004 and covers an area of ca. 1,000 km². The area is 129 

under the influence of an equatorial climate of Guinean type (Djoufack, 2011), which is hot and 130 

humid with an average annual temperature of 25°C. Mean annual rainfall is 1,500 mm 131 

(Djoufack, 2011), with a rainfall distribution characterized by a five months dry season 132 

(November-March), during which the monthly rainfall is less than 70 mm per month. Soils are 133 

deep, mostly ferralitic red and yellow with a complete hydrolysis of minerals from granite-134 

gneissic basement caused by warm rains (Santoir and Bopda, 1995). Savannas in the MDNP 135 



are interspersed by semi-deciduous forests or gallery forests along watercourses (Letouzey, 136 

1985; Youta-Happi et al., 2003; Youta-Happi and Bonvallot, 1996). 137 

 138 

Fig. 1: Study area. (a) Location (red point) within the Guineo-Congolian transitional area (light 139 

green) and (b) boundaries of the Mpem & Djim National Park (full black polygon) following 140 

Mpem and Djim rivers (overlapping blue dashed lines). (c) UAV LiDAR-derived Canopy 141 

Height Model (CHM) at a 1m spatial resolution collected in the area (low areas in orange and 142 

higher ones in dark blue). 143 

Tree species dominating young colonizing forests in direct contact with savanna are Alchornea 144 

cordifolia (Schumach. & Thonn.) Müll.Arg., Albizia zygia (DC.) J.F.Macbr., Albizia 145 

adianthifolia (Schumach.) W.Wight and Albizia ferruginea (Guill. & Perr.) Benth., Macaranga 146 

spinosa Müll. Arg., while emergent trees species such as Mansonia altissima (A.Chev.) 147 

A.Chev., Terminalia superba Engl. & Diels. and Triplochiton scleroxylon K. Schum., dominate 148 

in older forest successions. A distinct set of mostly pyrophilous tree species characterizes the 149 

savanna, mainly: Annona senegalensis Pers., Bridelia ferruginea Benth., Crossopterix 150 

febrifuga (Afzel. ex G.Don) Benth., Hymenocardia lyrata Tul., Lannea kerstingii (Enql.) K. 151 

Krause., Terminalia glaucescens Planch. ex Benth., Piliostigma thonningii (Schumach.) Milne-152 

Redh., Psorospermum febrifugum Spach.. The grass cover is dominated by species of the 153 

Poaceae family: Hyparrhenia diplandra (Hack.) Stapf., Hyparrhenia rufa (Nees.) Stapf., 154 

Pennisetum purpureum Schumach. and Andropogon spp. (Youta-Happi, 1998).  155 



2.2. Workflow of the analysis 156 

The general workflow of the analysis is shown in Fig. 2 and can be grouped into three chunks. 157 

 158 

Fig. 2: Methodological workflow used in this study (A) and temporal domains covered by 159 

spaceborne data for vegetation and fire monitoring (B). 160 

The first chunk includes the mapping of historical forest-savanna dynamics over the study area. 161 

The second chunk includes the mapping of the spatial distribution of fire frequency, and the 162 

third chunk includes the mapping of present-day vegetation diversity and biomass levels 163 

(Section A of Fig. 2). We used the GEE platform to access and preprocess (i.e., clouds and 164 

cloud shadows filtering) all spaceborne optical data. To map the historical forest-savanna 165 

dynamics, we leveraged Landsat archives from 1975 to 2020 and used automated 166 

(unsupervised) processing routines in GEE to generate a landcover change map (Section B of 167 

Fig. 2; see section 2.3 for a full description of the method). To assess the effect of fire on forest-168 

savanna dynamics, a fire frequency map based on Landsat archives from 2014 to 2019 was 169 

generated using a semi-automated classification (see section 2.4). Fire regimes derived from 170 

Landsat were also compared to those derived from the MODIS burned area product. The 171 

assessment of present-day vegetation diversity gradients in the MDNP vegetation was based on 172 

a Sentinel 2 image from 2020, following the unsupervised spectral diversity analysis described 173 

in Féret and Boissieu (2020, see section 2.5.1). Last, we used UAV-borne LiDAR scanning 174 

(UAV-LS) data acquired in 2019 to map present-day vegetation biomass stocks (see section 175 

2.5.2). 176 



2.3. Mapping landcover changes 177 

2.3.1. Temporal aggregation 178 

There are three common strategies to process archive imagery collections for landcover 179 

monitoring (Banskota et al., 2014; Gómez et al., 2016; Nguyen et al., 2020). The simplest one 180 

consists in using individual, high quality cloud free scenes. In tropical, frequently cloudy 181 

conditions, this approach can prove difficult. The second alternative, where sufficient archive 182 

is available, is to generate temporal aggregates around pivot dates, allowing the use of 183 

information contained in partially cloudy images, at the expense of a reduced precision on the 184 

timing of detected changes (Hansen et al., 2013). Finally for dense temporal time series, pixel-185 

level temporal analysis can be performed (Hermosilla et al., 2015) to optimize the use of the 186 

available data and the temporal precision of event detections. In this study, we were interested 187 

in the temporal hindsight, and therefore had to deal with very sparse series prior to the launch 188 

of Landsat 7 and 8 (and due to the long absence of ground stations in Africa). The third approach 189 

was thus excluded. Moreover, a major difficulty lies in inter-image heterogeneity induced by 190 

directional and atmospheric effects, although correction models are now routinely applied to 191 

recover bottom-of-atmosphere reflectance (such as the LEDAPS algorithm for Landsat 5 to 8 192 

TM, ETM and OLI data collections produced by USGS, 2020). To work around the spectral 193 

stability issue, different approaches can be taken for image classification, mirroring the 194 

temporal aggregation choices summarized above: (i) train a classifier for each image, either 195 

manually, or automatically, if the landcover classes are sufficiently distinct, (ii) use the time 196 

redundancy (i.e. the similarity between successive temporal version of the pixels) to stabilize 197 

the signal at the scene level by time-aggregating a sufficient number of images or classifications 198 

(Souverijns et al., 2020), (iii) use the time redundancy to stabilize the signal at pixel level, to 199 

classify stable landcover classes between major breakpoint events (Verbesselt et al., 2010). 200 

2.3.2. Automated-unsupervised landcover mapping 201 

We developed an automated-unsupervised landcover mapping pipeline in GEE. Performing 202 

landcover classification directly on GEE is appealing in that it alleviates data transfer between 203 

the GEE platform and the operator. Besides, the use of unsupervised classification - which does 204 

not require human inputs for the processing of each single image - together with the massive 205 

computational capabilities of GEE, offers prospects for large-scale landcover mapping, 206 

provided that the unsupervised algorithm can accurately predict the landcover classes of 207 

interest. In the very convenient case of forest-savanna mosaics, the spectral contrast between 208 



the two classes is so important, with highly bi-modal radiometric distribution in most spectral 209 

bands (see Appendix A). Therefore landcover classification can easily be performed 210 

automatically at the individual image level. This is true as long as clouds, cloud shadows and 211 

strong haze can be masked, as well as very distinct landcover classes such as water bodies and 212 

urban areas. Preliminary testing suggested that a simple k-means algorithm with two clusters 213 

successfully separated the two classes. On each image passing through the pipeline, we thus 214 

randomly selected 10,000 pixels to train a k-means algorithm and predicted the class of each 215 

remaining pixel using the NDVI. K-means classification was applied on single date images 216 

acquired before 1999 to generate the first three landcover maps (LC # 1 to 3 in section B of Fig. 217 

2). For images acquired after 1999, K-means classifications of individual images were 218 

aggregated within the same 2-years intervals as in section 2.3.2 (LC # 4 to 8), by keeping the 219 

modal class of each pixel across images within time intervals. This resulted into eight binary 220 

forest (value of 1) and savanna (value of 0) maps. 221 

2.3.3. Generating landcover change map 222 

The eight forest-savanna maps were stacked to generate a transition map representing landcover 223 

change (or vegetation dynamics) between the years 1975 and 2020. Forests pre-existing in 1975 224 

were grouped in a single class of forests older than 45 years (stable forests). Pixels that 225 

witnessed a permanent change from savanna (0) to forest (1) or the opposite were classified as 226 

“forest gain” or “forest loss” respectively and the year of detected transition was recorded. 227 

Pixels that underwent more than one transition throughout the monitoring period (i.e., 4% of 228 

the cases) were classified as “unstable dynamics” and discarded from the analysis.  229 

2.3.4. Validation of landcover and landcover change maps and estimation of the area of 230 

land change 231 

To assess the accuracy of landcover and landcover change maps and estimate the area of land 232 

change, we followed good practices guidelines detailed in Olofsson et al. (2014). In particular, 233 

the estimation of landcover maps accuracy was made using reference samples selected by 234 

stratified random sampling. For each binary forest-savanna map, 50 pixels were randomly 235 

drawn from each stratum and pixels’ label (i.e. forest or savanna) was assigned by visual 236 

interpretation using the Landsat image of the year corresponding to the classification. The set 237 

of reference samples was then used to generate a confusion matrix and derive accuracy statistics 238 

(i.e. producer, user and overall accuracy), as described in section 4.3 of Olofsson et al. (2014). 239 



The landcover change map was evaluated by assessing the accuracy of the dominant classes 240 

throughout the study period, namely stable forests (i.e., 2020’s forests existing since 1975 or 241 

earlier), stable savannas, and forest gain (i.e., forests that appeared between 1975-2020). While 242 

forest loss (i.e., forests that transitioned to savannas between 1975-2020) was also observed in 243 

the landcover change map, it only concerned 0.2% of the pixels and was therefore discarded 244 

from the analysis. We randomly drew 100 pixels from each stable class and 200 pixels in the 245 

forest gain class, and followed the same procedure as for the binary maps to compute accuracy 246 

statistics.  247 

To estimate the area of forest gain, we used two methodological approaches. The first approach 248 

consisted in simply counting pixels classified as “forest gain” in the landcover change map (i.e., 249 

so-called pixel-counting method, Waldner and Defourny, 2017) from which an area estimate 250 

could be derived. To warrant the unbiasedness of the estimate and assess the uncertainty around 251 

this estimate, we also followed the approach prescribed in Olofsson et al. (2014), namely using 252 

a probability sample and invoking design-based inference. In practice, the set of reference 253 

samples used to assess the accuracy of the landcover change map, together with the landcover 254 

change map itself, was used to estimate the area of forest gain from the samples. 255 

2.4. Mapping fire frequency 256 

The unsupervised 2-class clustering approach used to discriminate between forest and savanna 257 

could not be used to map fire scars, despite the conspicuous spectral signature of recent burns. 258 

Although the burn scars remain visible for weeks or more through time, their signature is 259 

progressively attenuating (Appendix B) and many images may not display scars. For the same 260 

reason, temporal image aggregates are useless, as fire scars are too transitory. We therefore 261 

needed to turn to a more traditional approach, based on a fixed spectral threshold applied to 262 

each image in the collection. Due to the sparsity of image series acquired before 1999 and the 263 

failure in the scan line corrector of Landsat 7 we limited the fire frequency analysis to Landsat 264 

8 as from jan. 2014 to dec. 2018 before LC #8 (5 years; see Fig. 2B). 265 

2.4.1. Mapping fires scars 266 

Amongst the numerous vegetation indices used to characterize fire occurrence, the Normalized 267 

Burn Ratio (NBR, Key and Benson, 2003; Fig. 3) has gained consideration for detecting burn 268 

scars left after a fire (Escuin et al., 2008; Kane et al., 2014; Miller and Thode, 2007; Sunderman 269 

and Weisberg, 2011). The NBR index (equation 1) is calculated using reflectance data from 270 



passive optical sensors, especially the near infrared (NIR) and Shortwave infrared (SWIR) 271 

bands: 272 

���	 � 	
���	
���	

���	����	
 (eq. 1) 273 

NBR was computed for each pixel and each observation in their respective time series in GEE. 274 

We then adopted a semi-automated approach to map fire scars from the NBR time series. First, 275 

we haphazardly selected one Landsat 8 image with apparent fire scars and visually delineated 276 

polygons on burned and unburned areas in each image. Based on a visual assessment of NBR 277 

distributions in burned and unburned polygons, we fixed an NBR cut-off value of 0.1 to separate 278 

burned (NBR < 0.1) and unburned (NBR >= 0.1) pixels in the entire image collection (see 279 

Appendix B-a). This threshold of 0.1 was confirmed when observing the NBR variation with 280 

time (i.e. on other Landsat 8 images) for frequently and rarely burned pixels (Appendix B-b), 281 

which showed the progressive fading of fire scars' influence on pixel spectral properties. For 282 

each pixel, the result of this classification process was thus a time series - hereafter referred to 283 

as the fire scar time series - with observations classified as burned (presence of fire scar) or 284 

unburned (absence of fire scar) and featuring, for each observation, the associated image 285 

acquisition date. 286 

 287 

Fig. 3: Example of fire scar discrimination from the Normalized burn ratio (NBR). (a) RGB 288 

true colour composite of a forest-savanna landscape from Landsat 8 289 

(LC08_186056_20191130). (b) NBR of the same area highlighting burn scars in red and orange 290 

with photosynthetically active savanna in light green and forest vegetation in darkgreen. 291 

2.4.2. Quantifying fire frequency 292 

We quantified the fire frequency by computing a Fire Frequency Index (FFI) from the fire scar 293 

time series. To account for the irregular distribution of spaceborne observations within and 294 

among years resulting from the filtering of cloudy or shadowed observations, we first 295 



aggregated the information contained in pixels’ fire scars time series into yearly observations. 296 

For a given pixel a year was considered as a “burned year” when the pixel was classified as fire 297 

scar for at least two consecutive observations. The FFI for a pixel was then computed as the 298 

ratio between the numbers of “burned years” over the total number of years in the fire 299 

monitoring period. 300 

- Comparing Landsat- and MODIS-derived fire frequencies 301 

The MODIS burned area monthly product (MCD64A1.006 Collection 6) at 500 m resolution 302 

(Boschetti et al., 2019) is a reference data source that we used for the sake of comparison with 303 

fire frequencies derived from Landsat. We computed FFI values of all burned pixels from 304 

MODIS burned area monthly product in the 2014-2018 fire monitoring period, and compared 305 

the distribution of areas (in km²) in each FFI class to the distribution derived from Landsat. The 306 

comparison aimed at assessing the interest of increased spatial resolution (i.e., 30 vs 500 m) for 307 

our understanding of forest-savanna dynamics.  308 

2.5.  Mapping current vegetation diversity and structure 309 

2.5.1. Spectral composition gradients 310 

The increase in spatial and spectral resolutions of open-access spaceborne images offers 311 

interesting prospects for the monitoring of biodiversity from space. The link between remotely 312 

sensed spectral information and ecological indicators of diversity was formulated by Palmer et 313 

al., (2002) and referred to as the spectral variation hypothesis (SVH). This hypothesis initially 314 

related the spatial variability in spectral information to environmental heterogeneity, and was 315 

used in various contexts in order to provide an estimation of species diversity (Rocchini et al., 316 

2016, 2010). Féret and Asner (2014) developed a method aiming at computing diversity 317 

indicators directly from spectral information in order to compare them to the same diversity 318 

indicators derived from species field inventories, and used dissimilarity metrics as a proxy for 319 

tree taxonomic turnover. This methodology implemented in the biodivMapR R package (Féret 320 

and Boissieu, 2020) relies on the assumption that discrimination among species, or groups of 321 

species, can be obtained from the clustering of spectral information. The resulting clusters, 322 

named ‘spectral species’ by the authors, aim at defining optical types (Ustin and Gamon, 2010) 323 

with an unsupervised procedure. These optical types provide combined information on 324 

functional and taxonomic properties of vegetation. Here, we used this method to assess and map 325 

spectral composition gradients on a cloud free Sentinel 2 image of the dry season (27-01-2020; 326 

T32NQL & T32NRL). Although the analysis was performed on a local computer after 327 



retrieving the Sentinel 2 image composite from Google Earth Engine, it is worth noting that 328 

biodivMapR can as well be implemented on the fly using an R interface on the Google cloud 329 

platform, thus alleviating the need for any local image data processing. We processed forest 330 

and savanna pixels separately, using the previously derived 2019-2020 landcover classification 331 

as a mask. Within a given landcover subset (i.e., forest or savanna) an unsupervised k-means 332 

clustering was used to assign individual pixels to spectral species based on their spectral 333 

signatures. Féret and Boissieu (2020) suggested using 40 - 50 spectral species to accommodate 334 

for the high diversity of tropical forests. However, using a large number of spectral species did 335 

not change the overall pattern of spectral composition gradients in our study area, and we thus 336 

set the number of spectral species to 10. The image was then gridded into 30 x 30 m windows 337 

(to match the spatial resolution of the Landsat-derived landcover change map) and the 338 

dissimilarity between each pair of windows was computed using the Bray-Curtis dissimilarity 339 

metric. Principal Coordinate Analysis (PCoA; Legendre and Legendre, 1998) was then applied 340 

on the resulting dissimilarity matrix and the first axis was retained to reflect turn-over in 341 

(spectral) species composition, for either savanna or forest ecosystems. 342 

2.5.2. Aboveground biomass 343 

LiDAR scanning technology has emerged as the reference approach for mapping variation of 344 

vegetation AGB at landscape scale (Colgan and Asner, 2014; Jha et al., 2020; Sagang et al., 345 

2020) due to its ability to accurately characterize the vegetation’s three-dimensional structure.  346 

 347 

Fig. 4: Three-dimensional profile of the vegetation structure along a savanna to forest 348 

transitional gradient extracted from the UAV-borne LiDAR scanning data available in the study 349 

area. The profile corresponds to a 14 m thick extract.  350 

We used a DJI Matrice 600 UAV to mount a Riegl mini VUX-1 UAV scanner encased in a 351 

YellowScan Vx-20 device and acquired 3D data of the vegetation in 2019. The scanner works 352 

at 100 kHz over 360 degrees, yielding a point location accuracy of 2.5 cm vertically, thanks to 353 



differentially corrected DGNSS (post-processing with local base station) positions and readings 354 

from an Applanix 20 inertial station (IMU). Flight height was set to 70 m above ground (SRTM; 355 

DTM) level with an average ground speed of 8 m.s-1. The scan angle was filtered down to ± 356 

60°, yielding a band swath of 121 m and a 50% overlap between two adjacent flight lines, which 357 

resulted in an average point density of 10.5 points.m-2. The UAV-borne sampling was collected 358 

over ≈ 300 ha and was designed to cover a transitional gradient from savannas to the oldest 359 

forest patches of the landscape (Fig. 4). Points were classified into ground and vegetation 360 

returns using progressive morphological filter (pmf) algorithm (Zhang et al., 2003) as 361 

implemented in the classify_ground() function of the lidR R package (Roussel et al., 2021). To 362 

filter non-ground returns, we ran the pmf algorithm using a sequence of window sizes (from 3 363 

to 12 pixels every 3 pixels) and elevation difference thresholds (from 0.1 to 1.5 every 0.35, see 364 

Zhang et al., 2003 and Roussel et al., 2021 for details on the pmf algorithm and its 365 

implementation in lidR). We applied a continuous normalization of the non-ground point cloud 366 

through the interpolation of the elevation of every single point location using ground points 367 

with the normalize_height() function of the lidR R package. Interpolation was done using a k-368 

nearest neighbor approach with an inverse-distance weighting (see Roussel et al., 2021). The 369 

normalized point cloud was used to generate a 1-m canopy height model (CHM), from which 370 

we predicted vegetation AGB at 40-m spatial resolution using a model calibrated in a forest-371 

savanna mosaic of the same region (equation 2, from Sagang et al., 2020). 372 

AGB = 6.27 + 8.52 × CHM  (eq. 2) 373 

with AGB in Mg.ha-1 and CHM in m. 374 

Further, we evaluated the rate of AGB uptake for young secondary forests (≤ 20 years; Ipcc, 375 

2006) and all the transitory forests (< 45 years; forest that appeared between 1975 and 2020) 376 

by (i) resampling the AGB map from 40-m to the 30-m resolution at which vegetation dynamics 377 

was assessed, and (ii) adjusting a simple linear relationship between predicted AGB and forest 378 

age derived from the forest transition map. All the statistical analyses were done using the R 379 

statistical software (R Core Team, 2018). 380 

3. Results 381 

3.1.  Tracking four decades of landcover change trajectory  382 

Overall accuracies of automated forest-savanna classifications ranged from 85.78% (± 6.26) to 383 

96.85% (± 3.57) with an average of 92.54% (± 4.72, Appendix C). The Landsat 2 acquisition 384 

of dec. 1975 (Fig. 5-a) shows that the MDNP was at that time dominated by savannas (c. 54% 385 



of the park area; Fig. 6-a). After four decades of vegetation dynamics (see illustrative panels b 386 

and c in Fig. 5), the MDNP was, in 2020, dominated by forest (c. 72% of the park area; Fig. 6-387 

a). Using binary forest-savanna classifications to assess landcover changes, the automated GEE 388 

routine suggested a 275 km² increase of forest area during the study period, which is consistent 389 

with the area estimate obtained from reference samples in a design-based inferential framework 390 

(i.e., 266 km² ± 26, Appendix D).  391 

 392 

Fig. 5: Vegetation transition map of the Mpem & Djim National Park from 1975 to 2020. (a, b, 393 

c) illustrative Landsat images (RGB composition: Red-NIR-Green) for the years 1975, 2000 394 

and 2020. Under this RGB composition, forests appear in green and savannas in purple. (d) 395 

Forest age map derived from the landcover classification at different dates.  396 

The landcover change map depicted a consistent and regular pattern of forest progression into 397 

savanna (Fig. 6-a) and allowed deducing current forest age (displayed in Fig. 5-d) and average 398 

rate of forest progression. For instance, a weighted mean of forest encroachment rates obtained 399 

from successive classifications - using the length of monitoring periods as weights (vertical 400 

dashed bar in Fig. 6) - yield an average rate of 0.63%.year-1 or equivalently c. 6 km².year-1 (Fig. 401 

6-b). Since 1975, the MDNP has thus lost about 50% of its initial savanna area, and linear 402 

extrapolation of forest cover change suggests that savannas will completely disappear from the 403 

park within the next 30 years. 404 



 405 

Fig. 6: Landcover change throughout the study period. (a) Variation of the proportion of forest 406 

cover over the years. Vertical gray dashed lines represent landcover classification dates and full 407 

black circles the forest cover estimate on each landcover map. The full black line represents the 408 

fit of a linear model. (b) Variation of forest encroachment rate between consecutive landcover 409 

classifications. The full black line represents a weighted mean of forest encroachment rates 410 

throughout the study period, using the time lengths between consecutive landcover 411 

classifications as weights. 412 

3.2. Relationships between fire frequency and landcover change 413 

Based on a visual interpretation we noticed that savannas surrounding the park principally in 414 

the northern part underwent higher fire frequencies as compared to the southern savannas (Fig. 415 

7-a). Most of the savanna that transited to forest between two consecutive dates had an average 416 

Fire Frequency Index (FFI) of 0 in the 5 previous years (Fig. 7-b), meaning that no fire was 417 

detected. Persisting savanna that did not undergo any forest transition had a FFI presenting a 418 

broad range of FFI values. 419 

 420 

Fig. 7: Maps of the Fire Frequency Index (FFI) derived from Landsat 8 between 2014-2018 (a) 421 

with existing forests at the beginning of the monitoring period displayed in grey. (b) Associated 422 

barplots showing the distribution of FFI classes for stable savanna (orange) and forest gains 423 

(green) in consecutive landcover classifications. 424 



3.3.  Change in forest composition and structure with age 425 

We assessed the relationships between forest age and (1) forest composition, indirectly 426 

characterized through spectral composition gradient analysis of 30 x 30 m windows spectral 427 

response and (2) forest structure, quantified by AGB estimates.  428 

 429 

Fig. 8: Gradient of forest transition and the spatial distribution of the spectral composition over 430 

the study area. Forest age map (a) and (b) the spatial distribution of pixel scores along the first 431 

axis of a Principal Coordinate Analysis (PCoA 1 see section 2.5.1 for details).  Negative PCoA 432 

values correspond to old growth forests while positive values correspond to young regrowth. 433 

(c) and (d) are subsets illustrating the area where the patterns are marked.  434 

The first axis of the PCoA (PCoA 1) applied on the dissimilarity matrix computed from spectral 435 

species composition depicted a gradual change in forest composition from the forest-savanna 436 

edges (young forests in light green in Fig. 8-a & c with brown tone in Fig. 8-b & d) to the forest 437 

interior (old forests in dark green in Fig. 8-a & c with blue tone in Fig. 8-b & d). The spatial 438 

structure of forest spectral composition gradients matched the pattern of forest progression, 439 

with younger and older stands found on the positive and negative sides of PCoA 1 (Fig. 9-a), 440 

respectively. 441 



 442 

Fig. 9: Relationships between forest age, spectral composition and structure. (a) Boxplot of 443 

spectral composition derived from PCoA 1 (see section 2.5.1 for details), by forest age bins. 444 

Labelled letters represent the results of a Tukey honest significant difference (HSD) test, with 445 

different letters for boxes having different means at the probability cut-off value of p < 0.05. 446 

(b) Boxplot of pixels’ aboveground biomass (AGB) by forest age bins. Dotted line represents 447 

the fit of a simple linear model between forest age and AGB for transitory forests (< 45 years) 448 

with its 95% confidence interval (grey ribbon). Note that in panels a and b, x axes after year 20 449 

are represented with broken lines to mark a change in the interval between age bins. 450 

It is worth noting that the variability (cf. e.g. the interquartile range in box plots) of spectral 451 

composition seemed to increase with age. We also observed consistent changes in forest 452 

structure (Fig. 9-b), with an increase in forest AGB from 61 ± 33 Mg.ha-1 for younger forests 453 

(less than 5 years since afforestation) up to 230 ± 80 Mg.ha-1 for the oldest forests (> 45 years). 454 

The transition map thus suggested an average linear increase of about 3.2 Mg.ha-1.year-1 in 455 

MDNP forests since 1975 (Fig. 9-b). Young regenerating forests (≤ 20 years) seemed to show 456 

a higher AGB accumulation rate of 4.1 Mg.ha-1.year-1 (not shown). 457 

3.4.  Change in savanna composition and structure with fire frequency 458 

We investigated the relationships between the fire frequency of the past 5 years and the 459 

composition and structure of stable savannas (2020). Savanna spectral composition was 460 

consistent with the fire frequency (Fig. 10) and showed a marked bimodality along PCoA 1 461 

with a clear segregation between the two extreme states (Fig. 11).  462 



 463 

Fig. 10: Gradient of fire frequency and the spatial distribution of the spectral composition over 464 

persisting savannas the study area pixels from 1975 to 2020. Fire frequency map (a) and (b) the 465 

spatial distribution of pixel scores along the first axis of a Principal Coordinate Analysis (PCoA 466 

1) over savannas. Negative PCoA values correspond to woody savanna while positive values 467 

correspond to grassy savanna. Forest pixels in 2020 are masked out (grey). (c) and (d) are 468 

subsets illustrating the area where the patterns are marked. 469 

The spatial distribution of FFI was congruent with distribution patterns of spectral species 470 

composition opposing woody savanna (negative scores on PCoA 1 with a mode around ca.-0.6; 471 

Fig. 11-a) with higher AGB (c. 36 ± 27 Mg.ha-1 for leftmost box in Fig. 11-b) and grassy 472 

savanna (positive scores on PCoA 1 with a mode around ca. 0.4; Fig. 11-a) with lower AGB 473 

(22 ± 18 Mg.ha-1 for the rightmost box; Fig. 11-b). Woody savannas had rare fire events (FFI 474 

close to 0) while grassy savannas had higher fire frequencies (FFI close to 0.4). 475 



 476 

Fig. 11: Relationships between savanna spectral composition, fire frequency and savanna 477 

structure. (a) Density plot of spectral composition score on PCoA 1 and associated recent 478 

(2014-2018) fire frequency, represented by a smooth average of Fire Frequency Index (FFI; red 479 

line). (b) Boxplot of AGB variation by PCoA 1 bins. The labelled letters represent the results 480 

of a Tukey honest significant difference (HSD) test, with different letters for boxes having 481 

different means at the probability cut-off value of p < 0.05. Red numbers above the plots 482 

represent the average FFI for each PCoA 1 bin. 483 

4. Discussion 484 

4.1.  Forest expansion 485 

The FSE of northern hemisphere tropical Africa are currently experiencing woody 486 

encroachment and forest progression over savannas. Several studies, scattered from Guinea to 487 

the Central African Republic (Boulvert, 1990; Mitchard et al., 2011; Mitchard and Flintrop, 488 

2013; Youta-Happi, 1998) and even central Gabon (Cardoso et al., 2020; Jeffery et al., 2014) 489 

have illustrated this trend, while referring to time windows of variable lengths within the last 490 

six decades (Aleman et al., 2017). However, in all documented sites, no methodologically 491 

consistent picture was available over more than 30 years. We show in the present study that 492 

simple principles for distinguishing contrasted vegetation types and fire occurrence regimes 493 

allow benefitting from massive high spatial resolution image series and cloud computing to 494 

consistently document the dynamics of forest-savanna boundaries. We indeed achieved an 495 

integrated picture of vegetation changes in a protected area in Central Cameroon (MDNP, ca. 496 

1,000 km²) from 1975 to present, which is all over the timeframe covered by the Landsat series. 497 

Our characterization of forest progression qualitatively agrees with previous studies in nearby 498 

areas of the Guineo-Congolian region in Central Africa that stretched over either an early time 499 

window (50s – 90s, Youta-Happi, 2003) or a more recent one (1986 – 2006, Mitchard et al., 500 

2009). Youta-Happi (2003) measured a forest encroachment rate of 0.74%.year-1 after 39 years 501 



(1950-1989) of monitoring in a nearby area in Cameroon (Mbam et Kim confluent) using air 502 

photographs. Mitchard et al. (2009) expressed woody encroachment qualitatively as increases 503 

in canopy area index (CAI) computed using 3 images (1986, 2000, 2006), and observed a 504 

shrinking of low CAI areas (0.2 m²/m² area, interpreted as “grassy savanna”) by 43% over 20 505 

years (0.9% y-1 for 1986-2000 and 1.29% for 2000-2006). This trend was reported benefiting 506 

mostly to intermediate CAI classes (interpretable as both dense savanna and young forest) with 507 

a marginal increase of upper CAI class (>1 m²/m² which unequivocally relates to close canopy 508 

forest) (Mitchard et al., 2009). Hence their results suggest both forest expansion and woody 509 

biomass built-up in perpetuating savannas. 510 

After forest transition, differences in the functional composition of plant communities are 511 

apparent in the spectral reflectance of forest canopies captured by Sentinel 2 satellite data. 512 

Spectral species composition appeared structured along a forest-age gradient. This reflects the 513 

successional gradient of floristic assemblages where fast growing pioneer species with low 514 

aboveground biomass yet strong photosynthetic activity dominate recent transitions and are 515 

then gradually replaced by long-lived species in old regenerating forests (Cuni-Sanchez et al., 516 

2016; Deklerck et al., 2019; Ibanez et al., 2013; Youta-Happi et al., 2003). The fact that spectral 517 

variability increased with forest ages in our study area apparently contradicts findings by 518 

(Réjou-Méchain et al., 2014) in another context of Central African forests, where floristic 519 

variability assessed from field inventory data was found to be higher at the initial stages of 520 

succession. It may well be that the spectral signature, especially with a relatively low spectral 521 

resolution (compared to hyperspectral data at least) tends to group a number of similar species 522 

into broader functional groups (e.g. early pioneers; Laurin et al., 2016). 523 

Thanks to the comparison between spaceborne image series and local UAV-borne LiDAR data 524 

we were able to quantify the pace of AGB increment from recent forest transitions to older 525 

forests. AGB was found to steadily increase with a hint of leveling-off after 20 years. Our rate 526 

of AGB increase of 4.1 Mg.ha-1.yr-1 found for young secondary forests (≤ 20 years as defined 527 

by IPCC) is 59% lower than the IPCC (2006) default AGB accumulation rate for young tropical 528 

rainforest in Africa (≈ 10 Mg.ha-1.year-1; Suarez et al., 2019). Refined IPCC 2006 default AGB 529 

accumulation rate proposed by Suarez et al. (2019) is still above our own estimate by 46% (7.6 530 

± 5.9 Mg.ha-1.yr-1). This would reflect a contrasted scenario of AGB uptake depending on 531 

whether the forest recovers after disturbances (reforestation) or encroaches over grassy and 532 

woody savanna (afforestation). The former regeneration process would imply an average AGB 533 

uptake 2-fold greater than in the latter scenario as compared to the Suarez et al. (2019) 534 



estimates. The type of previous landcover or disturbance has been found elsewhere to 535 

significantly influence the carbon accumulation rate (Cook-Patton et al., 2020; Moran et al., 536 

2000). Reforestation actually occurs on previously forested soils (Janzen, 2016), keeping 537 

characteristics (soil fertility and structural properties) favorable to forest seedlings 538 

establishment and growth (Viani et al., 2011). Afforestation on the other hand generally occurs 539 

on nutrient-poor savanna soils leading to a slower forest gain (Moran et al., 2000). This study 540 

focused on aboveground carbon stocks and no consideration was made to the carbon stored in 541 

soils which can be higher in grassy and woody savannas as compared to forests (Buisson et al., 542 

2019; Silveira et al., 2020). 543 

4.2. The role of fire in shaping savanna structure and dynamics 544 

Mesic savannas represent alternative stable states to forest (Hirota et al., 2011; Staver et al., 545 

2011a) in areas of intermediate rainfall (between 700 and 1900 mm/year for Africa; Aleman et 546 

al., 2020; Staver et al., 2011a), where savannas are maintained thanks to regular disturbances, 547 

notably by fire (Langevelde et al., 2003; Veenendaal et al., 2018; Venter et al., 2018). The 548 

MDNP being in the intermediate rainfall area, the observed forest progression might either be 549 

the result of a reduction of fire disturbances or to global climate change inducing locally wetter 550 

climatic conditions. As observed elsewhere, such as in La Lopé National Park (LLNP) in Gabon 551 

(Jeffery et al., 2014), fire frequency is not homogeneous across the landscape, because of 552 

variation in ignition sources or natural breaks. This heterogeneity translates in differential rates 553 

for woody encroachment and forest progression. In most cases, no fire occurrence was recorded 554 

during at least five years for pixels of woody savanna that transited to forest between the last 555 

two consecutive monitoring periods. Fire-free intervals facilitate tree recruitment and growth 556 

and allow trees to approach canopy closure which suppresses fire by excluding grasses (Bond 557 

and Midgley, 2000; Hirota et al., 2011; Staver et al., 2011b; Veenendaal et al., 2018, 2015). In 558 

LLNP savannas newly protected from fire can sufficiently thicken up over a 15 year period to 559 

reach a structure comparable to a colonizing forest (Jeffery et al., 2014). In the absence of fire, 560 

the system switches from a state of co-occurrence of fire-adapted trees and heliophytic grasses 561 

to a state with fire impervious, shade-bearing giant herbs (Aframomum spp.) and forbs 562 

(Chromolaena odorata, a well-known invasive woody weed; Youta-Happi, 1998; Oliveras and 563 

Malhi, 2016) along with saplings of light-demanding forest tree species such as Albizia spp., 564 

Macaranga spp. (Ibanez et al., 2013; Youta-Happi, 1998; Youta-Happi et al., 2003; Youta-565 

Happi and Bonvallot, 1996). Cardoso et al., (2020) evidenced the presence of an ecotone 566 

community in LLNP that occupies a narrow belt between savanna and forest and prevents fire 567 



progression within the forest when savanna burn regularly. According to our floristic data from 568 

61 0.16-ha field plots which analysis is beyond the scope of the present paper, the 569 

aforementioned community is also frequent in the ecotones of the MDNP and a similar role can 570 

be hypothesized. 571 

The spectral diversity in the (currently remaining) savannas of our study site evidenced two 572 

contrasting dominant states either related to low (FFI ≈ 0) or high (FFI ≈ 0.4) fire frequencies. 573 

Interestingly, we observed a decreasing relationship between AGB and the fire frequency that 574 

led from high AGB (mean of ca. 36 Mg.ha-1) with low fire frequencies (corresponding to woody 575 

savanna) to low AGB (ca. 22 Mg.ha-1) with high fire frequency situations (corresponding to 576 

grassy savanna). This suggests that savannas with low fire frequency (FFI ≤ 0.2) accumulate ≈ 577 

40% more AGB than those with high fire frequency. We may here note that we observed very 578 

few savannas displaying intermediate fire frequency (0.2-0.3.year-1) and intermediate AGB (≈ 579 

27 Mg/ha-1). Analogously, Mitchard et al. (2009) found that savannas of intermediate CAI were 580 

relatively scarce in the nearby Mbam-Djerem region. Our results suggest that humid savannas 581 

seem to be the most unstable/prone to forest transition under a low fire frequency as the latter 582 

is not sufficient to prevent woody biomass build-up. Inversely, increased woody biomass and 583 

cover is known to depress grass production (Hoffmann et al., 2012; Veenendaal et al., 2018) 584 

that is the main fire fuel after drying-up, thereby indirectly limiting fire intensity and 585 

propagation (Lehmann et al., 2011). The shift towards woody savanna and associated 586 

ineffective fire regimes seems here to occur for AGB values around 27 Mg.ha-1. Once this 587 

threshold is exceeded, the AGB build-up towards 36 Mg.ha-1 (i.e. towards a woody savanna) 588 

seems inexorable and prefigures the progressive floristic shift towards stands dominated by 589 

forest pioneer species that displayed AGB values in the range 60 - 100 Mg.ha-1. Field 590 

prospection allowed us to frequently observe dense woody savanna characterized by tall 591 

savanna trees (mainly Terminalia glaucescens) frequently fringing young forests dominated by 592 

species such as Albizia adianthifolia and Macaranga spp. that overtopped surviving T. 593 

glaucescens engulfed in dense thickets of C. odorata. All this strongly suggests recent 594 

afforestation. During the five years of fire monitoring (2014-2018) we noticed some persistent 595 

savannas (for which no forest transition was detected) with low fire frequency (FFI < 0.2). 596 

While not documented in this study, other factors may explain this savanna stability under low 597 

fire frequencies, such as topo-edaphic controls (Colgan et al., 2012), or fire characteristics 598 

(Jeffery et al., 2014; Walters, 2012). 599 

4.3. Implications for conservation and management 600 



The creation of the MDNP in 2004 may have hindered anthropogenic activities principally at 601 

its less accessible savanna core where we observed intense forest expansion. A lower proportion 602 

of forest transitions is observed in peripheral savannas, which are more accessible especially in 603 

the northern part of the MDNP where natural boundaries constituted by Mpem and Djim rivers 604 

are absent. From the various observations made during field campaigns conducted between 605 

2019 and 2020; we noticed that those savannas were subject to substantial livestock 606 

transhumance during the dry season (Nov. - Mar.). During that period shepherds regularly burn 607 

the savanna to favor grass flush (Youta-Happi and Bonvallot, 1996; Mitchard et al., 2009). 608 

Poachers also set fire for the same reason, as well as to increase visibility or drive the game (as 609 

described by Walters, 2010). Frequent fires limit the growth of woody savanna species and 610 

woody build-up in savannas which makes the establishment of forest species unlikely (Dantas 611 

et al., 2013; Venter et al., 2018) and delays forest expansion. On the other hand, cattle grazing 612 

and trampling limit the accumulation of grass fuel and are liable to depress both fire frequency 613 

and intensity. Our results suggest that a quinquennial fire frequency (i.e., a fire event every five 614 

years) could constitute a tipping point between grassy savanna and woody savanna. Considering 615 

the dramatic forest expansion we evidenced, the current, unplanned fire regimes seem unable 616 

to preserve the mosaic landscape. 617 

Our findings have important management implications as they provide insight into the 618 

ecological challenge associated with woody and forest encroachment, which is a pervasive 619 

phenomenon and a growing concern for managers of African savannas (Stevens et al., 2017; 620 

Venter et al., 2018). Fire frequency in the MDNP is generally the product of non-managed fires 621 

as the park still lacks an effective fire management program. Therefore, managers in the MDNP 622 

have little influence on how much of the park burns on an annual basis, and that area burned is 623 

largely dictated by uncontrolled actions from transhumant shepherds and poachers. Maintaining 624 

at least one or more fires every five years is necessary to ensure the maintenance of an open 625 

canopy cover. Forest expansion appeared indeed as a continuous and steady process in the 626 

MDNP and if we extrapolate the observed fairly constant rate of forest gain into savanna, the 627 

area may lose all its savanna in less than 30 years. This is even more certain when we consider 628 

the rise in CO2 concentration and climate change predictions for tropical Africa that expect an 629 

increase in precipitation over the next decades (Pachauri and Meyer, 2014). Both events can 630 

influence the growth rate of juvenile plants, thereby affecting tree recruitment and the 631 

conversion of open savannas to woodlands (Bond and Midgley, 2012) favoring forest expansion 632 

(Bond and Midgley, 2012; Staver et al., 2011b; Stevens et al., 2017). Local factors including 633 



fire management, soil fertility or hydromorphy and herbivory pressure are expected to mediate 634 

this general prediction. Although carbon mitigation programs such as REDD+ scheme tend to 635 

encourage forest expansion, the loss of savanna ecosystems in the area will drastically modify 636 

landscape-level diversity (Bond, 2016; Veldman, 2016) and ecosystem services, including 637 

hydrology (Acharya et al., 2018) and soil nutrient cycles (Berthrong et al., 2009), including soil 638 

carbon storage (Chiti et al., 2018; Cuni-Sanchez et al., 2016), and it would markedly alter 639 

community assemblages (Abreu et al., 2017; Bremer and Farley, 2010) especially those of 640 

savanna plant and animal specialists, including iconic large mammals and big cats. That is the 641 

reason why park authorities should aim at maintaining the mosaic of forest and humid savannas 642 

that pre-existed gazetting of the protected areas they are in charge of (Jeffery et al., 2014).  643 

4.4. Progress in modelling landscape dynamics 644 

We here demonstrated the potential of approaches based on open source imagery and cloud-645 

based platforms such as Google Earth Engine for landcover change monitoring. This offer 646 

prospects for an improved measurement of national level aboveground carbon stocks (Sagang 647 

et al., 2020) and stock changes in forest-savanna transitional landscapes (in relation to Tier 2 648 

and Tier 3 accuracy levels), in compliance with the United Nations Framework Convention on 649 

Climate Change (UNFCCC) and IPCC requirements for countries still reporting at Tier 1 level, 650 

as it is the case in Central Africa (Romijn et al., 2015). Localized airborne LiDAR data provide 651 

a good reference to map AGB variation over sufficiently large regions (Wulder et al., 2012) to 652 

allow upscaling using spaceborne data (Sagang et al., 2020). The FFI obtained in this study 653 

using 30 m Landsat was shown to better retrieve the variability of fire frequencies than the 500 654 

m MODIS fire product. The latter indeed estimated FFI 28% lower than the former on average, 655 

and totally failed to detect areas with the highest frequency (yearly) of fire regime. This finding 656 

accords with Chuvieco et al. (2019) and Ramo et al. (2021) who found that recent BA products 657 

covering Africa with Sentinel-2 images (at 20 m spatial resolution) over a single year reached 658 

estimates 1.8 and 3.2 times higher, respectively, than the estimates from MODIS products. This 659 

strong discrepancy is mostly caused by insufficient spatial resolution leading to the omission 660 

of small fires (< 100 ha) (Roteta et al., 2019) as the study area is likely dominated by small low-661 

intensity fires (Mitchard et al., 2009), in accordance with the fire biomes typology (Archibald 662 

et al., 2013). This raises a caveat considering that several studies (Axelsson and Hanan, 2018; 663 

Diouf et al., 2012; Staver et al., 2011b, 2011a; Venter et al., 2018) fully relied on MODIS to 664 

assess fire frequency influence on the vegetation structure. A limitation that needs to be pointed 665 

out in this study is that fire monitoring was restricted to yearly fire statistics, ignoring the 666 



seasonality of fire within the year (early or late fires) despite known influence on savanna 667 

structure (Bucini and Lambin, 2002; Diouf et al., 2012). Subsequent efforts are therefore needed 668 

to temporally disaggregate annual FFI products. Another obvious perspective is to extend our 669 

approaches to other forest-savanna transition zones. Preliminary tests show that the open source 670 

algorithms proposed along with this publication should allow a smooth transposition, as long 671 

as the studied areas present vegetation mosaics having sufficiently distinct radiometric 672 

signatures.  673 

5. Conclusion 674 

We leveraged on the potential offered by open access satellite imagery and cloud computing 675 

facilities (GEE), as well as UAV-LiDAR data, to monitor complex forest-savanna biomass and 676 

compositional dynamics at a meaningful scale in the MDNP. Landsat image archives recorded 677 

a long-term (> 42 years) forest spread into savanna at a rate of ca. 0.63%.year-1. The spectral 678 

assemblages of the forest cover characterized using Sentinel 2 multispectral imagery and AGB 679 

variations quantified using UAV-LiDAR data allowed map compositional and structural 680 

changes along the forest succession gradient and quantify rates of biomass accumulation. Fire 681 

occurrence, as recorded via the Landsat archive, modulated bush encroachment and forest 682 

expansion, with a five-year fire frequency found to be the threshold below which woody plants 683 

dominate and open the way to forest transition. These results highlight the importance of fire in 684 

maintaining savanna ecosystem in the area. These findings allow providing detailed 685 

information to support decision makers in charge of carbon sequestration and biodiversity 686 

conservation policies. 687 
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