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Abstract

Consumption satisfaction depends on other factors apart from the inherent charac-
teristic of commodities. Among them, positional concerns are central in behavioural
economics. Individuals enjoy returns from the ranking occupied by the consumed item.
In public good, agents obtain satisfaction from their relative contribution. We analyse
how positional preferences for voluntary contribution to a public good favour players’
contributions and could lead to social welfare improvements. A two-player public good
game is analysed, first a one-shot game and later a simple dynamic game with inertia.
Homogeneous and non-homogeneous individuals are considered and particular attention
is given to the transition path.
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1 Introduction

Wealth: any income that is at least one hundred dollars more a year than the
income of one’s wife’s sister’s husband (H. L. Mencken).

One of the key elements on the quest to acknowledge fundamental aspects of human
nature, previously neglected by the traditional economic theory, is the concern about status
or the positional concerns.1 For positional goods, consumer’s utility depends not only on
the absolute quantity consumed, but also on how this quantity compares with the quantities
consumed by others. Due to this concern about status, each agent’s effort to climb in the
social ladder imposes a negative externality on all other agents. This can lead to “Red Queen”
effects:2 When all agents embark on a race on conspicuous consumption of a private good
to signal wealth, the literature on positionality (commented in the following section) predicts

∗IMUVa, Universidad de Valladolid, Spain.
†Inria, Univ Montpellier, Montpellier, France.
‡CEE-M, Univ Montpellier, CNRS, Institut Agro, Montpellier, France.
1The status effect is a particular positional concern (see Wendner and Goulder 2008). The latter is a

broader concept, according to which an agent is concerned about her relative economic status relative to the
status of others, while the former focuses specifically on consumption. Nevertheless, we will use the terms
status concern and positional concern indistinctly.

2This idea is taken from the Lewis Carrol book’s Through the Looking-Glass. It takes all the running you
can do to keep in the same place.
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that too much is spent to maintain social status. The result is an inefficient situation and a
loss in social welfare.

The contest for positional status can have a different effect when the positional good
is represented by the private provision of a public good. In their quest for status, agents
might be willing to contribute. The negative consumption externality persists for this type
of good. However, the public good constitution represents a positive externality on all other
agents, possibly enhancing social welfare. The main objective of the paper is twofold. On the
one hand, we characterize the conditions under which positional concerns can lead standard
selfish agents to contribute in a public good. On the other hand, we seek to understand
under which assumptions the positive externality associated with the constitution of a public
good exceeds the negative consumption externality. To address this question three different
dimensions are analyzed. First, we study the effect of the positive contributions associated
with positional concerns on the social welfare void of positional payoffs, denoted as intrinsic
utility. Next, we study their effect on a broader measure of social welfare that introduces
positional payoffs. Finally, we study how contributions and welfare evolve through time when
agents take decisions strategically, but also based on theirs and other agents’ past decisions.

When a two-player one-shot game is considered to analyze voluntary contributions to a
public good, the free-rider problem involved typically leads to under-provision (or no provision
at all). The public good provision is socially but not individually desirable. Our approach
defines agent’s preferences taking into account, not only the private cost she incurs and the
benefits she obtains from the public good, but also that her utility depends on how her con-
tribution relates to the contribution of her opponent. If the joy she obtains from contributing
more than others is large enough, then the marginal private cost can be outweighed by the
addition of her marginal private benefit plus her positional payoffs. Under this condition, the
agent will be willing to privately provide some private good. Each player’s contribution will
be the strategic equilibrium in a game where players differ in their endowments, marginal
benefits from public good consumption and status concerns. The amount of public good
wished by each player differs depending on their utility from public good consumption and
their positional concerns. If both players positional concerns are large, a full contribution
equilibrium is possible. Otherwise, and if both players wish for the same amount of public
good, then a continuum of equilibria exist where the contributions of the two agents add up
to this amount. If they do not wish for the same amount three other equilibria are possible.
The player who is more willing to contribute, contributes her wished amount of public good
or her total endowment. In this last case, the other agent either contributes nothing or what
is missing to constitute her wished amount of public good.

Positive contributions generate a public good which differently impacts the intrinsic util-
ity that players obtain from absolute consumption. Their private costs differ because they
typically contribute different amounts. Moreover, although due to non-excludability and non-
rivalry both players have access to the same amount of public good, they do not equally enjoy
it. On aggregate, the benefits from public good consumption exceed private costs, at least for
small contributions. However, under the assumption of a diminishing marginal utility from
public good consumption, social welfare gains slow down as the amount of public good rises.
Indeed too much contribution can lead to a situation with less social welfare than in the case
with no public good. We characterize the conditions for which the positive contributions
enabled by positional concerns lead to an increment or a reduction in aggregate intrinsic util-
ity. With low satiation from public good consumption, positional concerns enhance intrinsic
utility almost everywhere, except when the two players show very high positional concerns.
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By contrast, when agents satiate fast, positional concerns reduce intrinsic social welfare when
the concern for status is strong for at least one player.

Social welfare is not only given by the intrinsic utility from private and public good
absolute consumption. Agents also get utility from relative consumption. Thus social welfare
encompasses the intrinsic aggregate utility plus the positional payoffs associated with the
status concern. For this broader measure, and regardless of the speed of satiation from public
good consumption, positional concerns typically increase social welfare. Social welfare only
worsens when both agents’ positional concerns are very large (assuming that the agent who
values public good consumption the most also wishes the highest amount of public good), or
when both agents’ positional concerns are close to one another (assuming that the agent who
wishes the highest amount of public good values public good consumption the least).

The static analysis is extended to a dynamic framework by virtue of two ideas. On the
one hand, the first idea gives entrance to inertia, considering agents that are reluctant to
modify past decisions. Changes in contribution decisions negatively affect utility. The idea of
inertia can be related to the status quo bias in decision making explained by Samuelson and
Zerkhauser (1988). In particular, when the default option is represented by one’s previous
action.3 The status quo bias has been empirically analyzed in the literature (the more charac-
teristic example is given by the agents’ inclination to stick to their default option in saving for
retirement), see Liu and Riyanto (2017) and references therein. In particular, these authors
test the robustness of this hypothesis for public good games and find evidence of partial stick-
iness with respect to the default options. On the other hand, the second idea assumes that,
when dealing with the strategic decision to constitute the public good, an agent bases her
reaction on her opponent’s current action, however, the status concern is built looking at her
opponent’s previous action.4 This idea is deeply connected with the literature on conditional
cooperation that makes cooperative decisions dependent on reciprocal behavior (see Figuières
et al. 2011 and references therein). Although agents do not present status concern, they base
contribution decisions on others’ previously observed contribution (action-based reciprocity),
or on beliefs about others’ contributions (belief-based reciprocity). Our assumption aligns
with the first option, although the second option is also explored in the appendix . The
dynamic game generated by these two ideas is played by myopic agents. Although they take
into account theirs and their opponents’ past decisions, they disregard how current decisions
affect the future choice set and/or utility. The dynamic equilibrium opens up the possibility
for a interior solution, although in the long run, the process converges towards the static
equilibrium. We characterize the equilibrium paths of individual and total contributions. In
particular we prove that the trajectory eventually hits the boundary of feasible contributions
(except, possibly, when both players wish for the same amount of public good) and converges
henceforth monotonously to the static equilibrium.

A numerical analysis is carried out for the trajectories converging on each of the three
type of Nash equilibria in the long-run. Interestingly, along the transitory path a hump-
shaped contribution curve can occur for the player who wishes and contributes the least in
the long run. Starting from a zero (or small) contribution, if she has less inertia than her
opponent (adjusts faster), she will fast rise her contribution to constitute her desired public

3See, also, Kahneman et al. (1991), who explain status quo bias for loss adverse individuals, who perceive
switching from the status quo as a loss.

4The idea of modeling interdependent preferences as dependent on what others consumed in the past (lagged
interdependence) is presented in Pollak (1976). He based this hypothesis in the idea that the acquisition of
preferences is part of the process of socialization.
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good. However, these contributions pay less and less as the opponent more slowly increases
her own contributed amount. When too much public good is provided, the agent will save
costs by reducing her contribution, even at the expense of positional losses. If the overshooting
behavior by this player is strong enough, then also this hump-shaped pattern is shown by the
total contribution.

The trajectories for the intrinsic utility and for the social welfare are also analyzed. With
no overshooting, intrinsic utility converges towards its long-run value from above (below)
depending on whether the contribution in the long-run equilibrium is too small (large) with
respect to its value in the social optimum. If overshooting occurs, the convergence from above
reverses to convergence from below and vice versa. The social welfare lies above (below) its
long-run value without (with) overshooting at almost every time, except possibly within a
first sub-interval.

In the next section we present a brief review of the literature on the concern for status.
Section 3 describes the conditions that characterize a public good game and it distinguishes
between the intrinsic utility and the positional payoffs. The Nash equilibria are computed in
Section 4. This section also describes how the intrinsic and the global utility are affected by
the positive contributions to the public good that derives from the agents’ concern for status.
The dynamic extension is presented in Section 5, and Section 6 illustrates numerically the
dynamic trajectories for different equilibria. Finally, Section 7 concludes.

2 What the literature says and how it relates to our assump-
tions and results

The standard assumption in economic theory that “each individual’s preferences are inde-
pendent of the behavior of other individuals” was called into question already in the mid
twentieth century by Duesenberry (1949).5 He argued that psychological and sociological
reasons support the opposite view that preferences are interdependent. Duesenberry’s rel-
ative income hypothesis states that an individual, in her search for status, seeks to signal
wealth through her consumption decisions. Consumption (and saving) decisions depend on
her relative income relative to the income of other agents. Individual status is thus measured
through relative income. One year later, Leibenstein (1950) developed a theory of consump-
tion behavior where income comparison is substituted by more subjective beliefs: how the
agent’s consumption depends on what she believes other agents are doing. Three situations
are possible when social influences are considered. The bandwagon effect or herding occurs
when the agent seeks to follow the consumption behavior of others; the snob effect, con-
trarily, refers to the agent’s desire for exclusiveness; finally, the Veblen effect is the desire
to buy expensive goods to signal wealth (conspicuous consumption). This theory does not
necessarily disagree with the idea of rational agents in pursuit of their self-interest. However,
it was generally ignored by the mainstream economic theory for most of the second half of
this century. The interest for this type of ideas increased by the late 20th and the early 21st

century, with works like Frank (1985) or Hopkins and Korninenko (2004) and the emergence
of the behavioral economics.

5Previously, the influence of social context had been taken into account by Veblen (1909). His hypothesis,
denoted in the literature as absolute status concern, suggested that individuals spend income in conspicuous
good to signal wealth. However, agents do not worry on how their conspicuous consumption compare to that
of others.

4



The role of positional concerns or interpersonal comparison has been widely studied in
reference to people’s income. How important is absolute income versus relative income? How
important is the relative component to define poverty? The importance of relative standing
has been also analyzed for conspicuous consumption of positional goods. An important re-
current question analyzed in the literature is the actual influence of positional concerns on
income allocation or agents’ spending behavior. The negative consumption externality associ-
ated with status concerns can lead to a race in wasteful efforts and too much consumption of
the positional good, for example, too much work (Fisher and Holf, 2000), too much extraction
in a common pool resource (see Benchekroun and Long, 2016), etc. Thus, this externality
makes the Pareto efficiency of the competitive equilibrium unfeasible and hence can be the
cause of reductions in agents’ welfare (see, for example, Long and Wang, 2009 or Frank 2005).

We analyze whether status concerns can have a positive impact when dealing with the
private provision of a public good. In this regard, one should first analyze whether position-
ality is strong for this type of goods. In fact, Galbraith (1958) suggested a weak positionality
for public goods because “emulation operates mainly on behalf of privately produced goods
and services”. This is empirically refuted by Solnick and Hemenway (2005), who studied the
strength of the positional concerns for different kind of goods and found that agents are more
positional for public good than for private goods. While they focused on publicly provided
public good (like national defense or space exploration), we center our attention on privately
provided public good, for which we believe positional concerns should be even stronger. This
idea that positional concerns can induce agents to privately provide a public good is supported
by experimental studies (see, for example, references in Muñoz-Garćıa 2011).

The effect of the status concern on optimal taxes and redistributive taxation is studied, for
example, in Ljungqvist and Uhlig (2000) and Boskin and Sheshinsky (1978). More specifically,
its effect on the excess burden of taxation and the optimal provision of the public good is
analyzed by Wendner and Goulder (2008). They focused on the government provision of the
public good, while we center our attention on its private provision. We define a public good
game where agents are endowed with a given amount of wealth that can be privately consumed
or contributed to generate a public good. Endowments do not need to be exclusively defined
in units of wealth, but can be defined in units of available time or effort. An example of
this type of good is the compliance with environmental norms (or, in general, social norms)
which provides the public good of a cleaner environment (incurring a private cost in terms of
wealth, time or effort) and can be strongly motivated by the belief about the other individuals’
behavior (see Nyborg et al. 2006, who also introduce moral motivations).

The theoretical literature regarding the role of status concern as an incentive on the private
provision of a public good is scarce. Muñoz-Garćıa (2011) analyzes this type of problem and
following his approach, we assume that utility depends linearly on the consumption of a
private good, while diminishing marginal utility is associated with public good consumption.
We deviate from his assumption of non-separability between the public good consumption
and the positional payoffs associated with an agent’s relative contribution. Moreover, while
he compares simultaneous versus sequential modes of play, we start with a one-shot game and
later introduce a dynamic dimension stemming from the assumptions of inertia and positional
concerns based on the comparison with the other agent’s past action. Finally, he focuses on
contributions but disregards welfare implications.

The competition for social status and its effect on the private provision of a public good
as well as on social welfare is explored in Bougherara et al. (2019). We extend and more
systematically analyze these two questions. In our formulation, the marginal utility from
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public good consumption is not only decreasing, but can even turn negative for a sufficiently
large amount of public good. To compute the welfare implications of the status concern, we
distinguish between it effect on the intrinsic utility, net of positional payoffs, and it effect on
the aggregate social welfare. Likewise as Bougherara et al. (2019) we study the effect of a
rise in all agents’ positional concerns, but also the cases when only the positional concern of
one agent changes.

3 Public good game

This section describes a static public good game between two individuals, i ∈ {1,2}, focusing
on their preferences. Each player is endowed with wi and contributes xi ∈ [0,wi] to a public
good. Thus wi − xi is the numeraire which can be consumed in any other private good.

To characterize preferences, we distinguish the inner or intrinsic utility from the absolute
level of consumption and the utility associated with relative consumption, that introduces
the positional concerns. The former represents the utility an agent gets from the private
and public good consumption, ui(xi,X), with X = xi + xj . The latter refers to the effect on
preferences of one player’s relative consumption in comparison with the consumption of his
opponent:

Ui(xi, xj) = ui(xi,X) + Vi(xi − xj). (1)

The global utility or social welfare is defined as the addition: U(xi, xj) = Ui(xi, xj)+Uj(xi, xj).
It includes the intrinsic social welfare plus the positional payoffs for all players.

3.1 Intrinsic utility

The total intrinsic utility can be defined as u(xi, xj) = ui(xi,X) + uj(xj ,X). It is assumed
that functions ui and uj , hence u, are twice differentiable. Then, a public good game needs
to satisfy the three following conditions.

C1 Individual provision always reduces own welfare:

∂ui
∂xi

(xi,X) < 0, ∀(xi, xj) ∈ [0,wi] × [0,wj].

C2 Individual provisions increase social welfare initially, but reduce it when the whole
endowments are contributed:

C2a ∶
∂u

∂xi
(0,0) > 0, C2b ∶

∂u

∂xi
(w1,w2) < 0.

Condition C2a) states that some contribution to the public good is socially desirable;
while condition C2b) states that also some private consumption by each agent is socially
desirable.

C3 Agents’ contributions are subsitutes: an increment in xj reduces the marginal utility of
xi. Since a rise in xj implies a one-to-one increment in X, this condition can be stated
as:

∂2ui
∂xi∂X

(xi,X) < 0.
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In this paper, the intrinsic utility is defined as an additively separable function:

ui(xi,X) = wi − xi + bi(X). (2)

Intrinsic utility for player i comes from public good consumption, bi(X), and from the
consumption of private goods. It is assumed that the contribution to the public good reduces
the available amount that can be privately consumed. Because wi − xi can be utilized in
alternative private goods, we assume that marginal decaying utility has little effect in this
part and approximate utility from this remaining endowment as a linear (one-to-one) function.
Public good consumption increases utility (at least initially) at a decreasing rate, b′i(0) > 0
and b′′i (X) < 0. A concave function bi is consistent with Assumption C3. This assumption is
compatible with two possibilities. A positive marginal utility for any amount of public good,
b′i(w1 +w2) ≥ 0 or an inverse-U-shaped function bi, that reaches its maximum at some public
good contribution Xb

i . Additional contributions above this quantity, directly reduce utility,
b′i(X) < 0, for X >Xb

i . Therefore, above this quantity the public good (PG, b′i(X) > 0) turns
into a public bad (PB, b′i(X) < 0 ) for player i. Because utility linearly decreases with the
private provision of the public good, one would typically expect that the amount of public
good provided lays below Xb

i .
If one considers a non-cooperative game where players preferences are described by the

intrinsic utility in (2), player i’s marginal utility would read:

∂ui
∂xi

= −1 + b′i(X).

From assumption C1, −1 + b′i(X) < 0 for all 0 ≤ X ≤ w1 +w2. The direct marginal cost from
the private provision of a public good always exceeds the utility gains from the public good
consumption. Consequently, player i has no incentive to contribute.

On the other hand, the social optimum is obtained when one player’s marginal disutility
from private provision equates the marginal utility for the whole society from public good
consumption. Since the intrinsic social welfare has been defined as the addition of the intrinsic
utilities of the two players, it can be written as a function of the public good only:

u(X) = w1 +w2 −X + b1(X) + b2(X).

This function is concave since both bi and bj are concave. Under Assumption C2, it reaches
its maximum at a public good contribution satisfying XSO < w1 + w2. Moreover, a positive
contribution, XE0, can exist, for which u(0) = w1 +w2 = u(X

E0) (see Figure 1). Thus, when
compared against the intrinsic social optimum, contributions can be in shortage X < XSO,
in excess X > XSO, or at its efficient level, X = XSO. Likewise, in comparison with the
zero contribution case, positive contributions satisfying X ∈ (0,XE0) are intrinsic welfare
improving (IW-I), although too large contributions, X > XE0, are intrinsic welfare reducing
(IW-R).

3.2 Positional concerns

For a positional agent the second component in the agents’ preferences in (1) are the positional
concerns. It is assumed that the utility of agent i increases linearly with his over-contribution
above the contribution of the other player:

Vi(xi − xj) = v
P
i (xi − xj). (3)
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Figure 1: Global intrinsic utility as function of the public good

Parameter vP
i ≥ 0 represents the marginal utility player i gets from rising his contribution

above that of player j, and denotes the positional concern of player i.
Adding the positional payoffs to the intrinsic utility, the problem for player i ∈ {1,2} is:

max
xi

Ui(xi, xj) (4)

s.t.: 0 ≤ xi ≤ wi.

The marginal utility of player i now reads:

∂Ui
∂xi

= −1 + vP
i + b

′
i(X). (5)

Positionality reduces the marginal cost of private provision to 1 − vP
i . Depending on the

position of b′i(X) with respect to this value, a private provision of the public good can become
individually rational for player i. We characterize the Nash equilibria of this game in the
following section.

4 Nash Equilibria

In what follows, the Nash equilibria of the game (4) is characterized in Proposition 1. Sec-
tion 4.1 also discusses the contributions of each player under a specific functional form for
bi(X). Considering this particular functional form, a welfare analysis is performed in Sec-
tion 4.2.

4.1 Contributions to the public good

The FOC of the problem (4) for player i can be written as equation b′i(X) = 1 − vP
i . Given

that function b′i(X) is monotone and strictly decreasing for any i ∈ {1,2}, this equation has at
most one solution. Therefore, the wished “uncoordinated” amount of public good for player
i can be written as follows.

Definition 1 (Wished amount) The wished amount of Player i is defined, for each i ∈
{1,2}, as:

Ai =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 if vP
i ≤ 1 − b′i(0),

(b′i)
−1(1 − vP

i ) if vP
i ∈ (1 − b′i(0),1 − b

′
i(w1 +w2)),

wi +wj if vP
i ≥ 1 − b′i(w1 +w2).
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Observe that with this definition, the wished amount of Player i may differ from the
solution (b′i)

−1(1 − vP
i ) of the first-order condition. When this value is negative, the player

wishes for 0. When it is larger than the total endowment of both players, she wishes for this
total wealth.

Note also that since bi is concave the wished amount increases with positionality, strictly
in the interior case Ai = (b′i)

−1(1 − vP
i ) since ∂Ai/∂v

P
i > 0. If 0 ≤ viP < 1 − b′i(0), the marginal

cost from private provision is always greater than the marginal utility of the public good,
and hence, no public good would be privately provided. However, if viP > 1 − b′i(0), then
the marginal utility from the public good surpasses, at least initially, the marginal cost from
private provision. Agents are willing to privately provide some public good and two situations
can be distinguished:

1. vP
i < 1: private provision still represents a cost (standard problem). In equilibrium, the

marginal utility from the public good (PG) is positive.

2. vP
i > 1: positionality is so strong that the player gets a positive reward from private

provision. An equilibrium is only feasible for a negative marginal benefit (marginal
damage) from the public good which, provided in excess, becomes a public bad (PB).

The next proposition characterizes players’ contributions under several scenarios, crucially
dependent on the amount of public good wished by each player.

Proposition 1 (Nash equilibrium) Let (xN
1 , x

N
2) denote a Nash equilibrium of the game

(4).

a) If w1 +w2 ≤ min{A1,A2}, then (xN
1 , x

N
2) = (w1,w2).

b) If w1 +w2 > min{A1,A2} and

bI) A1 = A2 = A > 0, the set of Nash equilibria is given by:

N = {(x1, x2)∣x1 + x2 = A ∧ (x1, x2) ∈ [0,min{A,w1}] × [0,min{A,w2}].}

bII) If Ai > Aj and Ai > 0, i, j ∈ {1,2}, i ≠ j,

(xN
i , x

N
j ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(wi,Aj −wi) wi < Aj < wi +wj [bII.1],
(wi,0) Aj ≤ wi < Ai [bII.2],
(Ai,0) Ai ≤ wi [bII.3].

(6)

c) A1 = A2 = 0: (xN
1 , x

N
2) = (0,0).

The Nash equilibrium is unique, except in case bI.

The proof is presented in Appendix A.

In a Nash equilibrium (NE), each positional player i ∈ {1,2} wishes for an uncoordi-
nated total amount of public good, Ai. She will contribute the necessary amount, given the
contribution from player j, and provided her endowment is sufficient.

In the particular case where the addition of the two players’ endowments is not enough
to provide the amount of public good of the player who wishes the least (case [a]), the two
players would contribute their total endowments. The opposite extreme of zero contributions
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occurs when no player wishes for a positive amount of public good (case [c]). This occurs
when their positional concerns are small, 0 ≤ vP

i < 1− b′i(0), i ∈ {1,2}, and in particular in the
standard case with no positional concerns:

When at least one player wishes some public good and endowments are enough to satisfy
the player who wishes the minimum amount of public good (cases [b]), then several cases can
be distinguished depending on the amount of public good each player wishes for.

If the two players wish for the same amount of public good, A1 = A2 = A, then the
game presents multiple solutions. This would be the case with symmetric players regarding
both their valuation of the public good, b1(A) = b2(A), and their degree of positionality,
vP
1 = vP

2 > 0.6 Any solution satisfying x1+x2 = A is a NE, regardless of the actual amount paid
by each player. The only limit to each player’s contribution is the player endowment, wi, or
his desired amount of public good, Ai.

1
2Aj

(wi, wj)

[bII.1]

wi

0
0

wj

AiAj

(wi, Aj − wi)

[a]

xN
i > xN

jxN
i < xN

j

(wi, 0) (Ai, 0)
[bII.2] [bII.3]

Figure 2: Location of the Nash equilibrium as a function of endowments, when Ai > Aj > 0

Indeterminacy is not an issue when the two players wish for a different amount of public
good. Case [bII], depicted in Figure 2, assumes that player i wishes for a positive greater
amount of public good than player j’. Then, three situations are possible for (xN

i , x
N
j ):

bII.1 (wi,Aj −wi): The endowment of player i is not enough to constitute either the amount
of public good wished by player j nor his own wished amount, Ai. He will contribute
all his endowment, wi, and player j contributes what is missing, Aj −wi. Interestingly,
this is the only case where even if player i wishes more public good than player j, thes
latter can contribute more than the former. Player i contributes above or below player
j (xN

i ≷ x
N
j ) iff wi ≷ Aj/2, or equivalently, vP

j ≶ 1 − (b′j)
−1(2wi).

bII.2 (wi,0): Because the endowment of player i is not enough to constitute his wished public
good, Ai, he will contribute all his endowment. Moreover, since wi is greater than the
amount of public good player j wishes, this latter contributes nothing.

bII.3 (Ai,0): The endowment of player i is enough to constitute his wished public good, Ai.
But since Ai > Aj , this amount is also more than enough from the viewpoint of player
j, who consequently provides nothing.

6It will also be the case with asymmetric valuation of the public good, b1(A) ≠ b2(A), if the positional
concerns, vP1 and vP2 , satisfy the knife-edge condition A1 = A2.
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In the rest of the paper and with the intention to have more precise results the following
specific functional form for the utility of public good consumption is assumed:

bi(X) = αi (X −
ε

2
X2

) . (7)

This particular function must fulfill conditions C1–C3, together with a positive marginal
utility of the first unit of public good, and a diminishing marginal utility from public good
consumption. The marginal utility from the first unit contributed is b′i(0) = αi > 0. Moreover,
a diminishing marginal utility, b′′i (X) = −αiε < 0, also requires ε > 0. This parameter repre-
sents the agents degree of satiation with public good consumption, common for both players.
That is, the speed of decay in the marginal utility of the public good. Under assumptions:

Assumption 1 0 ≤ αi < 1, i = 1,2.

Assumption 2 ε > 0.

Assumption 3 α1 + α2 > 1.

Assumption 4 w1 +w2 >
α1 + α2 − 1

ε(α1 + α2)
≡ (XSO

=
XE0

2
) .

C1,C2 and C3 are verified. Observe that the quantity appearing in the right-hand side in
Assumption 4 is XSO = XEO/2, see Figure 1. Moreover, from Definition 1, the amount of
public good wished by player i for the explicit expression of bi(X) given in (7) reads:

Ai =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

0 if vP
i ≤ 1 − αi,

vP
i − (1 − αi)

αiε
if vP

i ∈ (1 − αi,1 − αi + αiε(w1 +w2)),

wi +wj if vP
i ≥ 1 − αi + αiε(w1 +w2)

(8)

which lies within [0,w1 +w2].
In what follows we ignore the two extreme cases of full (case[a]) and zero (case[c]) con-

tribution. We focus on the case where the agents’ endowments are enough to provide some
amount of public good. In particular, we assume Ai > 0, Aj < wi +wj , that is vP

i > 1 − αi and
vP
j < 1 − αj + αjε(wi +wj). Moreover, for the simplicity of the exposition from now on it will

also be assumed that the amount of public good constituted never turns the PG into a PB,
i.e. vP

1 , v
P
2 ∈ [0,1].

In this case, the total amount of public good easily follows from Proposition 1:

XN
=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Aj wi < Aj < wi +wj [bII.1],
wi Aj ≤ wi < Ai [bII.2],
Ai Ai ≤ wi [bII.3].

(9)

Note that Proposition 1 and expression (9) characterize the contributions under the as-
sumption that player i wishes for more public good than player j, i.e. Ai > Aj . To characterize
which player is willing to privately provide the greatest amount of PG, one needs to take into
account each player’s positional concern as well as her valuation of the PG consumption, αi.
Thus,

A1 ≷ A2 ⇐⇒ vP
1 ≷ vP

2

α1

α2
−
α1 − α2

α2
≡ h(vP

2 ). (10)
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Assume that the weight given to the utility from the PG is highest for player 1, α1 > α2.
Then, as shown in Figure 3, the line vP

1 = h(vP
2 ) delimits two regions, where player 1 wishes

more public good than player 2 (A1 > A2, shaded cyan), or vice versa (A1 < A2, shaded
light-red). In the up-left region player 1 not only values the consumption of public good the
most but is also the player with the greatest positional concern, then undoubtedly A1 > A2.
By contrast, if vP

2 > vP
1 player 1 still wishes more PG if positional concerns are not too distant,

although player 2 would wish more PG if his positional concern is much larger than player
1’s. As shown in the figure no player provides public good in the bottom-left white rectangle
characterized by (vP

1 , v
P
2 ) ∈ [0,1 − α1] × [0,1 − α2]. Opposite reasoning applies if conversely

α2 > α1. Finally, if α1 = α2, lines vP
1 = h(vP

2 ) and vP
1 = vP

2 coincide and vP
1 ≷ vP

2 would be
equivalent to A1 ≷ A2.

0 1
0

1

Figure 3: Regions when α1 > α2

Proposition 1 states that positional concerns allow for positive contributions. The fol-
lowing section answers two main questions. How do the positional concerns affect the social
welfare? And more specifically, under which conditions the positive contribution allowed by
the existence of positional concerns implies greater/lower social welfare than the zero contri-
bution equilibrium when no positional concerns exist?

4.2 Welfare analysis

Global utility or social welfare is defined as the aggregation of both players’ utilities. Two
parts can be distinguished: the intrinsic social welfare, u(X), and the aggregate positional
payoffs, V (xi − xj) = Vi(xi − xj) + Vj(xi − xj). For clearness of the exposition the intrinsic
utility is written between brackets:

U(xi, xj) = [u(X)]+V (xi−xj) = [wi +wj −X + (αi + αj) (X −
ε

2
X2

)]+(vP
i −v

P
j )(xi−xj). (11)

Positional concerns have a double effect on social welfare. On the one hand, by allowing the
constitution of the public good, X, they indirectly influence the intrinsic utility. On the other
hand positional concerns also directly determine positional payoffs. Moreover, these payoffs
crucially depend on the players’ relative contribution, xi − xj , which, in turn, is also affected
by relative positional concerns. We analyze first how each player’s positional concern affects
both intrinsic utility and aggregate positional payoff. Next, we characterize the conditions
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under which the positive contributions made possible by the existence of positional concerns
can improve the intrinsic utility (net of positional payoffs) and the social welfare (introducing
positional payoffs).

4.2.1 Marginal effect of positional concerns on social welfare

Utility in (11) can be rewritten for the three different equilibria in case [bII] as:

UN
=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

[u(Aj)] + (vP
i − v

P
j )(2wi −Aj) [bII.1],

[u(wi)] + (vP
i − v

P
j )wi [bII.2],

[u(Ai)] + (vP
i − v

P
j )Ai [bII.3].

Note that the aggregate positional payoff is positive if vP
i > v

P
j and 2wi > Aj , in case [bII.1],

i.e., if the player who contributes the most also has the highest positional concern.
From this expression, the effect of each player’s positional concern on social welfare reads:

⎛

⎝

dUN

dvP
i

,
dUN

dvP
j

⎞

⎠
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎝
2wi −Aj ,

⎡
⎢
⎢
⎢
⎣
u′(Aj)

∂Aj

∂vP
j

⎤
⎥
⎥
⎥
⎦
+
vP
j − v

P
i

αjε
− (2wi −Aj)

⎞

⎠
[bII.1],

(wi,−wi) [bII.2],

([u′(Ai)
∂Ai
∂vP

i

] +
vP
i − v

P
j

αiε
+Ai,−Ai) [bII.3].

(12)

Positional concerns affect the intrinsic utility when they directly determine the total con-
tribution. From Proposition 1, contributions directly depend on the positional concern of
player j in [bII.1] (where XN = Aj), or on player i’s in [bII.3] (where XN = Ai). In these two
cases:

∂Aj

∂vP
j

=
1

αjε
> 0, [bII.1];

∂Ai
∂vP

i

=
1

αiε
> 0, [bII.3].

A rise in the positional concern of player j in [bII.1] or player i in [bII.3] induces a “quantity
effect” increasing this player’s global contribution. This “quantity effect” raises the total
amount of public good affecting intrinsic utility. Positional concerns also affect the positional
payoffs through two channels:

• A “quantity effect”:
A higher positional concern of the player who contributes the most (least) in case [bII.1]
(xN
i ≷ xN

j if 2wi ≷ Aj) widens (narrows) the contribution gap, xi − xj . This gap widens
with vP

i in case [bII.3] and is unaffected by positional concerns in case [bII.2]. A wider
contribution gap benefits the player who contributes the most and harms the player
who contributes the least. The opposite is true for a narrower contribution gap.

• A “price effect”:
One player’s positional payoff can be interpreted as the price that this player gets from
contributing more than his opponent. Under asymmetric contributions both players
face the same contribution gap but of opposite sign. Thus, a rise in the positional
concern of the player who contributes the most improves aggregate positional payoffs.
Conversely, aggregate positional payoffs shrinks with the positional concern of the player
who contributes the least. Player i contributes the most in all three cases bII, except
in case bII.1 with 2wi < Aj .

13



Social welfare encompasses the utility stemming from the private provision of the public
good, u(X), plus the positional payoffs, V (xi − xj). The two players’ positional payoffs have
opposite sign, and hence positional gains by one player are necessarily linked to positional
losses by the other. By contrast, social welfare net of positional payoffs, or intrinsic utility,
is a utility measure more evenly distributed among agents. In what follows we analyze to
what extent the contributions made possible by the existence of positional concerns can
improve/worsen the utility of society with respect to the utility under zero contribution. This
analysis focuses first on the intrinsic utility and later on the broader measure of social welfare.

4.2.2 Intrinsic social welfare and positional concerns

Contributions associated with the existence of positional concerns can be in shortage, equal
or in excess with respect to the amount that maximizes the intrinsic social welfare, XSO.
Moreover, the positional concerns could be strong enough to lead the public good above XE0

(the level which provides the same intrinsic utility than zero contribution, see Figure 1). An
equilibrium with positive contributions below (above) this level would be intrinsic welfare
improving (reducing). Table 1 summarizes the results for the three equilibria in [bII] (note
that α̂i = αi/(αi + αj)).

7

Intrinsic Welfare improving
Intrinsic Welfare reducing

Shortage Excess

bII.1 vP
j ∈ (1 − αj , α̂i) vP

j ∈ (α̂i, α̂i + αj − α̂j) vP
j > α̂i + αj − α̂j

bII.2 wi <X
SO XSO < wi ≤X

E0 wi >X
E0

bII.3 vP
i ∈ (1 − αi, α̂j) vP

i ∈ (α̂j , α̂j + αi − α̂i) vP
i > α̂j + αi − α̂i

Table 1: Positional concerns and intrinsic utility

In cases [bII.1] and [bII.3], the public good matches the amount wished by one of the
agents, Aj and Ai, respectively. Thus, the condition under which contributions are intrinsic
welfare improving, X < XE0, trivially turns into an upper bound on vP

j and vP
i respectively.

Moderate positional concerns leading to moderate contributions (in shortage or moderately in
excess) improve the intrinsic utility above that in the case without positional concerns, charac-
terized by zero contributions. However, too large positional concerns will push contributions
too high (above XE0) leading the intrinsic utility below u0 = w1 + w2. In case [bII.2] only
player i contributes, and he contributes his total endowment. Hence the contribution is not
directly dependent on positional concerns. Still, sufficient conditions8 characterize whether
contributions are in shortage, vP

i < α̂j , or they are welfare reducing, vP
j > α̂i + α̂j(αi + αj − 1).

The results stated in Table 1 are depicted in Figure 4 for the particular case where players
share the same intrinsic utility, wi = w and αi = α for all i ∈ {1,2}. In this symmetric
case, Assumptions 1 and 3 imply α ∈ (1/2,1). Moreover, Ai > Aj ⇔ vP

i > vP
j and only the

region above the bisector vP
i = vP

j is drawn. Five regions can be distinguished. Case [a]

7Provided that αi, αj > 0 then αi − α̂i, αj − α̂j > 0, and therefore α̂i < α̂i + αj − α̂j and α̂j < α̂j + αi − α̂i.
8[bII.2] is characterized by Aj ≤X

N
≡ wi ≤ Ai. Then

• A sufficient condition for a shortage in provision is Ai ≤X
SO or equivalently vPi < α̂j .

• A sufficient condition for a welfare reducing provision is Aj >X
E0 or equivalently vPj > α̂i+α̂j(αi+αj−1).
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with vP
i > vP

j ∈ (Θ̂,1), with Θ̂ = 1 − α + 2αεw, in the up-right triangle. Case [bII.1] with

vP
i > v

P
j ∈ (Θ, Θ̂), with Θ = 1 −α +αεw, in the up-mid trapezoid. Case [bII.2] with vP

i ∈ (Θ,1)
and vP

j ∈ (0,Θ) in the up-left squre. Case [bII.3] with vP
j < vP

i ∈ (1 − α,Θ) in the mid-left
trapezoid. And case [c] with vP

j < v
P
i ∈ (0,1 − α) in the bottom-left triangle. Figure 4 depicts

the level curves for the intrinsic utility, where arrows indicate the direction of growth. The
intrinsic utility in case of zero contribution is labeled as u0 and its maximum value as umax.
Assumptions on parameters are α = 2/3 and w = 1. The crucial difference between the two
graphs in Figure 4 is whether α < Θ (left) or α > Θ (right). Define the value of ε at which
Θ = α as ε̂ = (2α − 1)/(wα), with ε̂ = 1/2 for the chosen parameters. In Figure 4 (left)
ε = 0.7 > ε̂, while ε = 0.4 < ε̂ in Figure 4 (right).

0 1
0

1

0 1
0

1

Figure 4: Level curves for intrinsic utility: ε = 0.7 (left), ε = 0.4 (right).

Figure 4 (left) depicts the case of a high degree of satiation, ε = 0.7. In region [bII.3] only
player i contributes and his contribution, Ai, increases with his positional concern. Starting
at vP

i = 1 − α, a higher positional concern for player i increases his contribution and the
intrinsic welfare, up until the red-dotted line with vP

i = α̂ = 1/2, where the intrinsic utility
reaches its maximum. Further increments in vP

i reduce utility. At the bold line9 vP
i = α

players would get the same intrinsic utility as in the case with zero contribution, u0. In the
region where vP

i ∈ (1 − α,α) positional concerns are intrinsic welfare improving. Conversely,
above vP

i = α greater positional concerns reduce intrinsic welfare further below u0. In regions
[bII.1] and [bII.2] contribution is excessively high and the intrinsic utility is smaller than u0.
In case [bII.2] player i is again the only contributor, who contributes his total endowment,
independently of players’ positional concerns. Finally, in region [bII.1] both players contribute
a total amount of Aj . Global contribution increases with the positional concern of player j,
and since players over-contribute, this causes a reduction in the intrinsic utility.

In the case of a low degree of satiation, ε = 0.4 in Figure 4 (right), player i never contributes
enough to place X above XE0 in cases [bII.3] and [bII.2], always intrinsic welfare improving.
The level curve u0 is now placed in region [bII.1]. To the right of this vertical line global
contribution is too high, while to the left, including case [bII.2], positive contributions improve
intrinsic social welfare.

9In the symmetric case where players share the same intrinsic utility, α̂i + αj − α̂j = α̂j + αi − α̂i = α.
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The following proposition characterizes the regions where positional concerns are IW-I or
IW-R for the symmetric case where players share the same intrinsic utility. It shows that
when the marginal utility from public good consumption decreases slowly (rapidly), i.e. ε, is
small (large), positional concerns are widely IW-I (IW-R).

Proposition 2 Assume wi = w and αi = α for all i ∈ {1,2} (and, from Assumption 3,
α > 1/2). Define ε̂ = (2α − 1)/(wα), then:

1. If ε < ε̂, positional concerns are IW-I (resp. IW-R) if vP
j < α (vP

j > α). The IW-I area
is wider than the IW-R area.

2. If ε > ε̂, positional concerns are IW-I (resp. IW-R) if 1−α < vP
i < α (vP

i > α). The IW-I
area is wider (narrower) than the IW-R area if α ∈ (

√
3 − 1,1) (α ∈ (1/2,

√
3 − 1)).

The proof is presented in Appendix B.

As shown in Figure 4, positive contributions from the existence of positional concerns
improve intrinsic social welfare when ε > ε̂ and vP

j ≤ v
P
i ∈ (1 − α,α), or in the wider area with

vP
i ∈ (1 − α,1) and vP

j ≤ α when ε < ε̂. Moreover, comparing the areas in the (vP
i , v

P
j ) plane

of the IW-I and IW-R regions one can estimate the likelihood that positive contributions
increase intrinsic utility. An increment in intrinsic utility is more likely than a decrement
except under a strong satiation and a small utility from the public good (large ε and small
α).

Figure 4 and Proposition 2 refer to the symmetric case where both players have the
same endowment and equally enjoy public good consumption. Asymmetric situations are
presented in Figure 510 under the assumption ε = 0.4 < ε̂. In Figure 5 (left) agent i values
public good consumption more than agent j, αi > αj . Hence , it is possible that she wishes
more public good than player j even though she has less positional concern (below the vP

i = v
P
j

line). Under this assumption the IW-I area becomes larger relatively to the IW-R area. The
opposite is true when agent i values public good consumption less than player j in Figure 5
(right). Her positional concern needs to be much higher than j’s for Ai > Aj to occur. In
consequence positional concerns are relatively less likely to improve intrinsic utility (the IW-I
area decreases in relation to the IW-R area).

4.2.3 Social welfare and positional concerns

In this subsection, social welfare is analyzed as a function of the two players’ positional
concerns. The analysis is carried out numerically taking into account the same parameters
used in the previous subsection. First, we study the symmetric case, where players share the
same intrinsic utility, and this assumption is relaxed later on.

Figure 6 represents the level curves of the global utility for the three equilibria in [b.II], in
the symmetric case. A rise in the positional concern of this player, vP

i , reduces the intrinsic
utility in region [bII.3] (unless vP

i < α̂ ≡ 1/2), and does not affect it in regions [bII.1] and
[bII.2]. However, taking also into account the positional payoffs, global utility increases with
vP
i almost everywhere in [bII].11 On the other hand, a rise in the positional concern of player
j (with the lowest positional concern), reduces the intrinsic utility in region [bII.1] (unless

10In this Figure, Θi(w) = 1 − αi + αiεw.
11Only when ε is large (Figure 6 left) and only if vPi is below but close to Θ (i.e. Ai is below but close to w)

and vPj is close behind, a greater positional concern of player i can reduce social welfare.
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0 1
0

1

0 1
0

1

Figure 5: Level curves for intrinsic utility: αi =
5
6 , αj =

1
2 (left), αi =

1
2 , αj =

5
6 (right).

vP
j < α̂ ≡ 1/2), and does not affect it in regions [bII.2] and [bII.3]. Moreover, for a broader

measure of utility that also includes positional concerns, the greater this player’s positional
concern, the greater the losses in terms of social welfare in all three regions in [bII].

0 1
0

1

0 1
0

1

Figure 6: Level curves for utility: ε = 0.7 (left), ε = 0.4 (right).

The more unequal is the distribution of positional concerns (i.e. the wider the gap vP
i −v

P
j )

the stronger is the role played by the positional payoffs and the greater the global utility.
Conversely, the more even these concerns, the more important is the role played by the
intrinsic utility and the smaller the global utility.

Figure 6 also draws the u0 level curves, where the global utility equates the utility of
zero contribution. This occurs when contributions are actually equal to zero, vP

j ≤ vP
i ≤

1 − α (case[c]), but also for positive contributions in the u0 − u0 line. Up-left of this latter,
contributions improve global utility above the u0 level. Conversely, down-right of the curve,
positive contributions drive global utility below the utility of zero contribution.
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Figure 7: Level curves for utility: αi =
5
6 , αj =

1
2 (left), αi =

1
2 , αj =

5
6 (right).

The analysis is generalized to the asymmetric case in Figure 7. In the symmetric case the
existence of positional concerns improves social welfare with respect to the zero contributions
utility level almost everywhere, except when the positional concerns are large (close to one)
and sufficiently even. This result remains valid in the asymmetric case when player i values
public good consumption the least although, having a strong positional concern wishes the
highest amount of public good (Figure 7-right). However, in Figure 7 (left), when the player
who wishes the most public good is also the one who values its consumption the most, then
contributions can reduce social welfare even for small positional concerns, as long as they
are sufficiently close. Too large contributions (above XE0) induce losses in terms of intrinsic
utility. These losses are not counteracted by positional payoffs because vP

i and vP
j are close

together and the positional gains by one player are similar to the positional losses by the
other and hence, positional payoffs have a limited impact on social welfare.

Expression (12) and Figures 6 and 7 allow us to answer another relevant question: Under
which conditions a rise in the positional concerns by both players increases, reduces or leave
social welfare unchanged? To answer this question one needs to characterize the points in
the (vP

j , v
P
i ) plane for which the slope of the isocline is smaller, larger12 or equal to one.

In the symmetric case, the following proposition shows that social welfare increases, remain
unchanged or shrinks when the addition of the players’ positional concerns is below, equal or
above one.

Proposition 3 Assume that αi = α for all i ∈ {1,2}. The effect of a joint increment in the
positional concerns of both players is:

[bII.1] and [bII.3]:
dUN

dvP
i

+
dUN

dvP
j

⋛ 0⇔ vP
i + v

P
j ⋚ 1.

[bII.2]:
dUN

dvP
i

+
dUN

dvP
j

= 0.

12As explained in Proposition 3, for the isoclines with negative slope, in region [bII.3], stronger positional
concerns by both players worsens social welfare.
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The proof is presented in Appendix C.

5 The dynamic model with myopic players

As in the static game we consider two players i ∈ {1,2}. Each player is endowed with the
same wi at every time t and contributes xit to a non-durable public good. Thus her utility
at this instant of time is given by:

ui(xit,Xt) = wi − xit + αi [Xt −
ε

2
X2
t ] , with Xt = xit + xjt.

Assumptions 1-4 are fulfilled and we further assume that:

1. Agents show Inertia from previous actions. People in general are reluctant to changes
and have a tendency to maintain the same behaviour. This captures the status quo
bias, assuming that the default option is the agent’s previous decision. This idea is
introduced in the model by adding a disutility to deviations from the previous action:
−vI

i(xit − xit−1)
2/2, with vI

i ≥ 0. Agents not having this tendency to inertia can be
modeled by taking vI

i = 0.

2. A positional agent gets joy from contributing above others. This status concern is
built looking at the opponent’s previous contribution. Therefore, positional payoffs
are introduced in the model as a gain (loss) for contributions above (below) the other
player’s previous contribution: +vP

i (xit − xjt−1), with vP
i ≥ 0.

In consequence, the utility at each time t reads13:

Ui(xit, xjt, xit−1, xjt−1) = wi − xit + αi [Xt −
ε

2
X2
t ] −

vI
i

2
(xit − xit−1)

2
+ vP

i (xit − xjt−1). (13)

5.1 Dynamics of the system with myopic agents. General case.

At each specific time t, an agent with inertia is reluctant to change her previous decision, xit−1.
Moreover, she builds her positional payoff by looking at her opponent’s previous decisions
xjt−1. This behavior characterizes a dynamic model. However, the players are myopic because
they maximize their instantaneous utility at every time t, solving the problem:

max
xit

Ui(xit, xjt, x̂it, x̂jt), (14)

s.t.: x̂it = xit−1, i ∈ {1,2}.

The first-order conditions for an interior equilibrium are:

− 1 + αi[1 − ε(xit + xjt)] − v
I
i(xit − xit−1) + v

P
i = 0 ∀i ∈ {1,2}. (15)

Solving this linear equation, we obtain the unconstrained best reaction as a function of the
opponent’s current action and the player’s action in the previous step:

ri(xjt;xit−1) =
Φi + v

I
ixit−1 − αiεxjt

vI
i + αiε

, (16)

13An analysis of the dynamics when the contribution of the other player is based on the past is given in
E.2.4.
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where
Φi ∶= αi − 1 + vP

i . (17)

Taking the constraints into account, we deduce the dynamic reaction function as:

rDi (xjt;xit−1) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

wi if ri(xjt;xit−1) ≥ wi

ri(xjt;xit−1) if 0 ≤ ri(xjt;xit−1) ≤ wi

0 if ri(xjt;xit−1) ≤ 0.

(18)

It readily follows that a Nash equilibrium at step t must satisfy xit = r
D
i (xjt;xit−1) for i, j ∈

{1,2}, i /= j. Provided the Nash equilibrium exists and is unique,14 this procedure defines a
dynamical process {xt = (xit, xjt); t = 0,1, . . .}.

5.2 Properties of the dynamical system: summary

When discussing the behavior of the dynamic system, we are particularly interested in: a) the
asymptotic behavior of the sequence of contributions, and b) the monotonicity (or lack of it)
in the sequence of individual contributions, total contributions and utilities. The statements
of the propositions are given for X0 = 0. They will be valid for X0 small enough but they
can be extended for any X0. We chose X0 = 0 as benchmark because it is the static Nash
equilibrium when players have no positional concerns. Without loss of generality, we assume
in the remainder of this section that Player i wishes no less public good than Player j: Ai ≥ Aj .

In the following statements, “the interior” refers to those contributions satisfying (xi, xj) ∈
(0,wi) × (0,wj). “The boundary” of feasible contributions is reached when either xi or xj
vanishes or reaches its maximum at wi or wj .

Proposition 4 (Convergence) Assume Ai ≥ Aj.

[R0] The static equilibrium is a fixed point of the dynamical system;

[R1a] The trajectory of the contributions eventually hits the boundary of feasible contributions,
in the part where the static equilibrium lies;

[R1b] After hiting the boundary where the static equilibrium lies, the trajectory converges
monotonously to this static equilibrium;

[R1c] Without inertia, the system arrives to the static equilibrium at the first step.

Once the convergence of the transition to the static equilibrium has been established, next
we analyze the monotonicity of each player’s and the total contribution. Proposition 5 presents
the properties that are valid for all types of equilibria. Proposition 6 proves monotonicity for
some particular cases. Later we discuss the scenarios under which initial over-contribution
by one player or globally are feasible.

Proposition 5 (General behaviour of contributions) Assume X0 = 0 and Ai ≥ Aj.

[R2] The contribution of Player i is monotonously increasing, both in the interior and the
boundary;

14Uniqueness follows here from the fact that reaction functions are decreasing and Lipschitz-continuous with
a Lipschitz constant strictly less than 1.
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[R3] The total contribution is monotonously increasing in the interior.

Proposition 6 (Monotonicity in particular cases) Assume X0 = 0 and Ai ≥ Aj.

[R4] In cases [a] (w1 +w2 < Aj) and [bI] (Ai = Aj = A), the contribution of the two players
and the total contribution are both monotonously increasing;

[R5] In case [bII.3] (Ai < wi), the contribution of Player i and the total contribution are both
monotonously increasing.

The proof of [R0] is given in Appendix D. [R1a] and [R3] are proved in Section 5.3.2,
[R1b] follows from Proposition 7 and Proposition 8 in Appendix F. For [R1c] see Section 5.3.1.
Statement [R2] is proved in Section 5.3.2 for the interior part, and Appendix F.2 or Appendix
F.3 for the boundary part. Property [R4] follows from [R2] (for the contribution of Player i)
and from the behaviour of the contribution of Player j in the interior (Appendix E.2.3) and
on the boundary xi = wi (Appendix F.1). The proof of [R5] is a consequence of [R2] (for the
contribution of Player i) and from [R1a] and [R1b] for the total contribution.

The general behavior of the trajectories can be described in the case where the wished
amounts are different (Ai > Aj) and the initial contribution is xi = xj = 0. In a first phase,
the contributions of player i (with the greatest wished amount) is positive monotonously
increasing. The contribution of player j may possibly increase in a first phase and decrease
thereafter, a phenomenon we call overshooting.15

Eventually, the trajectory hits the boundary of feasible contributions, with one of the
players constrained to contribute her whole endowment or nothing. In this second phase, the
trajectory converges monotonously to the limiting state, which is precisely the equilibrium of
the static game described in Proposition 1. In this second phase, numerical simulations will
show that total contribution can converge from above or below. The speed at which this con-
vergence occurs inversely depends on the inertia parameter of the player whose contribution
is not constrained.

Remark 1 From propositions 5 and 6 overshooting is only feasible for player j and in case
[bII]. As we will show numerically, overshooting for player j can lead to overshooting of total
contribution when the player who wishes the most contributes her total endowment (cases
[bII.1] and [bII.2])

5.3 Properties of the dynamical system: analysis

We proceed with the analysis of the properties stated in the previous section. First, we
consider the case where both players have no inertia and later the case where at least one
player has inertia.

5.3.1 Players without inertia (vI
i = 0 and vI

j = 0)

In this particular case, the optimization problem does not depend on the previous state
(xit−1, xjt−1) (see (15)). Therefore, the agents play a static game at each time t. Indeed, the
comparison of (29) and (26) confirms that the reaction functions are the same. This proves

15Overshooting can be so strong as to exceed wj : in this case, player j’s contribution remains blocked at
this level for some time (illustration in Section 6.2 and Figure 10).
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the result [R1c]. Moreover, starting with the initial contribution (0,0), the trajectory jumps
to the Nash equilibrium with xNi ≥ 0 and xNj ≥ 0, and then stays there. This proves the
statements [R2], [R4] and [R5] in this case, albeit in a degenerate way.

5.3.2 Players with inertia (vI
i > 0 or vI

j > 0)

We turn to the analysis of the interior intersection of the two reaction curves (see (15)). The
current contribution of Player i can be written as a function of her own and her opponent’s
past contributions as:

xit = V 0
i + V

I
i xit−1 + Vi xjt−1 (19)

with:

V 0
i =

vI
jΦi + ε(αjΦi − αiΦj)

D
, V I

i =
vI
iv

I
j + εαjv

I
i

D
, Vi = −

εαjv
I
i

D
,

and
D = vI

iv
I
j + ε(αjv

I
i + αiv

I
j). (20)

Since either vI
i > 0 or vI

j > 0, then D > 0. Written in matrix/vector form, the dynamics (19)
reads:

(
xit
xjt

) =M (
xit−1
xjt−1

) + (
V 0
i

V 0
j
) where M = (

V I
i Vi
Vj V I

j
) . (21)

It is shown in Appendix E.2 that the solution to the recurrence is:

(
xit
xjt

) = δt (
1
−1

) + (
xi0
xj0

) + (1 − λt2)
X∗ −X0

αivI
j + αjv

I
i

(
αiv

I
j

αjv
I
i

) , (22)

where, according to (42), (43) and (44),

δ =
εαiαj(Ai −Aj)

αivI
j + αjv

I
i

λ2 =
vI
iv

I
j

vI
iv

I
j + ε(αiv

I
j + αjv

I
i)

X∗
=
vI
jαiAi + v

I
iαjAj

αivI
j + αjv

I
i

.

The definitions of δ and X∗ using wished amounts Ai and Aj are valid when they lie in the
interior of expression (8). Otherwise, when they lie in the boundary, they must be replaced
by Ai = Φi/(αiε), Φi being defined in (17). Since we have assumed that Ai ≥ Aj , we have
δ ≥ 0.

We first state general results about the contribution of Player i and the total contribution,
then we turn to a more detailed analysis of the solution (22). To determine the asymptotic
properties, we must distinguish two cases, depending on whether Ai = Aj or Ai > Aj (δ is 0
or not).

Contribution of Player i. Expression (22) describes the trajectory of individual contri-
butions to the public good. Assume that Ai > 0 and Aj > 0, which implies X∗ > 0. Note that
under the assumption that some inertia is present, λ2 ∈ [0,1) and hence the sequence (1−λt2)
is decreasing to 0. This implies that the sequence xit of Player i’s contributions is increasing.
This proves [R2] in the interior.
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Total contribution. Expression (22) also provides information on the total contribution.
We have:

Xt = X0 + (1 − λt2)(X
∗
−X0). (23)

From (23), the value X∗ is the limit of Xt when t →∞. It is also a fixed point: if X0 = X
∗,

then Xt = X
∗ for all t. It is the convex combination of individual preferred amounts Ai and

Aj with relative coefficients αiv
I
j and αjv

I
i. Moreover, from (23), it is clear that Xt increases

with t if X0 <X
∗ and decreases with t if X0 >X

∗. This proves result [R3]. Observe also that,
while in the interior, a trajectory starting from X0 < X

∗ cannot exceed X∗ ≤ max{Ai,Aj}.
This observation is relevant for [R5]. Convergence to X∗ requires the solution to remain
within the interior of the feasible set.

Players with inertia and the same wished amount. In the very specific case where
δ = 0 ⇐⇒ Ai = Aj = A, the leading term in (22) vanishes. Besides, the value of X∗ is simply
A. The solution of the free dynamic system simplifies as:

(
xit
xjt

) = (
xi0
xj0

) + (1 − λt2)
A −X0

αivI
j + αjv

I
i

(
αjv

I
i

αiv
I
j
) . (24)

A first consequence is that both sequences xit and xjt are monotonous: they are increasing
if X0 < A and decreasing if X0 > A. A second consequence is that these sequences converge.
The limit is then:

x∗i ∶= lim
t→∞

xit = xi0 +
αjv

I
i(A −X0)

αivI
j + αjv

I
i

.

This limit point depends both on the initial condition and on the inertia parameters. However,
we have observed in (23) that the sum of its components converges to X∗ = A. The point
therefore lies in the line xi + xj = A, which is the set of Nash equilibria of the static game
(Proposition 1). From (24), it also follows that all points in the trajectory lie in the line
which joins x0 and x∗. Moreover, from the definition of x∗ it follows that the vector x∗ − x0
is proportional to the vector

v∗ = (
αiv

I
j

αjv
I
i

) .

The limit point x∗ is therefore at the intersection of the line passing through x0 with direction
v∗, and the line xi + xj = A. In general, the limit point x∗ does not need to lie inside
the rectangle of constraints. When it does, the sequences of individual contributions are
monotonously increasing, as argued above. When it does not, the trajectory hits the boundary
and it stays on the boundary converging monotonously to the equilibrium: see Proposition 7
and Proposition 8 in Appendix F. This proves [R4] in that case.

Players with inertia and different wished amounts. Consider now the case Ai > Aj
and hence δ > 0. As a consequence:

lim
t→∞

xit = − lim
t→∞

xjt = +∞.

However, the player’s optimization problem is constrained. The dynamics of the controls
cannot obey (19) indefinitely, since then either xit or xjt or both will eventually exit its domain
of validity. Since the contribution of Player i increases in the interior, when the boundary
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is hit at some step t, then either xit = wi or xjt = 0 or xjt = wj . We argue now that the
trajectory eventually joins one of these boundaries where the static equilibrium lies, which is
statement [R1a].

Consider first Case [a]. The static equilibrium lies on both boundaries xi = wi and xj = wj ,
so only the boundary xj = 0 should be excluded. Indeed, from the equations of the dynamic
best-reply (58), it follows that if xjt = 0 then xjt+1 > 0. The trajectory therefore cannot
remain on this boundary. Since it cannot stay in the interior either, it necessarily ends up
with either xit = wi or xjt = wj .

Consider next Case [bII.1]. Since the static equilibrium lies on the boundary xi = wi,
we have to exclude the boundaries xj = 0 and xj = wj . This case is characterized by the
condition Aj > wi, which implies, as in Case [a], that the trajectory cannot stay on the
boundary xj = 0. Focusing then on the boundary xj = wj , Proposition 9 implies that, as long
as the trajectory stays on this boundary, the contribution of Player i continues to increase. If
the trajectory were to stay forever on this boundary, the dynamic system would converge to
some point (x∗i , x

∗
j ) satisfying x∗j = wj . But this is a contradiction because, according to [R0]

in Proposition 4, convergence occurs only to Nash equilibria of the static game. We have then
proved that the trajectory cannot remain indefinitely in the interior nor on the boundaries
where the equilibrium does not lie.

The argument that the trajectory cannot stay forever on boundary xj = wj applies also
to case [bII.2]. So statement [R1a] also holds in this case, in which the equilibrium is on both
boundaries xi = wi and xj = 0.

Finally, consider Case [bII.3]. It is still impossible that the trajectory stays on the bound-
ary xj = wj . It is also impossible to stay on xj = 0: in this case Ai ≤ wi and using the dyamic
best-response (52), we conclude that if xit = wi, xit+1 < wi. This completes the proof of [R1a].

The dynamics described in (22) can be interpreted as the combination of two phenomena.
The first one is that of a geometric convergence of x in the direction of x∗, as in Section 5.3.2.
The point x∗ is located at the intersection of the line xi + xj =X

∗, where X∗ is given in (44)
and the line passing through x0 with direction v∗. The geometric factor of this convergence
is λ2.

The second phenomenon, represented by the linear part in (22), is a δ transfer of con-
tribution effort from Player j to Player i, with the total contribution remaining the same.
This repeated transfer eventually causes the point xt to hit either zero for j or its budget
constraint for player i. This will be illustrated in the simulations of Section 6.

6 Simulations

This section presents numerical simulations corresponding to the different static Nash equi-
libria described in Proposition 1. In order to ease the reading of figures, we switch from the
“(xi, xj)” convention for naming players, to the cartesian “(x1, x2)” notation. Unless other-
wise specified, players’ budgets are w1 = w2 = 1. Moreover, for the simplicity of the exposition,
we assume in this section that the two players equally value public good consumption, α1 = α2.

6.1 Players with inertia; equilibrium of type [bI]

In equilibria of type [bI] players have the same wished amount. Figure 8 shows the trajectories
for the two players with inertia, when A1 = A2 = A. The parameters are:

24



ε =
4

10
, α1 =

2

3
, α2 =

2

3
, vP

1 =
11

15
, vP

2 =
11

15
, vI

1 = 2, vI
2 = 3.

The common value for A is 3/2. The figure displays one trajectory starting at (0,0), and
another one starting at (1/2,0). The limit point of the free dynamic system (21), lies in
both cases on the line {x1 + x2 = A} which is the set of Nash equilibria. The trajectory for
contributions, xt, follows the direction v∗ = (3,2)′ starting from the initial point x0. For the
trajectory starting at (1/2,0), the limit point lies outside the rectangle of constraints: the
trajectory first hits the boundary and continues towards the Nash equilibrium (1,1/2).
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Figure 8: Trajectories for two players with inertia and same A (type [bI])

6.2 Players with inertia; equilibrium of type [bII.1] and [bII.2]

The behavior observed in cases [bII.1] and [bII.2] is similar. To avoid repetition, we present
the insights from the numerical analysis in the Equilibria of type [bII.1].

In order to demonstrate the influence of inertia we present the numerical results for dif-
ferent values of the parameters which define inertia. To analyze the case with excess contri-
bution at the equilibrium, we consider the following parameters values:

ε =
4

10
, α1 =

2

3
, α2 =

2

3
, vP

1 =
13

15
, vP

2 =
33

50
,

with the initial condition x0 = (0.0). The wished amounts and the static equilibrium are then
given by:

A1 = 2, A2 =
49

40
, xN = (1,

9

40
) .

The equilibrium is indeed of type [bII.1]. The total contribution at the static equilibrium is
A2. It lies between XSO = 5/8 and XEO = 5/4, and therefore it corresponds to the case of a
public good with excess contribution but still IW-I.
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Figure 9 displays the trajectories in the phase diagram for values of vI
1 within {0.1,1,5,20},

while vI
2 is kept constant at 1. It also depicts the straight lines at which the total contribution

is XN , XSO and XE0. Figure 10 displays the individual contributions (left) and the total
contributions (right), as time functions. When Player 1 shows lower inertia than Player
2, the former rapidly increases contributions while the latter raises hers very slowly. The
trajectory quickly reaches the x1 = w1 boundary and x2 monotonously rises to reach the Nash
equilibrium xN

2 = A2 −w1. Conversely, if inertia is larger for Player 1 than for Player 2, this
latter increases her contribution more rapidly (as in case (vI

1, v
I
2) = (5,1)) and can even reach

her total endowment (in (20,1)). Although more slowly, Player 1 also steadily raises her
contribution. As total contribution rises, contributing is less and less attractive for Player 2,
who wishes less public good than Player 1. From a certain level of total contribution Player
2 starts reducing her contribution to free ride on the contribution of Player 1. Figures 9 and
10 (left) depict overshooting in Player 2’s contribution, initially rising above her long-run
value and decaying towards this level later on. Interestingly, the overshooting in Player 2’s
contribution can lead to overshooting also in total contribution. This occurs for cases (5,1)
and (20,1) as shown in Figure 10 (right).
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Figure 9: Phase diagram of contributions; case [bII.1] with welfare reduction then excess;
varying vI

1

Figure 11 focuses on the total utility as a time functions. On the left-hand side of this
figure, we display the total intrinsic utility relative to u0 = w1+w2, which is the utility resulting
from no contribution. On the right-hand side, we display the total utility also relative to u0.
Two types of curves are plotted in Figure 11 (left). In case (0.1,1) Player 1 contributes
her total endowment very rapidly and total contribution surpasses XSO already in the first
step. From this moment on Player 1 contributes w1 while Player 2 continuously raises her
contribution. Thus, intrinsic social welfare decays towards it long-run value. In the other two
cases (with overshooting in total contribution) intrinsic utility rises until the moment when
total contribution reaches XSO. Further contributions above this level worsen intrinsic utility.
Through the transition total contribution surpasses its long-run value, and hence, intrinsic
utility falls below its long-run value and converges towards it from below. Moreover it is also
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Figure 10: Individual (left) and total (right) contributions; case [bII.1] with welfare reduction
then shortage; varying vI

1

possible (and it occurs for the chosen parameters) that overshooting in total contribution is so
strong to overpass XE0. Then, although the long-run equilibrium belongs to the IW-I region,
total contribution pass to the IW-R region for some time through the transition, where the
intrinsic utility is lower than with no contribution. Figure 11 (left) shows that this effect is
more acute when Player 1 has a moderate inertia but it last longer when Player 1 has a strong
inertia.
Figure 11 (right) focuses on the global utility, which adds the positional payoffs to the intrinsic
utility. Indeed, the observed behavior is greatly driven by these positional payoffs. With no
overshooting, Player 1 immediately reaches her equilibrium contribution, while Player 2 slowly
increases hers. Thus, a positive gap in contributions is initially opened in favor of the player
who values positionality the most, giving rise to positive positional payoffs for society as a
whole. This gap is wider than the gap in the long run and so are the positional payoffs,
implying greater social welfare through the transition than at the equilibrium. By contrast,
when overshooting happens, it is the player who values positionality the least who increases
initial contributions faster, giving rise to a gap in contributions with positional “losses” for
society. This player eventually starts reducing her contributions. Thus, the gap between
players’ contribution, initially in favor of Player 2, first shrinks and later turns into a gap in
favor of Player 1, hence rising the positional payoff towards the long-run value. When Player
1 shows a strong inertia, even if the contributions to the public good are welfare enhancing in
the long run, the initial positional losses can be so strong as to lead social welfare temporally
below its value without contributions.

The previous example corresponds to the case of excess contribution in the long run,
XN > XSO. This can be reversed by lowering the positional concern by Player 2 and/or
raising the valuation of the public good by Player 1. The case of shortage in the equilibrium
contributions (possibly the most realistic) is obtained for the alternative parameters:

ε = 0.8, α1 =
3

4
, α2 =

3

4
, vP

1 =
13

16
, vP

2 =
31

64
.

Moreover, total endowments are modified with respect to the standard situation: w1 = w2 =
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Figure 11: Total intrinsic utility u (left) and total utility U (right), relative to utility without
consumption (u0 = w1 +w2); case [bII.1] with welfare reduction then shortage; varying vI

1

0.35.
Three cases are studied depending on the players’ inertia. In case 1, with (vI

1, v
I
2) = (2,10)

there is no overshooting. As shown in Figure 12 (right), the total contribution monotonously
increases towards the contribution under the Nash equilibrium. Correspondingly, Figure 13
(left) shows that the intrinsic utility also converges to its long-run value from below. Cases
2 and 3, with (vI

1, v
I
2) equal to (10,10) and (10,2), are characterized by overshooting: total

contribution exceeds XN at a given time and decays towards this value thereon. Similarly,
intrinsic utility surpasses its long-run value at this same time and converges towards it from
above. Moreover, if overshooting is so strong as to surpass XSO for a given interval, then the
total intrinsic utility that reaches its maximum at the beginning of this interval falls and rises
to reach again the social optimum at the end of this interval. From this moment on intrinsic
utility again decreases converging to its long-run value from above. Figures 11 and 13 (right)
show that the utility, U , in the case of shortage follows a similar behavior as in the case of
excess contribution (both with or without overshooting).

6.3 Players with inertia; equilibrium of type [bII.3]

We now show an example of an equilibrium of type [bII.3] (that is, with xN = (A1,0)), where
overshooting occurs for Player 2. The parameters are:

ε =
4

10
, α1 =

2

3
, α2 =

2

3
, vP

1 =
8

15
, vP

2 =
5

12
, vI

1 = 5, vI
2 = 1.

With these values, we have:

A1 =
3

4
A2 =

5

16
xN = (

3

4
,0) , XSO

=
5

8
.

The trajectory of individual and total contributions are shown on Figure 14. We see that the
contribution of Player 2 indeed becomes initially positive and it turns down to 0 in a second
phase. Player 1’s contribution slowly converges to the static Nash equilibrium, xN1 = 3/4, due
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to the large inertia parameter vI
1 and relatively small value of εα1 (specifically, vI

1/(v
I
1+εα1) =

75/79, see Appendix F.2). For the specified parameters values, total contribution increases
steadily towards its long-run value that surpasses the social optimum XN = 0.75 > XSO =

0.625. Correspondingly, the global intrinsic utility grows until the moment when the total
contribution reaches XSO and decays to its long-run value thereafter.
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Figure 14: Overshooting for a static equilibrium; case [bII.3]

7 Conclusions

Conspicuous consumption of a private good is typically associated with too high consumer
spending to maintain social status and hence inefficiency in terms of social welfare. However,
when the positional good is the private provision of a public good then, positional concerns
can induce positive contributions by selfish agents. This is analyzed by a two-player game
where each agent gets joy from absolute consumption (intrinsic utility) but also receives a
positional payoff from contributing more than her opponent. Players can be asymmetric in
their positional concerns and their public good valuation. In consequence, they typically wish
for different amount of public good.

The strategic interaction between the two agents is analyzed first as a one-shot game.
Players positively contribute if their positional concerns are strong enough. In that case
different equilibria are possible, depending on the players’ positional concerns, on endowments
and on public good valuation. The player who wishes the most always provides a positive
amount of public good. Conversely, the player who wishes the least only contributes if she
finds that some amount is still missing once the contribution by the other player is accounted
for.

Intrinsic utility increases with public good consumption at a decreasing rate. Too large
positional concerns can induce too much contribution placing the intrinsic utility above its
social optimum. We characterize the conditions for shortage or excess contribution. Moreover,
we also show that exceedingly large positional concerns can push contribution too high so
that intrinsic utility falls below the no contribution case.
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If players differ in their positional concerns (but equally value the public good), then the
region in the parameters’ space where positive contributions increase intrinsic utility is wider
than the region where it decreases, unless people satiate fast and give a small value to public
good consumption. If public good valuation is also asymmetric, then a rise in the intrinsic
utility with positional effects is more likely if the player with higher positional concern also
values the public good the most and vice versa.

Social welfare is defined as the addition of the total intrinsic utility plus the positional
payoffs. For this global measure the quest for status when the positional good is the contri-
bution to a public good very likely enhances social welfare. This is true in the symmetric
case as long as positional concerns are not too large and too even at the same time. In the
asymmetric case, if the player with the greatest positional concern also values public good
consumption the most, then positionality can worsen social welfare if the two players give
similar importance to status, even when this is small.

The second part of the paper analyzes the strategic interaction in a dynamic setting,
assuming that players are reluctant to changes, i.e. show inertia from previous actions.
Moreover, the status concern is defined with respect to the opponent’s previous contribution.
Although players are concerned on previous actions, they act myopically. We first characterize
the optimal trajectory of the dynamical system both in the interior as well as in the boundary.
It is proved that the contributions converge to one of the static Nash equilibria. Then we
present some numerical simulation for each type of Nash equilibrium, assuming for simplicity
that players are symmetric in their valuation of public good consumption. Starting from
the initial situations of zero contribution (which constitutes the Nash equilibrium without
positional effects), the player with the greatest positional concern monotonously raises her
contribution. The contribution of the player with the smallest positional concern can also rise
monotonously or, if she shows relatively less inertia that her opponent, then her contribution
can show overshooting. If strong enough, overshooting by this player can induce overshooting
in total contribution.

When overshooting happens for the total contribution, its effect on the trajectory for the
intrinsic utility depends on whether the total contribution in the long-run (Nash equilibrium)
is greater or lower than its value at the social optimum. When overshooting occurs, and if
contributions are in shortage in the long-run, then total intrinsic utility along the transition
is typically above its long-run value, contrary to the case without overshooting, characterized
by convergence from below. The opposite is true if contributions are in excess in the long
run.

The trajectory for the social welfare, which encompasses intrinsic utility plus the positional
payoffs, is strongly determined by these latter. Without overshooting, and regardless of
whether the long-run equilibrium is in shortage or in excess, a gap in the players’ contributions
is initially opened in favor of the player who values contribution the most, raising positional
payoffs and social welfare. As this gap narrows, social welfare decreases towards its long-
run value. Overshooting is generated by the player with the smallest positional concern
who initially contributes but reduces her contribution from a given time on, widening the
contribution gap in favor of the player with the greatest positional concern. In consequence,
from this moment on, positional payoffs for society rise and so does social welfare, that
converges to its long-run value from below.

The simulations carried out for the dynamic model show that it is possible that contri-
butions become temporary intrinsic welfare reducing within the transition, although in the
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long-run they improve intrinsic welfare. Examples have been found when the long-run equi-
librium is characterized by excess contribution, but not in the more realistic case of shortage
contribution. A better understanding of the dynamic model could shed light on whether this
is actually possible.

The analysis presented in this paper opens the doors to several extensions. A first exten-
sion would be the assumption of multiple agents. With more than two players, the positional
concern of a given player could be defined as the result from the comparison of her contri-
bution against either the average or the maximum of all other players’ contributions. We
believe that the first alternative is probably suited for an analytical solution, at least in the
quadratic framework of the present paper. The second alternative looks more challenging.

Another direction for extensions is towards the introduction of other kinds of subjective
behavior. When taking into account the influence of social context, we have focused on the
“snob effect”, or the desired of the people for exclusivity, or to distinguish themselves from
the “common herd”. However, one could also focus on the desire of some consumers to be
“in style”, known in the literature as the “bandwagon effect”. Likewise, one could think of
the existence of individuals with more pro-social behavior.

In the dynamic model, we have started by considering myopic agents. An interesting
extension would consider farsighted agents, who care not only on other players’ current or
past contributions, but also on the accumulated amount.
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A Equilibria of the static game

Proof of Proposition 1. Let (xN
1 , x

N
2 ) be a Nash equilibrium. Not considering the con-

straints on contributions xi, the first-order conditions are:

0 =
∂Ui
∂xi

= −1 + b′i(x1 + x2) + v
P
i , i = 1,2. (25)

Since b′i(⋅) is strictly decreasing (bi is strictly concave), there is at most one solution X ≥ 0
to the equation b′i(X) = 1 − vP

i . Assume first that there exists, for each i = 1,2, such a
contribution Ai ≥ 0 such that b′i(Ai) = 1 − vP

i . Then if the Nash equilibrium solves (25), this
implies XN = xN

1 + x
N
2 = Ai for i = 1,2. If Ai = Aj ≥ 0, every couple (x1, x2) that satisfies this

equality and the constraints on contributions, is a Nash equilibrium. This is statement bI).
On the other hand, if Ai /= Aj , there are no solutions to this equation and hence no interior

solution. We then have to compute the best response functions. The best response of Player
i to Player j’s play xj is:

xbi(xj) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 if Ai ≤ xj

Ai − xj if Ai −wi ≤ xj ≤ Ai

wi if xj ≤ Ai −wi.

(26)

A general diagram of the superposition of both Players’ best responses is as in Figure 15.

wj

w′
j

w′′
i

w′
i wi

xj

xi

Ai

Aj

AiAj

Figure 15: Superposition of best responses

From this figure, we derive the following cases. Without loss of generality, Ai > Aj : the
reverse case can be obtained by exchanging the roles of i and j.

• If min{Ai,Aj} ≥ w1 + w2, there is a unique intersection at: xi = wi, i = 1,2. This
configuration is marked with w′

i and w′
j in Figure 15. This is statement a);

• If Ai ≤ 0 and Aj ≤ 0, there is a unique intersection at xi = 0, i = 1,2. This is statement
c).
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• If wi ≤ Aj < Ai but w1 +w2 > Aj , there is a unique intersection at:

xi = wi, xj = Aj −wi.

This is the configuration marked with w′
i and wj in Figure 15. It corresponds to state-

ment [bII.1].

• If Aj ≤ wi ≤ Ai and Aj < Ai, there is a unique Nash equilibrium at:

xi = wi, xj = 0.

This is the configuration marked with w′′
i in the figure. It corresponds statement [bII.2].

• If wi ≥ Ai > Aj , there is a unique Nash equilibrium at:

xi = Ai, xj = 0.

This is the configuration marked with wi and wj in the figure. It corresponds to state-
ment [bII.3].

There remains to consider the situation where no positive contribution Ai solves the equation
0 = −1 + vP

i + b
′
i(Ai), at least for one i ∈ {1,2}. If b′i(X) < −1 + vP

i for all X ≥ 0, the best
response xbi(xj) is always 0. The preceding reasoning applies with Ai = 0. On the other
hand, if b′i(X) > −1 + vP

i for all X, the best response of Player i is always wi. The preceding
reasoning applies then with Ai = wi. This concludes the proof of Proposition 1.

As a complement, this parametric discussion is synthesized again in Figure 16 with Ai
and Aj as variables instead of wi and wj . The situation illustrated is such that wj ≤ wi. The
reverse situation can be obtained by exchanging Player i and j.

(wi, wj)

0
0

wi + wj

wi + wj

wj

Ai

Aj

(Ai, 0)
(0, Aj) [bII.2]

[bII.3]

(wi, 0)

[bII.1]

(wi, Aj − wi)

(wi, wj)

(wi, wj)
[a]

(0, 0) wi
[c]

(0, wj)

(Ai − wj, wj)

x i
+
x j
=
A

[bI
]

Figure 16: Nash equilibria as a function of (Ai,Aj)

B Proof of Proposition 2

Proof. In the symmetric case the assumption Ai > Aj is equivalent to vP
i > vP

j . Under
this assumption the three equilibria in [bII] and the conditions for IW-I or IW-R can be
summarized as:
with Θ̂ = 1 − α + 2αεw = Θ + αεw > Θ.
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[bII.1] [bII.2] [bII.3]

Condition Θ < vP
j < Θ̂ vP

j ≤ Θ < vP
i vP

j < v
P
i < Θ

IW-I vP
j < α ε < ε̂ vP

i < α

IW-R vP
j > α ε > ε̂ vP

i > α

1. If ε < ε̂(Θ < α), then

[bII.1] Θ < min{vP
j , α} ⇒ IW − I(vP

j < α) or IW −R(vP
j > α)

[bII.2] w >XE0 ⇒ IW − I
[bII.3] vP

i < Θ < α ⇒ IW − I

2. If ε > ε̂(α < Θ), then

[bII.1] α < Θ < vP
j ⇒ IW −R

[bII.2] w <XE0 ⇒ IW −R
[bII.3] Θ > max{vP

i , α} ⇒ IW −R(vP
i > α) or IW − I(vP

i < α).

The areas in the (vP
i , v

P
j ) plane of the IW-I and IW-R regions in cases [a] and [b], where

some public good is provided can be compared as follows:

1. If ε < ε̂ ⇐⇒ Θ < α,

IW − I =
1

2
− (1 − α)2 IW −R =

(1 − α)2

2
.

Region IW-I is larger or smaller than IW-R if and only if (1−α)2 ≶ 1/3. Since (1−α)2 ≤
1/4 for α ∈ (1/2,1), one gets IW − I > IW −R for all feasible α ∈ (1/2,1).

2. If ε > ε̂ ⇐⇒ α < Θ,

IW − I =
2α − 1

2
, IW −R =

1 − α2

2
.

Region IW − I is larger or smaller than IW − R if and only if α2 + 2α − 2 ≷ 0. This
convex parabola has a negative root, −1 −

√
3, and a positive root, −1 +

√
3. Because

α > 1/2, one gets:

α ∈ (1
2 ,

√
3 − 1) IW − I < IW −R,

α ∈ (
√

3 − 1,1) IW − I > IW −R.

C Proof of Proposition 3

Proof. The slope of the isoclines for the social welfare, in the symmetric case can be computed
from (12) as:

(vP
i )

′
(vP
j ) ≡ −

dUN

dvPj

dUv
dvPi

,=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − α
vP
i + v

P
j − 1

vP
j − Θ̂

[bII.1],

1 [bII.2],
vP
i − (1 − α)

α − vP
j

[bII.3].

(27)
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In cases [bII.1] and [bII.2]
dUN

dvP
i

> 0 and hence
dUN

dvP
i

+
dUN

dvP
j

⋛ 0 is equivalent to (vP
i )

′(vP
j ) ⋚ 1.

Case [bII.1] is characterized by vP
j < Θ̂ and then (vP

i )
′(vP

j ) ⋚ 1 ⇔ vP
i + v

P
j ⋚ 1. In case [bII.2]

(vP
i )

′(vP
j ) is always equal to one.

In case [bII.3]
dUN

dvP
j

< 0 and

sign(vP
i )

′
(vP
j ) = sign(

dUN

dvP
i

) = sign (α − vP
j ) .

Thus, for vP
j < α,

dUN

dvP
i

+
dUN

dvP
j

⋛ 0 is again equivalent to (vP
i )

′(vP
j ) ⋚ 1 i.e. vP

i +v
P
j ⋚ 1. However,

for vP
j > α (the case with (vP

i )
′(vP

j ) < 0), sign(dU
N

dvPi
) = sign(dU

N

dvPj
) < 0 and in consequence

dUN

dvP
i

+
dUN

dvP
j

< 0. Note that in this case, because we are assuming vP
i > 1 − α, it immediately

follows that vP
i + v

P
j > 1.

D Proof of statement [R0] in Proposition 4

Proof. The best reaction function of the static case is (see (26))

rSi (xj) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

wi if rbi (xj) ≥ wi

rbi (xjt) if 0 ≤ rbi (xj) ≤ wi

0 if rbi (xj) ≤ 0,

where rbi (xj) = Ai − xj (28)

and the Nash static equilibrium verifies xi = r
S
i (xj) for i, j ∈ {1,2}, i /= j.

If the dynamic process has a steady state, at the steady state the reaction function reads
rD∞i (xi, xj) = r

D
i (xj ;xi), with:

rD∞i (xi, xj) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

wi if r∞i (xi, xj) ≥ wi

r∞i (xi, xj) if 0 ≤ r∞i (xi, xj) ≤ wi

0 if r∞i (xi, xj) ≤ 0,

where r∞i (xi, xj) =
αiε(Ai − xj) + v

I
ixi

vI
i + αiε

,

(29)
and the steady state satisfies x∞i = rD∞i (x∞i , x

∞
j ) for i /= j.

We are going to see that

x∞i = rD∞i (x∞i , x
∞
j ) ⇐⇒ x∞i = rSi (x

∞
j ).

In fact

0 < r∞i (x∞i , x
∞
j ) < wi ⇐⇒ 0 < x∞i =

αiε(Ai − x
∞
j ) + vI

ix
∞
i

vI
i + αiε

< wi,

⇐⇒ wi(v
I
i + αiε) >

Φi − αiεx
∞
j

αiε
> 0 ⇐⇒ wi > r

b
i (x

∞
j ) > 0,

⇐⇒ 0 < x∞i =
Φi − αiεxj

αiε
< wi ⇐⇒ x∞i = rSi (x

∞
j ).

The same reasoning applies if ri(x
∞
j ) ≤ 0 or ri(x

∞
j ) ≥ wi.
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E Analysis of the free dynamics

E.1 General principles

Consider a linear recurrence of the form:

(
xit
xjt

) =M (
xit−1
xjt−1

) + (
µi
µj

) (30)

which is the case of (21). The general solution to recurrence (30) is:

(
xit
xjt

) =M t
(
xi0
xj0

) + (M t−1
+M t−2

+⋯ + I)(
µi
µj

) . (31)

The general analysis of powers of matrices concludes that, in the case where matrix M has two
distinct eigenvalues, λ1 and λ2, or one unique eigenvalue but with an eigenspace of dimension
2, there exist two rank-1 matrices M1 and M2 such that for any integer n,

Mn
=M1λ

n
1 +M2λ

n
2 .

This is known as a spectral decomposition. By convention, ∣λ2∣ ≤ ∣λ1∣.
In the practical situations we face in this paper, it is known that ∣λ1∣ ≤ 1 and ∣λ2∣ < 1.

When replacing the spectral decomposition in (31), three cases should be distinguished.

λ1 = 1 and ∣λ2∣ < 1: then

(
xit
xjt

) =M1 [(
xi0
xj0

) + t(
µi
µj

)] +M2 [λ
t
2 (

xi0
xj0

) +
1 − λt2
1 − λ2

(
µi
µj

)] . (32)

λ1 = −1 and ∣λ2∣ < 1: then

(
xit
xjt

) =M1 [(−1)t (
xi0
xj0

) +
1 − (−1)t

2
(
µi
µj

)] +M2 [λ
t
2 (

xi0
xj0

) +
1 − λt2
1 − λ2

(
µi
µj

)] . (33)

∣λ1∣ < 1 and ∣λ2∣ < 1: then

(
xit
xjt

) =M1 [λ
t
1 (

xi0
xj0

) +
1 − λt1
1 − λ1

(
µi
µj

)] +M2 [λ
t
2 (

xi0
xj0

) +
1 − λt2
1 − λ2

(
µi
µj

)] . (34)

This last form will not be used in the present paper.

E.2 Application to the positional dynamics

There are three dynamics that can be constructed with the positional game, depending on
how the utility of players at time t depends on present and past contributions. The main
dynamics (defined with (13) in Section 5) has the intrinsic utility based on present values and
the positional part based on the past value of the opponent; an alternative “based on present
values” would have the positional term depend on the present contribution of the opponent;
finally, an alternative “based on past values” would have all the utility depend solely on the
past value of the opponent’s contributions.
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As far as the definition of the dynamics is concerned, the main dynamics of Section 5
and the alternative based on present values are equivalent: this is due to the fact that the
first-order conditions for both players are the same. On the other hand, the alternative based
on past values leads to a distinct dynamics. Observe however that when each player bases
their utility on past contributions of opponent, there is no game to be solved anymore: players
simply solve an optimal control problem.

In the following analysis, we first derive general formulas that apply to all variants of
the dynamics. We then specialize these formulas to the main dynamics of Section 5 (in
Section E.2.3), then to the alternative based on past values (in Section E.2.4).

E.2.1 Features common to all dynamics

The dynamics studied here being linear, we adopt a matrix/vector notation. We will denote
with x′ the transpose of vector x.

The recurrences obtained by solving the first-order equations can be written as: xt =
Mxt−1 + V

0. By construction, in all cases the matrix M has λ1 = 1 as an eigenvalue, and
u = (1,−1)′ as corresponding eigenvector. This implies (from the spectral decomposition in-
troduced in Section E.1) that there exists a row vector v′ and a column vector v̄ perpendicular
to v′, such that M1 = u.v

′ and M2 = v̄.ū
′ with ū′ = (1,1), and M = M1 +M2. It also holds

that v′.u = ū′.v̄ = 1.
The solution of the recurrence is then given by (32). We reorganize this expression as

follows, using the property that M1 +M2 = I:

xt =M1(x0 + tV
0
) +M2 (λ

t
2x0 +

1 − λt2
1 − λ2

V 0
)

= x0 +M1V
0 t +M2 (−x0 + λ

t
2x0 +

1 − λt2
1 − λ2

V 0
)

= x0 + (v′.V 0
) t(

1
−1

) + (1 − λt2)(
ū′.V 0

1 − λ2
− ū′.x0) v̄. (35)

The total contribution Xt = xit + xjt = ū
′.xt is deduced from (35) as:

Xt =X0 + (1 − λt2)(
ū′.V 0

1 − λ2
−X0) ū

′.v̄

=X0 + (1 − λt2) (X
∗
−X0) , (36)

where

X∗
=

ū′.V 0

1 − λ2
. (37)

In the case where ∣λ2∣ < 1, this sequence converges to X∗ which can then be interpreted as a
limit contribution. Finally, introducing δ = v′.V 0, we can write the solution of the dynamics
as:

xt = x0 + δtu + (1 − λt2) (X
∗
−X0) v̄. (38)

The geometric interpretation is that points of the trajectory are obtained from the initial
position with a displacement proportional to t in the direction u = (1,−1)′, plus a displacement
in the direction v̄.
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E.2.2 Overshooting

Overshooting occurs when the contribution of a player exceeds that of the “ideal” or “equi-
librium” situation at some point of the dynamics, given that the contribution is initially
lower.

Overshooting for the total contribution. In order to analyze the possibility of over-
shooting for a part of the trajectory that lies inside the domain of constraints for contributions,
consider first the total contribution Xt, given by (36), or equivalently by:

X∗
−Xt = λt2 (X

∗
−X0) .

Since the initial contribution is assumed to be lower than the “ideal” one, represented here
by X∗, we have: X∗ −X0 > 0. In both dynamic systems, it turns out that −1 ≤ λ2 < 1. If
λ2 ∈ [0,1), the sequence Xt is then monotone and no overshooting occurs. On the other hand,
if λ2 ∈ [−1,0), the sign of X∗ −Xt alternates between positive and negative, and overshooting
necessarily occurs for at least one of the players.

When λ2 ∈ [0,1), the sequence of total contributions is increasing monotonously, as long
as it stays inside the domain of constraints. However, when one of the constraints is met,
the dynamics change, and it is possible that this sequence of total contributions decrease.
Overshooting can therefore occur because of this phenomenon.

Overshooting for individual contributions. We continue the discussion under the hy-
pothesis that λ2 ∈ [0,1): there is still the possibility that overshooting occurs for one of the
players, in the part of the trajectory that lies inside the domain. The explicit solution for the
dynamics is given by (35) or (38). Taking the difference between values xt and xt−1, we have:

xt − xt−1 = δu + λt−12 (1 − λ2)(X
∗
−X0)v̄ .

As it turns out, the components of vector v̄ are both nonnegative, and have seen that u =

(1,−1)′. Since ui = 1, the component of vector xt − xt−1 corresponding to player i is always
positive. This means that contributions of this player are monotonously increasing and no
overshooting occurs for her. For the component corresponding to player j, we have the
equivalences:

(xt − xt−1)j ≶ 0

−δ + λt−12 (1 − λ2)(X
∗
−X0)v̄j ≶ 0

λt−12 ≶
δ

(1 − λ2)(X∗ −X0)v̄j
. (39)

Overshooting occurs if, and only if, the inequality varies from “>” to “<” as t increases. This
in turn is equivalent to right-hand side of (39) being in the interval (0,1). In that case
indeed, the sequence λt−12 decreases from 1 to 0 and the direction of the inequality changes.
The necessary and sufficient condition for overshooting is therefore:

0 < δ < (1 − λ2)(X
∗
−X0)v̄j . (40)

Observe that if Ai = Aj , that is, if δ = 0, no overshooting can occur: the sequence of contri-
bution of both players is monotonously increasing.
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E.2.3 Application to the main dynamics

Consider the dynamics specifically defined by (21). In this situation, the spectral decompo-
sition of matrix M takes the form:

M =
1

αivI
j + αjv

I
i

(
αjv

I
i −αiv

I
j

−αjv
I
i αiv

I
j
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
M1

+
vI
iv

I
j

vI
iv

I
j + ε(αiv

I
j + αjv

I
i)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
λ2

1

αivI
j + αjv

I
i

(
αiv

I
j αiv

I
j

αjv
I
i αjv

I
i

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
M2

. (41)

In the notation of the general solution (35), we have:

λ2 =
vI
iv

I
j

vI
iv

I
j + ε(αiv

I
j + αjv

I
i)
, v′ =

1

αivI
j + αjv

I
i

(αjv
I
i −αiv

I
j) , v̄ =

1

αivI
j + αjv

I
i

(
αiv

I
j

αjv
I
i

) . (42)

The vector V 0 of the dynamics (21) is here:

V 0
=

ε

vI
iv

I
j + ε(αiv

I
j + αjv

I
i)

(
vI
jαiAi + εαiαj(Ai −Aj)

vI
iαjAj + εαiαj(Aj −Ai)

) .

Still referring to the explicit solution of the recurrence given by (35), we evaluate the leading
coefficient v.V 0. It is simplified as:

δ ∶= v′.V 0
=

1

αivI
j + αjv

I
i

ε

vI
iv

I
j + ε(αiv

I
j + αjv

I
i)

(αjv
I
i −αiv

I
j)(

vI
jαiAi + εαiαj(Ai −Aj)

vI
iαjAj + εαiαj(Aj −Ai)

)

=
ε

αivI
j + αjv

I
i

αjv
I
i(v

I
jαiAi + εαiαj(Ai −Aj)) − αiv

I
j(v

I
iαjAj + εαiαj(Aj −Ai))

vI
iv

I
j + ε(αiv

I
j + αjv

I
i)

=
ε

αivI
j + αjv

I
i

αiαjv
I
iv

I
j(Ai −Aj) + εαiαj(Ai −Aj)(αjv

I
i + αiv

I
j)

vI
iv

I
j + ε(αiv

I
j + αjv

I
i)

=
εαiαj(Ai −Aj)

αivI
j + αjv

I
i

. (43)

Next, the limit contribution X∗ defined in (37) is:

X∗
=
vI
iv

I
j + ε(αiv

I
j + αjv

I
i)

ε(αivI
j + αjv

I
i)

ε

vI
iv

I
j + ε(αiv

I
j + αjv

I
i)

(1 1)(
vI
jαiAi + εαiαj(Ai −Aj)

vI
iαjAj + εαiαj(Aj −Ai)

)

=
vI
jαiAi + v

I
iαjAj

αivI
j + αjv

I
i

. (44)

This is a convex combination of the wished amounts Ai and Aj , so the quantity X∗ lies
between these values.

Overshooting. Applying (40) to this case, we find that the necessary and sufficient condi-
tion for overshooting (of Player j’s contribution) can be written as:

0 <
εαiαj(Ai −Aj)

αivI
j + αjv

I
i

<
ε(αiv

I
j + αjv

I
i)

vI
iv

I
j + ε(αiv

I
j + αjv

I
i)

(X∗
−X0)

αjv
I
i

αivI
j + αjv

I
i

0 < αi(Ai −Aj)(v
I
iv

I
j + ε(αiv

I
j + αjv

I
i)) < (αiv

I
j + αjv

I
i)

⎛

⎝

vI
jαiAi + v

I
iαjAj

αivI
j + αjv

I
i

−X0
⎞

⎠
vI
i

0 < αi(Ai −Aj)(v
I
iv

I
j + ε(αiv

I
j + αjv

I
i)) < v

I
i(αiv

I
j(Ai −X0) + αjv

I
i(Aj −X0)) .
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So, in addition to the necessary condition Ai ≥ Ai, we must have:

αi(Ai −Aj)(v
I
iv

I
j + ε(αiv

I
j + αjv

I
i)) < v

I
i(αiv

I
j(Ai −Aj) + (αiv

I
j + αjv

I
i)(Aj −X0))

αi(Ai −Aj)ε(αiv
I
j + αjv

I
i)) < v

I
i(αiv

I
j + αjv

I
i))(Aj −X0)

Ai −Aj <
vI
i

εαi
(Aj −X0) . (45)

E.2.4 Application to the dynamics based on past values

Alternative dynamics can be constructed if the assumptions in (13) are different. Each agent
could use the last observation of the opponent’s action to estimate the total contribution to
the PG. Conversely, each agent could use the current play of the opponent in the subjective
part.

In the latter case, the only difference in the utility functions is the term “vP
i (xit − xjt−1)”

which becomes “vP
i (xit − xjt)”. However, this does not modify the first-order conditions of

the player’s optimization problem. The solution is then exactly the one studied in sections
E.2.3.

In the former case, the problem is effectively modified. Consider the utility for Player i:

Ui(●) = wi − xit + αi [xit + xjt−1 −
ε

2
(xit + xjt−1)

2
] −

vI
i

2
(xit − xit−1)

2
+ vP

i (xit − xjt−1). (46)

Solving for the first-order equations, we obtain a recurrence of the form xt =Mxt−1 +V
0 with

elements:

M =

⎛
⎜
⎜
⎜
⎜
⎝

vI
i

εαi + vI
i

−
εαi

εαi + vI
i

−
εαj

εαj + vI
j

vI
j

εαj + vI
j

⎞
⎟
⎟
⎟
⎟
⎠

V 0
=

⎛
⎜
⎜
⎜
⎝

εαiAi
εαi + vI

i
εαjAj

εαj + vI
j

⎞
⎟
⎟
⎟
⎠

.

In this situation, the spectral decomposition of matrix M takes the form:

M =
1

αivI
j + αjv

I
i + 2εαiαj

(
1
−1

)(αj(v
I
i + εαi) −αi(v

I
j + εαj))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
M1

+
vI
iv

I
j − ε

2α1α2

(vI
i + εαi)(v

I
j + εαj)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
λ2

1

αivI
j + αjv

I
i + 2εαiαj

(
αi(v

I
j + εαj)

αj(v
I
i + εαi)

) (1 1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
M2

. (47)

In the notation of the general solution (35), we have:

λ2 =
vI
iv

I
j − ε

2α1α2

(vI
i + εαi)(v

I
j + εαj)

, v̄ =
1

αivI
j + αjv

I
i + 2εαiαj

(
αi(v

I
j + εαj)

αj(v
I
i + εαi)

) , (48)

and v′ the row vector perpendicular to v̄ with the same norm. The explicit solution of the
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recurrence is given by (35). The coefficient δ of the leading term is:

δ = v′.V 0
=

1

αivI
j + αjv

I
i + 2εαiαj

(αj(v
I
i + εαi) −αi(v

I
j + εαj))

⎛
⎜
⎜
⎜
⎝

εαiAi
vI
i + εαi
εαjAj

vI
j + εαj

⎞
⎟
⎟
⎟
⎠

=
1

αivI
j + αjv

I
i + 2εαiαj

(εαiαjAi − εαiαjAj)

=
εαiαj(Ai −Aj)

αivI
j + αjv

I
i + 2εαiαj

. (49)

Next, particular total contribution X∗ defined in (37) is:

X∗
=

(vI
i + εαi)(v

I
j + εαj)

ε(αivI
j + αjv

I
i + 2εαiαj)

(1 1)

⎛
⎜
⎜
⎜
⎝

εαiAi
vI
i + εαi
εαjAj

vI
j + εαj

⎞
⎟
⎟
⎟
⎠

=
(vI
i + εαi)(v

I
j + εαj)

ε(αivI
j + αjv

I
i + 2εαiαj)

εαiAi(v
I
j + εαj) + εαjAj(v

I
i + εαi)

(vI
i + εαi)(v

I
j + εαj)

=
αiAi(v

I
j + εαj) + αjAj(v

I
i + εαi)

αivI
j + αjv

I
i + 2εαiαj

. (50)

This is again a convex combination of the wished amounts of each player.
In summary, the solution of the recurrence is then:

(
xit
xjt

) = δt (
1
−1

) + (
xi0
xj0

) + (1 − λt2)
X∗ −X0

αivI
j + αjv

I
i + 2εαiαj

(
αi(v

I
j + εαj)

αj(v
I
i + εαi)

) , (51)

where now, according to (48), (49) and (50),

δ =
εαiαj(Ai −Aj)

αivI
j + αjv

I
i + 2εαiαj

λ2 =
vI
iv

I
j − ε

2αiαj

(εαi + vI
i)(εαj + v

I
j)

X∗
=
αi(v

I
j + εαj)Ai + αj(v

I
i + εαi)Aj

αivI
j + αjv

I
i + 2εαiαj

.

This second eigenvalue is such that ∣λ2∣ ≤ 1 and there is equality when vI
i = v

I
j = 0 (no inertia),

in which case λ2 = −1. Observe that, in contrast with the case studied in Section E.2.3, this
eigenvalue λ2 can be negative. When there is inertia, the situation is formally equivalent to
the one studied in Section E.2.3, and we have globally the same conclusions. Note however
that since λ2 is not necessarily positive, oscillations are possible in the trajectories. These
oscillations converge when there is inertia (because ∣λ2∣ < 1) but not when λ2 = −1. We
proceed with the details in each case.

Players with inertia – dynamics based on the past. When players have the same
wished amount Ai = Aj = A, the leading term δt in (51) vanishes and we observe a convergence
to the limit point

(
x∗i
x∗j

) = (
xi0
xj0

) +
X∗ −X0

αivI
j + αjv

I
i + 2εαiαj

(
αi(v

I
j + εαj)

αj(v
I
i + εαi)

) .
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This limit point depends on the initial contribution, and its geometric interpretation is the
same as in Section 5.3.2.

When players have different wished amounts, we have the same asymptotic behavior as
described in Section 5.3.2. Without the constraints on budget and positivity of contributions,
the sequence of contribution vectors would go to infinity, with an asymptotic transfer of δ
units from the player who wishes the largest amount to the other player.

Because of the constraints, the trajectory will hit the boundary of feasible contributions in
finite time. The behavior after it does should be again similar to the situation in Section 5.3.2
when 0 ≤ λ2 < 1. It may however be more complex if λ2 < 1. The details are not addressed in
this document.

Players without inertia – dynamics based on the past. When there is no inertia, the
recurrence (51) actually reduces to

xit = Ai − xjt−1

xjt = Aj − xit−1.

This implies that xit = Ai −Aj + xit−2 with the obvious solution xit = t(Ai −Aj)/2 + xi0 when
t is even, or xit = t(Ai − Aj)/2 + (Ai + Aj)/2 − xj0 when it is odd. The total contribution
oscillates between X2m =X0 and X2m+1 =X

∗ −X0 = (Ai +Aj)/2 −X0.
If Ai /= Aj , the situation is similar to that of Section 5.3.2, except that contribution

vectors keep oscillating as they diverge in the direction (1,−1)′, until they hit the boundary
of feasible contributions.16 If Ai = Aj = A, the contributions alternate between (xi0, xj0) and
(A−xj0,A−xi0) (provided this second vector of contributions satisfies the budget constraints).
The point in the middle is the symmetric Nash equilibrium (A,A). It does not depend on
the initial position.

F Dynamics on the boundary

In this section, we discuss the dynamics on the boundary of the domain of constraints, for
the dynamics described in Section 5. The corresponding analysis for the alternate dynamics
presented in Section E.2.4 is left for future research.

Without loss of generality, we restrict the discussion to the case Ai ≥ Aj . Of particular
interest, in view of our simulations, are the cases where either xi = wi, or xj = 0. The case
where xj = wj is also relevant.

With the purpose of simplifying some expressions, we introduce the new notation θi ∶=
vI
i/(αiε) for i = 1,2.

F.1 Dynamics on xi = wi

When a contribution vector is xt−1 = (wi, xjt−1), it is not always the case that the next
contribution will still be on the boundary xi = wi. This will be the case however if the
contribution xt−1 is close enough to the equilibrium and the equilibrium lies on the same
boundary. We analyze this situation now.

16The dynamics after this occurs is not studied in this document.
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Assume that the state of the dynamical system is xt−1 = (wi, y) for some 0 ≤ y ≤ wj .
Assume also that the equilibrium is of type [a], [bII.1] or [bII.2], referring to the typology
of Nash equilibria identified in Proposition 1. These are the cases where xNi = wi. Observe
that in these three cases, Ai > 0, but that Aj may be zero in case [bII.2]. According to the
dynamic best response of players specified in (18), we find that, whenever Aj > 0:

rDi (xj) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

wi if xj ≤ Ai −wi
Ai − xj + θiwi

1 + θi
if Ai −wi ≤ xj ≤ Ai + θiwi

0 if xj ≥ Ai + θiwi

(52)

rDj (xi) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

wj if xi ≤ Aj −wj + θj(y −wj)
Aj − xi + θjy

1 + θj
if Aj −wj + θj(y −wj) ≤ xi ≤ Aj + θjy

0 if xi ≥ Aj + θjy.

We are interested in characterizing the situations where xt−1 = (wi, y) implies xt = (wi, y
′).

The latter condition is equivalent to

wi = r
D
i (y′) and y′ = rDj (wi).

which is itself equivalent to:

y′ ≤ Ai −wi and y′ = rDj (wi). (53)

The principal results are summarized in the following proposition. It essentially states
that when Player i arrives from the interior to the frontier xi = wi, her contribution stays
forever at wi, and that of Player j converges monotonously to the static equilibrium.

Proposition 7 Assume the vector of contributions at time t−1 is such that xit−1 = wi. Then,

a) in case [a], then xt = (xit, xjt) = (wi, r
D
j (wi)); moreover, the sequence xjt converges

monotonically thereon to the Nash equilibrium;

b) in cases [bII.1] or [bII.2], then xt = (xit, xjt) = (wi, r
D
j (wi)) if the condition

θjxjt−1 ≤ Ai −Aj + θj(Ai −wi) (54)

is satisfied; in that case, the sequence xjt converges monotonically thereon to the Nash
equilibrium.

c) if xit−1 results itself from one step of the dynamics, then Condition (54) is satisfied.

Note that, according to Statement [R1a], any trajectory in cases [bII.1] or [bII.2] will
eventually hit the boundary xi = wi. Then because of Proposition 7 c), there must exist a t
such that xjt−1 verifies (54).

We prove the proposition for each type of static Nash equilibrium.
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Type [a]. The conditions for this case are: Ai,Aj ≥ wi+wj . Since Ai−wi ≥ wj and xj ≤ wj ,
the first case in the definition of rDi always holds and rDi (xj) = wi whatever xj may be. We
now discuss the position of xjt with respect to xjt−1.

Since Aj ≥ wi, the last case in the definition of rDj (wi) never holds. Then, rDj (wi) is either
wj , in which case it is larger than xjt−1; or it is given by

xjt =
Aj −wi + θjxjt−1

1 + θj
. (55)

Since this is the convex combination of Aj − wi ≥ wj and xjt−1 ≤ wj , this value is therefore
also larger than xjt−1. In both cases xjt ≥ xjt−1. This proves statement a) of Proposition 7.

Type [bII.1]. The conditions for this case are wi < Aj < wi + wj and Aj ≤ Ai. As in the
previous case, since Aj > wi, the third case in the definition of rDj (wi) never holds. But since
wi > Aj − wj and θj(y − wj) ≤ 0, the first case in this definition never occurs either. The
only remaining case is that y′ is given by (55). Then, the conditions (53) are equivalent to
y′ ≤ Ai −wi, that is:

Aj −wi + θjy ≤ (1 + θj)(Ai −wi)

θjy ≤ Ai −Aj + θj(Ai −wi),

which is (54).
We now turn to the monotonicity of the sequence xjt. Since xjt is given by (55), it is

a convex combination of the Nash equilibrium Aj −wi and the previous location xjt−1: it is
therefore closer to the Nash equilibrium Aj −wi. If xjt−1 ≥ Aj −wi, then xjt ≤ xjt−1 so that xjt
still satisfies (54). If xjt−1 < Aj −wi, then xjt is still smaller than Aj −wi and it also satisfies
(54). Therefore the new contributions xt still satisfy the conditions of Proposition 7 and the
trajectory stays on the boundary forever, while getting closer to the Nash equilibrium. This
proves statement b) of Proposition 7 for equilibria of type [bII.1].

Type [bII.2]. The conditions for this case are Aj ≤ wi < Ai. We develop the argument for
the case where Aj > 0 and rDj (wi) is given by the formula above. When Aj = 0, the argument
still holds with Aj replaced with Φj/(αjε) ≤ 0. The inequality Aj ≤ wi implies that the first
case in the definition of rDj (wi) never holds. Then, the conditions (53) are equivalent to:

y′ ≤ Ai −wi and y′ =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Aj −wi + θjy

1 + θj
if Aj −wj + θj(y −wj) ≤ wi ≤ Aj + θjy

0 if wi ≥ Aj + θjy.

A first situation occurs when

wi −Aj ≤ θjy ≤ wi +wj −Aj + θjwj . (56)

Then y′ is given by (55) and the conditions (53) reduce to (54) as in the case of type [bII.1]
equilibria. A second situation occurs when

θjy ≤ wi −Aj . (57)

Then, since y′ = 0 ≤ Ai−wi, the conditions (53) are satisfied. In summary, if either (57) holds,
or both (54) and (56) hold, then (wi, y

′) is a Nash equilibrium. In all other cases, it is not.
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Since (57) implies (54), we conclude that when Condition (54) is satisfied, the next-step Nash
equilibrium is (wi, y

′).
Concerning monotonicity and convergence: when xt = (wi, y

′), it is checked that xjt ≤
xjt−1: either xjt is 0, or it is given by (55) which is a convex combination of some negative
quantity and xjt−1. In both cases, xjt ≤ xjt−1 and xjt also satisfies (54). This proves statement
b) of Proposition 7 for equilibria of type [bII.2]. The proof of this statement is now complete.

Joining the boundary from the interior. There remains to prove statement c) of Propo-
sition 7. Assume indeed that xt−1 = (wi, xjt−1) is a Nash equilibrium of Problem (14) for some
(xit−2, xjt−2). Then xit = wi is the best response of Player i, so that, from (18) and (16) (re-
member that, since Ai ≥ 0, αi − 1 + vP

i = αiεAi) we must have

ri(xjt−1;xit−2) ≥ wi

Ai − xjt−1 + θixit−2 ≥ wi(1 + θi)

xjt−1 ≤ Ai −wi − θi(wi − xit−2) ≤ Ai −wi.

This inequality implies (54) holds. This proves statement c) of Proposition 7.

F.2 Dynamics on xj = 0

When a contribution vector is xt−1 = (xit−1,0), it is not always the case that the next contri-
bution will still be on the boundary xj = 0. This will be the case however if the contribution
xt−1 is close enough to the equilibrium and this equilibrium lies on the same boundary. We
analyze this situation now.

Assume that the state of the dynamical system is xt−1 = (z,0) for some 0 ≤ z ≤ wi. Assume
also that the static Nash equilibrium is of type [bII.2], [bII.3] or [c], that is, such that xNj = 0.
According to the dynamic best response of players specified in (18), we find that, whenever
Ai > 0 and Aj > 0:

rDi (xj) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

wi if xj ≤ Ai −wi − θi(wi − z)
Ai − xj + θiz

1 + θi
if Ai −wi − θi(wi − z) ≤ xj ≤ Ai + θiz

0 if xj ≥ Ai + θiz

rDj (xi) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

wj if xi ≤ Aj −wj − θjwj
Aj − xi

1 + θj
if Ai −wj − θjwj ≤ xi ≤ Aj

0 if xi ≥ Aj .

(58)

If Aj = 0, these formulas hold with Aj replaced with Φj/(αjε), possibly a negative quantity.
Similarly for Ai = 0.

We are interested in situations where xt−1 = (z,0) implies xt = (z′,0). The latter condition
is equivalent to rDi (0) = z′ and rDj (z′) = 0. This in turn is equivalent to

rDi (0) = z′ and z′ ≥ Aj . (59)

The principal results are summarized in the following proposition. Similar to Propo-
sition 7, it states that when Player j arrives from the interior to the frontier xj = 0, her
contribution stays forever at 0, and that of Player i converges monotonously to the static
equilibrium.
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Proposition 8 Assume the vector of contributions at time t−1 is such that xjt−1 = 0. Then,

a) in case [c], then xt = (xit, xjt) = (rDi (0),0); moreover, the sequence xjt converges mono-
tonically thereon to the Nash equilibrium;

b) in cases [bII.2] or [bII.3], then xt = (xit, xjt) = (rDi (0),0) if the condition

θi(Aj − xit−1) ≤ Ai −Aj (60)

is satisfied; in that case, the sequence xit converges thereon to the Nash equilibrium;

c) if xjt−1 results itself from one step of the dynamics, then Condition (60) is satisfied.

We prove the proposition for each type of static Nash equilibrium.

Type [c]. The conditions for this case are Ai = Aj = 0. Then it holds that rDj (xj) = 0

whatever xj may be. Since Ai = 0, the first case in the definition of rDi (0) never holds. Then
xit = r

D
i (0) is either 0, or given by:

xit =
Φi + v

I
ixit−1

αiε + vI
i

≤
vI
ixit−1

αiε + vI
i

≤ xit−1. (61)

In both cases, xit ≤ xit−1. The vector of contributions stays on the boundary and the contribu-
tions of player i are monotonously decreasing. This proves statement a) from Proposition 8.

Type [bII.3]. The conditions for this case are Aj ≤ Ai ≤ wi with Ai > 0. Since Ai + θiz > 0,
the condition for rDi (0) to be 0 is never satisfied. Since Ai −wi ≤ 0 and −θi(wi − z) ≤ 0, the
condition for rDi (xj) to be wi is also never satisfied. Then the conditions (59) are equivalent
to:

z′ ≥ Aj and z′ = rDi (0) =
Ai + θiz

1 + θi
.

We have then the equivalence:

rDi (0) ≥ Aj

Ai + θiz ≥ Aj(1 + θi)

θi(Aj − z) ≤ Ai −Aj ,

the last condition being exactly (60).
If z satisfies Condition (60) (which happens when z ≥ Aj or z ≤ Aj but close enough to

Aj), then xit is given by (61). This new contribution is a convex combination of the previous
one with Ai (remember that Φi = εαiAi), which is the equilibrium value. Because Ai ≥ Aj ,
it then still satisfies Condition (60), so that the trajectory stays on the boundary. We have
proven that, once Condition (60) is satisfied, the dynamics converges monotonously, that is,
statement b) of Proposition 8 for static Nash equilibria of type [bII.3].
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Type [bII.2]. The conditions for this case are: Aj ≤ wi ≤ Ai and wi + wj ≥ Aj . As in the
previous case, the condition for rDi (0) to be 0 never holds. Two situations remain where the
equilibrium xt is located on the boundary xj = 0.

A first situation occurs when

0 ≤ Ai −wi − θi(wi − z). (62)

In that case, rDi (0) = wi and the conditions (59) are equivalent to: rDi (0) = wi ≥ Aj , which is
true by assumption.

The second situation occurs if

0 ≥ Ai −wi − θi(wi − z). (63)

Then, rDi (0) is given by (61) and, as for type [bII.3] equilibria, the conditions (59) are equiv-
alent to (60). In summary, if either (62) holds, or both (63) and (60) hold at the same time,
then the next-step Nash equilibrium is (z′,0). It is easily seen that condition (62) implies
(60), because Aj ≤ wi. As a consequence, whenever (60) holds, conditions (59) hold also,
whether (62) is true or (63) is true.

Then the next point of the dynamics is either xit = wi, or given by (61). In the first
case, since Ai ≥ Aj , the value z = wi itself satisfies Condition (60), so that this vector of
contribution, which is the Nash equilibrium, is indeed stable under the dynamics. This fact
was known because of Proposition 4 [R0]. In the second case, this is a convex combination
of the previous contribution xit−1 and Ai ≥ wi. In both cases, it is therefore larger than xit−1
and, a fortiori, still satisfies (60). We have proven that, once Condition (60) is satisfied,
the dynamics converges monotonously, that is, statement b) of Proposition 8 for static Nash
equilibria of type [bII.2]. This completes the proof of this statement.

Joining the boundary from the interior. We now argue that if the current vector
of contributions xt−1 = (xit−1,0) results from a step of the dynamics that comes from the
interior of the domain, then it satisfies Condition (60). Assume indeed that (xit−1,0) is a
Nash equilibrium of Problem (14) for some (xit−2, xjt−2). Then xjt−1 = 0 is the best response
of Player j, so that, from (18) and (16), we must have

0 ≥ αjεAj + v
I
jxjt−1 − αjεxit−1

xit−1 ≥ Aj + θjxjt−1 ≥ Aj .

This implies that the left-hand side of (60) is negative, and then that (60) holds. This proves
statement c) of Proposition 8.

F.3 Dynamics on xj = wj

The purpose of this section is to prove the following result.

Proposition 9 Assume Ai > Aj. Assume the vectors of contributions at time t − 1 and time
t are such that xjt−1 = xjt = wj. Then xit−1 ≥ xit.
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Proof. Using (18), we find that the condition xjt = wj is equivalent to rDj (xit;wj) = wj , itself

equivalent to Aj −wj ≥ xit. On the other hand, xit = r
D
i (wj ;xit−1) is given by:

xit =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

wi if Ai + θixit−1 −wj ≥ (1 + θi)wi
Ai + θixit−1 −wj

1 + θi
if 0 ≤ Ai + θixit−1 −wj ≤ (1 + θi)wi

0 if Ai + θixit−1 −wj ≤ 0.

If xit = wi then obviously xit ≥ xit−1. If xit is given by the interior case, then the condition
xit ≤ Aj −wj is equivalent to:

xit =
Ai + θixit−1 −wj

1 + θi
≤ Aj −wj

Ai + θixit−1 −wj ≤ Aj + θiAj −wj −wjθi

xit−1 +wj ≤ Aj +
Aj −Ai

θi
.

Then it follows that

xit − xit−1 =
Ai − xit−1 −wj

1 + θi

≥
1

1 + θi
(Ai −Aj −

Aj −Ai

θi
) =

Ai −Aj

θi
≥ 0.

Finally, the case xit = 0 would require Ai + θixit−1 − wj ≤ 0, which implies Ai ≤ wj . But we
also need Aj −wj ≥ 0, which leads to Ai ≤ Aj , a contradiction. In all possible cases, we have
shown that xit ≥ xit−1, hence the proposition.
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