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Abstract 

For effective water quality management and policy development, spatial variability in the mean 
concentrations and dynamics of riverine water quality needs to be understood. Using water chemistry 
(calcium, electrical conductivity, nitrate-nitrite, soluble reactive phosphorus, total nitrogen, total 
phosphorus and total suspended solids) data for up to 578 locations across the Australian continent, 
we assessed the impact of climate zones (arid, Mediterranean, temperate, subtropical, tropical) on (i) 
inter-annual mean concentration and (ii) water chemistry dynamics as represented by constituent 
export regimes (ratio of the coefficients of variation of concentration and discharge) and export 
patterns (slope of the concentration-discharge relationship). We found that inter-annual mean 
concentrations vary significantly by climate zones and that spatial variability in water chemistry 
generally exceeds temporal variability. However, export regimes and patterns are generally consistent 
across climate zones. This suggests that intrinsic properties of individual constituents rather than 
catchment properties determine export regimes and patterns. The spatially consistent water chemistry 
dynamics highlights the potential to predict riverine water quality across the Australian continent, 
which can support national riverine water quality management and policy development.  
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Highlights  

● Continental scale analysis of water chemistry across 5 climate zones in Australia 
● Significantly different mean concentrations across climate zones  
● No clear variation of water chemistry dynamics across climate zones  
● Spatial variability in water chemistry generally exceeds temporal variability 
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Concentration-discharge, export regime, export pattern, water quality, variability, climate zones, 
dynamics, data synthesis 
 

1. Introduction 

Surface water quality can degrade due to both local human activities and global climate change 
(Michalak, 2016; Schwarzenbach et al., 2010). Degradation of surface water quality poses risks on 
aquatic ecosystem health, and often affects social and economic development (Jiang, 2009; 
Vörösmarty et al., 2010). Monitoring and management of surface water quality is critical for 
maintaining and improving healthy ecosystems as well as supporting human life and sustainable 
economies.  
 
Surface water quality varies greatly across both space and time (Chang, 2008; Guo et al., 2020, 2019). 
This variability can pose a fundamental challenge to developing and implementing effective water 
quality management policies and strategies. It is therefore crucial to understand principles and 
changes in average water quality and dynamics across large spatial scales. Water quality dynamics 
can be represented by quantifying the relationship between constituent concentrations (C) and 
discharge (Q). Several metrics can be used to represent constituent dynamics. Two examples are: (i) 
the coefficients of variation of concentration divided by that of discharge (CV ratio) (Thompson et al., 
2011), which informs constituent export regimes; and (ii) the rate of change in the constituent 
concentration compared to the rate of change in discharge (C-Q slope) (Godsey et al., 2009), which 
informs constituent export patterns.  
 
Previous studies of CV ratios suggested that most constituents exhibit chemostatic export regimes  
(Musolff et al., 2015). Chemostatic export regimes are those where concentrations vary less than 
discharge over time. For geogenic constituents, it has been suggested that their chemostatic export 
regimes are due to large stores of constituents in the catchment (Godsey et al., 2009; Thompson et al., 
2011). The chemostatic export regime for anthropogenic nutrients in intensively managed catchments 
is hypothesised to be due to the presence of legacy nutrient stores in the catchment (Basu et al., 2010; 
Van Meter et al., 2016). Some constituents exhibit chemodynamic export regimes. Chemodynamic 
export regimes of nutrients and sediments have been attributed to catchments with point sources, large 
temporal variability in dilution capacity, agricultural activities that lead to nutrient accumulation in 
topsoils and human activities that result in increased erosion (Mellander et al., 2015; Ockenden et al., 
2016). 
 
The C-Q slope of constituents can be impacted by: (i) the spatial distribution of constituent sources 
within a catchment, and (ii) the transport process (flow path) of that constituent (Fazekas et al., 2020; 
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Zhi et al., 2019). The C-Q slope is positive when concentration increases with increasing flows, 
indicating ‘flushing’ behaviour. This generally occurs when there are non-point constituent sources 
originating from ‘shallow’ sources (Abbott et al., 2018; Botter et al., 2020; Musolff et al., 2017). 
When the C-Q slope is negative, concentration decreases with increasing flows, indicating ‘diluting’ 
behaviour (Godsey et al., 2009). This is commonly observed for constituents originating from point 
sources (Bowes et al., 2015; Greene et al., 2011), or for ‘deep’ non-point constituent sources (Abbott 
et al., 2018; Botter et al., 2020; Musolff et al., 2017). C-Q slopes need to be interpreted with some 
caution because in-stream biogeochemical transformations can also affect the magnitude and direction 
of C-Q slopes. For example, in-stream biogeochemical transformations during low flows have been 
found to result in positive C-Q slopes, particularly for nutrients because processes such as nutrient 
uptake and denitrification often occur under low flow conditions (Casquin et al., 2020; Minaudo et al., 
2019; Moatar et al., 2017). 
 
It is relatively straight-forward to investigate spatial variability in average constituent concentrations 
over catchments or drainage divisions. However, investigations of spatial variability of constituent 
dynamics across large spatial scales (e.g., continental-scale) are less common. Such assessments are 
needed to provide critical information for managing water quality across large administrative 
jurisdictions. Previous studies and monitoring programs have addressed spatial variability in 
constituent concentrations and constituent dynamics over large geographical areas, including regional 
and national scales (Botter et al., 2020; Ebeling et al., 2021; Godsey et al., 2019; Guillemot et al., 
2020; Lintern et al., 2018; Liu et al., 2021, 2018; Minaudo et al., 2019). We add to this growing body 
of work by examining constituent concentrations and dynamics consistently across a wide range of 
latitudes and climates. 
 
In this study, we investigate the relationship between a range of climate zones and water chemistry 
states and dynamics in rivers across the entire Australian continent. We focus on calcium, electrical 
conductivity, nitrate-nitrite, soluble reactive phosphorus, total nitrogen, total phosphorus and total 
suspended solids. Our key objectives are to (i) identify the spatial variability in mean water chemistry 
concentrations at a continental scale and across climate zones; and (ii) identify the variability in 
export regimes and export patterns at a continental scale using C-Q relationships (CV ratios and C-Q 
slopes). We hypothesise that there will be strong variability in both mean concentrations and water 
chemistry dynamics across climate zones.  

In addition, there are challenges with using large datasets to investigate spatial variability in 
constituent concentrations and dynamics over large spatial scales. Analyses that consider a large 
variety of correlated variables (e.g., strong correlations between land use and topography) sometimes 
lead to difficulty in identifying the key drivers of water quality variability. Integrative variables such 
as climate indices could be adopted as an alternative to using multiple correlated variables when 
studying the key drivers underlying spatial variability in water quality. This is because other possible 
direct drivers of water quality such as land use or population density are highly influenced by climate 
properties (Abbott et al., 2016; Lintern et al., 2018; Mellander et al., 2018; Thomas et al., 2016). 
Furthermore, climate indices can be a strong indicator of rainfall patterns, which drive the rainfall-
runoff processes that underpin constituent mobilisation and transport (Lintern et al., 2018).  
 
Australia contains most of the Earth’s climate zones. Therefore, conclusions from a continental-scale 
analysis of Australia may have implications for other regions of the world. This continental-scale 
analysis will reveal how mean water quality states and dynamics change across such a wide range of 
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climate zones. We envisage that this work can add significant new knowledge to catchment water 
quality both within Australia and internationally.  

2. Methods 

2.1 Water quality and flow data collation 
Water chemistry (concentration) and discharge (Q) data were obtained from publicly available water 
monitoring databases managed by seven state and territory agencies across Australia. These included: 
the Department of Land, Water and Planning (Victoria) (Department of Environment, Land, Water & 
Planning, 2021); WaterNSW (New South Wales) (WaterNSW, 2021); Department of Resources and 
Department of Environment and Science (Queensland) (Queensland Government, 2021); Department 
for Water and Environment (South Australia) (Government of South Australia, 2021); Department of 
Water and Environmental Regulation (Western Australia) (Government of Western Australia 
Department of Water and Environmental Regulation, 2021); Department of Primary Industries, Parks, 
Water and Environment (Tasmania) (DPIPWE, 2021) and Department of Environment, Parks and 
Water Security (Northern Territory) (Government of Northern Territory, 2021). Details on monitoring 
and analytical methods for each state are available in the Supplementary Materials (File S2). For all 
states, water chemistry was analysed by National Association of Testing Authorities (NATA) 
accredited laboratories following standard methods.  
 
This paper focuses on seven major water quality constituents. The seven constituents are: calcium 
(Ca2+ in mg/L (referred to as Ca from hereon in); 253 sites), electrical conductivity in μS/cm (EC; 515 
sites), the sum of nitrate (NO3

-) with nitrite (NO2
-) in terms of mg/L nitrogen (NOx; 197 sites), soluble 

reactive phosphorus in mg/L (SRP; 183 sites), total nitrogen in mg/L (TN; 234 sites), total phosphorus 
in mg/L (TP; 328 sites), and total suspended solids in mg/L (TSS; 408 sites). These constituents were 
selected because: (i) they are constituents of concern for the Australian environment (Bartley et al., 
2012; Prosser, 2011; Sarker et al., 2008; Water Quality Australia, 2018); and/or (ii) they have a 
sufficient number of sites with at least 50 pairs of water quality and discharge data (referred to as ‘C-
Q pairs’ from hereon in) and a reasonably good coverage across all climate zones. Only sites with at 
least 50 pairs of water quality and discharge data were selected based on an assessment of the effect of 
sample size on the robustness of our estimates (see further details in Supplementary Text S1). In 
selecting the constituents, we also made sure that both dissolved and particulate constituents were 
included, representing different sources and pathways (i.e. nutrients, sediment, ions). For each 
monitoring site for the abovementioned seven variables, we also obtained the corresponding available 
daily streamflow data from the same seven state agencies as listed above.  
 
The mean number of C-Q pairs used for each constituent and the mean length of the time series are 
provided in Table S2 (Supplementary Materials). We did not set a minimum or maximum length of 
the water quality time series in the selection of data, and the length of the time series ranges from 4 to 
47 years (Table S2, Supplementary Materials). Figure 1a shows the locations of the sites included for 
EC, which is the constituent for which we have the largest number of sites.  
 

 
 
Figure 1: Map showing the location of sampling sites for EC in Australia included in data analysis on 
a map of the Köppen-Geiger Climate Classification (a). Map showing mean constituent 
concentrations for each site for Ca mg/L (b), EC μS/cm (c), NOx -N mg/L (d), SRP mg/L, (e), TN mg/L 
(f), TP mg/L (g), TSS mg/L (h). In (a), states and territories of Australia on the map are: New South 

https://www.zotero.org/google-docs/?broken=6a6mqq
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Wales - NSW, Queensland - QLD, South Australia - SA, Tasmania - TAS, Victoria -VIC, Western 
Australia - WA, and Northern Territory - NT. Maps showing site locations, mean concentrations, C-Q 
slopes and CV ratios for all seven constituents are provided in Figures S1 to S7 in Supplementary 
Materials.  
 
For the water chemistry and discharge database we masked all discharge and concentration data 
associated with poor quality codes, following recommendations from the state-based data collection 
agencies (Table S1 of the Supplementary Materials). This included removal of both concentration and 
discharge data with high uncertainty (typically >20%) and of any water quality records at missing 
flows. All concentration data below the limit of detection for a given constituent were assigned values 
of half of the limit of detection (Helsel, 1990). The proportion of water quality samples below the 
limit of detection were: 0.2% for Ca, 0% for EC, 8% for NOx, 28% for SRP, 2% for TN, 6% for TP 
and 20% for TSS.  
 
2.2 Catchment delineation and climate zones 
Catchment boundaries for each of the monitoring sites were determined using the Australian Bureau 
of Meteorology’s Geofabric and the Geofabric toolset (Bureau of Meteorology, 2012). For each site 
we identified the dominant climate class of the catchment based on the Köppen-Geiger Climate 
Classification (Beck et al., 2018). The dominant climate class was found by aggregating gridded 
climate data for each catchment and then selecting the major climate class within the catchment, as 
shown in Figure 1a). We then grouped climate classes into five broad climate zones, i.e. arid (Bwh, 
Bwk, Bsh and Bsk), Mediterranean (Csa and Csb), temperate (Cfb and Cfc), subtropical (Cfa and Cwa) 
and tropical (Af, Am and Aw). Catchment areas ranged from 0.9 km2 to 888,682 km2. The percentage 
agriculture land use of the catchments range from 0 to 100% with a median of 0.7% (Geoscience 
Australia, 2011). The percentage urbanisation of the catchments range from 0 to 71% with a median 
of 0.07% (Geoscience Australia, 2011). 
 
2.3 Data analysis 
For the 578 sites included in this study and for each of the seven constituents, we extracted three key 
measures of water chemistry. These were: mean concentration, the ratio of the coefficients of 
variation of concentration and discharge to characterise export regimes (referred to as the CV ratio 
from hereon in), and the C-Q slope to characterise export patterns. The C-Q slopes were calculated 
using a linear regression of the log-transformed concentration and discharge data (Equation 1), 
following Godsey et al. (2009) and Musolff et al. (2015).  
 
ln(C) = a + b ln(Q)        Equation 1 
 
The parameter b from Equation 1 was then adopted as the C-Q slope for each site and for each 
constituent. Following the method proposed by Musolff et al. (2015), we plotted the C-Q slopes 
against the CV ratio (e.g., Figure 2) to better understand the interaction between discharge and water 
quality, and the spatial variability in these relationships. CV ratios below 0.5 indicate ‘chemostatic’ 
export regimes, where the variability in water chemistry is less than half the variability in flow. CV 
ratios above 0.5 indicate ‘chemodynamic’ regimes (Figure 2) (Ebeling et al., 2021; Musolff et al., 
2017). 
 
 
Figure 2: Relationship between CV ratios (export regimes) and CQ slopes (export patterns). Adapted 
from Musolff et al. (2015). 

https://www.zotero.org/google-docs/?broken=OmpxOv
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To assess whether climate is an important driver of water quality across Australian rivers, we 
explored the relationship between climate zones and the mean concentration, CV ratios and C-Q 
slopes using the Kruskal-Wallis test (α=0.05) (Kruskal and Wallis, 1952). This non-parametric test 
was used to assess the differences in the distributions of water quality data from different climate 
zones because the data did not satisfy the assumptions of normality (assessed using the Shapiro-Wilk 
test) (Shapiro and Wilk, 1965) and homoscedasticity (assessed using Levene’s Test) (Levene, 1960). 
A Dunn’s post-hoc test (Dunn, 1964) (α=0.05) was conducted for pairwise comparisons between 
climate zones. Studying the relationship between climate and water quality is important not only to 
identify spatial patterns in water quality processes, but also because climate determines many other 
key catchment attributes that impact water quality such as land use and population density.  

3. Results and discussion 

3.1 Spatial variability in mean water quality concentrations across Australia 
Mean constituent concentrations vary substantially across the Australian continent. Higher 
concentrations are generally found in the central east coast, inland eastern Australia and the west coast 
(Figure 1). This spatial variability appears to follow the climate zones (Figure 3), with statistically 
significant (p<0.05) differences in mean concentrations between climate zones for all constituents 
(Figure 3, Table 1). In addition, there are strong negative Spearman correlations (|⍴|>0.5) between the 
mean constituent concentration and catchment slope (EC, SRP and TN) and catchment average 
rainfall (TN, EC and Ca); and strong positive Spearman correlations (|⍴|>0.5) between the mean 
constituent concentration and catchment average temperature (TSS, TP, SRP, Figure S11 in the 
Supplementary Materials). These catchment characteristics have strong cross-correlations (Spearman 
rank correlations), with the catchment slope being cross-correlated with catchment rainfall (|⍴|>0.5). 
These results justify our focus on climate zones as a key driver governing spatial water quality 
variability.  
 
Ca and EC concentrations tend to be higher in catchments within a Mediterranean climate zone 
(means of 43.2 mg/L and 3819 μS/cm) (Figure 3). Indeed, there are generally significant pairwise 
differences for Ca and EC between Mediterranean catchments and other climate zones. The higher 
concentrations of Ca and EC in the Mediterranean catchments could be a result of lower rainfall and 
thus less flow to dilute constituents. Mediterranean climates have the second lowest rainfall levels, 
with a mean of 779 mm (Figure S8, Supplementary Materials). The higher relative proportion of 
subsurface flows could mobilise salts and bedrock-derived constituents such as Ca into streams 
(Caruso, 2002; Tomaz et al., 2020).  
 
For Ca and EC, the tropical zones of northern Australia tend to have lower concentrations compared 
to the other climate zones (Figure 3, Table 1). This is likely related to the high rainfall rates in the 
tropics that may result in significant dilution of constituents in rivers (Liu et al., 2021, 2018). Mean 
rainfall across tropical catchments is higher than the other climate zones at approximately 1,444 mm 
(2.5th percentile of 857 mm and 97.5th percentile of 2,674 mm). In addition to the likely dilution of 
constituents due to high river flow, the lower constituent concentrations observed in tropical rivers 
might also be related to lower availability in the subsurface. Intensely weathered soils are typical of 
the tropics and particularly of tropical savannahs (Pellegrini, 2016; Reich and Oleksyn, 2004; Wright 
et al., 2011).  
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TSS and TP concentrations are highest in arid regions, with mean concentrations of 193 mg/L and 
0.20 mg/L, respectively (Figure 3, Table 1). The high TSS concentration is likely due to the high 
levels of erosion and particulate transport during the occasional, high-intensity rainfall events 
occurring in these regions. The low vegetation cover of arid regions may further explain these high 
rates of erosion (Green et al., 2007). It is also important to note that in the arid region, a significant 
part of the water quality measurements were obtained during high flow events due to the highly 
intermittent nature of these systems (Sheldon et al., 2010) (Figure S9 in the Supplementary Materials), 
potentially biasing our analysis towards higher concentrations due to enhanced flushing during event 
periods. The high TP in arid regions could be indicating that the TP is of geogenic origin and as a 
result of erosion (Lintern et al., 2018; Nhiwatiwa and Dalu, 2017). Indeed, the SRP:TP ratio is less 
than 0.5 for arid climates (Figure S10 in the Supplementary Materials), indicating that a large 
proportion of TP is particulate-bound. In addition, mean TSS and mean TP at each site are strongly 
correlated (Spearman) with each other in the arid catchments (⍴=0.81, p<0.05).  
 
Subtropical catchments have relatively higher levels of TSS and TP (means of 63 mg/L and 0.18 
mg/L, respectively) compared to the other non-arid climate zones (Figure 3). Subtropical catchments 
can appear to have high levels of agricultural activities (mean of 4.6% of the catchment used for 
agricultural activities and 2.5th and 97.5th percentiles of 9 and 26%) (Figure S8, Supplementary 
Materials). They also have higher levels of total P in the soil (mean of 0.46 %) (Viscarra Rossel et al., 
2014) (Figure S8, Supplementary Materials).  
 
TSS and TP are low in streams in temperate regions (means of 16.8 mg/L and 0.09 mg/L, 
respectively) (Figure 3). Most of the temperate catchments included in the analysis are clustered 
around the high-elevation areas of the Australian Alps (Victoria) and Tasmania. These catchments are 
less impacted by agricultural activities (average of 1.9%; 2.5th and 97.5th percentiles of 0 and 11.1%) 
and appear to have lower levels of soil TP (mean of 0.035%) (Viscarra Rossel et al., 2014).  Dunn’s 
pairwise comparisons show that there are statistically significant differences in mean SRP 
concentrations between the temperate climate zone and the others (Table 1), with the lowest levels of 
SRP in the temperate zone (Figure 3). This is likely due to mechanisms similar to those responsible 
for the low TSS and TP concentrations in temperate streams - the low level of agricultural activities 
and lower levels of soil TP (Figure S8, Supplementary Materials).  
 
There are higher NOx and TN concentrations in catchments within a Mediterranean climate zone 
(means of 0.41 mg/L and 1.13 mg/L) (Figure 3). Mean NOx and TN concentrations in Mediterranean 
catchments differ statistically significantly from all other climate zones (Table 1). This could be due 
to the importance of agricultural land use in these catchments (average of 9.5%; 2.5th percentile of 
0% and 97.5th percentile of 97.6%). The lowest TN concentrations appear to be occurring in the 
temperate catchments, with statistically significant differences between TN concentrations in the 
temperate catchments and arid, Mediterranean and subtropical catchments. This is likely due to the 
low level of agricultural activities in temperate catchments (Figure S8, Supplementary Materials).  
 
 
 
Figure 3: Variability in mean constituent concentrations for each climate zone. Results of Kruskal-
Wallis test (p-values) to identify statistically significant variability in mean constituent concentrations 
across climate zones shown above each boxplot. n in x axis denotes the number of monitoring sites 
included in each boxplot. Abbreviations are: Arid (arid), Med (Mediterranean), Tem (temperate), Sub 
(subtropical), Tro (tropical).  Boxes represent the interquartile range, whiskers represent 1.5 times 
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the interquartile range, the dots represent outliers, the black line represents the median and the black 
dots represent the mean.  
 
 
 
 
Table 1: Pairwise comparison of catchment mean concentration between climate zones using Dunn’s 
post-hoc test. Statistically significantly different catchment mean concentrations between specific 
climate zone pairs are indicated by grey shading (p<0.05).  
 

Climate Zone Pair Constituent 

Ca EC NOx SRP TN TP TSS 

Arid- 
Mediterranean 

       

Arid-Subtropical        

Arid-Temperate        

Arid-Tropical        

Mediterranean- 
Subtropical 

       

Mediterranean- 
Temperate 

       

Mediterranean- 
Tropical 

       

Subtropical- 
Temperate 

       

Subtropical- 
Tropical 

       

Temperate- 
Tropical 

       

 
 
The comparison of mean constituent concentrations across the climate zones indicates that there 
appear to be systematic differences between climate zones. This may be driven not just by the rainfall 
and temperature in these climatic zones, but also catchment characteristics that cross-correlate with 
climate. For example, climate can impact human activities in catchments as well as soil properties 
(Figure S8, Supplementary materials).  
 
In terms of overall findings, Mediterranean catchments have the highest concentrations of four out of 
the seven investigated constituents: Ca, EC, NOx and TN. This is likely driven by low rainfall (for Ca 
and EC), with the likely transport of weathered Ca and salts via subsurface flow paths (Godsey et al., 
2019). In addition, arid catchments have high TP and TSS concentrations. Previous studies have 
hypothesised that the lack of vegetation in arid areas results in high erosion rates, and the transport of 
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sediments and particulate phosphorus to receiving waters (Green et al., 2007). The high 
concentrations of TN and NOx in Mediterranean catchments may be driven by the relatively high 
agricultural activity in these catchments (Figure S8, Supplementary Materials). Similarly, temperate 
catchments tend to have lower concentrations of TSS, TP, SRP, NOx and TN. This is likely due to the 
low level of agricultural activities in this region, a result of the high slopes and colder climate (Figure 
S8, Supplementary materials). This indicates that at the national scale, Mediterranean catchments may 
be key areas of risk of high constituent concentrations. In fact, it appears that two of the climate zones 
with the least number of monitoring sites (arid and Mediterranean catchments) have the highest mean 
constituent concentrations, indicating that resources may need to be shifted to focus future monitoring 
efforts on these catchments.  
 
These findings are in line with previous studies of national-scale spatial variability in water quality. 
These studies have found that in general, land use and lithology most strongly correlate to long-term 
means in water chemistry (Ebeling et al., 2021; Godsey et al., 2019; Guillemot et al., 2020). In 
addition, a study of 787 catchments in Germany, Ebeling et al., (2021) found correlations between 
climate and long-term means in NOx concentrations. As such, it appears that previous studies have 
identified both land use and climate as key drivers of spatial variability in water quality. In our study, 
we find that there appear to be systematic differences in long-term mean water chemistry across 
climate zones, which is likely driven by land use and land cover differences.   
 
3.2 Spatial variability in export regimes and patterns across the Australian continent 
3.2.1: Export regimes 
The variability in constituent concentrations appears to be greater over space than over time (Figure 
4). This is consistent with previous findings, which also identified greater variability across space in 
constituent concentrations (Botter et al., 2020; Dupas et al., 2019; Gu et al., 2021). The greater 
variability in water chemistry across space suggests that implementing a larger number of routine 
water quality monitoring stations would allow us to understand water quality processes and trends 
better than increasing the number of samples taken at a single site. Further work is required to explore 
the relative importance of spatial versus temporal variability at different spatial and temporal scales to 
better understand optimal water quality monitoring strategies to capture inherent variability.  
 
 
 
 
Figure 4: Comparison between variability in constituent concentrations over time and space. ‘Spatial 
CV’ indicates the spatial coefficient of variation determined monthly across all sites located in a 
given climate zone, and ‘Temporal CV’ represents the coefficient of variations determined for each 
site. Markers represent the mean, and error bars represent the interquartile range. 
 
Whilst there is some variability in CV ratios within each climate zone, the export regime of 
constituents (chemostatic vs chemodynamic) is the same regardless of the climate (Table 2, Figure 
S12). Solutes (EC and Ca) exhibit chemostatic behaviour (CV ratio<0.5) across all climate zones, 
indicating that the variability in constituent concentration is less than the variability in Q (Table 2, 
Figure S12). Previous studies have also observed chemostatic behaviour for constituents such as Ca 
(Botter et al., 2020; Duncan et al., 2017; Foks et al., 2018; Rose et al., 2018). This has been attributed 
to large stores of these constituents available for transport in the aquifer or bedrock (Godsey et al., 
2019, 2009; Hunsaker and Johnson, 2017; Musolff et al., 2015). These previous studies have all been 

https://www.zotero.org/google-docs/?PTLDxa
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conducted in largely temperate climates, and our study confirms that these chemostatic export regimes 
for these constituents also occur in other climate zones.  
 
Some nutrients (TP, TN, SRP) also have a chemostatic export regime in either temperate, 
Mediterranean or subtropical climate zones. High levels of anthropogenic activities such as 
agriculture and urbanisation can lead to large nutrient stores in the catchment (Basu et al., 2010; Van 
Meter et al., 2016). Indeed, the temperate, Mediterranean and subtropical catchments that we studied 
have high levels of soil nutrients (TP), agriculture and urbanisation (Figure S8, Supplementary 
Materials).  
 
Previous studies have found that chemodynamic behaviour occurs in catchments when the hydrologic 
connection between constituent stores and rivers vary over time (Hoagland et al., 2017). TSS and NOx 
show chemodynamic export regimes across all climate zones (Table 2, Figure S12). This is a export 
regime for TSS identified in previous European studies (Mellander et al., 2015; Musolff et al., 2015; 
Ockenden et al., 2016). Previous studies have found that NOx can demonstrate chemostatic properties 
(e.g., Long et al., 2014), however our study found that NOx has chemodynamic export regimes in 
Australia. The chemodynamic behaviour of NOx may be indicating that the agricultural land uses in 
Australia are not as intensely managed as in other countries. In addition, Australia has a shorter 
history of agricultural intensification and this may be resulting in less legacy stores of NOx in the soils 
and groundwater. With less consistent NOx stores throughout the catchments, NOx export can vary 
from storm to storm, depending on spatial rainfall patterns of a particular storm and the flow pathways 
that are activated during specific events.  
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Table 2: Percentage of sites exhibiting dilution behaviour (C-Q slope<0) and chemostatic behaviour 
(CV ratio <0.5) within each constituent-climate zone category for each constituent (bold and italic 
text indicates where this occurs for over 50% monitoring sites within a constituent-climate zone 
category). Total number of sites for each climate zone-constituent category provided in parentheses. 
 

EXPORT REGIME 
Chemostatic behaviour (CV ratio < 0.5) 

 Climate Zone 

Constituent Arid Mediterranean Temperate Subtropical Tropical 

Ca 96% (24) 97% (29) 82% (39) 95% (128) 94% (33) 

EC 88% (52) 97% (117) 89% (149) 95% (257) 90% (49) 

NOx 7% (15) 27% (39) 38% (98) 29% (35) 11% (19) 

SRP 40% (10) 29% (42) 34% (116) 80% (20) 0% (18) 

TN 47% (43) 79% (61) 79% (66) 88% (65) 56% (18) 

TP 50% (24) 23% (48) 56% (170) 64% (67) 26% (19) 

TSS 38% (24) 19% (52) 25% (138) 33% (132) 38% (47) 

EXPORT PATTERN 
Dilution behaviour (C-Q slope < 0) 

 Climate Zone 

Constituent Arid Mediterranean Temperate Subtropical Tropical 

Ca 96% (24) 66% (29) 90% (39) 
 

92% (128) 97% (33) 

EC 98% (53) 92% (117) 90% (149) 96% (257) 98% (49) 

NOx 20% (15) 15% (39) 8% (98) 11% (35) 26% (19) 

SRP 10% (10) 29% (42) 20% (116) 0% (18) 0% (18) 

TN 13% (24) 10% (61) 8% (66) 6% (65) 11% (18) 

TP 13% (24) 19% (48) 23% (170) 6% (67) 5% (19) 

TSS 29% (24) 15% (52) 9% (138) 4% (132) 0% (47) 
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3.2.2: Export patterns 
There are statistically significant differences in C-Q slopes across climate zones for four out of the 
seven constituents (NOx, SRP, TP and TSS) (Figure 5, Table S3 in Supplementary materials). For 
example, there appears to be a trend of increasing C-Q slopes for SRP from arid to tropical 
catchments (Figure 5). This suggests that the shift from drier to wetter catchments is leading to a 
change in SRP transport to be more flushing dominated. In a study of over 2000 catchments, Godsey 
et al. (2019) found that CQ slopes for solutes were steeper in humid catchments compared to arid 
catchments, which was attributed to the fact that arid catchments have greater ‘buffering capacity’ and 
are able to retain constituents within the catchments more readily due to the lower rainfall. Previous 
studies have also suggested that export patterns of solutes, particulates and nutrients may be driven by 
changes in constituent transport by shallow flow pathways compared to deeper flow pathways (Botter 
et al., 2020; Ebeling et al., 2021). This is largely due to the fact that the constituent concentrations on 
the surface, in shallow soils or deeper soils can vary depending on modern and historical land use. 
This may explain the statistically significant differences seen in the CQ slopes across climate zones 
for NOx and TSS.    
 
However, the signs of the C-Q slopes for all constituents do not appear to be climate-related (Figure 
5). Indeed, individual constituents do not shift from dilution (C-Q slope <0) to flushing behaviour (C-
Q slope >0) across climate zones (Table 2), indicating that the export pattern of a constituent is 
consistent across all climate zones. This suggests that for a given particulate or dissolved constituent, 
the fundamental sources and transport processes are consistent across the continent. This is in contrast 
to previous studies in other parts of the world that have found that C-Q slopes of constituents can vary 
across space, with this variability largely driven by land use (Fazekas et al., 2020; Musolff et al., 
2015; Zhi and Li, 2020). We hypothesise however that we may see relationships between C-Q slopes 
and catchment characteristics such as land use within each of the climate zones. As such, further work 
is required to untangle the key catchment drivers that lead to the spatial variability in C-Q slopes seen 
within each climate zone.  
 
C-Q slopes are negative for Ca and EC for over 80% of sites in all climate zones (except for 
Mediterranean climates) (Figure 5 and Table 2). This indicates that these constituents exhibit dilution 
patterns at most of the monitoring sites across Australia. Previous studies have found that Ca and EC 
typically have higher concentrations at low flow (Li et al., 2017; Moatar et al., 2017; Zhi et al., 2019) 
and that this dilution behaviour is consistent across space and time for these constituents (Li et al., 
2017). According to Zhi and Li (2020) a negative C-Q slope indicates a dominance of deep 
groundwater flow pathways of these constituents. The lower percentage of dilution patterns observed 
in Mediterranean catchments for Ca and EC may be related to high evapotranspiration rates that can 
lead to high solute concentration in the shallow soil, as commonly reported in low rainfall areas of 
southern Australia (Cartwright et al., 2006; Herczeg et al., 2001).  
 
Suspended sediments and nutrients (NOx, SRP, TN, TP and TSS) have positive C-Q slopes for more 
than 70% of the Australian monitoring sites, across all climate zones (Figure 5 and Table 2). A 
positive C-Q slope is hypothesised to be a result of constituents being mobilised and transported by 
shallow (either surface or shallow subsurface) flow pathways (Li et al., 2021; Zhi and Li, 2020). Our 
findings from the Australian catchments are consistent with these previous studies. Previous studies at 

https://www.zotero.org/google-docs/?17iAgx
https://www.zotero.org/google-docs/?17iAgx
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both catchment and larger spatial scales have generally found that constituents that are largely 
associated with particulate matter (e.g., TSS, TP) exhibit positive C-Q slopes because they are 
transported to rivers via shallow flow pathways (Bieroza et al., 2018; Musolff et al., 2015). However, 
in contrast to our finding, some of these studies have also found negative C-Q slopes for soluble 
nutrients such as SRP and NOx (Bieroza et al., 2018; Dupas et al., 2015). The positive C-Q slopes for 
SRP and NOx at the Australian sites, as also observed by Cartwright (2020) in Victorian catchments, 
suggest that these compounds are (i) largely transport-limited and (ii) largely transported by shallow 
flow pathways rather than deeper flow pathways (Musolff et al., 2015; Winter et al., 2021).  
 
It is important to note that this study also demonstrates a lack of correlation between the CV ratios 
and C-Q slopes (Figure S12, Supplementary Materials). It therefore appears that the C-Q slope cannot 
be used to characterise the export regime of catchments (chemodynamic vs chemostatic) and should 
only be used to characterise export patterns (flushing vs dilution pattern). This is a result of the fact 
that when the constituent C is highly variable (chemodynamic export regime), the C-Q slope can still 
be close to zero if the change in constituent concentration is largely independent of changes in Q. This 
can be observed for example when the constituent is being discharged from a point source into the 
river (Musolff et al., 2015).  
 
Further work is however required to further understand the temporal variability in export patterns. 
Previous studies have found that export patterns can change over time - within events and seasonally 
(Knapp et al., 2020; Minaudo et al., 2019). Whilst this study used a simple aggregated C-Q slope and 
CV ratio to determine the export regime and export patterns, future work should seek to understand 
temporal variations in these metrics. In particular, one solution may be to identify C-Q metrics 
separately for different hydrological regimes, differentiating for instance, the observations under 
dominant groundwater contribution from the ones when surface runoff dominates (Minaudo et al., 
2019; Tunqui Neira et al., 2020).  
 
 
 
Figure 5: Variations in C-Q slope for each climate zone. Results of Kruskal-Wallis test (p-values) to 
identify statistically significant variability in C-Q slopes across climate zones shown above each 
boxplot. Boxes represent the interquartile range, whiskers represent 1.5 times the interquartile range, 
the dots represent outliers, the black line represents the median and the black dots represent the 
mean.  
 
 
3.3 Implications of the variability in water chemistry on future water quality management, 
monitoring and water policies  
Bringing together water quality and streamflow data from a number of state-based organisations, our 
national-scale water quality study revealed a general pattern of constituent behaviour in Australia. The 
pattern that was identified in this study also helps inform future approaches to management and 
monitoring of water quality as well as informing water policies. Our study showed positive C-Q 
slopes for constituents of concern such as reactive, dissolved nutrient compounds (SRP and NOx) at 
most of the Australian sites, suggesting that these constituents are largely transport-limited and/or 
largely transported by shallow flow pathways rather than deeper groundwater flows (Musolff et al., 
2015; Winter et al., 2021). As these constituents demonstrate similar export regimes and patterns, they 
could be managed using similar types of strategies that target sources that interact with shallow flow 
pathways. TP, TSS and TN also appear to be transport-limited and largely affected by shallow flow 
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paths in most parts of the country, indicating that measures targeting these shallow flow paths would 
be useful strategies. Generally avoiding and reducing the build-up of nutrients and sediments sources 
should be targeted as a management strategy. EC and Ca, which inform management of salinity, on 
the other hand, appears to be dominated by deeper groundwater flows and are source-limited across 
the country. Thus, understanding and managing surface water-groundwater interactions, using EC and 
Ca as a proxy for salinity, will be critical for managing surface water salinity (e.g., Banks et al., 
2011).  

 
Our study has also highlighted key gaps in the current monitoring programs across Australia. Figure 1 
indicates that monitoring is concentrated in Mediterranean, temperate and subtropical regions. This is 
despite the fact that monitoring sites in arid catchments have the highest TSS and TP concentrations. 
Whilst the lack of monitoring in arid catchments is likely due to its remoteness, our analyses suggest 
that more efforts are required to closely monitor rivers in arid regions, and gather samples of higher 
frequency to avoid the bias towards high flows and to obtain an understanding of baseline conditions 
(Figure S9, Supplementary materials). Previous studies have also noted the lack of water quality data 
in arid or semi-arid regions (Koci et al., 2020). Although it is unclear whether this is due to a bias in 
sampling, further investigation will be required to determine the underlying cause of the higher TSS 
and TP concentrations in arid regions. A systematic approach that distributes resources more evenly 
across multiple climate zones within the framework of a state-wide or national-scale monitoring 
programs may be needed for enhancing our understanding of water chemistry and for monitoring risks 
and vulnerabilities faced by human communities and ecosystems.  
 
In Australia, water quality monitoring and management is administered and legislated through 
complex interactions at a sub-national (state and territory or local government) level and supported 
through water quality policies such as the National Water Quality Management Strategy (NWQMS) at 
the federal level. While this strategy is a nationally agreed approach to manage water quality, for 
example to share information across borders and jurisdictions, this process is currently not supported 
by a national scale water quality data inventory. Our analysis provided a first picture of national-scale 
water quality trends and demonstrated how our understanding of the water chemistry patterns across a 
national scale can be improved through the analysis of a national-scale dataset. The study identified 
for example where previously undetected water quality hotspots across the country occur and 
explained how anthropogenic and natural factors affect the quality of surface water. Further 
assessments can be undertaken to expand this picture and to improve the understanding of specific 
drivers of changes in the behaviour of water chemistry across the Australian continent, e.g., land use 
and hydrological regimes. Ongoing assessments and understanding whether the status of Australia’s 
surface water quality improves or deteriorates will also inform and guide further improvements to 
Australia's water policies. 

 

4. Conclusion 

A national-scale assessment of water quality and its drivers is needed to further inform future water 
policy development. Through this work we have gathered available historical water quality and flow 
data from seven Australian states and territories and collated them into a single nationwide repository. 
By analysing this dataset, this study provides preliminary insights into the continental-scale variability 
of three key water quality indices (mean C, CV ratio, C-Q slope).  
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We have shown that there is significant variability in mean constituent concentrations across the 
Australian continent for Ca, EC, SRP, NOx, TP, TN and TSS. These differences in water chemistry 
appear to vary according to climate zones. The relationship between climate zones and water 
chemistry is likely driven by differences in the interplay between land use, soil characteristics and 
rainfall-runoff processes affecting the extent of source and flow pathways across these climate zones. 

 
CV ratios and C-Q slopes also vary spatially. However, export regimes and patterns are consistent 
regardless of climate zone. These results suggest that intrinsic properties of individual constituents 
determine export regimes and patterns, rather than catchment properties and climate controls. We 
hypothesise that this is a result of individual constituents originating from similar sources and being 
transported along similar pathways, in all climate zones. 
 
This study has provided some insight into Australian water chemistry, and further work is required to 
understand the processes affecting water chemistry across the continent. In this study, we identified 
large variability in water chemistry within each climate zone, and the drivers of this variability need to 
be further identified. Additionally, there is a need to determine the seasonality and trends in water 
chemistry across the Australian continent. Of particular importance is understanding the impact of 
changes in flow regime on water chemistry.  
 
Systematic national-scale assessments of water quality conditions are crucial for the development and 
implementation of successful water management policies and strategies. The findings from this study 
demonstrate the value in synthesising the data collected by state and territory-based agencies. These 
syntheses would enable future use in regular national-scale water quality assessments (e.g., UN 
Sustainable Development Goal (UN SDG) 3.6.2 reporting) and water quality trend analyses (e.g., 
State of the Environment (SoE) reporting). They can target further development of evidence-based 
federal water quality policies, such as Australia's National Water Quality Management Strategy 
(NWQMS) as well as tracing its successes. 
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Abstract. The spatial and temporal variation of concentration-discharge (C-Q) relationships inform solute and particulate 

export processes. Previous studies have shown that the extent to which baseflow contributes to streamflow can affect C-Q 

relationships in some catchments. However, these patterns have not yet been investigated across large spatial scales. To address 

this, the study aims to assess how baseflow contributions, as defined by the median catchment baseflow index (BFI_m), 20 

influence C-Q slopes across 157 catchments in Australia spanning five climate zones. This study focuses on six water quality 

variables: electrical conductivity (EC), total phosphorus (TP), soluble reactive phosphorus (SRP), total suspended solids (TSS), 

nitrate–nitrite (NOx) and total nitrogen (TN). The impact of baseflow contribution is explored with a novel Bayesian 

hierarchical model. 

We found that BFI_m has a strong impact on C-Q slopes. C-Q slopes are largely positive for nutrient species (NOx, TN, SRP 25 

and TP) and are steeper in catchments with higher BFI_m across all climate zones (for TN, SRP and TP). On the other hand, 

we also found a generally higher variation in instantaneous BFI for catchments with high BFI_m. Thus, the steeper C-Q slopes 

found in catchments with high BFI_m may be a result of a larger variation in water sources and flow pathways between low 

(baseflow-dominated) and high (quickflow-dominated) flow conditions. In contrast, catchments with low BFI_m may have 

more homogeneous flow pathways at both low and high flows, resulting in less variable concentrations and thus a flatter C-Q 30 

slope. Our model can explain over half of the observed variability in concentration of TSS, EC and P species across all 

catchments (93% for EC, 63% for TP, 63% for SRP, and 60% for TSS), while being able to predict C-Q slopes across space 

by BFI_m. This indicates that our parsimonious model has potential for predicting the C-Q slopes for catchments in different 

climate zones, and thus improving the predictive capacity for water quality across Australia. 

1 Introduction 35 

Understanding the causes of spatiotemporal variability in riverine chemistry is critical to support water quality management 

for both human and environmental end-uses. The relationship between the river chemistry and streamflow (concentration-

discharge, or C-Q relationship) often shows distinct patterns that are specific to water quality variables and catchments. These 

are determined by (i) the spatial distribution of constituent sources within the catchment; and (ii) the interplay between the 

biogeochemical and hydrological processes, which controls constituent mobilisation and transport through the catchment 40 

(Ebeling et al., 2021; Godsey et al., 2019; Musolff et al., 2015). The C-Q relationship therefore tells us about the key catchment 

processes controlling river water quality. As such, the C-Q relationship can help informing catchment management and 

mitigation strategies to improve catchment water quality (Dupas et al., 2019; Moatar et al., 2020). 

However, it is challenging to identify the key catchment processes from analysing C-Q relationships, due to the high variability 

in water quality across both space and time. First, water chemistry and streamflow characteristics can vary significantly across 45 

multiple spatial scales, from small headwater catchments (Dupas et al., 2021; Jensen et al., 2019; McGuire et al., 2014) to 

basin and continental scales (e.g., Dupas et al., 2019; Ebeling et al., 2021; Heiner M. et al. under review). Many previous 
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studies have assessed the spatial variations in C-Q relationships for nutrients, carbon and geogenic water quality variables, 

which identified land use and management, lithology, and topography as critical drivers for these spatial variations (e.g., 

Ebeling et al., 2021; Minaudo et al., 2019). Second, high-frequency water quality monitoring studies have shown high temporal 50 

variability in water chemistry (e.g., Kirchner et al., 2004; Rode et al., 2016). Besides variation in concentrations, recent high-

frequency monitoring also highlighted the high variability of C-Q relationships over time and especially between runoff events; 

these temporal changes are driven by a series of mechanisms such as chemical build-up and flushing under varying flow 

magnitudes, and contrasting baseflow contributions during different stages of runoff events (Bende-Michl et al., 2013; Knapp 

et al., 2020; Musolff A: et al.; Rusjan et al., 2008; Tunqui Neira et al., 2020). 55 

In the existing studies that explore the variation of C-Q relationships, hydrological characteristics of catchments have been 

highlighted as a key influencing factor, as it defines the flow pathways and magnitudes that are critical to the transport 

processes (Tunqui Neira et al., 2020a, 2020b). Several studies have highlighted that, within a particular catchment, the C-Q 

relationship (and thus export behaviour) is dependent on whether streamflow is dominated by baseflow or quickflow (Gorski 

& Zimmer, 2021; Knapp et al., 2020; Minaudo et al., 2019). However, there is little understanding of how the overall baseflow 60 

contribution of a catchment impacts the catchment’s C-Q relationship, and thus the catchment’s export regime. Further, most 

existing studies that explored the impact of baseflow contribution on C-Q relationships focused on catchments in temperate 

climates in Europe and North America (e.g., Gorski & Zimmer, 2021; Minaudo et al., 2019; Musolff et al., 2015). This leads 

to a limitation in transferring and systematically comparing findings to other climate zones and other parts of the world.  

The current knowledge gap in understanding catchment export regimes for regions other than Europe and North America was 65 

partially addressed in Lintern et al. (in review) and Liu et al. (in preparation), which explored C-Q metrics over a range of 

climate zones in Australia. Both studies highlighted consistencies in C-Q patterns across contrasting climates for individual 

water quality variables and suggested that the inherent properties of each water quality variable determine its C-Q relationships. 

However, the role of different baseflow contributions on C-Q relationships has not yet been examined.  

This study aims to assess the impact of catchment baseflow contribution on C-Q relationships of sediment, nutrients and salts 70 

across a large number of catchments within different climate zones in Australia. We hypothesise that catchments located in 

different climate zones would show very different ranges and distributions of baseflow contributions, leading to contrasted 

responses in terms of catchment export patterns, as represented by C-Q slopes. With this analysis we also hypothesise that the 

C-Q slopes in Australian catchments can be predicted across space by baseflow contribution. We test these hypotheses with a 

Bayesian hierarchical modelling approach, which will i) add new understanding to the sources and export patterns of water 75 

quality variables; ii) improve the predictive capacity of water quality variables by better prediction of C-Q relationships over 

space. 
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2 Method 

2.1 Data and study catchments 

2.1.1 Water quality and flow data 80 

This study relies on water quality and streamflow data collected across Australia by seven state agencies. These include: the 

Department of Land, Water and Planning (VIC DELWP, Victoria); WaterNSW (New South Wales); Department of Resources 

and Department of Environment and Science (QLD DNRME, Queensland); Department for Water and Environment (SA 

DEW, South Australia); Department of Water and Environmental Regulation (WA DER, Western Australia); Department of 

Primary Industries, Parks, Water and Environment (TAS DPIPWE, Tasmania) and Department of Environment, Parks and 85 

Water Security (NT DEPWS, Northern Territory).  

All available water quality data were obtained from all seven state agencies in late 2019 and collated into a single national-

scale database (see more details in Lintern et al., in review). Quality control of the data was performed using quality codes, 

flags and detection limits provided by individual state agencies. The dataset consists of a mixture of grab samples and high-

frequency (continuously measured) water quality data; a daily average is taken if more than one water quality sample was 90 

collected for any day at any site. This study focuses on six water quality variables: total suspended solids (TSS), total 

phosphorus (TP), soluble reactive phosphorus (SRP), total nitrogen (TN), nitrate–nitrite (NOx) and electrical conductivity 

(EC). These six variables have been included because they are of key concern for Australian riverine water quality and are 

well monitored across Australia both spatially and temporally, as illustrated in Lintern et al. (in review). 

For each monitoring site for the abovementioned six variables, we also obtained the corresponding available daily streamflow 95 

data. These daily streamflow data were obtained from the same seven state agencies as listed above. At each site, any missing 

or erroneous data were identified by quality code (as detailed in Table S1, Supplementary Materials) and removed for 

subsequent analyses. The daily streamflow data generally had good quality, with a < 5% median percentage of missing or 

erroneous data for individual water quality variables (Table S2, Supplementary Materials). These gaps and low-quality samples 

in the daily streamflow records were then filled in using streamflow modelled by the Australian Bureau of Meteorology 100 

(BoM)’s operational landscape water balance model (AWRA-L), which simulates daily streamflow across Australia (Frost et 

al., 2016).  

For this study, we focused only on monitoring sites (catchments) with water quality and flow data that satisfy the following 

criteria: 

1) Having over 50 pairs of corresponding concentration and flow data points; this is to ensure that the C-Q relationships 105 

observed are unaffected by outliers (Lintern et al., in review). 

2) Having water quality time-series that spans at least 3 years; this ensures that a wide range of water quality and flow 

conditions are captured (e.g., across different seasons, high and low flows). 

https://doi.org/10.5194/hess-2021-353
Preprint. Discussion started: 8 July 2021
c© Author(s) 2021. CC BY 4.0 License.



5 

 

3) At least 75% of the range of flow quantiles (with unconstrained bounds e.g., 5 to 80%, 10 to 85%) is covered by water 

quality samples; this ensures that C-Q relationships are not biased by samples obtained at high or low flows for 110 

individual catchments.  

We found a total of 157 sites (catchments) that met the above criteria across all the six water quality variables. As the monitored 

water quality variables vary between catchments, there were 50-83 catchments used to investigate each variable. These 

catchments are distributed across five main Australian climate zones as defined by Lintern et al. (in review): arid, 

Mediterranean, temperate, subtropical and tropical (Figure 1). A summary of the temporal coverage of water quality and flow 115 

data is provided in Figure S1 in the Supplementary Materials. Water quality data generally cover the full range of flow quantiles 

of individual catchments (Figure S2, Supplementary Materials). Some sites are biased towards high flows, which is likely due 

to i) monitoring priority for high flow events to better represent export loads; ii) practical constraints to sample low flows in 

intermittent rivers and ephemeral streams. 

 120 

Figure 1. Catchments included in study for each water quality variable (total number of catchments shown in panel titles). The 

colours denote five key climate zones in Australia. States and territories of Australia on the map are: New South Wales - NSW, 

Queensland - QLD, South Australia - SA, Tasmania - TAS, Victoria -VIC, Western Australia -WA, and Northern Territory - NT. 

2.1.2 Representing catchment baseflow contribution with baseflow index 

To represent the overall contribution of baseflow to total streamflow in each catchment and explore how this impacts the C-Q 125 

relationships across space, we used catchment baseflow index (BFI). BFI represents the proportion of discharge that occurs as 
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baseflow (Eckhardt, 2008; Lyne & Hollick, 1979; Nathan & McMahon, 1990; Zhang et al., 2017). We computed the catchment 

median BFI, BFI_m, based on daily BFIs derived from all flow records for each of the 157 catchments. The daily BFIs were 

estimated using a Lynne-Hollick baseflow filter with Alpha = 0.98 and a burn-in period of 30 days at both ends of the time 

series, as recommended for Murray-Darling Basin in the south-eastern Australia (Ladson et al., 2013), within which a large 130 

number of the study catchments are located. We expect that the BFI_m can represent the typical flow regime at a catchment-

level and differentiate between catchments with higher and lower baseflow contributions. In this way, we expect catchments 

with contrasting BFI_m to be dominated differently by surface flow and groundwater sources of water chemistry. Besides, 

BFI_m, we also computed the 10th and 90th percentiles of daily BFIs (BFI_l, BFI_h, respectively) for individual catchments to 

explore how the distribution of BFI of each catchment can affect C-Q relationships. 135 

2.2 Modelling the impacts of catchment baseflow contribution on concentration 

We developed a Bayesian hierarchical model (BHM) to explore the effect of catchment BFI on C-Q slope. The BHM is 

advantageous in its ‘borrowing power’ across space (Gelman et al., 2013; Webb & King, 2009), which is highly effective to 

explain variability in spatial-temporal data under data-limited situations. Bayesian modelling is also effective for incorporating 

uncertainty, which is necessary when analysing water quality data, as they are often associated with high uncertainty due to 140 

incomplete sampling of its natural variability (Guo et al., 2020; Liu et al., 2021). 

The model considered a classic C-Q relationship for any site s at any time-step t (Eqn. 1), where βs specifies the C-Q slope for 

a catchment (Godsey et al., 2009): 

log(𝐶𝑠,𝑡) = 𝛼𝑠 + 𝛽𝑠log(𝑄𝑠,𝑡)      (1) 

Our model used a modified version of Eqn. 1 based on previous literature on the effects of baseflow contribution on C-Q slopes 145 

within individual catchments (Gorski & Zimmer, 2021; Minaudo et al., 2019). We assume that for each water quality variable, 

the C-Q slopes of all catchments are following a normal distribution with a ‘grand mean’, β0. Then the variation of C-Q slopes 

between catchments, away from β0, are explained by changes in catchment BFI. The use of a mean C-Q slope is based on our 

preceding study, which suggested that for each water quality variable, export patterns (as represented by C-Q slopes) did not 

differ between climate zones (Lintern et al., in review). The model conceptualization is illustrated in Figure 2 with observed 150 

flow time series from two catchments and calculated baseflow (panel a) and median BFI (BFI_m) (panel b); panel c) illustrates 

the modelled catchment C-Q slope with BFI_m considered as the main predictor. Two alternative model versions were also 

developed to incorporate the impacts of BFI_l and BFI_h in the same way. 
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Figure 2. Illustration of conceptualization of the BFI-based C-Q models with two catchments, with the catchment median BFI 155 
(BFI_m) as the main predictor of C-Q slope. a) flow time-series with shaded regions showing the baseflow contribution; b) BFI time-

series and the corresponding BFI_m; and c) catchment C-Q relationships, in which the shift of C-Q slope of each catchment (β1, β2) 

away from the grand mean β0 is determined by BFI_m. Both time-series for the instantaneous flow and BFI (a) and b)) are only 

shown for one year for visualisation.  

Thus, the resultant catchment C-Q slope βs is:  160 

𝛽𝑠 = 𝛽0 + 𝐵𝐹𝐼_𝑚𝑠 × 𝛿𝐵𝐹𝐼𝑐𝑙𝑖𝑚𝑎𝑡𝑒     (2) 

In Eqn. 2, the model parameter, δBFIclimate, represents the effect of BFI_m on C-Q slope. This effect is considered as a climate-

specific parameter to assess whether the catchment BFI effects differ between climate. Such conceptualization of the BFI 

effects would then lead to a modified C-Q relationship for each catchment as: 

𝑙𝑜𝑔(𝐶𝑠,𝑡) = 𝛼𝑠 + (𝛽0 + 𝐵𝐹𝐼_𝑚𝑠 × 𝛿𝐵𝐹𝐼𝑐𝑙𝑖𝑚𝑎𝑡𝑒) × 𝑙𝑜𝑔(𝑄𝑠,𝑡)    (3) 165 

Equation 3 is the final form of the Bayesian hierarchical model, which was calibrated for each water quality variable across 

all catchments simultaneously to assess the impact of catchment BFI on C-Q slopes. The effects of BFI_l and BFI_h were 

explored with the same model structure. 

To calibrate the Bayesian model, we used the R package rstan (Stan Development Team, 2018). The package first sampled 

parameter values from the Bayesian prior distributions with Markov chain Monte Carlo, and then evaluated candidate models 170 

to derive the posterior parameter distributions. Each of the unknown model parameters, β0, αs and δBFIclimate, was independently 

derived by sampling from a minimally informative normal prior distribution of N(0,10) (Gelman et al., 2013; Stan 

Development Team, 2018). We used four independent Markov chains in each model run, with a total of 50,000 model iterations 
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for each chain. Convergence of the chains was ensured by checking the Rhat value (Sturtz et al., 2005), which is a rstan output 

that summarizes the consistency of the four Markov chains used in model calibration. Specifically, we ensured that the Rhat 175 

value is below 1.1, which suggested that the independent Markov chains have been well mixed and converged (Stan 

Development Team, 2018). 

The calibrated model interpretation focused on the performance and the model parameter δBFIclimate, which informed the 

climate-specific effects of catchment BFI on C-Q slopes. We specifically assessed the following model outputs (results 

presented in Section 3.3): 180 

1) Model performance: We assessed how well each BFI-based model (Eqn. 3) reproduced observed water quality with 

the Nash Sutcliffe Efficiency (NSE) (Nash & Sutcliffe, 1970). The NSE represents the proportion of observed 

variability that is explained by the model. As a benchmark, we also assessed the NSE of a baseline model which uses 

the classic C-Q relationship (Eqn. 1) observed for individual catchments to predict all water quality concentrations. 

This baseline model represents the best performance that can be achieved to predict concentration using the catchment 185 

C-Q slopes together with flow. Therefore, the baseline model provides an informative benchmark to assess the BFI-

based model. 

2) Modelled effects: We extracted the direction, magnitude and significance of the effects of catchment BFI from the 

posterior distribution of the calibrated model parameter, δBFIclimate, to assess the impact of catchment BFI on C-Q 

slope for each climate zone. 190 

3 Results and Discussions 

In this section, we first discuss the spatial variation in the median BFI across the study catchments (Section 3.1). We then 

provide some examples at specific catchments to illustrate how catchment BFI can affect C-Q relationship as a proof of concept 

(Section 3.2). Section 3.3 then presents the inferences made with the BFI-based C-Q model, focusing on the model performance 

in predicting water quality (Section 3.3.1), and we discuss the modelled effects of catchment BFI on C-Q slopes (Section 195 

3.3.2). Note we focus on the outputs from the model which used the catchment median BFI (BFI_m) as the main predictor; the 

models calibrated using BFI_l and BFI_h as predictors generally show consistent performance and results with that of BFI_m, 

and are presented in the Supplementary Materials. 

3.1 BFI across catchments 

The range of catchment low, median and high BFIs (BFI_l, BFI_m and BFI_h) for all catchments included in this study are 200 

summarized in Figure 3. The calculated BFIs are consistent with previous studies of BFI patterns in Australian catchments 

(Zhang et al., 2017) and do not seem to correlate with catchment area (Figure S3, Supplementary Material). Generally, 

temperate catchments have the highest BFI_m across all climates, while similar ranges of median BFIs are seen between the 
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other four climate zones (Figure 3 a)). The BFI_l and BFI_h have consistent distributions with the median BFI across climate 

zones. Considering the different catchments analysed between water quality variables, similar catchment BFI summaries were 205 

also generated for each water quality variable, and the BFI distributions are generally consistent across different variables 

(Figure S4, Supplementary Materials).  

  

Figure 3. a) Distribution of catchment low, median and high BFI (BFI_l, BFI_m, BFI_h) for each climate zone; b) range of 

instantaneous BFI (BFI_h – BFI_l) versus BFI_m. Both plots include all 157 catchments across six water quality variables studied. 210 
The corresponding versions of a) and b) for individual water quality variables are in Figure S4 and Figures S5 and S6 

(Supplementary Materials). 

It is also worth noting that catchments with high BFI_m are likely to have a higher variability of instantaneous BFI, as 

highlighted by the generally increasing differences between BFI_h and BFI_l with higher BFI_m (Figure 3 b)). The link 

between BFI_m and variability of instantaneous BFI suggests potentially different flow pathways for catchments with 215 

contrasting BFI_m. Specifically, a catchment with a low BFI_m tends to be associated with low instantaneous BFIs limited to 

a small range; thus, the catchment is likely to always have lower contributions of baseflow and higher contributions of surface 

flow, during both dry and wet conditions. In contrast, a catchment with a high BFI_m generally has a large range in 

instantaneous BFIs. This means that the catchment is more likely switching between groundwater contributions in dry 

conditions (high instantaneous BFI) and surface water contributions during wet conditions (low instantaneous BFI). Therefore, 220 

catchments with higher BFI_m are more likely dominated by different flow pathways under dry and wet conditions.  

3.2 Impact of BFI on C-Q slope: proof of concept 

Before presenting the modelled effects of catchment baseflow contribution on C-Q relationships, we show some examples of 

individual catchments to illustrate how C-Q relationships vary across catchments with BFI_m. We focus on the C-Q 

relationships of TSS for four catchments including two arid catchments (ARIDa, ARIDb) and two tropical catchments (TROPa, 225 

TROPb) (Figure 4). For each climate zone, we include one catchment with low BFI_m (ARIDa, TROPa) and another one with 

high BFI_m (ARIDb, TROPb), relative to the corresponding range of BFI_m for TSS (Figure S4). 
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 a)  b) 

Figure 4. C-Q relationships between TSS and flow for four individual catchments (in columns), including: a) two arid catchments 

(ARIDa, ARIDb); and b) two tropical catchments (TROPa, TROPb). Within each climate, a low-BFI and a high-BFI catchments 230 
are included, with the corresponding BFI_m shown in column titles. The top and middle rows for each catchment show a 3-year 

timeseries for the records of TSS concentrations and the continuous records of flow, with red dots showing the timesteps of water 

quality samples. The bottom row shows the C-Q relationship with all concentration and flow data at each catchment; the red dashed 

lines show the observed C-Q slope and the black dashed lines show the reference 1:1 line. All values plotted are in log-10 scale. 

Due to the particulate nature of TSS, we would expect the C-Q relationship to show strong a mobilisation behaviour that is 235 

enhanced during events (Musolff et al., 2015). Thus, catchments should have positive C-Q slopes, with a greater slope at a 

catchment with low BFI_m. However, our results show this is not always the case (Figure 4). The low-BFI arid catchment 

(ARIDa, BFI_m = 0.03) has a negative C-Q slope, whereas the high-BFI catchment (ARIDb, BFI_m = 0.21) shows a non-

linear C-Q relationship (in log-log space). The overall C-Q slope is positive, which however, consists of a negative slope for 

lower flows, followed by a positive slope when the flow passes a certain threshold. This is similar to the differences in C-Q 240 

slopes with high and low flows as seen in previous studies (e.g., Moatar et al., 2017), and suggests that the mobilisation 

behaviour for TSS is dependent on a threshold flow. 

Both tropical catchments (TROPa and TROPb) exhibit positive C-Q slopes that are relatively linear (in log-log space), where 

seasonal pattern in TSS concentration are in phase with those of streamflow. This highlights consistently strong mobilisation 

behaviours, with a greater positive C-Q slope for the catchment that has a higher baseflow contribution (TROPb, BFI_m = 245 

0.22). Overall, this preliminary analysis on a small subset of catchments suggests that BFI may indeed drive differences in C-

Q relationships between catchments, and that these effects may vary across climate zones.  
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3.3 Modelled results from the BFI-based C-Q model 

3.3.1 Model performance in predicting water quality 

The calibrated BFI-based C-Q model, when using catchment median BFI (BFI_m) as the predictor, can generally explain 50% 250 

of the observed variability for individual water quality variables (Table 1). For TP, TN, SRP and EC, the model can explain 

54-93% of the observed variability; the explanatory power is lower for TSS and TN (NSE of 0.50 and 0.47, respectively). 

Compared to the baseline model that predicts water quality with observed C-Q slopes for individual catchments (see details in 

Section 2.2), the BFI-based model has only marginally lower performance with 0.01-0.04 decreases in NSE across all water 

quality variables (Table 1, see Figures S7 and S10 in Supplementary Materials for corresponding plots of the model fit). This 255 

suggests that the BFI-based model, while having the capacity to predict C-Q slope across space, can predict water quality 

almost as well as using the observed C-Q slope. The good performance of the BFI-based model also suggests its suitability to 

derive inferences of the impacts of catchment BFI on C-Q slopes. Using BFI_l and BFI_h instead of BFI_m as the predictor 

only has minimal impacts on model performance (Table S3, Supplementary Materials). 

Table 1. Performance of the BFI-based model (with BFI_m as the main predictor) and the baseline model in predicting across all 260 
catchments for individual water quality variables (in rows), summarized as Nash Sutcliffe efficiency (NSE). The corresponding plots 

of the model fit are in Figures S7 and S10 in Supplementary Materials. 

Water quality variable BFI-based C-Q model Baseline model 

TSS 0.50 0.53 

TP 0.54 0.56 

SRP 0.62 0.64 

TN 0.47 0.50 

NOx 0.54 0.58 

EC 0.93 0.94 

 

3.3.2 Modelled effects of BFI on C-Q slope across Australia 

Our BFI-based C-Q model synthesized the patterns observed for individual catchments (as illustrated in Section 3.2) across 265 

the Australian continent. The model suggests that catchment median BFI, BFI_m, has significant influence on the C-Q slope 

for most climate zones and water quality variables, with some differences between climate zones. Figure 5 presents the median 

and the 95th credible intervals of these modelled impacts for each water quality variable, derived from the Bayesian posterior 

estimates of 𝛿𝐵𝐹𝐼𝑐𝑙𝑖𝑚𝑎𝑡𝑒 (Eqn. 3). The effect of catchment median BFI on C-Q slope is almost always significant, with the 

95th credible intervals not crossing over 0 for most combinations of water quality variables and climate zones.  270 
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Figure 5. Modelled effects of BFI_m on C-Q slope for each climate zone. The bars show the 95% credible interval (2.5th to 97.5th 

percentile) of modelled effect for each climate zone for each water quality variable, and the dots indicate the corresponding median 

levels. The colours indicate whether an effect is significantly positive, significantly negative, or non-significant; a positive effect 

means that C-Q slope increases with higher catchment BFI, and vice versa. Black dashed lines show zero-effect i.e. no effect at all. 275 

Figure 5 shows the directions of the impacts of catchment median BFI (BFI_m). To put the impacts of BFI into context, we 

show the modelled catchment C-Q slopes against the corresponding BFI_m values in Figure 6. Sediment and nutrients are 

largely dominated by mobilisation, as evidenced by the large proportion of positive C-Q slopes for TSS, TP, SRP, TN and 

NOx. In contrast, salts (EC) have largely negative C-Q slopes and are thus dominated by dilution. Regarding the effects of 

catchment BFI, we first note that for each water quality variable, the fitted relationships between C-Q slopes and BFI have a 280 

consistent ‘diverging’ pattern between climate zones. This is a result of our model structure, in which, for each water quality 

variable, all catchment C-Q slopes share a common ‘grand mean’ (Section 2.2), which represents the stable export patterns 

between climate zones as found in our preceding study (Lintern et al., in review). The deviation of slopes within each climate 

zone from the ‘grand mean’ is dependent on catchment BFI_m (Eqn. 2). Therefore, for catchments with low BFI_m, the 

differences in C-Q slopes between climate zones are smaller, and are all close to the ‘grand mean’. Conversely, the C-Q slopes 285 

of catchments with high BFI_m are affected more strongly by the differences between climate zones.  
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Figure 6. Catchment C-Q slope vs. catchment median BFI (BFI_m), coloured by climate zones. The lines represent the modelled C-

Q slope~BFI_m regression lines for individual climate zones, where BFI_m always has a significant impact on C-Q slope, based on 

the 95th credible intervals shown in Figure 5. The dots represent individual catchments. The black dashed lines mark a zero C-Q 290 
slope which differentiate mobilisation (C-Q slope>0) from dilution (C-Q slope<0). 

Across all six water quality variables and most climate zones, we found a general pattern that catchments with higher median 

BFI (BFI_m) tend to have steeper C-Q slopes (regardless of direction). This impact of BFI_m could be related to the negative 

correlation between BFI_m and the median concentrations combining with the low correlation between BFI_m and median 

flow (Figures S11 and S12, Supplementary Materials). The BFI effects are also unlikely related to longer travel times in larger 295 

catchments, as BFI_m is not correlated with catchment area (Figure S3). Considering export patterns, this result highlights an 

overall increase in i) mobilisation for sediment, nitrogen and phosphorus; and ii) dilution for salt, generally at catchments with 

higher baseflow contribution. In the subsequent discussions, we first detail the modelled effects for individual water quality 

variables, and then synthesise potential explanations related to catchment processes. 

For both TP and SRP, across all climate zones, most catchments have positive C-Q slopes. This slope is steeper for catchments 300 

with higher BFI_m for all climates. To further interpret the behaviour of particulate and soluble P, we extracted the SRP:TP 

ratios for all catchments with both SRP and TP timeseries (Figure S13). The SRP:TP ratios for most catchments are less than 

0.4, which suggests that TP is dominated by particulate forms across all catchments and climate zones. Combining this with 
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the positive effects of BFI_m seen for both SRP and TP, this suggests an overall mobilisation export pattern for both particulate 

and soluble P, which is more pronounced at rivers with higher baseflow contributions. 305 

For TN and NOx, the C-Q slopes are largely positive, and the modelling result suggests an increase in C-Q slope with BFI_m 

for most climate zones, except for subtropical (non-significant) and tropical (significantly negative) catchments for NOx. A 

large proportion of TN is present in particulate forms (Figure S14), with most catchments having NOx:TN ratios lower than 

0.25. The particulate-dominated TN and the responses of its C-Q slope to BFI_m highlight that particulate N is largely 

mobilised across all climate zones, which are enhanced with higher contributions of baseflow. For soluble N (NOx), the 310 

baseflow-driven mobilisation is also shown as an important pathway for arid, Mediterranean and temperate catchments. 

For TSS, most catchments have positive C-Q slopes, which increase with BFI_m in arid, subtropical and tropical climates; the 

effects of BFI_m are non-significant for Mediterranean and temperate catchments. This ‘enhancing’ effect of BFI_m on 

positive C-Q slopes (i.e. mobilisation) is largely consistent with the results for TP and TN, which are both largely particulate-

bound. 315 

EC exhibits mostly negative C-Q slopes, indicating an overall dilution export pattern. No tropical catchments were included 

due to insufficient data. A higher BFI_m led to a steeper negative C-Q slope for Mediterranean, subtropical and tropical 

catchments, but only has non-significant effect on C-Q slope for arid catchments. This result highlights stronger dilution 

behaviour at catchments with higher baseflow contribution, for Mediterranean, subtropical and tropical climates.  

In summary, the above results highlight an overall greater absolute value of C-Q slope at a catchment with higher baseflow 320 

contribution. For sediment (TSS) and nutrients (N and P species), we see an overall mobilisation behaviour across Australian 

catchments, which is stronger in catchments with higher baseflow contribution. For salts (EC), we see an overall dilution 

behaviour, which is also enhanced at baseflow dominated catchments. The potential processes are discussed subsequently and 

summarized in Figure 7. 
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 325 

Figure 7. Conceptual diagram of the modelled effect of baseflow contribution on C-Q slopes, for a catchment with low BFI_m 

(catchment a) and a catchment with high BFI_m (catchment b). 

For particulate water quality variables (TSS, and the largely particulate-bound part of TP and TN), our model result suggests 

that enhanced mobilisation in catchments with high BFI_m. This is a rather surprising result considering the dominance of 

surface flow in transporting particulates (Lintern et al., 2018). One potential explanation relates to the higher variability of 330 

instantaneous BFI seen in catchments with high BFI_m, as seen in Figure 3b. Specifically, catchments with lower BFI_m 

generally have narrower ranges of instantaneous BFI, which thus tend to always have low baseflow contributions (i.e. surface 

flow dominated) regardless of dry or wet conditions (Catchment a, Figure 7). This can lead to a limited range of water sources 

with small variation of flow pathways to transport water chemistry to rivers, resulting in a relative stable export pattern across 

low and high flows at these catchments. In contrast, catchments with higher BFI_m generally have higher variability in 335 

instantaneous BFI. This suggests higher variations in flow pathways, including surface flows dominance during wet period 

and subsurface flows dominance during dry period at these catchments (Catchment b, Figure 7). Consequently, these 

catchments can have a higher diversity of water sources and potentially larger gradients between groundwater-driven 

concentrations at low flow and runoff-driven concentrations at high flow.  

For soluble N and P (NOx and SRP), our results also suggest enhanced mobilisation in catchments with high BFI_m. In 340 

Australian catchments, soluble N and P concentrations in the groundwater are generally low (Cartwright, 2020). This discards 

the case of rich nutrient inputs in groundwater due to the legacy of long-term agricultural practices, which is often observed in 

agricultural catchments in Europe and North America (Van Meter et al., 2017; Stackpoole et al., 2019; Ehrhardt et al., 2018). 

Thus, steeper C-Q slopes in Australian catchments with higher BFI_m could be interpreted as the result of a larger connectivity 

between the stream and the vadose zone. However, as the case of TSS and particulate N and P, it is also plausible that the 345 
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enhanced mobilisation pattern seen in high BFI_m catchments rather results from the larger range of instantaneous BFI and 

thus more frequent mobilisation events. As discussed above, catchments with a greater variability in the instantaneous BFI are 

likely having greater gradients of concentrations for soluble N and P, between low groundwater-fed concentrations at low flow 

and high concentrations from surface/subsurface contributions at high flow. For the specific case of SRP, large oscillations of 

the groundwater table (which corresponds to large ranges of instantaneous BFI) were also shown to generate soil rewetting 350 

conditions favouring the release of soluble reactive P (Dupas et al., 2015; Gu et al. 2017). 

The enhanced dilution export for EC (e.g. steeper negative C-Q slopes) in catchments with high BFI_m suggests the key role 

of deep flow pathways, which were found in catchments that have high groundwater concentrations of major ions (e.g., Zhi et 

al., 2019). The weaker effect of baseflow contribution for the arid and Mediterranean catchments can be the result of the overall 

less pronounced dilution patterns. Previous studies have found that in semi-arid areas, high evapotranspiration can lead to 355 

higher concentration of major ions in soil water or shallow groundwater compared with surface water, resulting in C-Q slopes 

close to 0 (e.g., Herczeg et al., 2001; Li et al., 2017). 

Besides the abovementioned processes, another potential explanation for the modelled effects of BFI_m on C-Q relationships 

hypothesis is related to flow seasonality, which needs to be further explored. High baseflow contribution is generally found in 

more perennial catchments in Australia (Kennard et al., 2010), which might be associated with more clearly defined seasonal 360 

patterns in transporting water quality variables. These conditions are likely leading to well-defined C-Q relationships (Minaudo 

et al. 2019) and could result in steeper slopes compared to other catchments. In contrast, catchments with lower baseflow 

contribution are more likely driven by intermittent flow while lacking clear seasonal patterns, which leads to more scattered 

C-Q relationships. In this case, the absolute values of C-Q slopes tend to be close to 0 and these catchments often fall in the 

category of chemostatic with unclear export regimes (e.g. Godsey et al., 2009). However, we acknowledge that this hypothesis 365 

should be further tested, preferably with a subset of study catchments where high-frequency observations have been collected.  

In summary, our results highlight the potential to improve understanding of transport processes via the relationships between 

water quality and baseflow contributions. Our model proved BFI_m useful in predicting C-Q slopes across space (Section 

3.3.1), but also indicated that BFI_m may not be a suitable indicator to differentiate key flow pathways between catchments. 

Indeed, a high BFI_m may be associated with highly variable baseflow contributions involving both the surface and subsurface 370 

pathways, as illustrated in Figure 3 b). Therefore, a valuable avenue for future research would be to identify suitable BFI 

metrics to better represent the temporal dynamics of flow pathways to further improve the understanding of baseflow impacts 

on transport processes of water quality constituents. 

4 Conclusions 

In this study, a Bayesian hierarchical model was developed to understand the impacts of catchment baseflow contribution on 375 

C-Q slopes for six water quality parameters across Australia. These BFI-based models show good performances, which can 
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explain the majority of the observed variability in EC, SRP, TP, NOx and TSS (93, 62, 54, 54 and 50% explained, respectively) 

and almost half the observed variability for TN (47% explained). This highlights a potential parsimonious model that can be 

useful for predicting i) the C-Q slope across space; and ii) water quality for individual catchments, where flow data is available. 

Our model suggests significant influences of catchment baseflow contributions - as represented by catchment median BFI - on 380 

C-Q slopes across most water quality variables and climate zones. One of the important findings is that the C-Q slopes are 

largely positive for both particular and soluble N and P (NOx, TN, SRP and TP), and are steeper for catchments with higher 

median BFI across all climate zones (for TN, SRP and TP). The enhanced mobilisation at catchments with higher median BFI 

is likely a result of more variable flow pathways, which introduces higher concentration gradients between low and high flows 

that are dominated differently by groundwater and surface water sources. This result highlights the crucial role of flow 385 

pathways in determining catchment exports of water quality constituents, and the need of further studies to identify suitable 

baseflow metrics in differentiating flow pathways. The results also suggest a priority for managing and monitoring stream P 

and N, which should focus on catchments with the greater fluctuations in baseflow contributions.  

This study complements our preceding study on the impacts of other catchment characteristics - including land use, land cover, 

geology and climate - on C-Q slopes across Australia (Liu et al, in preparation). Further work should aim to synthesize the 390 

impacts of baseflow contribution and other spatial drivers by considering their interactions and establishing relative importance 

on influencing C-Q relationships. 

This study also highlights the effectiveness of Bayesian hierarchical models in interpreting water quality data across large 

spatial scales. Such a model is ideal to analyse water quality data over a large number of catchments, with high heterogeneity 

in temporal coverage and sampling frequency. This is particularly relevant for Australia, as water quality monitoring is often 395 

undertaken under different local/regional programs focusing on specific management interests. 

Data availability 
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