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Abstract 
 
We introduce the Galaxy-SynBioCAD portal, the first toolshed for synthetic biology, metabolic 
engineering, and industrial biotechnology. The tools and workflows currently shared on the 
portal enables one to build libraries of strains producing desired chemical targets covering an 
end-to-end metabolic pathway design and engineering process from the selection of strains and 
targets,  the design of DNA parts to be assembled, to the generation of scripts driving liquid 
handlers for plasmid assembly and strain transformations. Standard formats like SBML and SBOL 
are used throughout to enforce the compatibility of the tools. In a study carried out at four 
different sites, we illustrate the link between pathway design and engineering with the building 
of a library of E. coli lycopene-producing strains. We also benchmarked our workflows on 
literature and expert validated pathways. Overall, we find an 83% success rate in retrieving the 
validated pathways among the top 10 pathways generated by the workflows. 
 
 
Keywords: Design Automation, Biosynthetic Pathway Engineering, Galaxy workflows,  Standards, 
Web Application 
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Computation has become an essential tool in life science research. Synthetic biology, metabolic 
engineering and industrial biotechnology make no exception to that trend. As part of this 
endeavor, significant attention is being paid to the development of workflows adhering to design 
principles from engineering such as standardization and abstraction of modular parts, as well as 
the decoupling of design from fabrication. 
 
Following the electronic design automation (EDA) concept, there are many design automation 
tools for genetic circuits, these are extensively reviewed in Appleton et al.1. As an example, Cello2 
applies the EDA approach to genetic circuits. Cello comprises several steps, which are connected 
and therefore need to use standardized input/output formats. Among those formats are Verilog 
to represent a logic function and Eugene3 to encode a set of parts and constraints between the 
parts. While Cello achieved the compilation and standardization of several pieces of software for 
genetic design, in general, this is not true for most freely available synthetic biology and 
metabolic engineering design tools, where the fragmentation remains a significant barrier to 
adoption. Nonetheless, two main standards have emerged in the past two decades. The first, 
SBML4 is a biological modeling standard that has been developed by the systems biology 
community to encode strains and pathways. The second, SBOL5, is a data exchange standard 
specific to synthetic biology. SBOL has been developed to document genetic components (DNA, 
RNA, protein, etc.) and their interactions for the purpose of biodesign engineering. SBOL can now 
encode complex genetic circuits, metabolic pathways, vectors, and plasmids. Complying with 
SBML and SBOL standards a suite of in silico genetic circuit design tools was recently proposed6. 

As for genetic circuits, there are plenty of software tools to assist the biosynthetic pathway design 
process7. Briefly, from a given target compound and a given chassis strain, the first step consists 
of finding metabolic reactions that link the target compound to the native metabolites of the 
host strain. This step is carried out by retrosynthesis software tools8–13 and, should one wish to 
search for novel pathways or find pathways that produce unnatural target compounds, requires 
the use of reaction rules14. The result of retrosynthesis is a metabolic map and there is a need in 
a second step to enumerate the pathways linking the chassis metabolites to the target. There are 
many solutions for pathway enumeration and search15, which are sometimes integrated into the 
retrosynthesis software itself. The third step is to find the most promising enzyme sequences 
catalyzing the metabolic reactions. This can be achieved either through similarity search to 
enzyme annotated metabolic reactions16–18, or machine learning trained on metabolic 
databases19,20. Once the pathways have been annotated with enzyme sequences, they can be 
ranked in a fourth step. The ranking criteria are diverse, they can be among others based on 
thermodynamics21, predicted yield of the target22, target rate of production through flux balance 
analysis9,11,21, chassis cytotoxicity of the target and intermediates21, along with simpler criteria 
like pathway length. 

In addition to the enzyme identities, there are multiple layout solutions and settings to engineer 
the top-ranked pathways. Indeed, the individual genes coding for the enzyme can be placed 
under different promoters, in a different order, with different RBS strength (if the chassis is a 
bacteria), and on different plasmids with different origins of replication if the engineering is 
performed on a plasmid. The fifth step deals with this issue by making use of tools such as the 
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RBS calculator23 to compute RBS sequences for different strengths, and design of experiments 
(DoE)24,25 to sample the space of possible constructs, which can be very large. The result of that 
step is a library of layouts representing either the same or different pathways. At this stage, one 
can either synthesize the whole layout DNA or, as it is most commonly done, synthesize individual 
DNA parts and use combinatorial DNA assembly methods to include variations of the control 
elements, such as promoters and RBS sequences. Several computational tools can be used to 
perform this sixth and last step of assembly design before constructing the pathways, these tools 
compute parts to be synthesized depending on the chosen assembly protocol.  Computation 
tools to help the build tasks are sparser than for design. One can cite here Aquarium26, which 
provides instructions to a person or a robot to perform the assembly tasks along with Antha27, 
BioBlocks28, and DNA-BOT29. Engineered pathways are generally evaluated using HPLC or mass 
spectrometry analyses. Here too, computational tools can help in particular the workflows 
produced by OpenMS30 or Worlflow4Metabolomics31.  

Considering the above, we are clearly at a stage where the pathway engineering process is not 
that far from being fully driven by computer software products. However, there are several 
hurdles that prevent this from happening even for tools covering pathway design only. First, the 
tools are not easily findable, they are stored in different places and the keywords to search online 
are not obvious. Secondly, some of the tools are difficult to access, some requiring registration, 
purchase, or access fees. Thirdly, almost none of the tools are interoperable and cannot be 
chained one after another to ensure that computational experiments are communicated well, 
and hence reproducible. Lastly, and perhaps most problematic for wider acceptance,  the tools 
can be difficult to comprehend, requiring a level of expertise that limits their use by a large 
community. 
 
Scientific workflows help to address these issues by providing an open, web-based platform for 
performing findable and accessible data analyses linked to experimental protocols for all 
scientists irrespectively of their informatics expertise, along with interoperable and reproducible 
computations regardless of the particular platform that is being used32. Indeed, without 
programming skills, scientists that need to use computational approaches are impeded by 
difficulties ranging from tool installation to determining which parameter values to use, to 
efficiently combining and interfacing multiple tools together in an analysis chain. Scientific 
workflows provide solutions where data is combined and processed into a configurable, 
structured set of steps. Existing systems often provide graphical user interfaces to combine 
different technologies along with efficient methods for using them, and thus increase the 
efficiency of the scientists using them. Additionally, workflow systems generally provide a 
platform for developers seeking a wider audience and broad integration of their tools, and can 
thus drive forward further developments in a specific field of research. Among existing workflow 
platforms, Galaxy is a system originally developed for genome analysis33 which now includes 
more than 8500 tools that can be found in the public ToolShed34.  
 
Here, we introduce the Galaxy-SynBioCAD portal36, the first Galaxy set of tools for synthetic 
biology, metabolic engineering and industrial biotechnology. It allows one to easily create 
workflows from the incorporated toolset or use already developed shared workflows. The portal 
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is a growing community effort where developers can add new tools and users can evaluate the 
tools performing design for their specific projects. The tools and workflows currently shared on 
the Galaxy-SynBioCAD portal36 cover an end-to-end metabolic pathway design and engineering 
process from the selection of strain and target to automated DNA parts assembly and strain 
transformation. 

Results 
 
To develop an integrated ecosystem, we selected software applications from among the 
computational tools mentioned above. Several criteria were used for this selection: (i) the tools 
needed to be relevant for pathway design and engineering, (ii) be published, (iii) open-source 
under MIT,  GNU GPL, or related licenses, (iv) well documented and deposited in GitHub, (v) make 
use of standard input/output, and (vi) exist as a standalone command-line tool. 

Pathway design and engineering tools and workflows 

The selected tools are further described in the ‘Supplement_Text’ file (cf. SynBioCAD Tools). 
These tools can be divided in three categories: (i) those aimed at finding pathways to synthesize 
heterologous compounds in chassis organisms (RetroRules, RetroPath2.0, RP2Paths, 
rpCompletion), (ii) thoses aimed at evaluating and ranking pathways (rpThermo, rpFBA, 
rpReport, rpViz, rpScore) and those related to genetic design and engineering (Selenzyme, 
SbmlToSbol, PartsGenie, OptDOE, DNA Weaver, LCR Genie, rpBASICDesign, and DNA-Bot).  
Following FAIR principles34, all selected tools are open source with code available on GitHub and 
installable through the Conda package manager35 (cf. Tools design and integration process in the 
‘Supplement_Text’ file). Therefore, any user can install the tools needed on their own computer 
and run these as standalone programs or chain them together to process more complex 
calculations.  

To go further in chaining tools, three types of Galaxy workflows are available on the Galaxy-
SynBioCAD portal36. 

1. A Retrosynthesis workflow to enumerates the pathways enabling the synthesis of a given 
target chemical in a host chassis organism (cf. Retrosynthesis from target to chassis in 
Methods and Retrosynthesis workflow in ‘Supplemetary_Text’ file). 

2. A Pathways analysis workflow to score and rank the pathways produced through 
Retrosynthesis based on multiple criteria (cf. Pathway analysis workflow in 
‘Supplemetary_Text’ file). Some criteria necessitated the development of specific methods 
for pathways thermodynamics (cf. Thermodynamics in Methods) and theoretical product 
flux calculation  (cf. Flux Balance Analysis with Fraction of Reaction in Methods). Pathway 
scoring is performed via Machine Learning using a training set of pathways extracted from 
literature and pathways validated by pathway engineering experts (cf. subsection 
Benchmarking workflows with literature data and expert validation trial). 
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3. Two Genetic design and engineering workflows that produce assembly plans for plasmids 
encoding the pathways generated by the Retrosynthesis or Pathway analysis workflows (cf. 
Genetic design and engineering workflows in ‘Supplemetary_Text’ file). The first workflow 
generates plans for Golden Gate37, Gibson38,  and Ligation Chain Reaction (LCR)39 assembly 
methods. It also includes Design of Experiment (OptDoE tool) for combinatorial experimental 
design. The second workflow (BASIC assembly) generates plans for the Assembly Standard 
for Idempotent Cloning (BASIC) technique40. This workflow provides a direct link between 
machine-enabled design and automated assembly. It takes as input a pathway and generates 
a script to operate an Opentrons liquid handler robot performing assembly and chassis 
transformation,.  

The Retrosynthesis and Pathways analysis workflow generate annotated SBML files (cf. Pathway 
annotation in Methods), which are taken as input to the Genetic design and engineering 
workflows to produce plasmids encoded in SBOL format along with assembly plans (in CSV files) 
and liquid handler instructions (Python scripts directly executable by Opentrons). 

Benchmarking workflows for lycopene production 

The Retrosynthesis workflow was run at the Genoscope laboratory (Paris region, France) for the 
production of lycopene in E. coli. We used iML151541 as a model for E. coli. The retrosynthetic 
map was composed of 12 unique compounds and 7 unique reactions, resulting in 3 “master” 
pathways. Only the 10 best pathways were kept per master pathway, after reaction completion 
with cofactors and removal of duplicates only 9 pathways remained. Additional details are 
provided in the Supplementary file ‘Lycopene_Benchmark’. 

The Pathway Analysis workflow was run at the University Polytechnic of Valencia, Spain. The 
workflow took as inputs the list of 9 pathways generated by the Retrosynthesis workflow.  Results 
are shown in Figure S4 in the ‘Supplementary_Text’ and ‘Lycopene_Benchmark’ files. The top 
ranked pathway was composed of 3 reactions with EC numbers listed from chassis metabolites 
to target: 2.5.1.29, 2.5.1.96 and 1.3.99.31. 

The genetic design and engineering workflow for BASIC assembly was run at two different 
locations: Paris (Micalis Institute) and London (Imperial College). In both cases, as design input 
we used the top lycopene ranked pathway predicted by the Pathway Analysis workflow. 
Constraining the enzyme search within the organism Pantoea ananas, enzymes CrtE (UniProt ID: 
P21684), CrtB (P21683) and CrtI (P21685) were predicted by the Selenzyme tool for the 3-
reaction pathway (Figure S6 in the ‘Supplementary_Text’ file and ‘Lycopene_Benchmark’ 
Supplementary file). A total of 88 construct designs were generated and fed to DNA-Bot, which 
was executed in Paris and London with different labware identifiers and associated parameters 
(cf. Genetic design and engineering workflow execution in Methods).  In both laboratories, DNA-
Bot generated four scripts (clip reactions, purification, assembly and strain transformation) which 
were run on Opentrons robots. Additional information can be found in the Supplementary file 
‘Lycopene_Benchmark’. 
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Following the scripts produced by the genetic design and engineering workflow the three genes 
of the pathway (crtE, crtB and crtI) were assembled in distinct order, together with six different 
RBS-linkers (Figure 1.A). Each of these linkers held a ribosome-binding site with specific strength 
(cf. Supplementary file ‘Lycopene_Benchmark’). The pathway operon was expressed using one 
of two different promoters (medium strength PJ23105 and low strength PJ23116).  
 
In both laboratories (Paris and London) the scripts were used for the 88 constructs and to spot 
10 µL of the transformed cells (E. coli DH5-alpha) on a rectangular LB-agar plate (cf. Lycopene 
production in Methods). Of these, only 30 (22 red + 8 white) and 33 (21 red + 12 white) constructs 
gave us transformant colonies at Paris and London respectively (Figure 1.B). However, only 12 
(11 red + 1 white) of these transformants were common across the two laboratories, suggesting 
that 10 µL may be too low a volume to spot for these transformations. To test if more 
transformants can be obtained by increasing this volume, we manually plated 100 µL of the 
transformed cells in Paris and repeated the spotting step in London using 40 µL on a 12-well plate 
(cf. Lycopene production in Methods). Of the 88 constructs, this time we obtained transformants 
for 51 (41 red + 10 white) and 63 (49 red + 14 white) constructs at Paris and Imperial, respectively, 
including 36 (33 red + 3 white) constructs in common. 
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Figure 1. Automated construction of 88 distinct plasmids coding for lycopene pathway operons with genes in 
different orders and varying promoters and RBS sequences. (A) Plasmids coding for lycopene genes were assembled 
using the BASIC method. In this method DNA parts  are assembled using DNA linkers. Three genes in the lycopene 
pathway crtE, crtB, crtI (parts 3, 4 and 5) were assembled in an operon with UTR-RBS linkers containing different 
strengths of RBSs. The 3 gene operon plus promoter (part 2) were assembled into a standard backbone with an origin 
of replication p15A (ORI) and Chloramphenicol resistance gene (Cmp-R). The assembled parts were flanked by 
methylated linkers that recapitulate the BASIC Prefix and Suffix (LMP and LMS). (B) Number of constructs for which 
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successful transformant colonies were obtained are reported from each laboratory (Micalis Institute, Paris, and 
Imperial College, London), and the number of constructs common to the two labs are indicated in the intersection. 
Color of colonies (red and/or white) are indicated. At the left, data are from spotting 10 µL of transformation reactions 
by Opentrons on LB plate and at right are from spotting 100 µL manually or 40 µL by Opentrons on LB plates. (C) 
Count-plots indicate the number of constructs for which we got successful colonies, grouped by position and gene 
(details in Supplementary file ‘Lycopene Benchmark’). At the left are results from Micalis Institute Paris, and at the 
right are results from Imperial College London and in the middle are the results which were common between both 
the laboratories. At the top are the constructs with promoter PJ23116 (weaker) and at the bottom with promoter 
PJ23105 (stronger). The RBS types are shown by different colors. The position of each of the 3 genes (crtE, crtB, crtI) 
are indicated at the bottom of each plot. Mean of the number of constructs for each promoter type is shown by a 
dashed line in each plot. (D) Lycopene extraction measurement (mg of lycopene per gram of the dried cell weight) 
from different constructs from both laboratories. Types of RBS and promoters and gene orders are indicated. E: crtE, 
B: crtB, I: crtI. Promoter and the terminator are shown at the extremity of each construct. (E) Examples of red and 
white colonies acquired by Opentrons at the top, the pellet preparation step in the middle and acetone extraction of 
lycopene at the bottom. 

An analysis of the number of successful transformants obtained in the two laboratories for the 
different combinations of promoter, RBS, and gene order indicates a preference for the weaker 
J23116 promoter (Figure 1.C). Overexpression of the three pathway genes from a strong 
promoter may be too toxic for the cell, resulting in overall reduced fitness and consequently 
fewer successful transformants. Four transformant colonies with visibly different levels of red 
color (Figure 1.E) were used for acetone extraction of lycopene at Micalis (cf. Genetic design and 
engineering workflow execution in Methods), and similarly eight colonies were used for 
lycopene extraction at Imperial. In both the weak (J23116) and the high (J23105) promoter 
groups, low lycopene production was observed from constructs with more than one high-
strength RBS (Figure 1.D). When comparing the constructs with the same gene order, for example 
CrtE-CrtI-CrtB (H10, B9), CrtB-CrtI-CrtE (B11, D2), or CrtI-CrtE-CrtB (C9, D8), constructs with more 
low-strength RBSes exhibited higher lycopene production. There was also an apparent 
preference for the CrtI-CrtE-CrtB (G6, C9, D8) among the highest producing constructs. Taken 
together, these data indicate that maximizing the expression of pathway genes can increase 
cellular burden, resulting in lower pathway productivity. 

Benchmarking workflows with literature data and expert validation trial 

Criteria computed by the Pathway analysis workflow like target product flux, thermodynamic 
feasibility, pathway length, and enzyme availability score inform the user as to the best potential 
candidate pathway to produce a compound of interest. These criteria can be combined in a global 
score value. To achieve this, we developed a machine learning scoring tool (cf. Machine Learning 
Global Scoring in Methods) taking training data from literature (cf. Literature data 
benchmarking in Methods) and a validation trial conducted by metabolic engineering experts (cf. 
Expert validation trial benchmarking in Methods and acknowledgement section for the list of 
experts enrolled). The process is summarized in Figure 2, overall, our training set comprised 7919 
pathways, 754 of which were labeled positive either because of their matching with a literature 
pathway or because they were selected as feasible to engineer during the validation trial. 
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Figure 2. Scoring SynBioCAD predicted pathways with literature pathways and expert validation data. (A) 
Pathways for different targets and different hosts are extracted from literature (cf. Literature data benchmarking in 
Methods), this is illustrated here for production of phenol in E. coli. (B) Galaxy SynBioCAD workflows are run on the 
literature targets and hosts. (C) A collection of SynBioCAD generated pathways is compiled. Pathway ‘A’ producing 
phenol in E. coli from tyrosine is highlighted. (D) The SynBioCAD generated pathways are compared with the literature 
pathways using a matching algorithm (cf. Supplementary_Text file). The plot shows for each literature pathway the 
best scoring SynBioCAD generated pathways. Pathways scoring above 0.5 are identical (similarity of 1) to literature 
pathways as far as main substrate and products are concerned. The plot raw data can be found in Supplementary 
file ‘Lirerature_Pathways’.  (E) SynBioCAD generated pathways are evaluated by metabolic engineer experts whose 
task is to select in batches of 5 generated pathways which ones are valid (cf. Expert validation trial benchmarking in 
Methods). (F) Valid pathways according to experts and pathways matching literature are added to a training set of 
labeled pathways. (G) The set of labeled pathways is used to train a machine learning tool printing out the probability 
of any given pathway to be a valid one (cf. Machine Learning Global Scoring in Methods). The figure plots results 
obtained for all pathways generated by SynBioCAD. The raw data including the training set can be found in the 
Supplementary file ‘ML_Scores’. Using a probability threshold of 0.5, the accuracy retrieving literature of expert 
labeled pathways is 0.91 with a false positive rate of 0.10 in 4-fold cross validation (cf. Supplementary file 
‘ML_scores’). 

The scoring process depicted in Figure 2, was used to rank the top 50 SynBioCAD pathways 
generated for 60 target molecules taken from our literature pathway training set. Results are 
shown in Figure 3 where each row is a ranked list of collections of predicted pathways for a given 
target molecule in a given chassis. Pathways are ranked according to the machine learning 
predicted global score aforementioned. Overall, we find that our scoring schema has an 83% 
success rate in retrieving the literature or expert selected pathways among the top 10 predicted 
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pathways, the number rises to 94% in retrieving the literature pathway among the top 50 
predicted pathways. 

 
Figure 3. Ranking predicted pathways with machine learning global score.  The color code on the right side shows 
the global score (from 1 top to 0). The black boxes show the location of the literature or expert selected pathways for 
a set 60 literature target engineered in E. coli (*), S. cerevisiae (**) or P. putida (***). If a row does not contain a 
black box then the literature or expert selected pathway is not found within the first 50 scored pathways. The numbers 
listed on the right side are the total  numbers of pathways generated by the SynBioCAD workflows. The data used to 
generate the figure can be found in Supplementary file ‘ML_Scores’. 
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Discussion 
 

We have presented several Galaxy workflows to design and engineer pathways in host organisms. 
These workflows have been built using 25 different computational tools. Chaining the tools 
together to form workflows was made possible only because the input and output of each tool 
were standardized. As far as standardization is concerned, we chose community adopted 
standards like InChI and SMARTS for compounds and reactions, SBML for pathways and strains, 
and SBOL for genetic constructs.  

We illustrated our workflows by designing and engineering a library of 88 pathway variants 
designed to produce lycopene in E. coli DH5-alpha on Opentrons liquid handlers. The workflows 
were executed at four different locations demonstrating the ability of the Galaxy-SynBioCAD 
portal to run workflows (including robot drivers with different labwares) at different sites, and 
consequently the possibility of completing multi-partners design and engineering projects. 

There are many standard protocols for biological engineering but as argued elsewhere42, written 
protocols without practical guidance can lead to problems, as protocols often contain ambiguities 
or rely on tacit knowledge.  Here the possibility of running several times the same workflow that 
incorporates automated experiments provides a systematic way to quantify reproducibility (cf. 
Figure 1). 

To assess the validity of our generated pathways, we used the double-blind testing strategy 
performed by a pool of participants43. In that strategy, neither the participants nor the 
conductors are aware of the origin of the pathways, and the participants are asked to flag 
pathways they deemed valid without having explicit information on pathways found in the 
literature. We applied this approach to develop a machine learning based scoring function 
reaching high predictability when ranking pathways. 

The Galaxy-SynBioCAD portal presented in this paper, proposes the first set of synthetic biology 
and metabolic engineering computational tools in a Galaxy framework33. We chose Galaxy as our 
workflow system because the tools found in the ToolShed34, have reached way beyond genome 
analysis for which Galaxy was originally developed. Just by focusing on the tool categories 
relevant to our study, one can cite proteomics, transcriptomics, metabolomics, flow cytometry 
analysis, and computational chemistry. Several communities are using Galaxy and many papers 
can be found online for omics (752 publications are found as of 16/02/2022) microbiome (380 
publications), diseases like cancer (386 publications), and drug design and discovery (96 
publications). We created a new Galaxy category named ‘Synthetic Biology’ currently comprising 
25 tools stored in the ToolShed34. 

The offering in Galaxy-SynBioCAD focuses on providing tools for pathway design and engineering. 
However, as Galaxy-SynBioCAD is a community effort, we anticipate our toolset will grow. 
Regarding pathway design tools, many of the software products listed in the introduction could 
be considered to be added to the portal. In particular, strain design including knockout genes to 
maximize targeted product fluxes could easily be implemented via the flux balance analysis tools.  
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Additionally, there are already Galaxy workflows to take up and analyze metabolomics flow 
cytometry data in the ToolShed34, and these workflows could directly be incorporated into the 
portal to deal with data generated in the ‘Test’ step of the synthetic biology Design-Build-Test-
Learn (DBTL) cycle. As mentioned in the introduction several open-source software products 
deposited in GitHub26–28,44 could address the ‘Build’ step and eventually provide drivers to 
automated constructions using different robotic workstations beyond those provided by 
Opentrons. Regarding the ‘Learn’ step in DBTL, the OptDoE tool could easily be adapted to 
propose new designs as it was done in Carbonell et al.25. More complex approaches to be 
considered are methods that make use of machine learning as in Borkowski et al.45. While all 
design examples provided in the current paper are for engineering pathways in host organisms, 
because of the recent development of models (similar to genome scale models) for cell-free 
systems46, one can also consider adapting the portal for design and engineering in cell-free. 

All of the above-suggested additions could be implemented in our portal with relatively small 
efforts. There are other applications that could be envisioned beyond pathway design and 
engineering. For instance, as shown in Delepine et al.10 retrosynthesis software can easily be 
adapted to design biosensors, and tools for genetic logic circuits engineering could also be 
considered. 
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Online Methods 
 
 

Retrosynthesis from target to chassis  

Typically, the target compound, also named “source compound” is the compound of interest one 
wishes to produce, while the precursors are usually compounds that are natively present in a 
chassis strain. Starting from the source compound at the first iteration, reaction rules matching 
the chemical structure of the source are applied and newly predicted chemicals are generated. 
Reaction rules are generic descriptions of (bio)chemical reactions encoded into the community 
standard SMARTS47. The use of reaction rules allows estimating the outcomes of chemical 
transformation based on the generalization of reactions available in knowledge DBs such as 
BRENDA48, MetaCyC48, Rhea49, or MetaNetX50. The degree of generalization is controlled by 
describing the surrounding environment of the reaction center up to a given diameter as 
described in Duigou et al.14.  To ensure the accuracy of the predicted transformations that will 
outcome from the reaction rules, the RetroRules dataset provided by the Galaxy RetroRules tool 
has been validated by (i) checking that rules allow to reproduce the template reactions, and by 
(ii) checking that results obtained by decreasing diameters are supersets of results obtained with 
higher diameters. Only the reaction rules that successfully passed the 2 checks are retained. The 
validation of this dataset has a success rate of 99.3%. 

For each reaction rule, a score is calculated based on the ability to retrieve enzyme sequences 
catalyzing substrate to product transformations, the method is detailed in Delepine et al.10. 
Newly produced chemicals are scanned and kept for the next iteration if they are not within the 
set of available precursors. In that way, a new iteration is started using the previously collected 
chemicals as the new source set. The iterative process stops when either no new chemicals are 
discovered or the predefined number of steps is reached. RetroPath2.0 carries out this task. 

The retrosynthesis tools RetroPath2.0 and RP2Paths outputs a set of pathways composed by 
chemical transformations based on reaction rules. To obtain reactions, we have to re-build them 
from template reactions which have been used to generate the rules. In addition, within a 
pathway one single chemical transformation can reference multiple rules. Such pathways will be 
called master pathways. For each master pathway, the algorithm takes each transformation and 
creates one fork per reaction rule referenced. Then for each reaction rule, again the algorithm 
creates a new fork per template reaction used to build the current rule. The enumeration of all 
forks create a set of slightly different pathways (made of chemical reactions) for one master 
pathway. To perform the enumeration, datasets from RetroRules and MetaNetX are used. The 
reaction completion tool (rpCompletion) takes as input the CSV outputs of RP2paths and 
RetroPath2.0 and produces a collection of annotated SBML files. Those SBML files are “enriched” 
with additional information that are not stored as part of the normal SBML schema (see Pathway 
annotation section).  
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Pathway annotation 

Some results generated by the workflow produced in this study cannot be readily stored in the 
SBML files natively (information about chemical reactions and species, thermodynamic and fluxes 
properties, as well as pathway information). 

Using the Minimal Information Required In the Annotation of Models (MIRIAM) conventions, one 
can store within the SBML file information that instructs the user on the provenance of the 
reactions and chemical species within the model by cross-references to a wide range of 
databases. However, this needs a third-party database lookup to match the database ID with its 
structural information. In this work, intermediate products are generated ad-hoc references and 
may not necessarily have database entries whereas some other information cannot be contained 
under the MIRIAM annotations as it is : SMILES, InChI, InChIKey for chemical species,  reaction 
rule ID (RetroRules ID), associated template reaction ID, and rule score based on the expected 
enzyme availability.  

As such, we elected to enrich the SBML format in such a way that our information can be stored 
directly within the SBML file without breaking any standard of the original file. Because SBML 
files are based on XML, new XML annotations are created outside the standard scope of an SBML 
file and thus are ignored by any standard SBML readers51. As a result, this enriched file format 
(denoted rpSBML) is fully compliant with SBML version 3 specifications. 

Standard SBML extensions are also used in this project. The “groups” package is used to link the 
heterologous reactions and chemical species to identify them easily, as well as classifying the 
chemical species that are main actors in a heterologous pathway51. While the FBA package is 
used to define the FBA simulation conditions52. The tools also adhere to the MIRIAM annotation 
standard for the cross-references of chemical species to public databases53. 
 

Flux Balance Analysis with Fraction of Reaction 

We need metrics to rank pathways, this is why we developed an in-house Flux Balance Analysis 
(FBA) objective to simulate the flux of a target while considering the burden that the production 
of the target would cause on the cell. Under such simulation conditions, the analysis that returns 
a low flux may be caused by the starting native compound itself not having a high flux, or the 
cofactors required having a low flux, while the pathways with high flux would be caused by both 
the starting compound and the cofactors being in abundance. In either case, bottlenecks that 
limit the flux of the pathway may be identified and pathways that do not theoretically generate 
high yields can be filtered out. Furthermore, the production of heterologous molecules in an 
organism often causes a burden on the growth of the cell. To emulate such a condition, we use 
the method named ‘fraction of reaction’. We first perform FBA (with COBRApy54) for the biomass 
reaction and record its flux. The upper and lower bounds of the biomass reaction are then set to 
the same amount, defined as a fraction of its previously recorded optimum. This ensures that any 
further FBA solution would have a fixed biomass production regardless of the conditions set for 
further analysis. 
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The tool optimizes the target molecule and records the flux directly to the SBML file and all 
changed bounds are reset to their original values before saving the file. It is important to note 
that orphan chemical species (those which are only consumed or produced by the metabolic 
pathway) are ignored. Such species are documented in the SBML file within the group named 
rp_fba_ignored_species. 

Thermodynamics 

Thermodynamics is critical in synthetic pathway design by providing quantitative indicators to 
determine best metabolic pathways among a set of predicted ones. Thus, one can perform 
thermodynamic analysis to know whether a reaction direction of a pathway is feasible in 
physiological conditions. 

In this work, we performed thermodynamic analysis for species, reactions and pathways. We use 
eQuilibrator55 to compute the formation energy of chemical species and the Gibbs free energy 
for each chemical reaction and the heterologous pathway. 

For each species involved in a heterologous pathway, the first challenge is to find the 
corresponding compound in the eQuilibrator database. To find the right compound, we try to 
exactly match species ID, InChIKey, InChI or SMILES and stop with the first hit. Then, if no 
compound is found, in the last resort, the first part of species InChIKey is looked for within the 
eQuilibrator cache. When the result (a list) is not empty, the first compound is taken. If species 
have no known structure neither in eQuilibrator database nor in any public one, the user has the 
possibility to specify substitution for identifier, InChI and InChIKey for these species. This 
substitution is documented in the SBML file with the group named 
rp_thermo_substituted_species. If a species has no known structure and is not substituted, then 
the reaction which involves this species will not have thermodynamics values. Conversely 
thermodynamics can be computed by eQuilibrator for all reactions for which all species have 
been identified. 

At the level of the pathway, we build a global pseudo-reaction linking chassis substrates to the 
target molecule and we compute thermodynamics with the eQuilibrator engine for the global 
pseudo-reaction. 

Building the global pseudo-reaction requires finding the appropriate stoichiometric coefficients 
such that the intermediate compounds of the pathway cancel out. A linear optimization program 
(eq. 1) can be set to find the stoichiometric coefficients. The program can be solved using  SciPy56  
with a simplex algorithm.  
 
            max 𝑐𝑇𝑥 
   such that  𝐴𝑥 =  0                 (1) 
             and 1 ≤ 𝑥 

where c is the objective function,  A the stoichiometric matrix, and 𝑥 the unknown 
stoichiometric coefficient multipliers. 
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As an example, let’s consider the following 3-reaction set: 
 
𝑅𝑥𝑛1: 𝑀𝑁𝑋𝑀188 + 𝑀𝑁𝑋𝑀4 + 𝑀𝑁𝑋𝑀6 + 3𝑀𝑁𝑋𝑀 → 𝐶𝑀𝑃𝐷4 + 𝐶𝑀𝑃𝐷3 + 𝑀𝑁𝑋𝑀13 + 𝑀𝑁𝑋𝑀15 + 𝑀𝑁𝑋𝑀5 
𝑅𝑥𝑛2: 𝑀𝑁𝑋𝑀4 + 2 𝐶𝑀𝑃𝐷3 → 2 𝑀𝑁𝑋𝑀1 + 𝑇𝐴𝑅𝐺𝐸𝑇 
𝑅𝑥𝑛3: 𝑀𝑁𝑋𝑀4 + 𝑀𝑁𝑋𝑀6 + 3 𝐶𝑀𝑃𝐷4 → 𝑀𝑁𝑋𝑀13 + 𝑀𝑁𝑋𝑀5 

 
where MNXM are species ID from MetaNetX, CMPD are intermediate species within the 
heterologous pathway and not present in the chassis organism, and TARGET is the product of 
interest. We note that Rxn2 is the reaction to retain and CMPD3,4 are species to remove as 
intermediate compounds. Thus, the parameters of linear solver are: 
 

𝑅1  𝑅2  𝑅3 
𝑐 =  ( 0    1     0 )       
 

𝑅1     𝑅2    𝑅3 

𝐴 =  
𝐶𝑀𝑃𝐷3
𝐶𝑀𝑃𝐷2

    [
1 −2    0
1    0 −3

]                                

The solver outputs the following coefficients of reactions: 
 

  𝑅1   𝑅2   𝑅3 
𝑥 =  ( 3    1.5   1 )   
 

The global pseudo-reaction for the reaction sets becomes: 

 
7.5 𝑀𝑁𝑋𝑀1 + 3 𝑀𝑁𝑋𝑀188 + 5.5 𝑀𝑁𝑋𝑀4 + 4 𝑀𝑁𝑋𝑀6

→ 4 𝑀𝑁𝑋𝑀13 + 3 𝑀𝑁𝑋𝑀15 + 4 𝑀𝑁𝑋𝑀5 + 𝑇𝐴𝑅𝐺𝐸𝑇 

Genetic design and engineering workflow execution 

 
From amongst the pathway predicted by the Pathway Analysis workflow, the top ranked one was 
selected with a score of 0.989. The search scope of the Selenzyme tool was restricted to the taxon 
ID of Pantoea ananas, i.e., 553 taxon ID. The combination of polycistronic constructs was built 
using 2 constitutive promoters (PJ23105 and PJ23116), 2 RBS linkers (A03, having a TIR 46%, and 
A04 with a TIR of 3%), 1 backbone (BASIC_SEVA_36_CmR-p15A.1) and enabling CDS permutation, 
resulting in a maximal number of constructs of 96 for 3 CDS. The labware IDs and parameters 
used with DNA-Bot parameters are listed in Tables 1 and 2. Additional changes in the purification 
step were needed because the 2 labs own different versions of the magnetic module (generation 
1 vs generation 2). An updated version of the original DNA-Bot tool44 was developed to be fully 
compatible with the Opentrons APIv2 and compatible with a command line interface, whilst 
retaining the option of using an enhanced GUI for direct user control.  
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Table 1. Labware IDs used at Imperial College (London) and Micalis Institute (Paris) laboratories 
 

Description London Paris Used in 

P20 single channel pipette p20_single_gen2 p20_single_gen2 Steps 1, 3, 4 

P300 multi channels pipette p300_multi_gen2 p300_multi_gen2 Steps 2, 4 

Opentrons 4-in-1 tubes rack for 1.5 
ml eppendorf tubes 

e14151500starlab_24_tuberack_150
0ul 

opentrons_24_tuberack_eppendorf_1.5
ml_safelock_snapcap 

Steps 1, 3, 4 

Opentrons 10μL tips rack opentrons_96_tiprack_20ul tipone_3dprinted_96_tiprack_20ul Steps 1, 3, 4 

Opentrons 300μL tips rack opentrons_96_tiprack_300ul 
tipone_yellow_3dprinted_96_tiprack_30
0ul 

Steps 2, 4 

96 well rigid PCR plate (clip reactions 
and transformation steps) 

4ti0960rig_96_wellplate_200ul green_96_wellplate_200ul_pcr Steps 1, 4 

96 well rigid PCR plate (purification 
and assembly steps) 

4ti0960rig_96_wellplate_200ul black_96_wellplate_200ul_pcr Steps 2, 3 

Agar plate (transformation step) 

nuncomnitraysingle_1_wellplate_35
000ul 
corning_12_wellplate_6.9ml_flat 
 

thermoomnitrayfor96spots_96_wellplat
e_50ul 

Step 4 

Reservoir plate 21 mL 12 channels 4ti0131_12_reservoir_21000ul citadel_12_wellplate_22000ul Step 2 

96 deep well plate 2 mL wells 4ti0136_96_wellplate_2200ul transparent_96_wellplate_2ml_deep Step 2 
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Table 2: DNA-Bot parameters that differ between Imperial College (London) and Micalis Institute (Paris) laboratories 
 

Step Parameter London Paris 

 
 

magdeck_id magdeck magnetic module gen2 

magdeck_height 20 10.8 

settling_time 2 6 

drying_time 5 15 

elution_time 2 5 

wash_time 0.5 0.5 

bead_ratio 1.8 1.8 

incubation_time 5 5 

  

 
incubation_temp 

 
4 

 
8 

 
incubation_time 

 
20 

 
30 

 

Lycopene production materials and methods 

Lycopene genes were synthesized by Twist Bioscience, flanked by the LMP prefix and the LMS 
suffix sequences40, and cloned into pTwist high copy vector (AmpR, ColE1 replication origin) using 
Golden Gate. The resulting storage plasmids (pTwist_High_BASIC_CrtE, 
pTwist_High_BASIC_CrtB, pTwist_High_BASIC_CrtI) were confirmed by sequencing. 

Storage plasmids for lycopene genes and assembly vector BASIC_SEVA_36_CmRp15A.1 were 
prepared using Monarch® Plasmid Miniprep Kit (Micalis) and E.Z.N.A.® Plasmid DNA Mini Kit 
(Imperial). The samples were diluted to 200 ng/µl ready to use in the clip reactions. Plasmids 
coding for the lycopene pathway variants were constructed using Biopart Assembly Standard 
Idempotent Cloning (BASIC) method. Five-part BASIC reactions were performed, replacing the 
dropout mScarlet cassette in the assembly vector (BASIC_SEVA_36_CmRp15A.1) by a promoter 
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and three genes with appropriate linkers. A collection of neutral and functional linkers (encoding 
RBS sequences) is available in a ready to use 96-well plate format (www.biolegio.com). For this 
work the standard BASIC linker set (Biolegio: BBP-18500) was used. 

DNA-BOT was executed as described in detail in the Genetic design and engineering workflow 
execution section. A clip reaction master mix was prepared by combining 3 µL of 10X NEB T4 DNA 
ligase buffer, 1 µL NEB BsaI-HF v2 (NEB #R3733), 1 µL T4 DNA Ligase (NEB M0202 (Micalis) or 
Promega M1804 (Imperial)) per 20 µL required for each reaction. The Opentrons OT-2 pipetted 
the 20 µL master mix for each reaction, plus 1 µL of Biolegio BASIC linkers and 1 µL of each DNA 
parts, together with sufficient H2O to give a total volume of 30 µL. Clip reactions were incubated 
in a thermocycler (Applied Biosystems) for 30 cycles (37°C for 5 min, 16°C for 5 min), followed by 
a 5 min incubation at 60 °C at Micalis. Clip reactions were incubated in Opentrons Thermocycler 
Module for 20 cycles (37°C for 2 min, 20°C for 1 min), followed by a 10 min incubation at 60 °C at 
Imperial. For clip reaction purification, 54 µL of Mag-Bind® TotalPure NGS  magnetic beads 
(OMEGA BIO-TEK (Micalis) or AMPure XP (Imperial)) were added; 150 µl 70% ethanol was used 
during wash steps; following resuspension in H2O, 40 µL of the eluent was transferred to a fresh 
well. Constructs were assembled in volumes of 15 µL using 1.5 µL of each purified clip reaction in 
a solution of 1X assembly buffer (CutSmart Buffer,NEB #B6004) . Assembly reactions were 
incubated at 50 °C for 45 min in a thermocycler (Applied Biosystems (Micalis) or Opentrons 
Thermocycler Module (Imperial)). 20 µL of DH5-alpha Competent E. coli (NEB #C2987H, Micalis) 
or home-made DH5-alpha competent E. coli (Imperial) were distributed per well into 96-well 
plates; then, they were used for transformation reactions. 5 µL of the assembly reactions were 
mixed with cells. Heat shock was conducted according to the manufacturer’s instructions. SOC 
media (125 µL) was transferred to each assembly and the reaction incubated at 37 °C for 1 h with 
lids off. Transformation reactions were spotted on plates (Thermo Scientific™ OmniTray™ Single 
well) each containing 40 mL LB-agar supplemented with 17.5 µg/mL chloramphenicol. The 
spotting protocol was run twice in order to spot 2 times 5 µL for each transformation reaction. 
The spotting step at Imperial was repeated using 40 µL of transformation reaction on a 12-well 
plate (Costar® 12-well 3737), each well containing 10mL of LB_agar supplemented with 17.5 
µg/mL chloramphenicol. 100 µL of each transformation reaction was plated manually on LB-agar 
plates containing 17.5 µg/mL chloramphenicol as well. 

To quantify lycopene production, 2 mL of overnight cultures grown in LB (Cm 17.5 μg/mL) were 
pelleted at 5000 x g (10 min), washed by re-suspension in 1 mL water, re-pelleted at 5000 x g (10 
min), and the pellet re-suspended for extraction in 1 mL acetone. The cells in acetone were 
incubated at 55 °C for 20 min with continuous shaking (1300 rpm, Eppendorf Thermomixer 
comfort), centrifuged at 19000 x g (10 min), and the supernatant transferred to a fresh tube. 
Lycopene absorbance of the supernatant was measured at 474 nm using a quartz cuvette (Hellma 
104.002B-QS) in a spectrophotometer (UVisco V-1100D (Micalis) or NanoDrop™ One UV-Vis 
(Imperial)), and the pellet was dried at 50 °C for 48 h to determine the gDCW. Absorbance (OD474) 
was converted to molar concentration value by dividing by 150479, the molar extinction 
coefficient (ε) of lycopene57. The yield per gram dry cell weight (mg/gDCW) was calculated by 
dividing the absolute yield (mg) by the weight of the dried cell pellet. 
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Literature data benchmarking 

A list of 77 pathways corresponding to 60 expressed compounds in engineered organisms (E. coli, 
S. cerevisiae, and P. putida) was collected from the literature  (cf. Supplementary file 
‘Literature_Pathways’). For each of the 77 collected pathways and each heterologous pathway 
reaction, we compiled the EC number of the reaction along with the substrates and products of 
the reaction. Each target compound within that list was used to run the Retrosynthesis and 
Pathways Analysis workflows to generate a collection of 5874 predicted pathways that produce 
the same target molecule in the same host organism as those reported in the literature. Following 
that, the predicted collection of pathways were compared with their corresponding literature 
pathways using a matching algorithm described in the ‘Supplementary_Text’ file. Figure 2.D 
shows for each literature pathway, the predicted pathway with the highest matching score (raw 
data is in Supplementary file ‘Literature_Pathways’). Any pathway generated by SynBioCAD is 
labeled ‘literature pathway’ if its score is above 0.5 and that pathway is added to the training set 
of a machine learning model predicting global score (Figure 2.F-G).  

Expert validation trial benchmarking  

Pathways generated by SynBioCAD should not be discarded even when they do not appear in the 
literature, for the obvious reason that not all pathways have been engineered for the 60 targets 
of our literature benchmarking. To palliate this shortcoming, we generated a set of 7919 
predicted pathways for 80 (target, chassis) pairs using the Retrosynthesis and Pathway Analysis 
workflows. The set included the 5874 pathways generated for our literature benchmarking along 
with 2045 and 20 additional pathways and (target, chassis) pairs taken from the Laser database58. 
We next spliced the set in batches of 5 pathways synthesizing the same target in the same chassis. 
The predicted pathways best matching the literature pathways (when known) was included and 
the four remaining pathways were drawn randomly. We next recruited 40 experts in the 
metabolic engineering community (see acknowledgement section) and asked them to select valid 
pathways in the list they received. To help the selection process, the experts received a clickable 
map of the 5 pathways (Figure 2.E) where they could collect information on compounds and 
reactions, reaction and pathway thermodynamics, a Selenzyme ranked list of enzymes catalyzing 
each reaction, and reaction and pathway production fluxes. An example of such a map can be 
found on the SynBioCAD portal59. The results were recorded and merged with the literature 
benchmarking results using an OR function for identical pathways. At the end of this process, 
among the 7919 pathways, 754 were labeled positive either because their matching score with a 
literature pathway was above 0.5 or because they were selected as feasible to engineer by the 
experts (cf. Supplementary file ‘ML_Scores’).  

Machine Learning Global Scoring 

The purpose of the machine learning model is to predict if a given predicted pathway is a valid 
one or not. To that end, we developed a classifier based on the XGBoost library61. The classifier 
was trained on 7919 SynBioCAD generated pathways (comprising 43392 reactions) used during 
the expert validation trial where 754 pathways were labeled positive. The training set can be 
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found in the Supplementary file ‘ML_Sores’. The input features used by the classifier are given in 
the Table below, these were computed for each training pathway and each reaction within the 
pathways. XGBoost learn function was parameterized with a Maximum depth of a tree of 1000 
and a Step size shrinkage used in update to prevent overfitting of 0.3 (default value). The classifier 
accuracies were recorded during 4-fold cross validation. 

Table 3. Pathway and reaction features used by the XGBoost classifier. 

 Item Format Comment 

 

Chassis organisms integer Taxonomy ID of the organism 

Gibbs free energy  float 
Computed using the Thermodynamics calculations described in the 
Thermodynamics section 

Fraction of reaction FBA float 
Target flux computed by FBA (cf. Flux Balance Analysis with fraction of reaction 
section) 

 

Reaction 
4096-bit 
vector 

A reaction is represented by its Morgan fingerprint. Fingerprint(reaction) = 
Fingerprint(substrate) +  Fingerprint(product). Morgan fingerprints are computed 
using the RDKit library60. 

Enzyme availability score float 
Enzyme availability score which provided a confidence level of finding an enzyme 
sequence catalyzing the reaction (cf. Delepine et al.10  for details on score 
computation) 

Gibbs free energy  float 
Computed using the Thermodynamics calculations mentioned above for the 
provided reaction only 
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