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ABSTRACT 
 
Cell-free systems have great potential for delivering robust, inexpensive, and field-deployable 
biosensors. Many cell-free biosensors rely on transcription factors responding to small 
molecules, but their discovery and implementation still remain challenging. Here we report the 
engineering of PeroxiHUB, an optimized H2O2-centered sensing platform supporting cell-free 
detection of different metabolites. H2O2 is a central metabolite and a byproduct of numerous 
enzymatic reactions. PeroxiHUB uses enzymatic transducers to convert metabolites of 
interest into H2O2, enabling rapid reprogramming of sensor specificity using alternative 
transducers. We first screen several transcription factors and optimize OxyR for the 
transcriptional response to H2O2 in a cell-free system, highlighting the need for preincubation 
steps to obtain suitable signal-to-noise ratios. We then demonstrate modular detection of 
metabolites of clinical interest – lactate, sarcosine, and choline – using different transducers 
mined via a custom retrosynthesis workflow publicly available on the SynBioCAD Galaxy 
portal. We find that expressing the transducer during the preincubation step is crucial for 
optimal sensor operation. We then show that different reporters can be connected to 
PeroxiHUB, providing high adaptability for various applications. Finally, we demonstrate that 
a peroxiHUB lactate biosensor can detect endogenous levels of this metabolite in clinical 
samples. Given the wide range of enzymatic reactions producing H2O2, the PeroxiHUB 
platform will support cell-free detection of a large number of metabolites in a modular and 
scalable fashion. 
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INTRODUCTION 
 
Detection and quantification of metabolites and other small molecules is an important area of 
research with applications in many fields, such as disease diagnostics and prognostics1, 
pollutant or pathogen detection, agricultural or industrial process monitoring, and fundamental 
research methodologies. Most of these challenges are currently being addressed by a 
combination of analytical physics and chemistry techniques, including chromatography, 
spectrometry, titrimetry, and optical and electrochemical methods2,3. 
 
Biological systems and related devices have the potential to replace some of these time-, cost- 
and equipment-expensive methods. Living cells enclose machinery capable of interacting with 
particular small molecules, including substrate specific enzymes or metabolite-binding 
transcriptional factors (TFs). These systems have been successfully repurposed into highly 
responsive whole-cell biosensors able to detect a wide diversity of molecules4. Cell-free 
transcription translation (TX-TL) systems are abiotic, cell-derived biological mixtures that are 
able to emulate some biological reactions and features in vitro. TX-TL systems have followed 
a continuous development since the 1960s, from their use in the deciphering of the genetic 
code5 to their repurposing into platforms integrating synthetic biology devices over the last two 
decades6. TX-TL systems can integrate various types of biosensors from riboswitches to TF-
mediated systems7,8. 
 
Cell-free biosensors present a variety of advantages over whole-cell systems that support their 
broad use as point-of-use sensing devices. They are abiotic, and thus not subjected to the 
same GMO regulations as living sensors, and they can be freeze-dried for long-term room 
temperature storage9. Moreover, the absence of an intact living and reproducing cellular 
compartment enables the sensing of molecules that are deleterious for cell growth or those 
that do not cross the cell membrane. 
 
Researchers have engineered cell-free biosensors to detect nucleic acids and small 
molecules10. While the modular nature of Watson-Crick base pairing supports the engineering 
of tailor-made sensors for different nucleic acid sequences, metabolite  detection follows 
mostly an ad hoc approach, in which specific transcription factors known to respond to small-
molecules are co-opted. Compared to other methods, sensing systems derived from 
transcription factors have multiple advantages, including high specificity for the molecule being 
detected and response versatility, thanks to the variety of possible gene expression outputs. 
They are also suited to carry out complex computational behavior and calculate an output as 
a function of the concentrations of multiple input molecules11. 
 
However, the development of new TF-based sensors in cell-free systems has been hindered 
by a variety of factors. First, the number of documented transcriptional effectors binding 
desired chemicals is limited; second, the complexity of their regulatory mechanisms 
sometimes prevents their implementation in a simplified cell-free system; and third, most cell-
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free systems use E. coli extracts, which can limit the effectiveness of transcription-promoting 
mechanisms derived from other species.  
 
Recently, we devised an alternative approach to extend the number of potential cell-free 
metabolite biosensors by using enzymatic transducers to transform a nondetectable molecule 
into a ligand for a known, characterized transcription factor12,13. Yet, even using metabolic 
transducers, the small number of TF-based sensors functional in a cell-free system, and the 
complexity of the molecules resulting from enzymatic reactions, limits the number of 
compounds detectable via this approach. In order to circumvent this issue, we aimed to design 
a signal integration system in which many metabolic transducers modifying several different 
molecules produce a common metabolite that can be detected by a single transcription factor. 
To develop this sensing “hub”, we chose hydrogen peroxide (H2O2), a central metabolism 
molecule and a ubiquitous product of several enzymatic reactions, as a common signaling 
molecule.  
 
Here we develop an optimized, TF-based, cell-free H2O2 sensing platform that, coupled with 
computer-predicted enzymatic transducers, is able to detect a wide range of small molecules 
and control the activation of various reporter genes. We identify TFs and promoter 
combinations with the best response to H2O2 in a cell-free environment and optimize the 
reaction conditions for high-signal/low-noise hydrogen peroxide detection. We then build a 
computational tool implemented as a Galaxy workflow to help identify enzymatic transducer 
candidates for custom metabolite sensing. We determine and optimize key factors enabling 
these enzymes to mediate the sensor response in the cell-free reaction. As a proof-of-concept, 
we built sarcosine, lactate and choline biosensors. Importantly, connecting the metabolic 
transducers to our cell-free H2O2 sensing hub requires little additional optimization. In addition, 
we show that our platform can accommodate various output modalities, expanding the range 
of possible applications. The highly modular sensing platform presented here will enable fast 
development of new biosensors for custom metabolite detection with reduced screening 
efforts. 
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RESULTS 
 
H2O2 is a suitable candidate to act as a metabolic hub for several reasons. First, multiple H2O2-
responsive transcription factors and target promoters have been identified, providing an 
appropriate space for exploring and optimizing an H2O2 transcriptional response system. 
Second, unlike many other metabolites (e.g. amino acids) or cofactors (e.g. NAD, Coenzyme 
A), H2O2 is not part of the cell-free buffer, limiting interference with the sensor. Finally, H2O2 is 
a central metabolite and a byproduct of many enzymatic reactions, which enables connection 
with many metabolites. This is demonstrated by the Rhea database14 that documents more 
than 350 different enzymatic reactions producing H2O2. 
 
 
A Galaxy webtool for custom H2O2 transducer mining 
 
 

 
Figure 1: Development and evaluation of a Galaxy workflow for predicting H2O2-producing reactions. (A) 
Principle of the workflow for custom H2O2-producing transducer mining. M: Metabolites of interest; E: enzymatic 
transducers. (B) Results of the Biosensor Galaxy workflow for the prediction of metabolic pathways connecting 
disease-related molecules to H2O2. 
 
 

To map the space of molecules potentially detectable through enzymatic reactions producing 

H2O2, we developed the BioSensor Galaxy workflow (Figure 1A, Supplementary Figure S1), 
combining the RetroPath2.0 software with rp2biosensor, a novel bioinformatic tool.  
 
The BioSensor workflow enables the prediction of metabolic reactions connecting any query 
metabolite to H2O2. When given the International Chemical Identifier (InChI) of the molecule 
to detect, the workflow returns an interactive web page showing, if they are known, the 
potential pathways connecting the target to the chosen detectable molecule and provides 
additional information, such as MetaNetX15 reaction IDs or EC numbers, to facilitate the 
identification of potential enzymatic transducers (Supplementary Figure S2). One noticeable 
feature provided over the previously released biosensor prediction tool, SensiPath16, is the 
integration of potential promiscuous activity of the predicted enzymatic transducers. 
 
As a pilot study, we used the Galaxy Biosensor workflow to identify molecules of interest that 
could be converted to H2O2 with 1 or 2 enzymatic steps, focusing on disease-associated 
metabolites according to the HMDB database17 (Figure 1B). We found that of a total of 2490 
molecules, 2105 were potentially detectable through enzymatic reactions producing H2O2, 973 
with one step and 1132 with two enzymatic steps. Another encouraging metric is that out of 
the 1965 sensing enabling metabolic pathways, 1788 rely on reactions with a diameter at least 
equal to 12, the highest one tested, which suggests good specificity and applicability of them 
as metabolic transducers. Together these numbers confirm the high connectivity of H2O2 in 



5 

metabolic reactions networks. Convinced by this large potential sensing space, we then 
started to develop the PeroxiHUB platform, a cell-free H2O2 biosensor able to detect this large 
variety of compounds on demand through the production of various output signals (Figure 
2A). 
 
 
Implementation and optimization of an H2O2 biosensor in cell-free 
 
To implement an H2O2 transcriptional biosensor operating in a cell-free environment, we 
adapted the design from Rubens et al.18 previously used in bacterial cells. This biosensor 
relies on the OxyR transcription factor, a master regulator involved in the response to oxidative 
stress in multiple bacterial species, including E. coli. OxyR switches from an inactive, reduced 
state to an active, oxidized one upon reaction with H2O2, becoming a transcriptional activator19. 
To implement OxyR in a cell-free environment, we used a two-plasmid design (Figure 2B): 
one for expressing the OxyR gene under the control of a strong constitutive promoter J23101 
(available as a biobrick in the iGEM repository), the other carrying sfGFP under the control of 
an OxyR-responsive promoter. 
 
Initial implementation of the biosensor according to the reported in vivo design18 showed no 
significant response to H2O2 (Supplementary Figure S3), notably because of a high 
transcriptional noise , even in the absence of the inducer in the case of pAhpC and pKatG 
promoters. pOxyS showed a similar low expression level between the induced and uninduced 
conditions. We thus focused on identifying and optimizing the parameters influencing the 
sensor response for a cell-free reaction.  
 
We hypothesized that a significant part of that high background was due to endogenous H2O2 

production in the cell-free reaction coming from the catabolism of buffer components by 
enzymes present in the extract. With H2O2 being an unstable molecule, a preincubation step 
could help reduce this noise. By preincubating the cell-free extract with only the buffer at 37°C 
before adding the plasmid DNA and the inducer, we observed a strong drop in total 
fluorescence but an increase in the response fold change at 100 µM H2O2, from 1.1- to more 
than 4-fold (Figure 2C). This drop in fluorescence was due to a decrease in extract protein 
expression capacity, as demonstrated by the progressive reduction of constitutive GFP 
production at various time-points of the preincubation step (Supplementary Figure S4). The 
optimal signal-to-noise ratio for the biosensor was observed after a 1 hour preincubation using 
the OxyR-expressing plasmid combined with the pAhpC reporter plasmid. All subsequent 
experiments include this preincubation step.  
 
We then screened multiple promoters described in the literature: pOxyS, pKatG and pAhpC 
coming from the in vivo sensor design18 and the promoters pZinT and pYjjZ activated by the 
OxyR in vivo. All the promoters produced GFP in the cell-free mix but only the first three 
demonstrated a noticeable response to 100µM of H2O2 (Figure 2D).  
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Figure 2: Implementation and optimization of an H2O2 sensor in cell-free systems. (A) Concept of the 
PeroxiHUB sensor: an optimized cell-free H2O2 biosensor is used as a hub to detect various molecules with custom 
output. (B) Implementation of an H2O2 sensor in cell-free. The sensor is composed of two plasmids: one 
constitutively producing the transcription factor OxyR that reacts with H2O2 before activating an inducible promoter 
producing the reporter on the second plasmid. (C) Preincubation of cell-free extract and buffer alone at 37 °C for 
various times before addition of the other components (DNA and inducer) strongly modulates the sensor response, 
increasing the fluorescence fold-change represented by the number above bars. pAhpC-GFP and J23101-OxyR 
plasmids were used at a concentration of 10 nM. (D) Screening of multiple OxyR interacting promoters reveals 
various responses to H2O2 induction after 8h of incubation at 37°. (E) DNA concentration gradient test for the 
transcription factor and the reporter expressing plasmids enables fine tuning of these protein expression levels and 
optimizes the response of the sensor by increasing the fold change of fluorescence between 0 and 100µM of H2O2 
to more than 7 after 8h of incubation at 37°. The highlighted square correspond the the optimal condition used 
thereafter. (F) Final H2O2 sensing dose response curve evaluated after 8h of incubation at 37° using all the 
previously optimized conditions(1 hour preincubation, [J23101-OxyR DNA] at 24nM and [pAhpC-sfGFP DNA] at 
12 nM, .The fit of the curve was obtained from the mean of three different cell-free reactions.  Boxes in (C)-(E) 
indicated the selected optimized condition. Error bars represent the standard deviation calculated from 3 individual 
cell-free reactions. MEF (Mean Equivalent Fluorescence) quantifies the fluorescence measured by the plate reader 
as equal to the one generated by a certain amount of FITC. 
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pAhpC was identified as the optimal candidate with which to build a biosensor due to its large 
fold-change and relatively high expression level upon activation in comparison with the other 
candidates tested. We then evaluated the best combination of expression levels for reporter 
and TF by measuring the fold-change of the biosensor in the presence of concentration 
gradients of the two plasmids (Figure 2E). An optimum was found at [pAhpC-GFP DNA] = 
12nM and [J23101-OxyR DNA] = 24 nM. In these conditions, the fold-change in response to 
100 µM H2O2 was increased to more than 7-fold (Supplementary Figure S5). Using these 
calibrated parameters, the biosensor was capable of detecting H2O2 over several orders of 
magnitude, from micromolar to millimolar concentrations, with a fold-change up to 10.8, and 
an EC50 of 75 µM, a relatively low leakage and a high swing (Figure 2F, Table 1). 
 
 

Table 1:  Performance of the H2O2 sensor 
Metrics of the hydrogen peroxide sensor were calculated on the data presented on figure 2B. The max  fold 
change is the fluorescence in non induced (OFF) and induced state (ON), the leakage is the fluorescence in the 
non induced state, the swing is the difference of fluorescence between the non induced and induced state. EC50 
is the half-maximal effective concentration. MEF (Mean Equivalent Fluorescence) quantifies the fluorescence 
measured by the plate reader as equal to the one generated by a certain amount of FITC. 

 
 

Metric  H2O2 sensor 

Max fold change 

( ON / OFF ) 

11 ± 2 

Leakage MEF (FITC) 

( OFF ) 

0.03 ± 0 

Max output swing MEF (FITC) 

( ON ‐ OFF ) 

0.30 ± 0.05 

EC50 (µM)  75 

 

 
Optimizing enzymatic conversion of custom metabolites into hydrogen peroxide 
 
To demonstrate the PeroxiHUB concept and its potential for future applications, we used the 
BioSensor workflow to identify candidate enzymatic transducers for three central metabolites: 
sarcosine, choline, and lactate. These molecules are all central metabolites, identified as 
disease biomarkers but also of potential interest in other fields. As an example, they all have 
been described being of potential interest for diagnostic or prognostic of prostate cancer20–22 

 
Pathways and enzymes producing H2O2 directly from sarcosine and choline were identified 
using the Galaxy workflow. For lactate processing, the workflow suggested several different 
enzymes, but for the biosensor implementation we opted for one previously validated from the 
literature23. Consistent with our modularity objective, the transducers were implemented by 
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supplementing the optimal, two-plasmid H2O2 transcription biosensor with an additional 
plasmid expressing the specific enzyme under the control of a constitutive promoter (Figure 
3A). 
 

 
Figure 3: Computer predicted enzymatic transducers with optimized expression conditions enable custom 
metabolite sensing. (A) Implementation of enzyme-mediated biosensors: a plasmid expressing the enzyme 
predicted to generate H2O2 from the target is added to the optimized H2O2 sensor. (B) optimization of enzyme 
expression conditions for sarcosine transducer: expression of the enzyme under a T7 promoter added before the 
preincubation step maximizes sarcosine sensing. Fold-change is calculated as the ratio of fluorescence produced 
between 1mM of sarcosine and no sarcosine. (C) Fine tuning of enzyme expression using a DNA concentration 
gradient is necessary to identify the best condition for the sarcosine transducer. Data for the other transducers can 
be found in Supplementary Figure S4. (D) Dose response curve of optimized SoxA-mediated sarcosine biosensor. 
(E) Dose response curve of optimized CodA-mediated choline biosensor. (F) Dose response curve of optimized 
lox-mediated lactate biosensor. Error bars represent the standard deviation calculated from 3 replicates. 

 
Initial assays in which the transducer SoxA was cloned into the same backbone as the plasmid 
used to express OxyR with the strong constitutive bacterial promoter J23101 were 
unsuccessful, with no detectable response to sarcosine even at high plasmid concentrations 
in the cell-free mix (Figure 3B). We reasoned that expression of the enzyme in this 
configuration was too low for sensor function, potentially because of insufficient promoter 
strength and resource limitations. Using sarcosine oxidase (SoxA) as a model, we thus tested 
if switching from J23101 to the strong T7 promoter, which relies on a different polymerase 
pool than the other expressed components, could help solve our issue and limit resource 
competition. Finally, we also increased the total pool of available transducers at the beginning 
of the detection reaction by expressing enzymes during the 1h preincubation. 
 
For SoxA, these optimizations drastically increased the fold-change of the biosensor to ~10 at 
1 mM of sarcosine (Figure 3B). Fine-tuning the level of expression of the enzyme by varying 
the concentration of the DNA template also had a major impact on the response of the sensor. 
The optimal transducer plasmid concentration was variable between different transducers (10 
nM for soxA, 24 nM for codA, and 1 nM for lox) (Figure 3C, Supplementary Figure S4) 
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highlighting the need for DNA concentration gradient screening for each new transducer 
developed. Final sensors for sarcosine, lactate and choline were characterized over a gradient 
of inducer concentrations, showing good response over several orders of magnitude (Figure 
3D-F, Table 2, Supplementary Figure S5).  
 
 
 
Table 2: Performance of the sarcosine, choline, and lactate sensors.  
Metrics of the Sarcosine, Choline and Lactate sensor were calculated on the data presented on figure 3D, 3E, & 
3F. The max fold change is the ratio of fluorescence between the induced (OFF) and induced state (ON), the 
leakage is the fluorescence measured in the uninduced state, the swing is the difference of fluorescence between 
the uninduced and induced states. EC50 is the half-maximal effective concentration. MEF (Mean Equivalent 
Fluorescence) quantifies the fluorescence measured by the plate reader as equal to the one generated by a certain 
amount of FITC. 
 
 

Metric  Sarcosine sensor Choline sensor Lactate sensor

Max fold change 

( ON / OFF ) 

13.5 ± 4.0  9.3 ± 0.5  42 ± 4.5 

Leakage MEF (FITC) 

( OFF ) 

0.00 ± 0  0.01 ± 0  0.00 ± 0 

Max output swing 

MEF (FITC) 

( ON ‐ OFF ) 

0.16 ± 0.05  0.18 ± 0.01  0.27 ± 0.04 

EC50 (µM)  1933  1535  934 

 
To simplify the future use of such biosensors, we evaluated the possibility to flash freeze 
preincubated batches of cell-free mix in liquid nitrogen, enabling their short-term storage at -
80°C and immediate later use without any additional preincubation steps. The experimental 
results showed few differences in response between frozen and unfrozen preincubated 
extracts after a week of storage, opening the way for broad use of these sensors without an 
increase in detection time from the incubation step  (Supplementary Figure S6). 
 
Expanding the range of detectable reporter outputs 
 
One advantage of cell-free biosensors producing a transcriptional response is that their output 
can be easily changed according to the final application needs (such as read-out modality, 
timing, or signal processing). To expand the potential of the PeroxiHUB sensing platform, we 
connected the H2O2 biosensor to different reporter genes. Colorimetry and luminescence were 
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chosen as they represent classical signals used in sensing devices, with the potential for 
naked-eye detection and faster measurements (Figure 4A). The colorimetric output was 
implemented using lacZ as a reporter gene in an extract made from a ∆lacZ BL21 strain. The 
cell-free mix was then supplemented with CPRG (Chlorophenol red-β-D-galactopyranoside), 
which is converted from yellow to the purple-colored CPR (Chlorophenol red) by LacZ (Figure 
4B). The resulting output can be either identified visually or quantified by monitoring 
absorbance of the reaction at 574 nm. Using an internal ladder for quantification, previous 
work has demonstrated the feasibility of robust cell-free biosensors in low-resource conditions 
using this output24. We explored various CPRG and reporter DNA concentrations to obtain the 
best differentiation of colorimetric output inside the H2O2 sensing range. Time progression of 
the absorbance at 574 nm followed a sigmoidal function with a maximum principally dependent 
upon the initial CPRG concentration and a kinetic component governed by the reporter DNA 
concentration. The ideal conditions were determined to be [CPRG] = 100 µM and [pAhpC-
LacZ DNA] = 6 nM (Supplemental Figures S7 & S8). These conditions brought the direct 
sensing of H2O2 with the colorimetric output to a lower limit of detection than when using GFP, 
with detectable concentrations at the micromolar level (Figure 4C). Sarcosine sensing was 
also demonstrated to be possible over a wide range of concentrations, although without the 
increase in sensitivity observed for the H2O2 sensor (Figure 4D). 
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Figure 4: Luminescent and colorimetric modular reporters for PeroxiHUB platform. (A) Experimental 
workflows followed for each reporter. (B) Design and implementation of the colorimetric reporter. (C) Colorimetric 
hydrogen peroxide sensor dose response curve. (D) Colorimetric sarcosine sensor dose response curve. (E) 
Design and implementation of the luminescent reporter. (F) Luminescent hydrogen peroxide sensor dose response 
curve. (G) Luminescent sarcosine sensor dose response curve. (H) Comparison of potentialities and limits of each 
reporting system developed. All error bars represent the standard deviation calculated from 3 replicates. 
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Similar to the development of the colorimetric reporter, the luciferase-based output was 
adapted from a previous design implemented in a cell-free environment12. The luciferase 
enzyme produced in response to H2O2 reacts with the luciferin reagent to generate a 
detectable light output (Figure 4E). After the incubation step, the 20 µL reaction mix is 
supplemented with the luciferin-containing reagent and luminescence intensity is measured 
(see Figure 4A). Unlike the fluorescent and colorimetric outputs, this system showed no 
background in the absence of the reporter plasmid, confirming that the cell-free mix has no 
endogenous luminescence (Supplementary Figure S9). We tested different durations for the 
detection step to maximize the sensor’s response to H2O2 and identified a ten minute 
incubation time as optimal before measuring luminescence. Indeed, ten minutes were 
sufficient for the sensor to generate a significant signal, while longer incubation resulted in 
increased noise, thus decreasing the signal-to-noise ratio (Supplementary Figure S10). 
Using these parameters, the H2O2 response of the sensor was much higher than what was 
observed with the other reporters, with response going up to 150-fold-change between non-
induced and induced states (Figure 4F). When testing this reporter for enzyme-mediated 
detections with the example of sarcosine, the output observed was generally in the same 
range of fold-change as what was observed with the GFP reporter (Figure 4G). However, 
even if the highest observed fold-change was slightly lower with the luciferase output (8.6-fold)  
than the one observed with GFP (13.5-fold), the luminescent output was found to be better at 
low concentration (1.7-fold vs 3.0-fold between GFP and Luciferase at a concentration of 100 
µM) which supports its use for low-concentration inducer detection. Due to its much faster 
reaction time, the luciferase output presents a convenient redout for the PeroxiHUB platform 
(Figure 4H). 
 
Proof of Concept : PeroxiHUB-mediated lactate detection in serum samples  
 
To demonstrate the potential of our platform for clinically relevant applications, we evaluated 
the performance of the previously optimized lactate biosensor for the detection of endogenous 
levels of lactate within serum samples gathered from prostate cancer patients. We processed 
serum from 11 patients together with a commercial control through 2 different pipelines 
(Figure 5A). An aliquot of each sample was used to evaluate the lactate levels present in 
these samples using a commercially available enzymatic kit. Another aliquot was used to 
evaluate the PeroxiHub lactate sensor response. 10% serum was added to cell-free reactions 
containing the optimized H2O2 sensor in presence or absence of the lactate transducer and 
the difference of fluorescence between the 2  conditions was calculated. By supplementing 
the control sample with additional lactate within the millimolar range, we established the 
sensor dose/response curve in serum (Figure 5B). Using that calibration curve and following 
the same methodology, we then determined the concentration of lactate inferred from the 
PeroxiHub sensor response for each of the 12 samples and compared these data with the 
ones obtained from the commercial kit (Figure 5C).  In most patients except two (patient 6 
and patient 8), the levels of lactate measured with the biosensor showed a good correlation 
with the ones determined by the commercial enzymatic kit. These results demonstrate that 
the peroxiHUB platform can operate in clinical samples and suggest that it could be 
engineered in the future for diagnostics applications. 
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Figure 5: PeroxiHub mediated quantification of endogenous lactate level in serum sample. (A) Clinical 
samples processing methodology for assessment of the biosensor efficacy. (B) Dose/response curve of the 
peroxiHUB lactate biosensor in control serum samples (2mM lactate) spiked with exogenous lactate.  (C) Sensing 
of endogenous lactate in patients’ serum samples and comparison with a commercial enzymatic lactate detection 
assay. (B) and (C) error bars represent the standard deviation calculated from 2 independent experiments 
performed in triplicate. 
 

 
DISCUSSION 
 
Here we developed a cell-free, modular sensing hub that generates a transcriptional output 
using H2O2  as a common signaling currency. The PeroxiHUB platform enables the detection 
of different molecules via the use of metabolic transducers producing H2O2  as a by-product of 
their enzymatic reaction. Because of the large number of enzymatic reactions producing H2O2, 
PeroxiHUB is highly-modular and allows detection of new molecules of interest by simply 
switching enzymatic transducers. We used PeroxiHUB to detect three different metabolites 
and found that only a one-step enzymatic transducer plasmid concentration tuning was 
necessary, while all the other reaction parameters could be kept constant.  The core of the 
method includes the H2O2 sensor with invariant optimal conditions, the T7-containing 
backbone for the transducer enzyme cloning and the preincubation conditions.   
 
Among the parameters shown to impact the response of the H2O2 sensor, the most important 
one is the preincubation step, which is necessary for both the sensing of the H2O2 and for the 
proper expression of enzymatic transducers. These two effects seem independent. The 
preincubation step performed using reactions containing extract and buffer only is sufficient to 
improve the behavior of the H2O2 sensor. Furthermore, using that preincubation step to 
produce the enzyme has a major impact on the performance of transducer-mediated sensors. 
The improvement in H2O2 sensor performance is in part due to the overall reduction of the 
reporter expression after preincubation, reducing background noise. One hypothesis to 
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explain the high background of non-preincubated reactions is the presence of endogenous 
H2O2 produced by enzymatic reactions originating from the extract. Pre-incubating the cell-
free reaction then allows endogenous catalase activities to degrade that initial pool of H2O2, 
reducing the noise and increasing the fold-change of the biosensor. 
 
The other beneficial impact of preincubation, an increase in enzymatic transducer activity, is 
most likely expression-related. Preincubation likely allows the transducer to be synthesized at 
a high level and available before the start of the detection reaction. The higher limit of detection 
observed for enzyme mediated sensors compared to that for the H2O2 sensor suggests that 
the enzymatic activity is the key bottleneck limiting the efficiency of transducer-based sensors. 
The importance of enzyme concentration is also evidenced by the effects of changes in the 
promoter driving enzyme expression and in DNA template concentration.  
 
Enzyme expression likely has two opposite effects: on the one hand, their expression by the 
cell-free system leads to a reduction in the overall expression levels for other proteins by 
resource competition. On the other hand, they increase the H2O2 pool and the biosensor’s 
response. These effects vary between the tested transducers, and affect both sensor signal 
level and background noise in non-induced conditions (Supplementary Figure S5). 
Consequently, the various transducers have differential apparent efficiencies, with the Lox-
based sensor producing a 3- to 5-times higher max fold-change compared to the SoxA- and 
CodA-based ones (Table 2).  
 
We have not investigated at this stage the source of variations in transducers behaviors. Many 
parameters could be involved, including enzyme kinetic, expression levels, folding, stability, 
or the presence of potential inhibitors within the extract. Future studies might improve a 
particular transducer by testing different homologs25, or using directed evolution to reach 
higher enzymatic activity. 
 
With efficient enzymes and optimized expression conditions, it should also be possible to 
extend the range of detectable molecules by using multiple, successive enzymatic 
conversions leading to H2O2. These multi-step enzymatic conversions can be identified using 
the BioSensor Galaxy workflow. Indeed, as demonstrated by the metrics coming from the 
HMDB panel (Figure 1B), the already high number of potentially detectable molecules through 
1-step enzymatic conversions can be greatly expanded by plugging in an additional reaction 
step. 
 
We also demonstrated that the platform is amenable to the use of different reporter systems, 
expanding the range of application contexts. Together, the various reporting possibilities 
expand the range of applications for which PeroxiHub can be used. They all present some 
advantages and drawbacks that promote or discourage their use for a specific application in 
different contexts. GFP is the simplest and cheapest reporting system as it doesn’t require any 
additional chemicals and shows a relatively good response. The LacZ/CPRG-mediated 
colorimetric output is faster and does not require equipment for qualitative measurement, 
which makes it a good reporting system for portable and low-resource detection problems. 
Finally, the luciferase output is the fastest and the most sensitive to low inducer concentrations 
(Figure 4H), and could still be associated with portable readout systems such as smartphone 
based platforms26. The platform could also be expanded to additional outputs by expanding 
its connectivity with existing or newly-developed detection and monitoring systems. For 
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example, the recently implemented glucose/glucometer cell-free reporting system27 could be 
modularly adapted to the platform to provide a cheap digital readout of measured 
concentrations. 

 
Assessing the PeroxiHub platform on clinical samples revealed a significant robustness of the 
biosensor against the matrix effects of patient derived serum samples. With no additional 
optimisation realized other than the RNase inhibitor adjunction, we could quantify the levels of 
endogenous lactate. The remaining variability observed especially for Patient 6 and Patient 8 
may find an explanation in endogenous or exogenous patient specific components present in 
these samples that could inhibit the cell-free reaction. Indeed, as the conversion from 
fluorescence unit to lactate concentration was calculated using a standard curve made in the 
commercial serum sample, it does not take into account potential patient specific inhibitory 
effect. A possible solution to this issue could be to use an internal scale for each sample as it 
was described in a previous work24. The next steps consist in performing measurements and 
optimization on a larger number of samples. 
 
Finally, another promising application of the PeroxiHUB platform is its use as a signal 
integrator for cell-free computational devices, such as analog computing systems. We 
previously built a 4-input metabolic perceptron classifying samples in a binary manner on the 
basis of their concentration of four different metabolites. To do so, metabolites underwent 
enzyme-mediated conversion into a single detectable molecule, in this case benzoate11. The 
key bottleneck in the generalization of such computing devices is the identification of central 
“hub” molecules detectable in cell-free systems and in which several metabolites of interest 
could be converted. The PeroxiHub platform appears as an attractive candidate for such a 
task. 
 
 
 
MATERIALS and METHODS 
BioSensor Galaxy workflow development and node description 
 
The new Biosensor workflow was developed within the Galaxy SynBioCAD portal following 
the general methodology described in the original paper establishing the platform28. It is 
accessible at https://galaxy-synbiocad.org/workflows/list_published, and is also released on 
the Galaxy ToolShed29, which enables its installation on any other Galaxy server. Existing 
nodes present within the SynBioCAD environment were connected to the custom, newly 
developed rp2biosensor node. Below is the description of the main nodes composing the 
Biosensor workflow. 
 
 
Formalization of enzyme promiscuity using reaction rules has previously been described 
with RetroPath30 and RetroRules31. Briefly, promiscuity is modeled by the atomic environment 
around reaction centers. Increasing the scope of this description - the diameter surrounding 
reaction centers - leads to a more restrictive description about what the substrate should look 
like, hence increasing the modeled enzyme specificity.  
By reducing the diameter constraint of the reactions in the query panel, it is possible to identify 
new potential sensing routes that take advantage of potential promiscuous activities of 
enzymes to expand the solution space. 
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RetroPath2.0 is an open-source tool designed to build a retrosynthesis network linking a 
compound of interest to one or more other compounds30. The compound of interest is provided 
by its structure, and chemical transformations formalized by reaction rules are applied, which 
predict newly formed products of the simulated reactions. For two or more steps of exploration, 
new products of the previous step are used as substrates and reaction rules are applied again. 
This operation is performed until the number of steps is reached or no new products are found. 
RetroPath2.0 is available at myExperiment.org 
(https://www.myexperiment.org/workflows/4987.html), as a conda package on anaconda.org 
(https://anaconda.org/conda-forge/retropath2_wrapper), as well as a Galaxy node on the 
Galaxy ToolShed (https://toolshed.g2.bx.psu.edu/view/tduigou/retropath2/9c8ac9980bd6). 
RetroPath2.0 release r20220104 was used. 
 
rp2biosensor is an open-source Python software that extracts from the retrosynthetic network 
generated by RetroPath2.0 the subnetwork of interest, linking the biosensor to the compound 
to be detected, and produce an interactive web page showing the transducing reactions. 
Briefly, rp2biosensor parses the retrosynthesis network outputted by RetroPath2.0, completes 
the predicted reactions by putting back co-substrates and co-products omitted during the 
retrosynthesis using the rxn_rebuild (https://github.com/brsynth/rxn_rebuild) Python package, 
enumerates the shortest path linking the compound of interest, i.e. the biosensor, to the 
compound to be detected, e.g. lactate, and finally outputs the resulting subnetwork as an 
interactive web page to let the user browse the results. rp2biosensor source code is available 
on GitHub (https://github.com/brsynth/rp2biosensor) , is released as a conda package on 
anaconda.org (https://anaconda.org/conda-forge/rp2biosensor), and as a Galaxy node on the 
Galaxy ToolShed (https://toolshed.g2.bx.psu.edu/view/tduigou/rp2biosensor/b0efd4b2ffba). 
rp2biosensor version 3.0.0 was used. 
 
 
BioSensor Galaxy workflow executions 
 
The typical use case requires the user to input the chemical structure of a compound to be 
detected and eventually the chemical structure of a TF effector (prefilled with the structure of 
H2O2 by default). Structures should be provided using the InChI standard format. The output 
is an interactive web page that can be opened within the Galaxy environment. Thanks to the 
Galaxy workflow system, all intermediate and final outputs can be easily downloaded for later 
usages. 
 
For the prediction of reactions enabling the detection of (S)-lactate, choline and sarcosine, 
their standard InChIs have been used as input for the “Molecule to be detected parameter” 
(see Supplementary Table S1). The BioSensor workflow was launched for one step of 
exploration, using reaction rules precompiled for both “reverse” and “forward” usage, with 
diameters ranging from 2 to 12, the default values of the workflow. 
 
For the efficiency assessment of the developed tool, the HMDB database version 5.0 was 
used to explore detectable compounds from H2O2. Only compounds fulfilling the following 
criteria have been kept: compounds should be associated with at least one disease, have a 
valid InChI structure, contain at least one carbon, and have a molecular weight of at most 1 
kDa. RetroPath2.0 was set for a 2-step exploration using both forward and retro reaction rules 
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with diameters ranging from 2 to 12. If both 1- and 2-step pathways exist for a given compound, 
only shortest paths are reported by rp2biosensor. 
 
Plasmid construction and purification 
 
Plasmids used in this study were constructed using Gibson assembly method with pBEAST 
as a vector backbone12 and inserts either amplified from the E. coli genome (for the OxyR 
gene, the AhpC, OxyS and KatG promoters) or from existing plasmids (for Luciferase gene 
amplified from pBen-Luc used in Voyvodic et al.12)  or synthesized as gene fragments  (IDT, 
for the soxA, codA, lox and  genes and the ZinT and YjjZ promoters, Twist Bioscience for LacZ 
gene). All genes synthesized were codon-optimized for E. coli. Plasmids will be made 
available from ADDGENE upon publication. 
 
Bacterial strains and growth conditions 
 
Clonings and plasmid amplifications were made using the classical E. coli cloning strain DH5α 
or the commercially available NEB® Turbo strain. Liquid cultures were made at 37°C using 
LB media with 100 µg mL-1 ampicillin for the maintenance of the pBEAST derived plasmids. 
For solid cultures 1.5 % agar w/v was added. 
For cell-free extract preparation, the strain BL21 (DE3) Gold dLacZ (a gift from Jeff Hasty 
(Addgene plasmid # 99247)) was grown in 2-YTP media supplemented with 50 µg mL-1 

tetracycline. 
 
Cell-free reaction mix preparation 
 
Cell-free TX-TL extract was prepared following a protocol adapted from Sun et al.32 previously 
used in other work from our lab12. Cultures were grown to an OD600 of 2.0 and centrifuged at 
5000xg for 12 min at 4°C. The pellets were washed several times by 
resuspension/centrifugation cycles before being weighed and stored overnight in 50 mL tubes 
at -80°C. The pellets were then resuspended in 1 mL S30A buffer (14 mM Mg-glutamate, 60 
mM K-glutamate, 50 mM Tris pH 7.7) per gram of pellet, thawed, and lysed by a single pass 
through an Avestin EmulsiFlex-C3 homogeniser at 15000-20000 psi. The resultant lysate was 
centrifuged at 12000xg for 30 min at 4°C, then incubated 1 h at 37°C before being centrifuged 
again with the same settings. Finally, the supernatant was dialysed overnight inside a 12-14 
kDa molecular weight cut-off (MWCO) dialysis tubing inS30B buffer (14 mM Mg-glutamate, 60 
mM K-glutamate, ~5 mM Tris pH 8.2) before being centrifuged one final time at 12000xg for 
30 min, aliquoted in 1.5 ml tubes, flash frozen in liquid nitrogen and stored at -80°C until use. 
One aliquot was used for buffer calibration in order to determine the best concentrations of 
Mg-glutamate, K-Glutamate and DTT to maximize protein production. Consecutive cell-free 
experiments were run expressing constitutive GFP in the presence of gradients of these three 
components, following the methodology described in Sun et al.32. After the ideal conditions 
were determined, a batch of buffer was prepared in a single Falcon tube to ensure 
homogeneity, before being aliquoted in 2 mL tubes, flash frozen in liquid nitrogen and stored 
at -80 °C until use. 
 
Cell-free reaction preparation 
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For cell-free reactions, buffer and extract aliquots were thawed on ice. Each reaction was 
prepared in individual PCR tubes containing 22 µL total mix: 7.33 µL extract, 9.17 µL buffer 
and 5.5 µL of other components (DNA, inducer, water and any additional chemicals). Once all 
the components added to the PCR tubes the mixes were briefly vortexed and spun down, 20 
µL were pipetted into a 384-round-well non-binding plate for reporter gene expression 
measurement. In some cases, a master mix containing all the components present at the 
same level in all the conditions tested (e.g. extract, buffer, DNA) was prepared prior to pipetting 
into the individual PCR tubes. All the experiments were run in triplicate. For reactions involving 
clinical samples, the cell free mix was supplemented with RNase inhibitor at 0.1 U/µL. 
 
Reporter signal measurements 
 
To measure GFP fluorescence, 8 hour kinetics were performed at 37°C with either a Cytation 
3 a Synergy HTX plate reader (Biotek Instruments) using excitation/emission settings of 485 
nm and 528 nm, respectively. 
Collected data were normalized by FITC Mean Equivalent Fluorescence (MEF) through 
conversion factors that were established for each plate reader using fluorescein standards 
with the same plates and machine settings as the ones used in the experiments, as per Jung 
et al.33 & Batista et al.25. For CPRG reporter measurement, OD574 was measured. Data were 
normalized by subtracting a blank sample containing everything but reporter DNA. 
 
For the luciferase reporter, after the 37°C incubation step, 20 µL of the final cell-free reactions 
mix were added to a white 96-well plate. 50 µL of Luciferin reagent mix (Promega, Luciferase 
Assay Reagent) were then added to each well, mixed by pipetting up and down, and the plate 
was immediately inserted inside the plate reader to capture luminescence. 
 
For Lactate measurement in clinical samples, we computed the difference of fluorescence (in 
MEF) between a reaction containing the lactate enzymatic transducer (T7-lox DNA at 1 nM) 
in addition to the H2O2 sensor and another reaction containing only the H2O2 sensor. For figure 
5C, this fluorescence difference was converted into a lactate equivalent using the calibration 
curve established in figure 5B. 
 
 
Clinical sample collection 
Patients followed at the Beausoleil clinic of Montpellier for prostatic cancer were prospectively 
enrolled. Serum was collected prior to any surgical intervention. The study was approved by 
the Institutional Review Board of the University Hospital of Montpellier (RECHMPL18_0404). 
The study was conducted in accordance with the Declaration of Helsinki (as revised in 2013). 
An approved informed consent statement was acquired for all patients.  
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Supporting Information 
The Supplementary Information file (PDF) contains Supplementary Figures S1-S9 and 
Supplementary Tables S1-S5.  

 
Supplementary Figures:  (S1) Detail of the SynbioCAD based Galaxy Biosensor workflow, 
(S2) Example of result graph output from the Biosensor workflow for Sarcosine, (S3) 
Unoptimized H2O2 sensor response in cell-free system, (S4) Impact of preincubation on 
overall protein expression level in cell-free reaction, (S5) Fluorescence kinetic of optimized 
H2O2 sensor, (S6) Fine tuning of enzyme expression using DNA gradient, (S7) Final sensors 
fluorescent dose response, (S8) Liquid Nitrogen Flash-Freezing of preincubated mix, (S9) 
CPRG concentration optimization for colorimetric H2O2 biosensor, (S10) [pAhpC-LacZ DNA] 
concentration optimization for colorimetric H2O2 biosensor, (S11) Luminescent sensor early 
evaluation, (S12) Luminescent sensor incubation time optimisation 
 
Supplementary Tables: (S1) Chemicals identifiers used in the study, (S2) Characteristics of 
enzymes used in the study, (S3) Plasmids used in this study, (S4) DNA sequences for 
constructs used in this study 
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