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Microbiability and microbiome-wide 
association analyses of feed efficiency 
and performance traits in pigs
Amir Aliakbari1*  , Olivier Zemb1, Laurent Cauquil1, Céline Barilly1, Yvon Billon2 and Hélène Gilbert1 

Abstract 

Background: The objective of the present study was to investigate how variation in the faecal microbial composition 
is associated with variation in average daily gain (ADG), backfat thickness (BFT), daily feed intake (DFI), feed conversion 
ratio (FCR), and residual feed intake (RFI), using data from two experimental pig lines that were divergent for feed effi-
ciency. Estimates of microbiability were obtained by a Bayesian approach using animal mixed models. Microbiome-
wide association analyses (MWAS) were conducted by single-operational taxonomic units (OTU) regression and by 
back-solving solutions of best linear unbiased prediction using a microbiome covariance matrix. In addition, accuracy 
of microbiome predictions of phenotypes using the microbiome covariance matrix was evaluated.

Results: Estimates of heritability ranged from 0.31 ± 0.13 for FCR to 0.51 ± 0.10 for BFT. Estimates of microbiability 
were lower than those of heritability for all traits and were 0.11 ± 0.09 for RFI, 0.20 ± 0.11 for FCR, 0.04 ± 0.03 for DFI, 
0.03 ± 0.03 for ADG, and 0.02 ± 0.03 for BFT. Bivariate analyses showed a high microbial correlation of 0.70 ± 0.34 
between RFI and FCR. The two approaches used for MWAS showed similar results. Overall, eight OTU with significant 
or suggestive effects on the five traits were identified. They belonged to the genera and families that are mainly 
involved in producing short-chain fatty acids and digestive enzymes. Prediction accuracy of phenotypes using a full 
model including the genetic and microbiota components ranged from 0.60 ± 0.19 to 0.78 ± 0.05. Similar accuracies of 
predictions of the microbial component were observed using models that did or did not include an additive animal 
effect, suggesting no interaction with the genetic effect.

Conclusions: Our results showed substantial associations of the faecal microbiome with feed efficiency related traits 
but negligible effects with growth traits. Microbiome data incorporated as a covariance matrix can be used to predict 
phenotypes of animals that do not (yet) have phenotypic information. Connecting breeding environment between 
training sets and predicted populations could be necessary to obtain reliable microbiome predictions.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Recent advances in the collection of microbiota informa-
tion make it possible to analyze the interplay between 
complex traits and the microbial community of the gas-
trointestinal tract (GIT) in animals and humans. This 

is especially essential in the pig industry since previous 
studies have suggested that the GIT microbiome could 
contribute to the variability of feed efficiency in pigs 
[1–3]. From the perspective of quantitative genetics, the 
effect of the microbiome on a trait can be quantified by 
estimating the microbiability [4], which is the propor-
tion of phenotypic variance of the trait that is explained 
by between-animal differences in the microbial commu-
nity. Estimation of the microbiability requires a micro-
bial relationship matrix between host animals [4]. Using 
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this approach, Camarinha-Silva et al. [3] reported higher 
estimates of microbiability for feed conversion ratio 
(FCR) (0.21 ± 0.14) and feed intake (0.16 ± 0.10) than 
their corresponding heritabilities. Similarly, a recent 
study revealed that the proportion of variance captured 
by the microbiome for meat quality and carcass compo-
sition traits in crossbred pigs varied over time, with an 
increased proportion from weaning to off-test for most 
of the studied traits [5]. This study also reported micro-
biability ( m2 ) estimates that were higher than the cor-
responding heritability ( h2 ) estimates for some traits, 
particularly at the off-test stage. In contrast, Tang et  al. 
[6] obtained a lower estimate of m2 than that of h2 for 
body weight (BW), average daily gain (ADG), backfat 
thickness (BFT), and intramuscular fatness, using sam-
ples from five different parts of the GIT. Overall, these 
studies highlight the relevance of variability in the  GIT 
microbiome composition associated with variability in 
performance traits, which suggests the possibility of pre-
dicting future phenotypes based on predicted microbial 
values ( ̂m ) [7]. However, in livestock, only a few studies 
have evaluated the accuracy of phenotype predictions by 
including microbiota effects in linear mixed models [7, 
8]. In addition, similar to genome-wide association stud-
ies, microbiome components can be considered as poten-
tial markers of the selected complex traits, and their 
associations can be identified through microbiome-wide 
association studies (MWAS) [10]. In an early MWAS in 
the Piétrain pig breed, Camarinha-Silva et al. [3] identi-
fied several operational taxonomic units (OTU) with a 
relative abundance that was significantly associated with 
ADG, FCR, or feed intake, and they suggested, by anal-
ogy to the polygenic determinism of traits, that these 
traits could have a polymicrobial nature [3]. To the best 
of our knowledge, there is no additional published litera-
ture on this topic in pigs, although there are numerous 
examples in humans and a few in other livestock spe-
cies [10, 11]. Given these previous results, we hypoth-
esized that microbiota information can help to predict 
and manage traits of interest in pigs. The first objective 
of the present study was to investigate the association of 
faecal microbial variants with feed efficiency (FCR and 
residual feed intake (RFI)) and other performance traits, 
including ADG, BFT, and daily feed intake (DFI). The 
second objective was to evaluate the accuracy of micro-
biome predictions of phenotypes of animals that do not 
(yet) have phenotypic information with the incorporation 
of a microbiome covariance matrix. We used data from 
two experimental pig lines that were divergently selected 
for RFI, which ensured sizeable variability of the traits of 
interest. In this work, we obtained microbiability esti-
mates for the traits using mixed models with or without 
accounting for the genetic background of the hosts.

Methods
Population structure, studied traits and sampling
Phenotypic records and faecal samples (604 pigs) were 
collected from the two last generations (G9 and G10) of 
two experimental French Large White pig lines that were 
developed over 11 generations of divergent selection for 
RFI during 18  years at INRAE (UE GenESI, Surgères, 
France, https:// doi. org/ 10. 15454/1. 55724 15481 18584 
7E12), as described in Aliakbari et  al. [12]. The struc-
ture of the lines and the selection process are described 
in Aliakbari et  al. [13]. After weaning (28  days of age), 
all pigs were penned in groups of 24, by line and sex. At 
10  weeks of age, pigs from each pen were distributed 
in two growing-finishing pens (n = 12 per pen). There 
were four pens per room and one or two rooms per con-
temporary group (CG). Growing-finishing pens were 
equipped with single-place electronic feeders ACEMA64 
(ACEMO, France) to record individual feed intake. A pel-
leted diet based on cereals and soya bean meal was avail-
able ad  libitum and contained 10MJ net energy (NE)/kg 
and 160  g crude protein/kg, with a minimum of 0.80  g 
digestible Lys/MJ NE. Animals had free access to water 
at all stages. Complete pedigree information was regis-
tered, starting at least one generation before F0 ancestors 
(founder generation of the divergent lines) until G10.

A set of 157 animals from generation G9 (entire male 
candidates for selection) had records for feed intake 
(DFI), feed efficiency traits (FCR and RFI), growth rate 
(ADG) from 35 to 95  kg of body weight (BW), and live 
body composition traits at 95 kg BW (BFT). The remain-
ing animals, from G10 (females and castrated males), had 
records for growth rate, feed efficiency from 10 weeks of 
age until slaughter (115 kg BW), and backfat thickness at 
23 weeks of age (BFT23). Different multiple linear regres-
sion equations were used to compute realized RFI for 
selection candidates versus G10 females and castrated 
males, considering their test differences, as described 
in [14]. First, the realized RFI for a selection candidate 
was defined as the residual for that animal of a multi-
ple regression across selection candidates from G0 to 
G9 of DFI on ADG and BFT (measured by ultrasound), 
including the fixed effects of pen size and CG. Then, for 
all females and castrated males from G1 to G10, the real-
ized RFI was the residual of multiple regression of DFI 
on average metabolic body weight, ADG, and indica-
tors of body composition (carcass BFT  and lean meat 
content (computed from cut weights) until G9, BFT23 
for G10 animals), including the fixed effects of pen size, 
CG and sex and covariate of BW at the beginning of the 
test. The  FCR was computed based on the correspond-
ing test period of the two groups of animals. Standard-
ized phenotypes of RFI, FCR, DFI, ADG, and BFT were 
used, as previously proposed in Aliakbari et al. [13]. The 
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descriptive information for these five traits and the sam-
pled G9 and G10 animals is in Table 1.

The faecal samples were collected at 15 weeks of age to 
obtain the gut microbial information. Immediately after 
collection, the samples were homogenized and placed in 
dry ice, before storage at −  80  °C until DNA extraction 
(see next section).

Microbial information
The Quick-DNA™ Faecal Microbe Miniprep Kit™ (Zymo 
Research, Freiburg, Germany) was used to extract micro-
bial DNA based on a 15-min bead-beating step at 30 Hz. 
PCR amplification of the V3-V4 region of the 16S rRNA 
gene obtained from diluted genomic DNA was carried 
out by using two primers: F343 (CTT TCC CTA CAC 
GAC GCT CTT CCG ATC TTA CGG RAG GCA GCA G) 
and R784 (GGA GTT CAG ACG TGT GCT CTT CCG ATC 
TTA CCA GGG TAT CTA ATCCT), in 30 cycles with an 
annealing temperature of 65  °C. To assemble pair-end 
sequences, the Flash software v1.2.6 [15] was used with 
an overlap of at least 10-bp between the forward and 
reverse sequences and by allowing 10% mismatches. Sin-
gle multiplexing was performed using an in-house 6-bp 
index, which was added to R784 during a second PCR 
with 12 cycles and the forward primer (AAT GAT ACG 
GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC 
GAC) and reverse primer (CAA GCA GAA GAC GGC 
ATA CGA GAT -index-GTG ACT GGA GTT CAG ACG 
TGT). Then, the resulting PCR products were purified 
and loaded on the Illumina MiSeq cartridge according 
to the manufacturer’s instructions. The quality of the 
runs was checked internally using PhiX, and each pair-
end sequence was assigned to its sample using the inte-
grated index, with the bcl2fastq Illumina software. The 
sequences were submitted to the Bioproject database 
(https:// www. ncbi. nlm. nih. gov/ biopr oject/) with acces-
sion number PRJNA701065. Reads were filtered and 
trimmed for high-quality sequences using the DADA2 
package in the R software [16] with the following param-
eters: maxN = 0, maxEE = 2, truncQ = 2, trimleft = 17. 

Chimera were removed with the consensus option in 
DADA2 to obtain the final OTU abundance table. Since 
no further clustering was applied, the OTU were equiva-
lent to amplicon sequence variants (ASV) in this study. 
Then, taxonomic annotation was predicted using the 
assignTaxonomy function of the DADA2 package with 
the Silva Dataset v132 [17].

To account for differences in sequencing depth across 
samples, a rarefaction step was applied: for all samples 
with more than 9000 reads, an equal number of 9000 
reads were randomly selected. Sixteen samples had a 
smaller number of reads and were discarded for later 
analyses. After this rarefication step, the final abundance 
table contained 5689 OTU for 588 samples (295 LRFI and 
293 HRFI). Finally, following Rothschild et al. [18], OTU 
in the rarefied table were filtered for more than 1% non-
zero values across all sampled animals, which decreased 
the number of OTU to 2630. Then, a constant value of 
1 was added to the rarefied table, which allowed calcula-
tion of log values for OTU with zero abundances in the 
downstream analyses.

Statistical analyses
Estimation of variance components
For each trait, the following four univariate linear models 
were fitted:

 where y is the vector of observations of each of the 
five traits, b is the vector of fixed effects, a is the vector 
of random breeding values, m is the vector of random 
microbial values, and e is the vector of random residu-
als. X , Z1 and Z2 are the incidence matrices for b , a and 
m . The distributions assumed for the random effects 
were a ∼ N (0,Aσ

2
a) , m ∼ N (0,Mσ

2
m) and e ∼ N (0, Iσ2e) , 

where σ2a , σ2m and σ2m are the genetic, microbiome and 
residual variances, respectively; I denotes the identity 
matrix; A is the pedigree relationship matrix  based on 
the 588 animals with microbiota data, plus 6705 ances-
tors (parents from selection generations G0 to G9 of the 
lines, plus their ancestors in the shared original popula-
tion); and M is the microbial relationship matrix, defined 
as M =

Z3Z3
′

k  , where Z3 is a matrix with dimension n × k , 
with n being the number of animals with microbiome 
information and k the number of OTU [3]. Elements of 
the Z3 matrix are the standardized individual abundance 

(1)y = Xb+ e,

(2)y = Xb+ Z2m + e,

(3)y = Xb+ Z1a + e,

(4)y = Xb+ Z1a + Z2m + e,

Table 1 Descriptive statistics of the standardized phenotypes for 
the evaluated production traits

RFI residual feed intake (kg/day), FCR feed conversion ratio (kg/kg), DFI daily feed 
intake (kg/day), ADG average daily gain (kg/day), BFT backfat thickness (mm)

Trait Number Min Max Average SD

RFI 522 − 0.38 0.39 0.00 0.15

FCR 548 1.60 3.93 2.78 0.33

DFI 542 1.37 2.95 2.20 0.29

ADG 575 0.51 1.01 0.78 0.08

BFT 541 9.8 46.6 23.3 10.0

https://www.ncbi.nlm.nih.gov/bioproject/
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of each OTU j for individual i , according to the following 
equation:

 where Pij is the relative abundance of OTU j for indi-
vidual i . The fixed effects fitted in each model were pen 
size (5 levels), herd of birth (2 levels), sex (3 levels), and 
contemporary groups (CG, 109 levels, with both lines 
belonging to each CG). Their significance (p < 0.05) on 
the five traits was tested in preliminary linear models. 
The four models were used to evaluate their goodness-
of-fit regarding the microbiome effect, using model com-
parisons between models with and without the microbial 
values with one degree of freedom, i.e. Model (1) with 
Model (2) and Model (3) with Model (4).

In addition, to assess if covariance between traits 
could be due to similar microbiota compositions [5], 
microbial correlations ( rm ) between the traits were 
quantified. Bivariate analyses were conducted with 
Models (2), (3), and (4). In this case, the distributions 
assumed for the random terms were a ∼ N (0,G0 ⊗ A) , 
m ∼ N (0,Rm ⊗M) and e ∼ N (0,Re ⊗ I) , where 

G0 =

[
σ
2
ai

σaij

σaji σ
2
aj

]
 is a 2× 2 symmetric (co)variance 

matrix of genetic effects with the previously defined 
genetic variances and the genetic correlation 
raij =

σaij

σai
σaj

 between each pair of traits i and j , and simi-

larly Rm =

[
σ
2
mi

σmij

σmji σ
2
mj

]
 , with rmij =

σmij

σmi
σmj

 , and 

Re =

[
σ
2
ei

σeij

σeji σ
2
ej

]
 are 2× 2 symmetric (co)variances 

matrices of microbial and residual effects, respectively.
All models were fitted using the Bayesian framework 

using the GIBBSF90 software [19]. In total, 100,000 
samples were generated to obtain the posterior distri-
butions of the parameters for each model, and a burn-
in period of 15,000 samples and thinning interval of 10 
were considered. The convergence was verified 
through visual inspection of trace sample plots. Model 
comparisons were based on the deviance information 
criterion (DIC; Spiegelhalter et  al. [20]). As a further 
evaluation of models, correlations of phenotypes 
adjusted for fixed effects ( y∗ ) with the sum of solutions 
obtained for random terms (except residuals) for each 
individual were calculated and presented as r

(
y∗, m̂

)
 

for Model (2), r
(
y∗, â

)
 for Model (3) and r

(
y∗, â +m

)
 

for Model (4).

(5)z3ij =
log

(
Pij

)
− log

(
Pij

)
j

sd(log
(
Pij

)
)
j

,

Accuracy of microbiome predictions of phenotypes
To evaluate the accuracy of prediction of the pheno-
types using m̂, two scenarios for cross-validation were 
considered for each of the five traits using Models (2) 
and (4): the first scenario was designed to run predic-
tions for 50 random animals in 20 successive replicates, 
and the second scenario was designed to run predic-
tions for the animals of each of the 14 CG, successively. 
The objective with these designs was to evaluate the 
effect of the presence of contemporary animals on the 
prediction accuracy.

The part-whole linear regression (LR) method of 
Legarra and Reverter [21] was used to quantify predic-
tion accuracies. This is an alternative to the conven-
tional calculation of accuracy based on correlations 
with adjusted phenotypes, which can be affected by the 
limited accuracy of the computation of adjusted pheno-
types. For the LR method, the phenotypes of the ani-
mals to be predicted were set to missing for each trait 
and their m̂ were predicted ( m̂p , i.e. prediction using a 
partial dataset) with Models (2) and (4). For each repli-
cate, prediction accuracy for each trait was evaluated 
based on the correlation between m̂p and predicted m̂ 
using the full dataset ( m̂w , i.e., prediction using the 
whole dataset) with the same model. The final criterion 
was the average of the correlations across replicates 
(r
(
m̂p, m̂w

)
) . Similarly, to evaluate the accuracy of 

microbiome predictions of phenotypes with Model (4), 
the average of part-whole correlations for the sum of 
predicted breeding values and microbial value was cal-
culated, i.e. r

(
(â +m)p, (â +m)w

)
.

Microbiome‑wide association studies (MWAS)
The objective of the MWAS was to identify OTU that 
have significant associations with the phenotype of 
each of the five traits. Two approaches were used.

Single‑OTU regression analysis
Single-OTU regression analyses were applied to test 
the effect of the 2630 OTU, one at a time, and obtain 
the associated p-value, which is the most common 
approach [10]. The model used for these analyses was 
the same as Model (3) except that a specific OTU was 
added as a fixed covariate. The model was fitted using 
the best linear unbiased prediction (BLUP) method of 
the AIREMLF90 software [19]. The p-value of the esti-
mate of the regression coefficient for the fitted OTU 
covariate was obtained by converting the estimate and 
its standard error to a Z-score and applying a Chi-
squared test.
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Back‑solving BLUP solutions
An alternative approach is the back-solving of pre-
dicted m̂ from Model (4) to obtain the estimated effect 
of each OTU on the trait phenotypes. This approach is 
similar to those described by Stranden and Garrick [22] 
and Gualdron-Duarte et  al. [23] to obtain estimates 
and prediction error variances for single nucleotide 
polymorphisms (SNPs) from estimated breeding val-
ues using genomic-BLUP. Such back-solving is often 
used for SNP genome-wide association studies. It has 
only recently been proposed for microbiota analy-
ses [11],  however, the corresponding p-values of the 
estimates have not been reported. The back-solving 
approach and calculation of the p-values were con-
ducted as described in the following.

Estimates for the effect of each OTU ̂(OTU) can 
be obtained if the assumptions of σ2OTU = σ

2
m/k and 

D = Iσ2m/k hold, and thus:

Therefore, estimates for the effects of OTU given the m̂ 
can be achieved as follows [22]:

And the variance of the OTU estimates is defined as in 
[23]:

The predictor error variance (PEV) of m̂ is equal to:

Therefore,

 where Cmm are the diagonal elements of the sub-matrix 
corresponding to the random microbial values from 
the inverse of coefficient matrix of the mixed model 
equations.

Finally:

Then, the Z-score for the estimate for each OTU  j can be 
obtained from the diagonal elements of var

(
ÔTU

)
 as:

(6)Z3DZ′

3 = Mσ
2
m.

(7)
E(OTU) = ÔTU = DZ3

′
(
Z3DZ3

′
)−1

m̂ =
1

k
Z3

′M−1m̂.

(8)var
(
ÔTU

)
= var

(
1

k
Z3

′
M

−1
m̂

)
=

1

k
Z3

′
M

−1var
(
m̂
)
M

−1
Z3

1

k
.

(9)
PEV

(
m̂
)
= var

(
m − m̂

)
= var(m)− var(m̂) = Cmm

σ
2
e

(10)
var

(
m̂
)
= var(m)− Cmm

σ
2
e = Mσ

2
m − Cmm

σ
2
e ,

(11)
var

(
ÔTU

)
=

1

k
Z3

′M−1
(
Mσ

2
m − Cmm

σ
2
e

)
M−1Z3

1

k
.

The corresponding p-values can then be calculated by 
applying a Chi-square test to these Z-scores.

The back-solving method was run using a local script to 
construct and solve the mixed model equations based on 
the variance component estimates of Model (4) for each 
trait. It should be noted that both the single-OTU regres-
sion and the back-solving approach accounted for addi-
tive genetic effects in order to obtain comparable results.

Significance thresholds for MWAS
To obtain significance thresholds for the MWAS to con-
trol the family-wise type I error rate while accounting 
for multiple testing using non-independent variables, a 
principal component analysis (PCA) was applied to the 
correlation matrix of OTU (Z3

′Z32630×2630) to estimate 
the number of independent tests, as proposed by Gao 
et  al. [24]. The PCA showed that 428 eigenvalues cap-
tured 99.5% of the variability in the correlation matrix. 
Based on this, thresholds for significance and sugges-
tive significance at 5% (−log10(0.05/428)) and 10% 
(− log10(0.10/428)) family-wise type I error rates were 
used to test the significance of the effects of OTU.

Results
Estimation of variance components
The results of univariate analyses of the five studied 
traits with the four models are in Table  2, as posterior 
means ± posterior 95% confidence intervals of each 
variance component. Comparisons of the DIC values 
showed a consistent improvement of the fit from Model 
(1) to Model (4), which had the smallest DIC for all 
traits. This goodness-of-fit of Model (4) was confirmed 
by its higher r(y∗, â +m) , compared to the correlations 
between y∗ and the predictions from Models (2) and (3) 
(Table 3). The posterior means for heritability were mod-
erate for all traits and ranged from 0.31 ± 0.13 for FCR to 
0.51 ± 0.10 for BFT, with no difference between estimates 
from Models (3) and (4). The microbiome variances 
obtained with Models (2) and (4) showed a substantial 
contribution to the phenotypic variance of feed efficiency 

(12)Z − scorej =
ÔTUj√

var
(
ÔTUj

) .
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traits, with posterior means for m2 of, respectively, 0.12 
± 0.09 and 0.11 ± 0.09 for RFI and of 0.22 ± 0.11 and  
0.20 ± 0.11 for FCR. In contrast, the phenotypic vari-
ances of DFI, BFT and ADG were less influenced by the 
microbiome variance. The posterior means for m2 were 
lower than 0.06 ± 0.06 for DFI and ADG for Models (2) 
and (4), and for BFT it ranged from 0.11 ± 0.06 with 
Model (2) to 0.02 ± 0.03 with Model (4), i.e. mainly close 

to zero. All traits showed lower posterior means for m2 
than for h2.

The results of the bivariate analyses for the studied 
traits with Models (2), (3), and (4) are in Table 4. Poste-
rior means for h2 and m2 of the traits in these analyses 
were similar to those obtained with the univariate analy-
ses. Given the posterior standard deviations, estimates 
of Models (2) and (3) were not different from the cor-
responding estimates of Model (4), except for the esti-
mate for rm between ADG and BFT. Estimates of rm from 
Model (4) ranged from − 0.54 ± 0.60 for RFI and ADG to 
0.96 ± 0.11 for ADG and BFT. Except for the estimate of 
rm between RFI and FCR (0.70 ± 0.34), all other estimates 
had high standard errors given the low microbiability 
estimates of the traits. Estimates of genetic correlations, 
ra , were very similar for Models (3) and (4).

Accuracy of microbiome predictions of phenotypes
The r

(
m̂p, m̂w

)
 for 50 random animals in 20 repli-

cates for the five traits are shown in Fig.  1 and the 
r
(
m̂p, m̂w

)
 for CG are given in Fig. S1 (see Additional 

file  1: Fig. S1). The average correlations ± SD ranged 
from 0.55 ± 0.14 to 0.81 ± 0.05 for the random design 
and from 0.39 ± 0.23 to 0.70 ± 0.15 for the CG design, 

Table 2 Posterior means (± posterior standard deviation) of variance components, heritability, and microbiability of the production 
traits using the four models, and the deviance information criterion (DIC) of each model and trait

σ
2
g : genetic variance, σ2m : microbiome variance, σ2e : residual variance, σ2p : phenotypic variance, h2 : heritability, m2 : microbiability

RFI residual feed intake (kg/day), FCR feed conversion ratio (kg/kg), DFI daily feed intake (kg/day), ADG average daily gain (kg/day), BFT backfat thickness (mm)

Trait Model σ
2
g σ

2
m σ

2
e σ

2
p h2 m2 DIC

RFI (1) – – 0.020 ± 0.001 0.020 ± 0.001 – – − 343032380251

(2) – 0.002 ± 0.002 0.017 ± 0.002 0.020 ± 0.001 – 0.12 ± 0.09 − 376715009798

(3) 0.006 ± 0.002 – 0.014 ± 0.002 0.020 ± 0.001 0.32 ± 0.10 – − 481592517646

(4) 0.006 ± 0.002 0.002 ± 0.002 0.012 ± 0.002 0.020 ± 0.001 0.30 ± 0.10 0.11 ± 0.09 − 540693245186

FCR (1) – – 0.062 ± 0.004 0.062 ± 0.004 – – − 64257520104

(2) – 0.014 ± 0.008 0.051 ± 0.007 0.065 ± 0.005 – 0.22 ± 0.11 − 78170373902

(3) 0.024 ± 0.010 – 0.043 ± 0.007 0.067 ± 0.005 0.35 ± 0.13 – − 93388582161

(4) 0.022 ± 0.010 0.014 ± 0.008 0.032 ± 0.009 0.070 ± 0.006 0.31 ± 0.13 0.20 ± 0.11 − 122763803675

DFI (1) – – 0.051 ± 0.003 0.051 ± 0.003 – – − 89420640342

(2) – 0.003 ± 0.003 0.050 ± 0.004 0.052 ± 0.003 – 0.06 ± 0.06 − 93351683359

(3) – – 0.030 ± 0.006 0.056 ± 0.005 0.50 ± 0.13 – − 167531111339

(4) 0.030 ± 0.010 0.002 ± 0.002 0.030 ± 0.007 0.060 ± 0.005 0.48 ± 0.14 0.04 ± 0.03 − 173089799612

ADG (1) – – 0.0051 ± 0.0003 0.0051 ± 0.0003 – – − 255536305168

(2) – 0.0002 ± 0.0003 0.0050 ± 0.0004 0.0051 ± 0.0003 – 0.05 ± 0.05 − 265759148148

(3) 0.0024 ± 0.0009 – 0.0030 ± 0.0006 0.0054 ± 0.0005 0.45 ± 0.13 – − 440920106295

(4) 0.0030 ± 0.0008 0.0001 ± 0.0002 0.0030 ± 0.0006 0.0055 ± 0.0005 0.47 ± 0.12 0.03 ± 0.03 − 471061077561

BFT (1) – – 8.854 ± 0.570 8.854 ± 0.570 – – − 525486682

(2) – 0.100 ± 0.610 8.057 ± 0.680 9.055 ± 0.604 – 0.11 ± 0.06 − 575243859

(3) 4.754 ± 1.301 – 4.695 ± 0.872 9.450 ± 0.750 0.50 ± 0.11 – − 999015096

(4) 4.980 ± 1.280 0.228 ± 0.314 4.424 ± 0.878 9.636 ± 0.760 0.51 ± 0.10 0.02 ± 0.03 − 1071710845

Table 3 Pearson correlations of estimated breeding values 
( ̂a ) and estimated microbial values ( ̂m ) with the adjusted 
phenotypes of the production traits ( y∗ ) for the three models

RFI residual feed intake, FCR feed conversion ratio, DFI daily feed intake, ADG 
average daily gain, BFT backfat thickness

Trait Model

(2) (3) (4)

r(y∗, m̂) r(y∗, â) r(y∗, â+m)

RFI 0.79 0.79 0.88

FCR 0.81 0.79 0.88

DFI 0.68 0.76 0.84

ADG 0.61 0.75 0.80

BFT 0.62 0.88 0.92
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depending on the trait. The r
(
m̂p, m̂w

)
 were systemati-

cally slightly higher with the random design than with 
the CG design for both Models (2) and (4), but differ-
ences were within the range of the SE. Finally, includ-
ing the genetic effect in Model (4) did not improve 
prediction accuracy of m̂ . With the random design, 
the r

(
m̂p, m̂w

)
 for BFT was higher than for the other 

four traits, which had corresponding accuracies around 
0.60. With the CG design, the r

(
m̂p, m̂w

)
 was slightly 

lower for FCR and RFI than for ADG, BFT and DFI.
Estimates of r

(
(â +m)p, (â +m)w

)
 obtained with 

Model (4) ranged from 0.68 ± 0.12 to 0.78 ± 0.05 with 
the random design (Fig.  2) and from 0.60 ± 0.19 to 
0.75 ± 0.10 with the CG design (see Additional file  1: 

Fig. S2). With both designs, the highest value was 
obtained for ADG and the lowest value for FCR. 
Although not significantly different, these values were 
higher than the corresponding r

(
m̂p, m̂w

)
 values for all 

traits, except for BFT with the random design, for 
which adding â resulted in slightly lower accuracies 
(from 0.74 to 0.68).

Microbiome‑wide association studies
The results of MWAS with single-OTU regression are 
shown in Fig.  3 (RFI and FCR) and Fig.  4 (DFI, ADG, 
and BFT), and those from the back-solving approach are 
given in Figure S3 (see Additional file 1: Fig. S3). The two 
approaches used for MWAS resulted in similar estimates, 

Table 4 Posterior means (± posterior standard deviation) of the heritability, microbiability obtained from bivariate analyses between 
production traits with models (2), (3) and (4)

h2T1 : heritability of first trait, h2T2 : heritability of second trait, m2
T1 : microbiability of first trait, m2

T2 : microbiability of second trait, ra12 : genetic correlation, rm12 : microbial 
correlation, NE: not estimable

RFI residual feed intake, FCR feed conversion ratio, DFI daily feed intake, ADG average daily gain, BFT backfat thickness

Model Trait 1 Trait 2 h2T1 h2T2 m2
T1 m2

T2
ra12 rm12

(2) RFI FCR – – 0.12 ± 0.13 0.25 ± 0.09 – 0.75 ± 0.33

DFI – – 0.26 ± 0.11 0.04 ± 0.05 – 0.87 ± 0.33

ADG – – 0.12 ± 0.10 0.09 ± 0.07 – − 0.87 ± 0.39

BFT – – 0.23 ± 0.10 0.01 ± 0.00 – − 1.00 ± NE

FCR DFI – – 0.23 ± 0.12 0.12 ± 0.07 – 0.66 ± 0.46

ADG – – 0.17 ± 0.11 0.13 ± 0.07 – − 0.94 ± 0.13

BFT – – 0.24 ± 0.13 0.06 ± 0.07 – 0.76 ± 0.40

DFI ADG – – 0.03 ± 0.04 0.13 ± 0.07 – − 0.38 ± 0.66

BFT – – 0.06 ± 0.04 0.16 ± 0.07 – 0.88 ± 0.32

ADG BFT – – 0.04 ± 0.05 0.14 ± 0.06 – − 0.28 ± 0.66

(3) RFI FCR 0.35 ± 0.12 0.40 ± 0.12 – – 0.64 ± 0.16 –

DFI 0.31 ± 0.10 0.51 ± 0.14 – – 0.49 ± 0.22 –

ADG 0.33 ± 0.10 0.52 ± 0.13 – – − 0.01 ± 0.24 –

BFT 0.30 ± 0.09 0.53 ± 0.10 – – 0.002 ± 0.20 –

FCR DFI 0.33 ± 0.15 0.52 ± 0.14 – – 0.50 ± 0.26 –

ADG 0.39 ± 0.13 0.47 ± 0.14 – – − 0.23 ± 0.24 –

BFT 0.34 ± 0.12 0.51 ± 0.12 – – 0.59 ± 0.20 –

DFI ADG 0.50 ± 0.12 0.49 ± 0.13 – – 0.64 ± 0.16 –

BFT 0.52 ± 0.14 0.55 ± 0.12 – – 0.65 ± 0.14 –

ADG BFT 0.54 ± 0.15 0.53 ± 0.11 – – 0.30 ± 0.19 –

(4) RFI FCR 0.35 ± 0.11 0.38 ± 0.13 0.16 ± 0.10 0.23 ± 0.10 0.66 ± 0.16 0.70 ± 0.34

DFI 0.29 ± 0.09 0.54 ± 0.13 0.18 ± 0.12 0.06 ± 0.04 0.63 ± 0.17 0.71 ± 0.47

ADG 0.33 ± 0.10 0.51 ± 0.13 0.09 ± 0.08 0.10 ± 0.05 0.00 ± 0.27 − 0.54 ± 0.60

BFT 0.29 ± 0.10 0.52 ± 0.11 0.17 ± 0.08 0.05 ± 0.03 0.02 ± 0.27 − 1.00 ± NE

FCR DFI 0.32 ± 0.12 0.52 ± 0.12 0.28 ± 0.10 0.08 ± 0.03 0.44 ± 0.25 0.99 ± NE

ADG 0.38 ± 0.13 0.51 ± 0.13 0.22 ± 0.10 0.11 ± 0.05 − 0.25 ± 0.21 − 0.91 ± 0.18

BFT 0.34 ± 0.11 0.49 ± 0.10 0.23 ± 0.09 0.05 ± 0.04 0.52 ± 0.20 0.40 ± 0.64

DFI ADG 0.48 ± 0.13 0.49 ± 0.12 0.04 ± 0.04 0.12 ± 0.06 0.62 ± 0.16 − 0.37 ± 0.56

BFT 0.50 ± 0.13 0.51 ± 0.10 0.04 ± 0.04 0.06 ± 0.04 0.61 ± 0.15 0.50 ± 0.58

ADG BFT 0.49 ± 0.14 0.50 ± 0.11 0.04 ± 0.05 0.06 ± 0.05 0.30 ± 0.20 0.96 ± 0.11
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Fig. 1 Average correlations between m̂p ( ̂m using partial datasets) and m̂w ( ̂m using the whole dataset) for 50 random animals in 20 replicates, and 
their SD as error bars. ADG average daily gain, BFT backfat thickness, DFI daily feed intake, FCR feed conversion ratio, RFI residual feed intake, EMV 
estimated microbiota values

Fig. 2 Average correlations between (â+m)p and (â+m)w for 50 random animals in 20 replicates, and their SD as error bars. ADG average daily 
gain, BFT backfat thickness, DFI daily feed intake, FCR feed conversion ratio, RFI residual feed intake
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but the single-regression method showed slightly higher 
significance levels, although Rubio et al. [25] have dem-
onstrated the theoretical equivalence between these two 
approaches. There were no common significant or sug-
gestive OTU between the traits. For RFI, the single-OTU 
regression resulted in three suggestive OTU (OTU391, 
OTU1749, and OTU2280), while the back-solving 
method resulted in one significant (OTU391) and one 
suggestive OTU (OTU1749). Both approaches identi-
fied one significant OTU for FCR (OTU1768) and one 
for BFT (OTU2934). For DFI, the single-OTU regres-
sion identified two significant (OTU694 and OTU1619) 
and one suggestive OTU (OTU2678), while the back-
solving method resulted in one significant (OTU694) and 
one suggestive OTU (OTU1619). For ADG, none of the 
methods detected significant or suggestive OTU.

The eight OTU with significant or suggestive associa-
tions with at least one of the five traits belonged to the 
Streptococcaceae (1 OTU), Prevotellaceae (3 OTU), 
Ruminococcaceae (3 OTU), and Lachnospiraceae (1 

OTU) families (Table  5). From these, the six OTU with 
an identified genus belonged to different genera. All 
these genera had more than 85% of zero count, and only 
OTU391, associated with RFI, had on average more than 
10 counts per sample when it was present. The estimated 
regression coefficients (Table  3) indicated that higher 
abundances of this OTU and of OTU1749 were associ-
ated with greater efficiency (reduced RFI). Higher abun-
dances of OTU2280, OTU1768, and OTU2934 were 
associated with greater RFI, FCR, and BFT, respectively, 
while an increase in abundance in each of the detected 
OTU for DFI was associated with reduced feed intake.

Discussion
Estimates of variance components
Previous studies in pigs revealed that the abundance of 
some components of the microbial community are her-
itable, and that heritability estimates vary at different 
stages of pig growth [3, 10, 26], which would provide a 
lever to select these GIT microbial components across 

Fig. 3 Results of microbiome wide association analyses using single-OTU regression method between operational taxonomic units and residual 
feed intake (RFI) and feed conversion ratio (FCR). In the plots, the solid and dashed lines represent significance and suggestive significance at 5 and 
10% family-wise type I error rates, respectively
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generations. Such a stability of the microbial community 
across generations could be used to orientate the pheno-
types of the host animals. Therefore, in the present study, 
gut microbial information of two divergent pig lines was 
fitted into linear animal mixed models to quantify the 
proportion of the phenotypic variance of feed efficiency 

and other performance traits captured by this new com-
ponent. The analyses showed that the microbial vari-
ance was substantial for traits related to feed efficiency. 
The estimate of m2 obtained for RFI in our study was 
lower than the value (0.45 ± 0.15) reported by Weishaar 

Fig. 4 Results of microbiome wide association analyses using single-OTU regression method between operational taxonomic units and daily feed 
intake (DFI), average daily gain (ADG) and back fat thickness (BFT). In the plots, the solid and dashed lines represent significance and suggestive 
significance at 5 and 10% family-wise type I error rates, respectively
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et al. [26]. For FCR, the estimates of m2 were within the 
range of those reported by Camarinha-Silva et  al. [3] 
(0.21 ± 0.14) and by Weishaar et al. [27] (0.13 ± 0.10). For 
the other performance traits, low estimates of m2 were 
obtained, in spite of the lower DIC obtained for Models 
(2) and (4) than for Models (1) and (3), respectively. In 
their study, Camarinha-Silva et  al. [3] reported a non-
significant m2 estimate of 0.16 ± 0.10 for feed intake, 
which was higher than our estimates of m2 with Models 
(2) and (4) for DFI, but not significantly different. Cam-
arinha-Silva et  al. [3] and Weishaar et  al. [27] reported 
moderate estimates of m2 of 0.28 ± 0.13 and 0.24 ± 0.11, 
respectively, for ADG, which were higher than our esti-
mates for this trait. Khanal et  al. [5], in a study on the 
microbiability of meat quality and carcass composition 
traits in swine, found that the estimate of m2 for backfat 
depth increased with age at sampling, i.e. 0.01 ± 0.02 at 
weaning, 0.12 + 0.04 at mid-test, and 0.25 ± 0.04 at off-
test. Our estimates of m2 for BFT with the full Model (4) 
are comparable with their value at weaning, although the 
sampling time in our study is equivalent to their mid-test 
sampling. Compared to our study, these three previous 
studies used different genetic types (Piétrain or commer-
cial crossbreds), sample sizes, and times of collection, 
which may explain part of the observed differences. In 
addition, differences in the bioinformatics processing and 
clustering rules of the sequences to obtain OTU tables 
are a source of heterogeneity between studies. The aim 
of our choice to work with ASV, i.e. without a clustering 
step, was to reduce part of this heterogeneity and to facil-
itate comparisons between studies [28].

To our knowledge, except for one study on meat qual-
ity and carcass composition traits [5] that considered car-
cass ADG and fat depth, microbial correlations between 
the traits studied here have not been reported in pigs. 
The positive high estimate of rm between RFI and FCR 
suggests that a common microbial community influences 
both traits. Khanal et al. [5] observed a decrease in some 
estimates of genomic correlations between meat quality 
and carcass traits in pigs when a microbial correlation 
was included in the models, and argued that the genomic 
correlations between traits usually estimated could be 
partially due to correlations between the gut microbiota 
composition of animals. However, given that we had pre-
viously observed significant genetic correlations between 
the microbial components and the studied traits [12], the 
reverse hypothesis may be also relevant, i.e. that part of 
the rm between the traits may be due to the high genetic 
correlations between the traits. Nevertheless, none of 
these phenomena were actually observed in the current 
study, since the posterior means of the correlations were 
quite stable across models, which suggests that estimates 

of ra and rm between the traits do not depend on each 
other.

Accuracy of microbiome predictions of phenotypes
Our objective was to investigate if inclusion of microbial 
information collected at mid-test in the BLUP models 
can improve phenotype predictions of animals based on 
m̂ only (Model 2) or â +m (Model 4). Using only the 
microbiome information, prediction accuracies were 
slightly lower than when both the microbiome and 
genetic information were used (higher 
r
(
(â +m)p, (â +m)w

)
 than r

(
m̂p, m̂w

)
 ). In details, the 

prediction accuracies of the microbiome part were very 
similar with Models 2 and 4, suggesting that adding the 
genetic effect in Model 4 provided additional accuracy of 
prediction of phenotypes  by capturing new information 
rather than by better identifying the genetic versus 
microbiome information in the models. Overall, the rela-
tively high values of the r

(
(â +m)p, (â +m)w

)
 suggest 

that phenotypes of animals for the studied traits can be 
predicted with a reasonable accuracy with this informa-
tion. These results are in line with the report of Khanal 
et  al. [8], who observed a higher predictive ability of 
models that included both genetic and microbiome 
effects for most of the traits.

In addition, lower accuracy of microbiome predictions 
of phenotypes were obtained with the CG designs than 
with the random designs. This could be due to the high 
impact of the contemporary environment on the micro-
biome composition of animals. Vigors et al. [29] reported 
that microbiome composition can vary between farms 
because of differences in management, season of the year, 
and sanitary status, and of the influence of the dam’s diet. 
A preliminary non-metric multidimensional scaling anal-
ysis revealed that CG was the main driving factor of the 
microbiota composition in our dataset. Given that, in our 
study, the samples were collected on an experimental 
farm under a standardized management protocol, micro-
biota differences between CG should be limited com-
pared to differences between farms. Therefore, including 
data of animals sharing the same breeding environment 
as the predicted animals in the training sets may provide 
more accurate predictions of phenotypes when using the 
microbiome information. In conclusion, homogenous 
breeding conditions between training and predicted pop-
ulations, at least at the farm level, are suggested to obtain 
reliable microbiome predictions. This concept can also 
justify combining both the microbiota and genetic com-
ponents in prediction models, since similar values of 
r
(
(â +m)p, (â +m)w

)
 were obtained between CG and 
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random designs: the genetic component could then stabi-
lize the predictions across varying environments.

Microbiome‑wide association studies
As expected from previous studies [23, 25], the results of 
the two approaches used here to detect the association 
between OTU and the phenotypic traits were highly con-
sistent but detected slightly different numbers of associ-
ated OTU. Both methods detected four OTU associated 
with the traits, and the single-OTU regression pointed 
out four suggestive OTU whereas the back-solving 
method identified two. This slight difference could be due 
to the properties of the BLUP method, which tends to 
shrink the effect solutions towards the mean of the popu-
lation, shrinkage that can be passed on to the estimates of 
the OTU effects after the back-solving. However, single-
effect regression and BLUP-based methods have been 
shown to have an equivalent power for the association 
studies [30], and the same conclusion seems plausible for 
MWAS. In addition, the detection power in GWAS is in 
great part due to the extent of the linkage disequilibrium 
between SNPs. The compositional nature of the OTU 
data, i.e. the fact that OTU are constrained by an arbi-
trary total number of sequences [31], can be assumed to 
have similar effects on MWAS, as it creates a correlation 
structure between OTU abundancies. This correlation 
structure would affect both approaches, and further stud-
ies are needed to understand and explain how it would 
impact MWAS results and to evaluate if data that are 
pre-transformed to break the compositional nature of the 
OTU abundances would result in different outcomes.

Even with low values of microbiome variances 
estimated from Model (4) for DFI, ADG and BFT, 
the  MWAS  results were equivalent between the sin-
gle-OTU regression and the back-solving approaches, 
which can be considered as an indirect confirmation of 
the estimated microbiome variances. Indeed, if vari-
ances deviated strongly from the actual values, biased 
MWAS results could be expected from the back-solving 
approach.

The tests indicated that the abundance of some of the 
OTU may be associated with the variability of phenotypic 
traits. We have previously shown that some microbiota 
genera differ between lines  [12]. The aim of including 
the genetic covariance matrix in the model to run MWAS 
was to control the risk that the association of abundance 
of the significant OTU with phenotypes would be due to 
the divergent selection, since we could not conduct sepa-
rate analyses for each pig line because their power would 
have been too limited.

In a previous study at the genera level, using the same 
microbiome dataset but filtered for the most abun-
dant genera, we showed significant genetic correla-
tions of abundance of genera from the Lachnospiraceae, 
Ruminococcaceae, Prevotellaceae and Streptococcaceae 
families with RFI, DFI, and BFT [12]. Our findings that 
abundances of OTU from these families are significantly 
associated with phenotypic traits are consistent with 
these previous results. However, the negative estimate 
of the regression coefficient for the OTU pertaining to 
the Streptococcus genus in our present MWAS is oppo-
site to the positive genetic correlation that was estimated 
between RFI and the Streptococcus genus in our ear-
lier study. This suggests potential antagonistic relation-
ships between microbiota and traits at the phenotypic 
and genetic levels. Weishaar et al. [27] also reported that 
abundance of OTU from the Lachnospiraceae and Prevo-
tellaceae families had strong effects on FCR and RFI, but 
without indication of the direction of these effects. The 
Prevotellaceae, Lachnospiraceae and Ruminococcaceae 
families are involved in the digestion of fibrous material 
and provide short-chain fatty acids to the host [32, 33]. 
Bacteria from the Streptococcaceae family are known to 
be lactic acid producer bacteria [34] that have an impor-
tant role in the production of dietary enzymes, such as 
amylase, lipase, phytase, and protease [35]. Therefore, 
the OTU that were identified in the MWAS could have 
meaningful biological links with feed efficiency and other 
performance traits. We did not find any OTU that was 
strongly associated with more than one trait and that 
could be claimed as a “major OTU” affecting production 
trait. In addition, most of these OTU were rare, with only 
one, OTU391, appearing to be sufficiently abundant in 
our conditions to be quantified systematically with a rea-
sonable sequencing depth. If this link between OTU391 
and RFI was confirmed in more diverse conditions and 
at the genetic level, this OTU could be used as a bio-
marker in selection programs to improve feed efficiency 
in pigs. As a next step, it will be necessary to evaluate 
how accounting for the microbiota composition in linear 
mixed models will improve the prediction accuracies of 
breeding values.

Conclusions
We have shown that microbiota information can be used 
to better predict traits in pigs, especially feed efficiency 
traits. The sizable m2 and the identification of some OTU 
with abundances that are associated with the phenotype 
traits indicate that some of the microbiota components 
are associated with the variability of production traits. 
In addition, the lower accuracy of microbiome predic-
tions of phenotypes when none of the individuals from 
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the contemporary group of the pigs were included in the 
training set suggests that connecting breeding conditions 
between the training and predicted datasets is needed. 
Altogether, prediction accuracies of phenotypes account-
ing for microbiome and genetic covariance between ani-
mals suggest that phenotypes of animals can be reliably 
predicted at mid-test. These outcomes need to be con-
firmed in more diverse datasets with different environ-
mental factors that may strongly modify the microbiota 
composition, in order to identify the limits of the use of 
microbiota information for the prediction of phenotypes 
in pigs.
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