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Strong In � ammatory Responses
and Signatures of Metabolic and
Epigenetic Dysregulation
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U1111, Centre National de la Recherche Scienti� que (CNRS) Unite´ Mixte de Recherche 5308 (UMR5308), Ecole Normale
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Staphylococcus aureusis an opportunistic pathogen that causes a range of devastatin
diseases including chronic osteomyelitis, which partially relies on the internalization a
persistence of S. aureus in osteoblasts. The identi� cation of the mechanisms of the
osteoblast response to intracellularS. aureusis thus crucial to improve the knowledge o
this infectious pathology. Since the signal from speci� cally infected bacteria-bearing cells
is diluted and the results are confounded by bystander effects of uninfected cells, w
developed a novel model of long-term infection. Using a� ow cytometric approach we
isolated onlyS. aureus-bearing cells from mixed populations that allows to identify signa
speci� c to intracellular infection. Here we present an in-depth analysis of the effect of lon
term S. aureus infection on the transcriptional program of human osteoblast-like cell
After RNA-seq and KEGG and Reactome pathway enrichment analysis, the remodel
transcriptomic pro� le of infected cells revealed exacerbated immune and in� ammatory
responses, as well as metabolic dysregulations that likely in� uence the intracellular life o
ology | www.frontiersin.org April 2022 | Volume 12 | Article 8542421
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bacteria. Numerous genes encoding epigenetic regulators were downregulated. The la
included genes coding for components of chromatin-repressive complexes (e.g., NuRD,
BAHD1 and PRC1) and epifactors involved in DNA methylation. Sets of genes encod
proteins of cell adhesion or neurotransmission were also deregulated. Our results sugg
that intracellularS. aureus infection has a long-term impact on the genome and
epigenome of host cells, which may exert patho-physiological dysfunctions additiona
to the defense response during the infection process. Overall, these results not on
improve our conceptual understanding of biological processes involved in the long-ter
S. aureusinfections of osteoblast-like cells, but also provide an atlas of deregulated ho
genes and biological pathways and identify novel markers and potential candidates
prophylactic and therapeutic approaches.
Keywords: Staphylococcus aureus , osteoblasts, persistence, transcriptomics, epigenetics, metabolism,
immune response
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INTRODUCTION

The Gram-positive bacteriumStaphylococcus aureus(S. aureus)
is an opportunistic pathogen that causes a panel of dis
ranging from mild skin infections to life-threatening infectio
such as septicemia, endocarditis, pneumonia or bone
infection (BJI) including osteomyelitis (Kalinka et al., 2014).
Originally considered as an extracellular pathogen,S. aureushas
been detected inside of osteoblasts, where it is likely involv
the development of chronic osteomyelitisvia the formation of
small colony variant (SCV) phenotypes (Tuchscherr et al., 2016).
A timely diagnosis and the understanding of the molec
pathophysiology are pivotal to improve the outcomes
osteomyelitis. However, biomarkers and speci� c pathways are
dif� cult to identify with current clinical expertise. Th
development of modern methods for gene expression ana
allowed identifying genes and pathways that are involve
various S. aureus-associated infection, such as osteoartic
infection, which demonstrated over-expression of gen
involved in the coagulation cascade and platelet adhe
(Banchereau et al., 2012) or an activation of immune syste
genes and a repression of metabolic genes in aS. aureusskin
infection (Brady et al., 2015). However, the whole picture of th
host factors and related pathways, as well as a comprehe
insight of the relationship between different processes ind
by internalized bacteria through dissecting the layers of
regulation, is still missing.

In an invasive bacterial process, a succession of pheno
occur, such as bacterial adhesion, internalization, surviva
intracellular persistence of the pathogen, or clearance o
infection with eventual death of infected host cells (Rollin et al.,
2017; Peyrusson et al., 2020). During long-term infection withS.
aureus, only a small subpopulation of cells carries intracell
bacteria (Tuchscherr et al., 2011), however these cells like
in� uence the outcome of the infection. The over
transcriptional response of the infected host/tissue is
average between the response of infected cells and th
uninfected cells (Chattopadhyay et al., 2018). Therefore, the
signal of uninfected cells dilutes the signal generated by
ology | www.frontiersin.org 2
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infected cells and thus weakens the information on the h
pathogen relationship during intracellular infections. The
detection of some key participants of the interaction may t
become impossible due to the dilution of their signal below
limit of detection, whereas a non-speci� c signal from dominan
uninfected bystander cells overpasses the infected-cells s� c
signal (Chattopadhyay et al., 2018). New approaches that ca
distinguish the infected cell response from that of uninfec
cells are therefore required in order to better understand
mechanisms of theS. aureus-host interactions.

In the current work, we described the development of a
model ofS. aureusinfection of human osteoblast-like cells. Sin
the signal from speci� cally infected bacteria-bearing cells
diluted and the results are confounded by bystander effec
uninfected cells we isolated onlyS. aureus-bearing cells from
mixed populations using a� ow cytometric approach. A
employment of RNA-seq methodology, which allows in-de
transcriptome analysis (Saliba et al., 2014), has enabled
transcriptomic pro� ling of host genes at an unpreceden
scale and resolution. In particular, we present the identi� cation
of understudied host genes and pathways, such as ce
metabolic and epigenetic pathways, in addition to conventi
defense genes. This improves our conceptual understandi
the biological processes involved in the development ofS. aureus
infections, with a focus on chronic osteomyelitis, and allows u
propose the use of a network of new biomarkers and
highlights potential candidates for the development of n
prophylactic and therapeutic approaches.
r

l
e
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MATERIAL AND METHODS

Maintenance of Eukaryotic Cells
The human osteoblast-like MG-63 cell line (LGC Standa
Teddington, UK) is derived from a juxtacortical osteosarco
diagnosed in the distal diaphysis of the left femur of a 14-y
old male (Billiau et al., 1977). MG-63 cells were cultured i
cDMEM (DMEM, GlutaMax, 10% fetal calf serum (Gibc
April 2022 | Volume 12 | Article 854242
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supplemented with 100 U/mL penicillin, and 100mg/mL
streptomycin) at 37°C in 5% CO2. Trypsin/EDTA (Sigma) wa
used for cells subculturing.

Staphylococcus aureus Strains and
Culture Conditions
We used the followingS. aureusstrains: SA113, which is derive
from NCTC 8325 strain isolated from a conjunctiva of a pat
with corneal ulcer, and mCherrySA113(pctuf-mCherry) strain,
which bears a vector expressing mCherry marker (
� uorescence) fused to the propeptide of lipase for� uorescence
enhancement (a kind gift from Pr. Friedrich Götz, Laborator
Microbial Genetics, University of Tübingen, Germany) (Mauthe
et al., 2012). S. aureuscultures were performed as describ
(Deplanche et al., 2015). Aliquots from overnight cultures o
Brain Heart Infusion (BHI) broth were diluted (1:50) in DMEM
Strains were grown in 50 mL tubes and incubated at 37°C u
anaerobic conditions until cultures had reached an op
density of 0.6 at 600 nm, corresponding to approximately8

CFU/mL (CFU, colony-forming unit). The staphylococci w
harvested by centrifugation, washed twice with phosph
buffered saline (PBS), and resuspended in the intera
medium (DMEM). Bacterial concentrations were estimate
spectrophotometrically and the number of live bacterial c
was con� rmed by plate counts.

Development of the S. aureus
Infection Model
In the course of a long-termS. aureusinfection there is a sma
population bacteria-bearing cells that likely in� uences the
outcome of the infection. Therefore, to isolate the popula
of cells containing internalizedS. aureuswe established a� ow
cytometry-based assay using the selection of only host
bearing mCherry-expressingS. aureus SA113. MG-63 cells
were grown in 75 ml� asks. We optimized host cell grow
and multiplicity of infection (MOI), in order to limit the
cytotoxicity of infection (Alekseeva et al., 2013), and achieved
the best results with 60% of host cell con� uence and a MOI of 25
bacteria per cell at the onset of infection. Bacterial concentra
were estimated spectrophotometrically and were con� rmed by
determination of CFU. Extracellular bacteria were removed
post-infection by incubating cells in cDMEM with 20mg/mL
lysostaphin and 100mg/mL gentamicin for 2 h, which eliminate
extracellular bacteria without altering intracellular bacter
(Deplanche et al., 2019; Lima Leite et al., 2020) followed by
incubation in cDMEM containing 25mg/mL of gentamicin and
3% of FCS. The low concentration of FCS was used in ord
slow down a cell proliferation rate during a long-term infecti
After 3 days the incubation medium was replaced with the f
medium containing 25mg/mL of gentamicin with 3% of FC
removing cell debris and cells were incubated for addition
days. The cell death was estimated by the release of LDH (P
LDH Cytotoxicity Assay Kit; Pierce, Rockford, IL, US
according to manufacturer’ instructions, as we describe
previously (Deplanche et al., 2015). Then, cells wer
trypsinized, collected, centrifuged, and prepared either
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
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RNA-seq,� uorescence microscopy or cyto� uorometry analysis
The determination of the amount of internalized bacteria
carried as previously described (Alekseeva et al., 2013; Bouchard
et al., 2013). Brie� y, following 2 h of infection, infected cells we
lysed with 0.05% Triton X-100 in PBS, and cell lysates
plated on BHI agar at different dilutions. CFU were determi
after overnight incubation.

Different infection times (from 1 to 9 days) have been tes
to � nd the longest incubation time to model a long-ter
persistent infection and to extract, after Fluorescence-activ
Cell Sorting (FACS), a quantity of host RNA suf� cient for RNA
sequencing experiments. Infected and uninfected control
were trypsinized and sorted at a rate of approximately 8
events/sec using MoFLO Astrios� uorescent cell sorter. Th
sorting was carried out on a MoFLO Astrios“Beckman
Coulter” sorter with 488- and 561-nm lasers at 200 mW. T
sorting was carried out, with a 100mm nozzle at a pressure of 2
PSI and a differential pressure with the sample of 0.3 to 0.4
The sheath liquid NaCl 0.9% (Revol Company) was� ltered on a
0.04-mm � lter. The mCherry� uorescence was detected with
614/20� lter and excited with the 561 nm laser.

Fluorescence Microscopy
Cells that have been sorted by FACS were placed onto the
Afterwards, cells were� xed with 4% paraformaldehyde (PFA)
PBS for 20 min. The cover slips were then mounted on s
with DAPI-containing ProLong antifade Vectashield medi
(Vector Laboratory, Les Ulis, France). Specimens were im
with a Zeiss� uorescence microscope using ×400 magni� cation.

Gene Expression Analysis by Real-Time
Quantitative Reverse Transcription
PCR (RT-qPCR)
The infection of human MG-63 osteoblast-like cells w
performed as indicated above. The expression of selected
of infected MG-63 cells was evaluated by quantitative real-
PCR (RT-qPCR), as described previously (Deplanche et al.
2015). Brie� y, total RNA was isolated from MG-63 cells w
an RNA II kit (Macherey-Nagel). RNA concentration and pur
were assessed using a Nanodrop spectrophotometer (Th
Scienti� c). A cDNAs were synthesized using a qScript cD
synthesis kit (Quanta Biosciences). Reaction mixtures devo
reverse transcriptase and reaction mixtures containing2O
instead of cDNA were used as negative controls. Each rea
was performed in triplicate. Primer sequences were des
using Primer 3. The list of primers is presented
Supplementary Data, Table 1. PPIA, GAPDH, PGK1, HRPT1,
TBP and HSP90AB1were used as normalizer gene
Ampli� cation was carried out on a CFX96 Real Time Sys
(Bio-Rad) for 3 minutes at 95°C and 40 cycles of 2 s
consisting of 5 seconds at 95°C and 30 seconds at 60°C
relative quanti� cation of the mRNA levels of the target genes
determined using CFX Manager based on theDDCT-method
(Livak and Schmittgen, 2001). The six genes from RNAseq da
were selected as potential normalizer genes according to
most stable expression. The expression stability of those
April 2022 | Volume 12 | Article 854242
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Nicolas et al. Transcriptional Signature of Staphylococcal Infection
was con� rmed by using of the Gene Expression Module of C
Manager (Bio-Rad). The amount of target was normalize
normalizer (housekeeping) genes. Relative quanti� cation after
normalization refers to the PCR signal of the target transcrip
a treatment group divided by the values obtained fr
uninfected control cells, arbitrarily set to 1. When t
expression was decreased compared to that in uninfe
control cells, data were presented as negative values.

RNA Sequencing
Three biological replicates of uninfected control cells
speci� cally infectedS. aureus-bearing cells that were isolat
by a � ow cytometric approach from infected mixed c
populations containing cells with and without internaliz
bacteria, were used for the RNA sequencing and analysis.

Total RNA from each sample was isolated with an RNA II
(Macherey-Nagel) according to manufacturer’s instructions with
a subsequent DNase treatment (Dnase Rnase free, Am
according to the supplier. RNA concentrations were quant� ed
using a Nanodrop. RNA quality (RIN) was evaluated using
Agilent 2100 bioanalyzer (Agilent Technologies, Santa C
CA). RNA labeling and hybridization were performed at
GeT-PlaGe core facility, INRAE Toulouse, France. All of
RNA samples had a RIN value greater than 8.2, indicating a
RNA integrity. The ratio 260/280 were greater than 2 indicati
good RNA quality (Supplementary Data, Table 2). RNA-seq
libraries have been prepared according to Illumina’s protocols
using the Illumina TruSeq Stranded mRNA sample prep k
analyze mRNA. Brie� y, mRNAs were selected using poly
beads. Then, RNAs were fragmented to generate do
stranded cDNA and adapters were ligated to be seque
Eleven cycles of PCR were applied to amplify libraries. Lib
quality was assessed using a Fragment Analyser and lib
were quanti� ed by qPCR using the Kapa Library Quanti� cation
Kit. RNA-seq experiments were performed on an Illum
HiSeq3000 using a paired-end read length of 2x150
with the Illumina HiSeq3000 sequencing kits. Adapters w
removed with Trim galore (v 0.4.0) (Martin, 2011) and data
quality was assessed using FastQC (v 0.11.2), both from
Babraham Institute.

RNA-Seq Analysis
Reads were quality trimmed with Sickle (v 1.210) in“pe” (pair-
end) mode with default parameters. Paired sequences were
mapped to human reference genome (GhCR38.80) with To
(v 2.0.14) (Trapnell et al., 2009) with default parameters. Gen
were counted with htseq-count (v 0.6.1) (Anders et al., 2015).
DeSEQ2 (Love et al., 2014), an R package embedded in t
package SARTools (v 1.2.0) (Varet et al., 2016) was used to
normalized the count table with 29,195 genomic feature
expressed and generate a list of differentially expressed
(DEGs). A Benjamini-Hochberg p-value adjustment, a mult
testing correction, is performed to control the false positive
The threshold of statistical signi� cance is set to 0.05. Positive a
control samples ranged from 41 to 85 million pair-end reads
sample and 51 to 94 million pair-end reads per sam
respectively (Supplementary Data, Table 2).
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Principal Component Analysis indicated that the biolog
variability (positive infectedvscontrol uninfected samples) wa
the main source of data variance (Supplementary Data,
Figure 1). Lists of DEGs were annotated with Biom
(Smedley et al., 2015) from Ensembl (Cunningham et al., 2015)
with the version GRCh38p5.

Functional Annotation
Gene-set enrichment tests in Kyoto Encyclopedia of Genes
Genomes (KEGG) pathways were performed with th
packages, GAGE (Luo et al., 2009). Gene sets with adjusted
value < 0.05 were considered as being signi� cantly enriched. A
network of KEGG DEGs set was constructed using R pac
FGnet (Aibar et al., 2015). A � nal network diagram was draw
with Cytoscape (Shannon et al., 2003). Gene-set enrichment tes
in Reactome pathways (Jassal et al., 2020) were performed with R
package ReactomePA (Yu and He, 2016) with gsePathway
function. Gene sets with adjustedp-value < 0.05 wer
considered as being signi� cantly enriched. We also used t
Epifactor and DAVID databases (Huang et al., 2009; Medvedeva
et al., 2015).The datasets presented in this study can be foun
online repositories. The repository and accession numbers c
found at: https://www.ebi.ac.uk/ena/browser/view/PRJEB47

Enzyme-Linked Immunosorbent Assay
(ELISA)
Cell culture supernatants were subjected to detection of peri
and cytokines by sandwich-ELISA (RD system) according to
manufacturer’s instructions. Brie� y, wells of 96-well plates we
coated with capture antibody and were incubated overnight
incubations were done at room temperature. After washing
the wash buffer (PBS + 0.05% Tween 20), the wells
incubated with the reagent dilution buffer for 1h. Then tes
samples were added to the appropriate wells. After 2
incubation, biotin-conjugated detection antibody was adde
the wells for 2h. Then, Streptavidin-HRP solution was added
incubated for 20 min in the dark. The reaction was stopped
stop solution, and absorbance was read at 450 nm.

Statistical Analysis
Three biological replicates in triplicates were performed
ELISA experiments. Results were pooled from 3 biolog
replicates with each being an average of triplicates.
differences among the groups were assessed by ANO
P<0.05 was considered signi� cant. Tukey’s honestly signi� cant
difference test was applied for comparison of means bet
groups. The values are expressed as mean ± SD.
nes
e
e.

r
,

RESULTS

Development of an S. aureus Infection
Model in Osteoblast-Like Cells
To characterize theS. aureus-host relationship in a physiologic
setting corresponding to a long-term infection of non-immu
cells, we developed a model of osteoblast-like cells be
April 2022 | Volume 12 | Article 854242
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Nicolas et al. Transcriptional Signature of Staphylococcal Infection
internalizedS. aureususing conditions described in Material a
Methods. First, we determined the optimal duration ofS. aureus
incubation with osteoblasts, by quantifying the intracellular lo
of S. aureusfrom day 1 to day 9 (d1 to d9) post-infection (p.i
As shown inFigure 1A, the number of internalized bacter
(assessed by CFU counts) progressively decreased from the
of infection until a dramatic decrease on d7 p.i., likely due to
activation of the host bacterial clearance system. Thereafte
choose to use d6 p.i., as this time point mimics a long-t
intracellular infection stage ofS. aureus, while allowing the
isolation of suf� cient number of infected cells to extract t
quantities of host RNA required for RNA-seq (Figure 1B). At d6
p.i., cells reached 96±2% of the con� uence and the cell viabilit
was 95±2% as estimated by the release of LDH (Pierce
Cytotoxicity Assay Kit). Host cell� uorescence detectable by� ow
cytometry was associated with bacterial internalization
con� rmed by � uorescence microscopy (Figures 1C, D). With
an MOI of 25 at the onset of infection, 5% of MG-63 osteobl
exhibited mCherry� uorescence (mCherry+) at d6 p.i. (based
a gate drawn at the 99th percentile of� uorescence in uninfecte
control cells) (Figure 1C). Analysis of FACS-sorted cells
� uorescence microscopy con� rmed that the� uorescence of mos
cells (Figure 1C, a; R1 region) was indeed attributable
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
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internalized bacteria (Figure 1D). In addition, the centra
region of the dot plot (Figure 1C, a, b; R2 region) was
composed of cel ls lacking detectable intracel lu
bacteria (Figure 1D).

Transcriptional Pro � ling of S. aureus-
Infected MG-63 Cells
To identify the transcriptional changes induced by a 6-
infection in a sorted population of infected cells, mRNA
osteoblast-like cells either hosting intracellularS. aureus
(positive) or remaining non-infected (control) were analy
by RNA-seq, with three samples by condition. Transcripto
analysis was performed on 29,195 human genomic feat
highlighting 2,850 differential expressed genes (DEGs), de� ned
as protein-coding genes that were statistically different
expressed inS. aureus-infected cells compared to uninfect
controls (adj.p-value <0.05), with a threshold log2 fold chan
(FC) -0.3 > log2FC > 0.3. 1,514 of those DEGs were upregula
while 1,336 were downregulated (Table S1). 401 genes were
least three-fold enriched (log2FC � 1.5), while 208 genes we
three-fold less abundant (log2FC� -1.5) in infected cells. Amon
them, 153 genes were eight-fold enriched (log2FC � 3) and 41
genes were eight-fold less abundant (log2FC >-3 (Table S1).
A

B

C

D

FIGURE 1 | (b) Development of the infection model to isolate solely cells containing internalizedS. aureus.(A) Survival curve of mCherrySA113 bacteria internalized
into MG-63 cells (CFU counts).(B) Scheme of the FACS-based puri� cation of mCherrySA113-containing MG-63 cells. Extracellular bacteria were removed 2 h post-
infection by incubating cells in cDMEM with 20mg/mL lysostaphin and 100mg/mL gentamicin for 2 h, which eliminates extracellular bacteria followed by incubation in
cDMEM containing 25mg/mL of gentamicin.(C) S. aureusinfected (a) and uninfected control(b) MG-63 cells were trypsinized and sorted at a rate of 8,000 events/
sec using MoFLO Astrios Beckman Coulter� uorescent cell sorter. The R1 and R2 region(a) correspond to sorted cells either containing mCherrySA113 bacteria
(R1) or without bacteria in the infected cell culture (R2). The R2 region(b) corresponds to sorted non-infected cells.(D) Representative� uorescence microscopy
images of sorted cells, from R1, R2(C, a) or R2 (C, b) FACS samples, imaged with a Zeiss� uorescence microscope using ×400 magni� cation. Nuclei were stained
with DAPI (blue staining). Red arrows and dotted circles indicate internalized mCherrySA113 bacteria (red staining). Scale bar: 3mm.
April 2022 | Volume 12 | Article 854242
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Nicolas et al. Transcriptional Signature of Staphylococcal Infection
To validate RNA-seq gene expression pro� les, the expressio
of 30 genes involved in different processes was assessed
qPCR. Results were in agreement with RNA-seq data (Table 1).

We then examined whether RNA level alteratio
corresponded to changes in protein abundance, focusin
several secreted factors. We chose periostin, an osteo
speci� c factor involved in the regulation of cell adhesion a
organization of extracellular matrix (Sugiura et al., 1995; Kudo and
Kii, 2018), as representative of the product of a down-regul
gene, and as four cytokines/chemokines, CSF-G, CXCL6,b,
and IL-6, as representative products of up-regulated genes. P
levels in supernatants of heterogeneous infected cell popul
(i.e., a mixture of bacteria-bearing and bacteria-free cells), a
as in supernatants of FACS-sorted bacteria-bearing cells
compared to uninfected cells under the same conditions, u
ELISA quanti� cation. The results showed that secretions of C
G, CXCL6, IL-1b, IL-6 increased, while secretion of perios
decreased, in FACS-sorted and unsortedS. aureus-exposed cell
compared to control cells (Figure 2). These results thu
corroborate the RNA-seq data. In addition, and importantly,
sorting procedure ampli� ed the difference in the amount
secreted protein between infected and control cells, compar
unsorted heterogeneous cell populations demonstrating
increased magnitude of infection-induced deregulation.
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Gene-Set Enrichment Analysis (GSEA)
Using KEGG Database
In order to interpret gene expression data in association
biological processes or molecular functions, we perform
GSEA with the GAGE tool on all expressed genes (29
genes) (Table S2). This analysis revealed 33 signi� cantly
enriched KEGG pathways (adj.p-val < 0.05) (Figure 3 and
Table S3), organized into� ve functional families: cellula
processes (11 pathways), organismal systems (10 path
environmental information processing (7 pathway
metabolism (3 pathways), and genetic information proces
(2 pathways). More than half of the enriched pathways belo
to functional categories related to signal transduction, imm
system and cell growth and death (Figure 3andTable S3). The
signal transduction category included thePI3K-Akt signaling
pathway(with the highest number of DEGs: 23 DEGs), wh
negatively mediates NF-kB-dependent in� ammation (Lv et al.,
2019), HIF-1 pathwaythat stimulates aerobic glycolysis duringS.
aureusinfection (Wickersham et al., 2017), as well as theMAP
kinase, TNF, Rip1and Apelin signaling pathways. The immun
response category includedantigen processing and presentat
complement and coagulation cascade, platelet activation, TH17 cell
differentiationandIL-17 pathwaysthat are involved in the defens
duringS. aureusinfection (Liu et al., 2013a; Fruman et al., 2017),
TABLE 1 | Validation by Quantitative real-time–PCR (qPCR) analysis of various signi� cantly differentially expressed genes from the RNA-seq dataset.

UniProt ID Gene name Gene description Fold Change RT-qPCR (SE) Fold ChangeRNA-seq

METABOLISM
O60218 akr1b10 aldo-keto reductase family 1 member B10 3.83 (0.22) 117.85
O95992 ch25h cholesterol 25-hydroxylase 3.74 (0.23) 6.26
P00167 cyb5a cytochrome b5 type A (microsomal) 4.37 (0.21) 24.61
Q8TDS4 hcar2 hydroxycarboxylic acid receptor 2 4.37 (0.31) 13.22
Q9Y5L2 hilpda hypoxia inducible lipid droplet-associated 2.93 (0.12) 3.16
P28845 hsd11b1 hydroxysteroid (11-beta) dehydrogenase 1 3.54 (0.17) 53.22
P43490 nampt nicotinamide phosphoribosyltransferase 4.15 (0.19) 5.51
Q6PCE3 pgm2l1 phosphoglucomutase 2-like 1 3.68 (0.27) 4.37
PDJI9 saa2 serum amyloid A2 4.38 (0.26) 48.93
Q9H2J7 slc6a15 solute carrier family 6 (neutral amino acid transporter) member 15 3.21 (0.18) 4.56
P04179 sod2 superoxide dismutase, mitochondrial 4.22 (0.24) 14.24
O95497 vnn1 vanin 1 7.84 (0.17) 12.24

DEFENSE
P04003 c4bpa complement component 4 binding protein, alpha 6.10 (0.22) 26.61
P1583 il1a interleukin 1 alpha 6.93 (0.21) 14.75
O14508 socs2 suppressor of cytokine signaling 2 2.35 (0.09) 5.57
P04141 csf2 colony stimulating factor 2 (granulocyte-macrophage) 30.52 (1.92) 1316.82
P80162 cxcl6 chemokine (C-X-C motif) ligand 6 52.39 (1.97) 174.86
P01584 il1b interleukin 1 beta 7.08 (0.21) 40.50
P24001 il32 interleukin 32 8. 69 (0.25) 16.83

CELL JUNCTIONS
P35609 actn2 actinin, alpha 2 2.17 (0.11) 2.88
P55289 cdh12 cadherin 12, type 2 (N-cadherin 2) 3.01 (0.13) 4.63
P33151 cdh5 cadherin 5, type 2 (vascular endothelium) 0.25 (0.04) 0.10
O95832 cldn1 claudin 1 10.41 (0.23) 22.18
Q15063 postn periostin, osteoblast speci� c factor 0.35 (0.15) 0.11

OTHERS
O60437 ppl periplakin 0.24 (0.11) 0.15
Q9H4E5 rhoj ras homolog family member J 0.37 (0.14) 0.18
P17936 igfbp3 insulin like growth factor binding protein 3 9.34 (0.34) 12.98
Q12879 grin2a glutamate receptor, ionotropic, N-methyl D-aspartate 2A 3.39 (0.19) 7.10
April 2022 |
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Nicolas et al. Transcriptional Signature of Staphylococcal Infection
the NOD-like receptor pathway, which activates innate an
adaptive immune responses (Thammavongsa et al., 2015; Dey
and Bishayi, 2017; Narita et al., 2019).

The cell growth and death category, in addition to theP53
signaling pathway, includedapoptosis, necroptosisand ferroptosis
pathways (Yang and Stockwell, 2016; Jorgensen et al., 2017), as
well as thecell cycle pathway(that we previously showed to b
impacted byS. aureusinfection) (Deplanche et al., 2015) and the
cellular senescence pathway, which either promotes a favorab
conditions for pathogen survival or acts as an defense mecha
limiting the rate of infection (Humphreys et al., 2020).

Regarding other enriched pathways, we particularly not
the transport and catabolism, cell motility, and cellu
community KEGG categories, as they could manage
interface of the detection, sequestration and elimination
internalized microbes. The transport and catabolism cate
mediates activities of organelles that detect cellular signa
followed by the execution of responses during infections.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
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category encompasses thephagosome and lysosomes signa
pathways(Inpanathan and Botelho, 2019), as well as the
mitophagy pathway, a regulator of NLRP3 in� ammasome
activation (Kim et al., 2016). The cell motility and cellula
community categories included 30 DEGs involved infocal
adhesionor actin cytoskeletonpathways. Another remarkab
group of enriched pathways belonged to metabolism, w
includes genes belonging toglycolysis/glyconeogene,
biosynthesis of amino acidsand carbon metabolism pathway.
Finally, an infection-mediated deregulation of genes belongi
the estrogen signaling pathwayand theosteoblast differentiatio
pathwaywas noteworthy (Kovats, 2015; Montecino et al., 2021).

GSEA Using Reactome Database
To complete functional gene analysis, GSEA was also carrie
on the 29,195 expressed genes with the Reactome database
is more detailed and largest than KEGG database with up t
hierarchical levels (Chowdhury and Sarkar, 2015). The number of
FIGURE 2 | Estimation of protein levels of periostin and in� ammatory cytokines in cell supernatants by ELISA. Control andS. aureus-infected MG-63 cells at 72h p.i.
were trypsinized and either centrifuged to collect supernatants or sorted using MoFLO Astrios� uorescent cell sorter. Afterwards, cells were resuspended in cDMEM
and incubated for additional 12 h. Levels of cytokines (IL-1b, GM-CSF, CXCL6, IL-6) and periostin (PO) in two groups of supernatants (1) infectedvs control cells;
(2) sorted by FACS infected cellsvs sorted by FACS control cells, were assessed by ELISA. Results were pooled from 3 biological replicates with each being an
average of 3 experimental replicates. All graphs depict mean ± SD. All data were analyzed using ANOVA following Turkey’s HSD Post Hoc test. (*P� 0.05. **P �
0.01. ***P� 0.001).
April 2022 | Volume 12 | Article 854242
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Nicolas et al. Transcriptional Signature of Staphylococcal Infection
Reactome enriched pathways was much higher compared to
identi� ed by KEGG, 106vs 33, respectively. Reactome GS
overestimates enriched pathways by considering that all pat
levels are enriched at the same time. To facilitate and c
further analyses, we removed the redundancy of enric
pathways by considering only the deepest. This resulted
Reactome enriched pathways: 61 upregulated an
downregulated pathways (Figure 4and Table S4). This analysis
con� rmed the deregulation of the pathways identi� ed according
to the KEGG database, but with a more precise categorizatio
a higher number of cellular processes. For instance, Rea
identi� ed 22 upregulated pathways associated with the imm
systems, such as:Toll-like receptors cascades(i.e. TLR1:TLR:2
TLR5, TLR6:TLR2, TL57/TLR8) and various cytokines sign
pathways (i.e.IL-1, IL-4, IL-10, IL-13). In addition, four pathway
of the adaptive immune responses were upregulated, of whic
ER-phagosome pathway, involved in antigen-processing cro
presentation. Regarding signal transduction, Reactome G
particularly revealed gene networks upregulated in the G-a
NOTCH, MET, and Estrogen-dependent signaling cascade
the cell cycle category, Reactome GSEA divulged up- and d
regulated pathways associated to the mechanism of cell
progression, such ascell cycle checkpoints, mitosis, and
chromosome maintenance(Figure 4). Regarding the
metabolism, Reactome GSEA revealed additional categorie
containing upregulated pathways, such as the integratio
energy metabolism, metabolism of amino acids, metabolism o
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lipids, amyloid � ber formationand post-translational protei
modi� cations. Some of them have been very recently assoc
to S. aureusinfection, such as a pathway associated to
metabolism of arachidonic acid that reportedly killsS. aureus
through a lipid peroxidation mechanism (Beavers et al., 2019).

The Reactome GSEA also highlighted a gene clu
belonging to functional networks that were not identi� ed with
KEGG, in particular those associated with DNA repair or to g
expression, such asepigenetic regulation, gene silencing by RN,
RNA polymerase I transcription, and RNA polymeraseII
transcription, as well aschromatin organization. Among
downregulated pathways theneuronal systempathway, with a
cluster of 87 DEGs (the second pathway with the highest num
of DEGs) was identi� ed. In addition to their main role in
neurotransmission, some genes are important in the regula
of bone metabolism (Bliziotes et al., 2001) and in the
development of infection (Kim et al., 2018). Other
downregulated pathways belonging toSynthesis of DNA,
collagen formation, degradation of extracellular matrix(ECM),
integration of energy metabolismand signaling by recepto
tyrosine kinase(PTK2) categories were identi� ed.

Immune System and Signal Transduction
Genes Are Among the Top Highly Induced
DEGs
GSEA using both KEGG and Reactome databases po
to the importance of changes in signal transduction a
FIGURE 3 | Enriched KEGG pathways in infected cells. Gene-set enrichment analysis was performed inS. aureus-bearing cells compared to uninfected control cells
by GAGE software with KEGG database. The 33 signi� cant enriched pathways are displayed with number of differentially expressed genes involved. *adjusted p-val
< 0.01, ** adjusted p-val < 0.05, *** adjusted p-val < 0.01. Pathways are ordered and colored according to parent category at level 2.
April 2022 | Volume 12 | Article 854242



ter
se

ted

ene
lea
nl

ge
e
59

SF
sm

o

er,
l-like
e

n

t in
e

er
ction

ene
rial

in
in
,
sion

Nicolas et al. Transcriptional Signature of Staphylococcal Infection
immune system-associated gene networks during the long-
S. aureusintracellular infection. Genes belonging to the
functional categories represented 22% of DEGs associa
the KEGG hierarchy (504/2850) (Table S2). Moreover, they
also accounted for 58% of the top highly regulated g
associated to the KEGG hierarchy (n = 64/194), with a c
bias toward upregulation (i.e., 57 DEGs with FC > 8 for o
7 DEGs FC < - 8). Among the upregulated genes there are
that belong to infection-associated in� ammatory Acute Phas
proteins (APPs), such as Serum amyloid A1 (SSA1, FC = 1
and A2 (SSA2, FC = 49), colony stimulating factor C
(FC = 1316) and CSF3 (FC = 234), as well as Cerulopla
(CP; FC = 46.49) (Table 2).

Genes encoding chemokines, chemiokines and in� ammatory
cytokines, which participate in the recruitment and activation
immune cells, were also highly upregulated, for instance:CCL20,
CXCL6, CXCL8, CCL7, CX3CL1, CXCL10, and CXCL1
(32<FC<396);IL-33, IL-32, IL-6, IL-1b, IL-1a , IL-24
(10<FC<119), and TNF-family members (TNFSF10and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
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TNFSF14with a FC of 22 and 45, respectively). Moreov
genes encoding extracellular receptors, such as a Tol
receptor 2 (TLR2, FC = 15), and the mitochondrial enzym
superoxide dismutase-2 (SOD2, FC = 14) that are involved i
the killing of internalized pathogenic bacteria (Abuaita et al.,
2018) were highly upregulated. The expression of Absen
Melanoma 2 (AIM2) that induces an activation of immun
signaling platforms known as in� ammasomes (Broz
and Dixit, 2016) was also increased (FC = 10). Oth
upregulated genes of immune system and signal transdu
categories are listed inTable 2 and Table S2. Among the
most downregulated DEGs were the interleukin 12B g
(FC = 0.046), which plays a protective role during bacte
infection (Reeme et al., 2013), the osteoblast-speci� c factor-2,
periostin (FC= 0.112), as mentioned above, osteomodul
(FC=0.05) that functions as a positive coordinator
osteogenesis (Lin et al., 2020) and periplakin (FC=0.147)
which connects cytoskeletal structures to the cell adhe
complex (Hu et al., 2018).
FIGURE 4 | Enriched Reactome pathways in infected cells. Gene-set enrichment analysis was performed inS. aureus-bearing cells compared to uninfected control
cells by ReactomePA software. The deepest pathways are kept and drawn with the level in hierarchy indicated besides names. Pathways are colored accordingly to
parent category at level 2. The normalized enrichment score (NES) is indicated. Negative NES for pathways globally down-regulated and positive NES for pathways
globally up-regulated. ** adjusted p-val < 0.05, *** adjusted p-val < 0.01.
April 2022 | Volume 12 | Article 854242
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S. aureus Infection Triggers Transcriptional
Reprogramming of Genes Involved in
Metabolism
The second group of the top highly regulated genes and enr
pathways highlighted with both KEGG and Reactome datab
belongs to the metabolism category (291 genes including 22
highly upregulated genes,Table S2) and signal transduction an
immune system categories genes that also play an importan
in metabolism. Among them the APPSAA2 (FC = 49, as
mentioned above), is involved in high density lipoprote
metabolism and cholesterol homeostasis, (Ely et al., 2001;
Krishnan et al., 2015), the phospholipases A2 (FC = 75)
implicated in lipid metabolism, and the hydroxysteroid (1
beta) dehydrogenase 1 (FC = 53) is involved in horm
metabolism (Table 3).

The expression ofSOD2that protects the host against react
oxygen and reactive nitrogen species (Eisenreich et al., 2019), but
is also involved in metabolic reprogramming in gastric can
(Liu et al., 2019) was also increased (FC = 14). Besides
observed the high level of expression of a hydroxycarboxylic
receptor 2 (HCA2, FC= 13), which regulates lipolysis and at
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
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same time reduces pro-in� ammatory cytokines level in seps
(Takakura and Zandi-Nejad, 2019). Moreover, we found othe
upregulated genes with lowerFC, which are involved in
metabolic processes such as cholesterol 25-hydroxylas
(CH25H, FC = 6), an interferon-stimulated gene that conve
cholesterol to the oxysterol 25-hydroxycholesterol (Abrams
et al., 2020), fatty acid elongases 2 and 7 (ELOVL2 and
ELOVL7 with FC= 3.5 and 7.7, respectively) involved
synthesis of long-chain saturated fatty acids (Jump, 2009), and
perilipin 2 (FC = 4.5), a protein belonging to the family
cytoplasmic lipid droplet binding protein that can be used
osteoblasts as a fuel source (Rendina-Ruedy et al., 2017).

RNA-seq analysis also pointed to the deregulation of g
coding for enzymes of glycolysis and gluconeogenesis su
lactate dehydrogenase A-like 6B (FC = 6.523), which catalyz
conversion of pyruvate into lactic acid and phosphoglucomu
(FC = 4.374) that facilitates the interconversion of gluc
1-phosphate and glucose 6-phosphate (Table 3). Additionally, to
the above listed genes, there are other metabolism-associated
which likely provide a source of nutrients, energy, and metabo
that promote bacterial intracellular survival and proliferation.
TABLE 2 | Immune system and signal transduction genes.

UniProt ID Gene name Gene description FC Log2FC Adj.p-value

Upregulated genes
P0DJI8 saa1 serum amyloid A1 1599.72 10.64 2.93E-21
P04141 csf colony stimulating factor 2 (granulocyte-macrophage) 1316.85 10.36 5.05E-39
P78556 ccl20 chemokine (C-C motif) ligand 20 396.66 8.63 7.36E-10
P09919 csf3 colony stimulating factor 3 234.28 7.87 6.34E-07
P80162 cxcl6 chemokine (C-X-C motif) ligand 6 174.86 7.45 1.67E-68
P10145 cxcl8 chemokine (C-X-C motif) ligand 8 134.94 7.08 2.42E-08
O95760 il33 interleukin 33 119.35 6.70 3.51E-11
P80098 ccl7 chemokine (C-C motif) ligand 7 99.50 6.63 8.09E-07
P25942 cd40 CD40 molecule, TNF receptor superfamily member 5 98.56 6.62 2.20E-21
P78423 cx3cl1 chemokine (C-X3-C motif) ligand 1 54.23 5.76 4.36E-05
P0DJI9 saa2 serum amyloid A2 48.93 5.61 1.58E-04
P02778 cxcl10 chemokine (C-X-C motif) ligand 10 48.42 5.60 7.40E-11
P00450 cp ceruloplasmin (ferroxidase) 46.49 5.54 7.77E-08
O43557 tnfsf14 tumor necrosis factor superfamily member 14 45.01 5.49 2.24E-03
P05231 il6 interleukin 6 44.68 5.48 7.29E-10
P01584 il1b interleukin 1 beta 40.45 5.34 8.06E-74
P09341 cxcl1 chemokine (C-X-C motif) ligand 1 (melanoma growth stimulating activity, alpha) 32.35 5.02 1.04E-0
P04003 c4bpa complement component 4 binding protein, alpha 26.61 4.73 9.37E-08
P04233 cd74 CD74 molecule, major histocompatibility complex, class II invariant chain 25.50 4.67 1.57E-09
P04222 hla-c major histocompatibility complex, class I, C 24.89 4.64 1.96E-04
P50591 tnfsf10 tumor necrosis factor superfamily member 10 22.27 4.48 1.22E-03
P30490 hla-b major histocompatibility complex, class I, B 20.83 4.38 2.09E-05
P28907 cd38 CD38 molecule 18.88 4.24 5.94E-05
P24001 il32 interleukin 32 16.83 4.07 5.00E-39
P01583 il1a interleukin 1 alpha 14.75 3.88 6.43E-13
O60603 tlr2 toll-like receptor 2 14.53 3.86 1.13E-25
P04179 sod2 superoxide dismutase 2, mitochondrial 14.24 3.83 8.07E-26
Q96RQ9 il4i1 interleukin 4 induced 1 12.60 3.66 3.81E-32
P08571 cd14 CD14 molecule 10.99 3.46 3.78E-37
Q13007 il24 interleukin 24 10.63 3.41 2.83E-02
O14862 aim2 absent in melanoma 2 10.13 3.34 1.22E-07

Downregulated genes
P29460 il12b interleukin 12B 0.05 - 4.45 1.52E-03
Q99983 omd periostin, osteoblast speci� c factor 0.05 - 4.31 6.97E-03
Q15063 postn osteomodulin 0.11 - 3.16 1.47E-03
O60437 ppl periplakin 0.15 - 2.77 9.06E-08
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Nicolas et al. Transcriptional Signature of Staphylococcal Infection
S. aureus Infection Triggers
Transcriptional Reprogramming of Genes
Involved in Neurotransmission
Reactome GSEA underlined the downregulation of the neur
system pathway. DEGs included gamma-aminobutyric aci
(GABA) type A receptor subunit alpha2 (GABRA2, FC = 9.2)
and alpha3 (GABRA3, FC = 0.3); 5-hydroxytryptamin
(serotonin) receptor 4 (HTR4, FC = 7.3) and 2A (HTR2A,
FC = 5.9), as well as glutamate ionotropic receptor N-me
D-aspartate type subunit 2A and 3A (GRIN2AandGRIN3Awith
FC = 7 and 0.3, respectively). Gene coding for 4-aminobut
aminotransferase (ABAT, FC = 0.3) that is responsible f
catabolism of GABA, and gene coding for calcitonin-rela
polypeptide beta (CALCB, FC = 0.14), a highly poten
vasodilator were down-regulated (Russell et al., 2014) (Table 4).

Other deregulated genes encoding neurotransmitter-asso
protein were identi� ed in infected MG-63 cells (Table S1).

S. aureus Infection Triggers Transcriptional
Reprogramming of Genes Involved in
Epigenetic Regulation
Reactome GSEA revealed deregulation of pathways rela
epigenetic modi� cations/regulations. The selective activation
repression of speci� c genes not only depends on transcripti
factors, but also on their interaction with epigenetic modula
(or “epifactors”), which regulate DNA accessibility by controlli
the structure of chromatin. Epigenetic modi� cations of
chromatin include DNA methylation and hydroxymethylatio
as well as multiple histones post-translational modi� cations,
such as acetylat ion, methylat ion, phosphorylat i
ubiquitylation, serotonylation and dopaminylation (Chan and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
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Maze, 2020). We sought to determine which DEGs encod
epifactors and whether they were up- or down-regulated. T
this, we intersected either the 1514 upregulated DEGs o
1336 downregulated DEGs associated withS. aureusintracellular
infection with the Epifactor database (Medvedeva et al., 2015).
This database includes 720 epifactors classi� ed according to thei
function: (i) enzymes that“write” epigenetic marks, such as DN
methyltransferases (DNMTs) and histone acetyltransferas
(HATs) and methyltransferases (HMTs), (ii) enzymes tha
“erase” epigenetic marks, such as histone deacetyl
(HDACs) and demethylases (HDMs); (iii) proteins that“read”
these marks, (iv) chromatin-remodeling enzymes that disp
nucleosomes, (v) scaffold proteins that assemble macromole
chromatin-regulatory complexes, and (v) diverse cofactors.
analysis identi� ed an important number of DEGs encodin
epifactors (117 DEGs), of which 92 were downregula
(Table S6) and 25 upregulated (Table S7).

The strikingly important number of epifactor genes which w
downregulated by infection (7% of all of the downregulated DE
prompted us to examine their functions in detail, using the G
Ontology of Biological Processes (GO-BP) enrichment analy
the DAVID software. This analysis showed that 30 of these g
encoded epifactors with a negative effect on transcriptioni.e.,
repressors):BAHD1, BRCA1, CBX1, CBX2, CBX6, CBX5, CH
CTCF, DNMT1, DNMT3A, EHMT1, GATAD2A, HDAC
HDAC6, HDAC10, KDM5C, MBD1, MBD3, NSD1, PAR
PRMT6, RCOR1, SCMH1, SIN3B, SMARCA4, TRIM24, UH
WHSC1, ZGPAT, ZMYND11(Table S7). Interestingly, severa
of these components belong to chromatin-repressive comp
in particular, the BAHD1 (4 genes), NurD (4 genes), Polyco
PRC1 (5 genes), mSin3A (1 gene) and CoREST (1 g
complexes (Table 5 and Table S5). Among other
TABLE 3 | Metabolism genes.

UniProt ID Gene name Gene description FC Log2FC Adj.p-value

Upregulated genes
P14555 pla2g2a phospholipase A2 group IIA 75.85 6.25 3.52E-03
P28845 hsd11b1 hydroxysteroid (11-beta) dehydrogenase 1 53.22 5.73 3.69E-04
134339 saa2 serum amyloid A 2 48.93 5.61 1.58E-04
P00167 cyb5a cytochrome b5 type A 24.61 4.62 7.45E-05
P04179 sod2 superoxide dismutase 2. mitochondrial 14.24 3.83 3.17E-23
Q8TDS4 hcar2 hydroxycarboxylic acid receptor 2 13.22 3.72 5.34E-07
C9JRZ8 akr1b15 aldo-keto reductase family 1 10.51 3.39 1.21E-02
A1L3X0 elovl7 ELOVL fatty acid elongase 7 7.70 2.94 1.68E-06
O95992 ch25h cholesterol 25-hydroxylase 6.26 2.65 3.36E-03
P43490 nampt nicotinamide phosphoribosyltransferase 5.51 2.46 6.99E-56
Q9H2J7 slc6a15 solute carrier family 6 member 15 4.56 2.19 3.76E-09
Q99541 plin2 perilipin2 4.46 2.16 2.42E-23
Q9NXB9 elovl2 ELOVL fatty acid elongase 2 3.56 1.83 2.06E-19
Q9Y5L2 hilpda hypoxia inducible lipid droplet-associated 3.16 1.66 5.29E-13

glycolysis genes
Upregulated genes

Q9BYZ2 ldhal6b lactate dehydrogenase A-like 6B 6.52 2.71 2.74E-02
Q6PCE3 pgm2l1 phosphoglucomutase 2-like 1 4.37 2.13 9.55E-19
P06733 eno1 Enolase, phosphopyruvate hydratase 1.79 0.84 1.22E-02
P00338 ldha lactate dehydrogenase A 1.67 0.74 5.45E-02
P04075 aldoa aldolase, fructose-bisphosphate A 1.66 0.73 8.12E-03

Downregulated genes
P08237 pfkm phosphofructokinase 0.69 - 0.54 2.29E-02
O43175 phgdh phosphoglycerate dehydrogenase 0.61 - 0.72 4.48E-02
A
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downregulated DEGs falling into the epifactor category,
noticed several gene coding for histone deacetylases (HDAC4,
HDAC6,HDAC10), and components of the DNA methylation an
demethylation pathways. The later included writers (i.e. the“de
novo” methyltransferase DNMT3a, the“maintenance”
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
emethyltransferaseDNMT1, and the Tet1 methylcytosin
dioxygenase), readers (the methyl-CpG binding domain pro
1 and protein 3,MBD1, MBD3), and cofactorUHRF1(which
promotes DNMT1 action). Of note, MBD1 and MBD3 belong
different chromatin-repressive complex that link histo
April 2022 | Volume 12 | Article 85
TABLE 5 | Epigenetics genes.

UniProt ID Gene name Gene description FC Log2FC Adj.p-value value

Upregulated genes
Q9C005 dpy30 dpy-30,histone methyltransferase complex regulatory subunit 1.59 0.67 9.18E-03
Q7Z2T5 trmt1l tRNA methyltransferase 1 like 1.52 0.60 1.80E-03
Q9BVS5 trmt61b tRNA methyltransferase 61B 1.52 0.60 1.61E-02
Q96T68 setdb2 SET domain, bifurcated 2 1.45 0.54 3.76E-02
Q9Y657 spin1 splindlin 1 0.70 -0.53 2.22E-02

Downregulated genes
NuRD complex

Q13330 mta1 metastasis associated 1 0.66 -0.61 4.54E-02
Q86YP4 gatad2a GATA zinc� nger domain containing 2A 0.53 -0.93 1.51E-02
Q14839 chd4 chromodomain helicase DNA binding protein 4 0.70 -0.52 1.25 E-02
O95983 mbd3 methyl-CpG binding domain protein 3 0.68 -0.55 3.88E-02

BAHD1 complex
Q8TBE0 bahd1 bromo adjacent homology domain containing 1 0.68 -0.55 7.35E-03
P83916 cbx1

(hp1-beta)
chromobox homolog 1
(Heterochromatin protein 1 homolog beta)

0.71 -0.50 2.32E-02

P45973 cbx5
(hp1-alpha)

chromobox homolog 5
(Heterochromatin protein 1 homolog alpha)

0.51 -0.96 2.88E-02

Q9UIS9 mbd1 methyl-CpG binding domain protein 1 0.65 -0.62 1.14E-02
Polycomb repressive complex 1 (PRC1)

Q92560 bap1 BRCA1 associated protein-1 0.62 -0.69 5.95E-04
Q14781 cbx2 chromobox homolog 2 0.49 -1.01 9.03E-06
O95503 cbx6 chromobox homolog 6 0.39 -1.37 8.35E-08
Q96GD3 scmh1 sex comb on midleg homolog 1 (Drosophila) 0.71 -0.49 4.63E-02
Q9UQR0 scml2 sex comb on midleg-like 2 (Drosophila) 0.58 -0.78 7.94E-03

DNA methyltransferases
P26358 dnmt1 DNA (cytosine-5-)-methyltransferase 1 0.60 -0.87 1.63E-02
Q9Y6K1 dnmt3a DNA (cytosine-5-)-methyltransferase 3 alpha 0.46 - 1.10 4.01E-02

Methylcytosine dioxygenase
Q8NFU7 tet1 tet methylcytosine dioxygenase 1 0.58 -0.78 1.02E-03

Histone deacetylases
P56524 hdac4 histone deacetylase 4 0.57 -0.80 1.02E-02
Q9UBN7 hdac6 histone deacetylase 6 0.63 -0.67 1.09E-04
Q969S8 hdac10 histone deacetylase 10 0.29 - 1.81 2.59E-02

Histone methyltransferases
Q9H9B1 ehmt1 euchromatic histone-lysine N-methyltransferase 1 0.56 -0.84 5.37E-03
Q9NQR1 kmt5a lysine (K)-speci� c methyltransferase 5A 0.57 -0.80 3.65E-06

Others
Q9Y657 spin1 spindlin family member 1 0.69 -0.53 2.22E-02
Q56A73 spin4 spindlin family member 4 0.47 - 1.10 1.76E-05
Q96T88 uhrf1 ubiquitin-like with PHD and ring� nger domains 1 0.45 - 1.15 1.38E-03
TABLE 4 | Neurotransmitter genes.

UniProt ID Gene name Gene description FC Log2FC Adj.p-value

Upregulated genes
P47869 gabra2 gamma-aminobutyric acid (GABA) A receptor, alpha 2 9.20 3.20 7.47E-11
Q13639 htr4 5-hydroxytryptamine (serotonin) receptor 4, G protein-coupled 7.30 2.87 1.74E-02
Q12879 grin2a glutamate receptor, ionotropic, N-methyl D-aspartate 2A 7.10 2.83 4.08E-04
P28223 htr2a 5-hydroxytryptamine (serotonin) receptor 2A. G protein-coupled 5.88 2.56 4.42E-03

Downregulated genes
P34903 gabra3 gamma-aminobutyric acid (GABA) A receptor, alpha 3 0.33 - 1.61 1.68E-04
P80404 abat 4-aminobutyrate aminotransferase 0.29 - 1.80 4.51E-03
Q8TCU5 grin3a glutamate receptor, ionotropic, N-methyl-D-aspartate 3A 0.28 - 1.86 2.22E-03
P10092 calcb calcitonin-related polypeptide beta 0.14 - 2.88 2.87E-04
4242
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modi� cation to DNA methylation, such as BAHD1 and Nur
Other examples of downregulated epigenetic gene writers we
euchromatic histone-lysine N-methyltransferase 1 (EHMT1) and
lysine (K)-speci� c methyltransferase 5A (KMT5A). Expression o
readers that recognize methyl-lysine residues was also a
Among them the expression of members of the splindin fam
(SPIN1andSPIN4) was down regulated.
m
n

ge
is
for
nal
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ell as
ns.
DISCUSSION

Osteomyelitis has so far been little studied by transcripto
approaches and, to our knowledge, none has yet focused o
impact of intracellularS. aureusinfection in osteoblasts (Hofstee
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13
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ed.
y

ic
the

et al., 2020). Here, we present a new model to study a
intracellular life stage ofS. aureusin osteoblast-like cells. In th
absence of signals from uninfected cells, the transcript
analysis presented here identi� es genes, signaling pathways a
cellular processes speci� cally impacted by intracellular bacter
(Figure 5). The results suggest an important role of osteoblas
the in� ammatory phenomena observed duringS. aureus
associatedosteomyelitis, due to the activation of a lar
network of innate immunity genes. This activation
concomitant with the inhibition of numerous genes coding
epifactors involved in chromatin-dependent transcriptio
inhibition. In addition, infection alters the expression of a
of metabolic genes that may affect bacterial survival, as w
genes encoding neurotransmitters and cell adhesion protei
e

FIGURE 5 | Schematic model of the immune, metabolic and epigenetic dysregulated signatures induced by long-termS. aureusinfection in osteoblasts. Pattern
recognition receptors, such as Toll-like receptors (e.g. TLR-1, -2, -4, -5, -6, -7, -9) and NOD-like receptors (e.g. NOD2), are involved in the detection of bacteria (S.
aureus, represented by orange dots). These receptors trigger intracellular signaling cascades, resulting in the activation of transcription factors, such as NF-� B, and the
up-regulation of genes encoding immune and in� ammatory proteins, such as cytokines, chemokines, and components of the in� ammasome. These responses are also
dependent on the chromatin-dependent regulation of gene expression controlled by epigenetic factors (i.e., epifactors), such as writers, erasers, and readers of chromatin
modi� cations (red and yellow squares), as well as by metabolic pathways. Many genes encoding epifactors with repressive activity are inhibited by infection by an
unknown signaling cascade (represented by a question mark). Putative metabolites that are taken up by cells (pink squares) or that are processed internally by metabolic
enzyme activity (purple squares) have effects on cytosolic responses, or can enter the nucleus and act on chromatin modi� cations, epifactors or epigenetic genes
expressions. Host metabolism in� uencesS. aureussurvival. Bacteria can also produce effectors that impact these processes. These interactions determine the magnitud
of the host response to infection, including the immune response, in� ammatory reactions, cell death, DNA damages, as well as immunomodulation of neighboring cells.
April 2022 | Volume 12 | Article 854242
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Nicolas et al. Transcriptional Signature of Staphylococcal Infection
A Potent Immune Response During Long-
Term S. aureus Infection in Osteoblasts
The signature of the infection is� rst characterized by th
activation of a very large network of innate immune respo
genes in osteoblast-like cells infected for 6 days. Altho
expected, this defense response is remarkable for its amp
Among the induced genes, those encoding secreted fa
(about 200) may serve as markers in the early diagnos
infection and in the differentiation of infectious and no
infectious causes of osteomyelitis. Among the highly indu
genes are genes encoding acute phase proteins (APPs), s
SSA1andSSA2, which are involved in innate immunity and lipi
homeostasis during in� ammation (Zheng et al., 2020), CP,
encoding ceruloplasmin, the major blood copper transp
protein, which also plays a role in iron metabolism. While
hepatic synthesis of APPs is well established, their extrahe
expression remains a matter of debate. Strong expressi
several APPs by osteoblast-like cells in response to intracellS.
aureusinfection is therefore noteworthy. Osteoblasts could
APP-secreting cells speci� cally in bone tissue, as also predic
by the detection of APPs in a porcine model of osteomyelitis
in material from human patients with chronic osteomyel
(Lüthje et al., 2020). We also report increased express
of many genes encoding cytokines and chemokines, su
CCL2, CCL5, CCL7, CCL8, CCL10, CCL11, CCL13, CC
CCL26, and CXCL1, CXCL2, CXCL3, CXCL5, CXCL6
CX3CL1, which are known to be immune cell chemoattracta
(Hieshima et al., 1997; Sokol and Luster, 2015). CXCL6and
CXCL8 have recently been proposed for the detection
in� ammation during bone disease (Grad et al., 2016; Afzelius
et al., 2020).

The immune system category also includes genes reveal
activation of in� ammasomes (Schroder and Tschopp, 201)
whose aberrant activation is downregulated by mitoph
(Kim et al., 2016). The involvement of in� ammasome-
mediated IL-1b in S. aureusclearance in a mouse sk
infection model (Miller et al., 2007) and in a short-term
infection of osteoblastic cells was previously demonstrate
our team (Lima Leite et al., 2020). The increased expression
IL-1b and in� ammasome-associated AIM2 as well as
implication of theMitophagy pathwayreported here support
the involvement of in� ammasomes in the long-term infectio
leading to the development of osteomyelitis. We also high
numerous genes of other upregulated cytokines, such as Ia,
IL-6, IL-15, IL1-18, IL-24, IL-32, IL-33, IL-34 and IFN-b, and
TNFs. It will be interesting to test the involvement of th
aforementioned chemokines and cytokines inS. aureus
osteomyelitis and their use as infection markers. Addition
we report a deregulation of theComplement and coagulatio
cascadespathway. Since a complement system is involved in
restriction of the growth of internalized bacteria by autoph
(Sorbara et al., 2018) and a detection of deregulated autopha
related genes (ATG2, ATG5, ATG7, ATG9) in our model, further
investigations are required for the understanding of
complement system and autophagy relationship in the con
of osteomyelitis.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 14
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A Network of Epifactor Genes Is Deregulated
by Long-Term Infection With S. aureus
The transcriptional activation of innate immunity an
in� ammation genes observed in this response of osteobla
S. aureusis associated with the activation of numerous ge
coding for signaling transduction proteins and transcript
factors known to activate these genes (e.g., TNF-, NFkB,
TLR-, NOD-like receptor-, Jak-STAT-, cytosolic DNA sensi
signaling pathways). The amplitude of the expression co
however, be also related to the deregulation of genes inv
in chromatin remodeling. Beside immunity, infection-media
deregulation of genes belonging to theestrogen signalingand
osteoblast differentiation pathwayscould also be due t
chromatin-based regulation (Kovats, 2015; Montecino et al.,
2021). The expression of cellular genes is indeed depende
the state of chromatin compaction, governed by hist
modi� cation and DNA methylation pro� les, also referred to a
“epigenetic regulation”. A growing number of studies hav
shown that infections with different pathogens can profoun
alter host epigenetic information, either by promoting alterati
in epigenetic marks or by deregulating epifactors (i.e., wri
readers and erasers of epigenetic marks, scaffolding protein
coregulators) (Bierne et al., 2012; Bierne, 2017; Fischer, 2020).
The role of epigenetic regulations in the development oS.
aureus-associatedosteomyelitis has not yet been studied. H
we found that the expression of a signi� cant number of
epifactor-encoding genes is altered upon long-te
intracellular infection withS. aureus, primarily through down-
regulation, and importantly, that a majority of them enco
epifactors acting as repressors. To our knowledge, this is th� rst
report describing such a massive effect of intracellular bac
infection on the epifactor gene network. This inhibition
chromatin repression mechanisms may play an important
in the concomitant and potent activation of genes associ
with in� ammation and immunity by overcoming transcription
blocks at target genes. These epigenetic mechanisms in
components of macromolecular chromatin-repress
complexes, such as NurD (Xue et al., 1998, Denslow et al.
2007), Polycomb-repressive complex PRC1 (Parreno et al.
2022), and the recently described BAHD1 complex (Bierne H.
et al., 2011; Lakisic et al., 2016). Interestingly, BAHD1 and NurD
are known to be controlled by the pathogensListeria
monocytogenesand Mycobacterium tuberculosis, (Lebreton
et al., 2012; Olias et al., 2016), resulting in deregulation o
interferon responses (Lebreton et al., 2011). However, this
control does not occur through mechanisms involving chan
in the expression of genes encoding subunits of th
macromolecular complexes. The infection-media
deregulation of these epifactor genes that we have obs
here is, in this respect, novel.

Attention should also be drawn to the downregulation of
histone methyltransferase genesEHMT1 and KMT5A, as these
factors are also involved in epigenetic repression of transcrip
For example,EHMT1functions as a negative regulator in NF-kB
and type I interferon-mediated gene induction pathwaysEa
et al., 2012). Down-regulation ofEHMT1 can enhance th
April 2022 | Volume 12 | Article 854242
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Nicolas et al. Transcriptional Signature of Staphylococcal Infection
expression of a subset of NF-� B-regulated genes and increa
interferon production, which is essential for immunity againsS.
aureusinfection (Parker and Prince, 2012). Recently, it has bee
shown that inhibition ofKMT5A, which is involved in multiple
biological processes, suppresses key molecules involved i
metabolism (Liao et al., 2018).

Several genes encoding proteins involved in DNA and his
methylation, as well as histone deacetylation, are
downregulated in infected MG-63 cells. In particular,
expression of the major DNA cytosine methyltransfera
(DNTM3A and DNMT1) was signi� cantly downregulated. Thi
suggests that long-term infection disruptsde novomethylation
(via DNMT3A gene deregulation) and maintenance
methylation during cell proliferation (via DNMT1 gene
deregulation) (Wienholz et al., 2010; Ren et al., 2020). In
addition, down-regulation ofUHRF1, MBD1 and MBD3 has
also been observed. UHRF1, plays a major role in mainta
DNA methylation, as it binds to hemi-methylated CpGs dur
replication and enables the action ofDNMT1. MBD1 and MBD3,
which bind to methyl-CpGs, promote chromatin condensat
and gene silencing (Valinluck et al., 2004; Liu et al., 2013b). All of
these changes could result in hypomethylation of certain loc
lasting imprints of infection. Hypomethylation may also indu
genomic instability (Pappalardo and Barra, 2021). We also
observed down-regulation of several HDACs (HDAC4, 6, and
10) suggesting decreased histone deacetylation, which is es
for histone-DNA interaction. Altered acetylation of repe
regions also promotes genome instability (Gershon and
Kupiec, 2021) in add i t ion to the effec t o f DNA
hypomethylation. Downregulation of the splindin1 a
splindin4 genes encoding readers recognizing his
H4K20me3 methylation, which is a hallmark of silence
heterochromatic regions and associated with DNA replica
and repair (Wang et al., 2018), may also play a role in genom
instability. Overall, it would be important to examine in t
future whetherS. aureusalters DNA methylation, acetylatio
and histone methylation patterns in osteoblasts, as the
epigenetic modi� cations could profoundly reprogram the ho
cell in the long term, beyond infection, leading to second
effects in chronic infections (Bierne et al., 2012; Bierne, 2017).

Impact of Infection on Host DNA Integrity
We have previously shown thatS. aureusinduces a delayed G2
M phase transition, associated with increased intracel
bacterial replication. Furthermore, this phenomenon ca
DNA damage in host cells (Alekseeva et al., 2013; Deplanche
et al., 2015; Deplanche et al., 2019). Reactome GSEA highlighte
7 enriched pathways that belong to cell cycle progres
including those associated with kinetochores and telomere
addition, the expression of many genes involved in DNA repa
inhibited by infection.S. aureus-induced DNA damage coul
contribute to senescence of infected cells, particularly induc
telomere stress, which is consistent with the current view o
role of senescence during infections (Humphreys et al., 2020).
But if infected cells escape senescence, incomplete DNA da
repair could have a mutagenic effect. Thus, it is importan
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consider the potential impact of intracellularS. aureusinfection
on the genome and epigenome integrity of osteoblasts.

Long-Term Infection With S. aureus
Induces Changes in the Expression of
Metabolic Genes
The shift from oxidative phosphorylation to aerobic glycolysi
host cells is crucial for a response during infection (O’Neill and
Pearce, 2016). In particular, glycolysis is required forS. aureus
survival in an osteomyelitis model and activation of glycolysi
SCVs triggers necroptosis of infected cells, leading to the re
of viable staphylococci (Wickersham et al., 2017; Palma Medina
et al., 2019; Potter et al., 2020; Wong Fok Lung et al., 2020).
Glycolysis stabilizes the transcription factor HIF-1a and
increases IL-1b expression, linking metabolic and immu
responses during infection (Tannahill et al., 2013). Here,
KEGG analysis revealed altered hostglycolysis/glycogene
pathway, induction ofnecroptosis, involvement of theHIF-1a
pathway, and increased IL-1b production. This suggests that
addition to promoting bacterial growth, the alteration
glycolysis switches the maintenance activities of osteobla
defense processes. The� nal outcome of the infection ma
therefore depend on the balance between these modalities

Pathogens utilize host lipids/lipoproteins, including fa
acids, to enable their proliferation (Feingold and Grunfeld
2012; Morvan et al., 2016; Lopez et al., 2017). Unsaturated
fatty acids from the hostare incorporated intoS. aureus
membranes, leading to a decrease in bacterial memb
� uidity and activation of the type VII secretion syste
dedicated to the export of virulence factors, which prom
bacterial persistence (Lopez et al., 2017). The functional diversity
of fatty acids depends on their chain length and deg
of unsaturation that is determined in the elongation proc
The enzymes ELOVL1, 3, 6, 7 elongate saturated
monounsaturated fatty acids, whereas ELOVL2, 4, 5 elon
polyunsaturated fatty acids (Jump, 2009; Naganuma et al., 2011).
Upregulation ofELOVL2andELOVL7gene expression sugge
the involvement of fatty acid elongation in the response oS.
aureus-infected osteoblasts. Modulation of the balance betw
saturated and unsaturated fatty acids in the host could b
involved in the outcome of the infection.

Host lipids are sequestered in lipid droplets, cytosolic l
storage organelles, comprising a monolayer of phosphol
surrounding a hydrophobic core of neutral lipids: cholest
esters and triacylglycerols. Our results identi� ed the infection-
mediated upregulation of genes encoding lipid drop
associated molecules, including anti-lipolyticHCAR2
(Offermanns, 2017), perilipin -2 and -3, which regulate lipi
droplet formation and degradation (Libbing et al., 2019) and
HILPDA (Table 3).

It was shown thatM. tuberculosisactivates HCAR2 in
macrophages with subsequent accumulation of lipid drop
which then provide the bacteria with fatty acids as nutrie
(Singh et al., 2012). In addition, bacilli engulfed in lipid droplet
decrease their replication and acquire phenotypic resistan
certain drugs (Daniel et al., 2011). To our knowledge, the role o
April 2022 | Volume 12 | Article 854242



te.
ge
,
si
es

-
e
s

. I
n t
nt

n

he
d

ied
that
of

ed
on

at
e
the
his,

at a
,

e
hway

Nicolas et al. Transcriptional Signature of Staphylococcal Infection
HCAR2 duringS. aureusinfection has not been studied to da
Higher concentrations of intracellular triacylglycerol and lar
lipid droplets were observed inS. aureus-infectedadipocytes
which was partially attributed to a reduced rate of lipoly
(Hanses et al., 2011). These results, along with ours, sugg
that HCAR2 may mediate the inhibition of lipolysis inS. aureus
infectedcells and that lipid droplets may serve as a sourc
nutrients. Collectively, our results suggest that alteration
metabolism induced byS. aureusinternalization, at least in
part, may be favorable for bacterial persistence.

Neurotransmitter Genes Are Perturbed by
S. aureus Infection
The observation of deregulation of several genes of theneuronal
system pathwayin a bone-associated cell type was intriguing
may be noted that glutamate and GABA signaling are know
act in the antibacterial response through the enhanceme
autophagy (Hassel et al., 2014; Kim et al., 2018). The role of
glutamate and GABA receptors therefore merits investigatio
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 16
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the context of S. aureusosteomyelitis. Release of t
neurotransmitter serotonin by mast cells was demonstratein
vivo after an administration of staphylococcal enterotoxin (Hu
et al., 2007). Moreover, the role of neurotransmitter was stud
in other models of infection. Indeed, it was demonstrated
intestinal serotonin decreases virulence gene expression
enterohemorrhagicE. coli and Citrobacter rodentium, in a
murine model (Kumar et al., 2020). Besides, it was establish
that the production or release of neurotransmitters up
bacterial infection controls immune response intensity inC.
elegans(Masuzzo et al., 2020). Here our results suggests th
serotonin might also be involvedS. aureus-associated bon
infections, based on the observation of upregulation of
serotonin receptor gene and transglutaminase 2 (TGM2). T
too, deserves further investigation, particularly in the light th
new class of post-translational modi� cation, serotonylation
relies on the action of TGM2 (Bader, 2019; Farrelly et al.,
2019; Chan and Maze, 2020). We are convinced that th
deregulation of several genes of the neuronal system pat
FIGURE 6 | Results of RNA-seq of osteoblast-like cells bearingS. aureuspromotes knowledge integration. RNA-seq analysis of infected cells bearing internalizedS.
aureusallows transcriptional, epigenetic and metabolic signatures to be obtained. Using KEGG and Reactome enriched pathways analysis ofS. aureusbearing cells,
we identi� ed speci� c categories and pathways that are either well studied (dark gray), medium studied (gray) or mostly non-studied (light gray).
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during a long-term ofS. aureusinfection is in line with the recen
� ndings described for other pathogens.

Cell Adhesion and ECM-Associated Gene
Networks Are Perturbed by S. aureus
Infection
Secreted by cells into the extracellular space, ECM plays an p
role in S. aureusadhering to and invading non-phagocytic ce
(Liang and Ji, 2006) and is involved in the development of th
dormancy of intracellularM. tuberculosis(Arbue�s et al., 2021).
Focal adhesion kinase PTK2 regulates adhesion ofS. aureusto
ECM, reorganization of the actin cytoskeleton, cell c
progression, cell proliferation and apoptosis that may disturb
defensive barrier function of host cells (Hermann et al., 2015).
Downregulation ofdegradation of extracellular matrixandPTK2
signalingpathways suggests further examination of ECM
PTK2 impact on intracellular life ofS. aureus.
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CONCLUSION

We provide here an atlas of genes and pathways deregula
the intracellular presence of the pathogenS. aureusin an
osteoblast model. This knowledge not only improve
conceptual understanding of biological processes involve
the long-term S. aureusinfections, but also indicates th
direction for future research and highlights potent
candidates for the development of new diagnostic, prophyl
and therapeutic approaches. The deregulation of epigeneti
DNA repair pathways opens the hypothesis that intracellulaS.
aureusinfection has a long-term impact on the genome a
epigenome of host cells, which may exert patho-physiolo
dysfunctions additionally to the defense response during
infection process (Figure 6).
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