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Abstract: Diabetic cardiomyopathy (DCM) is a leading complication in type 2 diabetes patients.
Recently, we have shown that the reticulum-mitochondria Ca2+ uncoupling is an early and reversible
trigger of the cardiac dysfunction in a diet-induced mouse model of DCM. Metformin is a first-
line antidiabetic drug with recognized cardioprotective effect in myocardial infarction. Whether
metformin could prevent the progression of DCM remains not well understood. We therefore
investigated the effect of a chronic 6-week metformin treatment on the reticulum-mitochondria Ca2+

coupling and the cardiac function in our high-fat high-sucrose diet (HFHSD) mouse model of DCM.
Although metformin rescued the glycemic regulation in the HFHSD mice, it did not preserve the
reticulum-mitochondria Ca2+ coupling either structurally or functionally. Metformin also did not
prevent the progression towards cardiac dysfunction, i.e., cardiac hypertrophy and strain dysfunction.
In summary, despite its cardioprotective role, metformin is not sufficient to delay the progression to
early DCM.

Keywords: diabetic cardiomyopathy; heart failure; type 2 diabetes; reticulum-mitochondria interac-
tions; Ca2+ signaling

1. Introduction

In diabetic patients, cardiovascular disease is the first cause of mortality. Type 2 dia-
betes (T2D) is associated with a 2 to 4-fold increase in the development of both types of
heart failure (with preserved (HFpEF) or reduced ejection fraction (HFrEF)), independently
of other cardiovascular risk factors or the presence of a coronary artery disease (CAD) [1].
This suggests a specific myocardial alteration in T2D patients called diabetic cardiomyopa-
thy (DCM) [1–3]. Clinically, DCM is characterized by functional and structural alterations
of the myocardium in the absence of other cardiac risk factors, and its diagnosis remains
challenging [4]. A study on a small cohort reported a 16.9% prevalence of pure DCM with
higher morbimortality, which could be further enhanced by coronary artery diseases [5].
Therefore, facing the highly rising prevalence of T2D currently worldwide, limiting the
evolution of T2D patients towards DCM and HF remains a great challenge for the medical
community.

Since the 1950s, metformin has been recognized as a powerful antihyperglycemic drug
and is therefore the first-line treatment prescribed to treat T2D patients [6]. Apart from its
glucose lowering potential, metformin was shown to be cardioprotective via the activation
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of the Adenosine monophosphate activated protein kinase (AMPK) pathway [7], notably
improving the mitochondrial organization and function [8,9], and also by directly regulating
mitochondria and limiting ROS production [10,11]. Indeed, several studies in both T2D
patients and animal models have demonstrated the crucial effect of metformin on reducing
cell death and infarct size post-myocardial infarction [12–14]. Although a meta-analysis
of 40 studies reported a benefit of metformin treatment against cardiovascular mortality
in T2D patients with CAD, whether metformin could prevent or delay the progression of
DCM and notably HFpEF remains not well known and controversial [14,15].

We have recently developed a diet-induced mouse model of early DCM; mice develop
cardiometabolic HFpEF, which in many aspects mimics the clinical features in human
patients [16]. We have shown that the cardiomyocyte contractile dysfunction is directly
associated with a disruption of the functional Ca2+ coupling between reticulum and mito-
chondria (at contact sites called mitochondria-associated reticular membranes or MAMs),
notably at the level of the IP3 receptor (IP3R) Ca2+ channeling complex [17], further leading
to a reduced mitochondrial Ca2+ content and altered mitochondrial bioenergetics. Switch-
ing back the diabetic mice on a normal diet restores the cardiac insulin signaling, the cardiac
reticulum-mitochondria Ca2+ coupling, and the contractile function [16]. Altogether, our
data unraveled the MAM Ca2+ uncoupling as an early but reversible trigger of DCM.

MAMs are indeed recognized as a critical signaling hub inside the cell, with metabolic
implications [18]. Interestingly, AMPK has been also shown to play a role in MAM sig-
naling [19,20], suggesting a potential action of metformin at the MAM interface. In this
regard, recent studies demonstrated that metformin treatment improves the reticulum-
mitochondria Ca2+ coupling in the liver of diabetic mice [21,22]. We therefore questioned
in this study if metformin could prevent the progression of diet-induced T2D mice towards
DCM by preserving the reticulum-mitochondria Ca2+ coupling.

2. Results
2.1. Metformin Partially Rescues the Glycemic Regulation in HFHSD Mice

Five-week-old mice were subjected to a high-fat high-sucrose (HFHSD) or a standard
(SD) diet for 16 weeks (Figure 1A), as we have previously shown that 16 weeks of HFHSD
trigger DCM [16]. After 10 weeks of diet, the HFHSD mice received a daily oral gavage
with either metformin (200 mg/kg, HFHSD + MET) or the vehicle (0.5% methylcellulose)
for the last 6 weeks of feeding. Body weight was similar between the HFHSD and the
HFHSD + MET groups before the start of the gavage treatment, and significantly higher
than the SD mice (HFHSD: 44.3 ± 0.8 g and HFHSD + MET: 42.5 ± 0.9 g versus SD:
28.9 ± 0.6 g, mean ± SEM, p < 0.05). At the end of the 16 weeks of feeding, the HFHSD mice,
regardless of the drug administration, had similar body weights, being significantly higher
than those fed with SD (HFHSD: 42.9 ± 0.9 g and HFHSD + MET: 42.6 ± 1.5 g versus SD:
29.1 ± 0.6 g, mean ± SEM, p < 0.05). We next assessed the antidiabetic effect of metformin
treatment on both glucose and insulin tolerance tests (Figure 1B,D). Metformin significantly,
although partially, improved the glucose and insulin sensitivity of the HFHSD mice, as
displayed by the significant reduction of the area under curve for each test (Figure 1C,E).
Metformin also reduced the insulinemia level compared to the HFHSD group (p = 0.07), to
a similar extent as in the SD group (Figure 1F). To further investigate the effect of metformin
on insulin signaling at both the hepatic and cardiac levels, AKT phosphorylation on
Ser473 was assessed in the liver and heart. At the hepatic level, insulin-induced AKT
phosphorylation was significantly reduced in the HFHSD liver compared to the SD group,
and metformin treatment tended to partially increase the AKT phosphorylation (Figure 1G,
p = 0.064). In the heart, whereas 16 weeks of HFHSD led to a significant decrease of AKT
phosphorylation upon in vivo insulin stimulation versus the SD mice, metformin did not
trigger a significant improvement of insulin-stimulated AKT phosphorylation (Figure 1H,
p = 0.216), reflecting only a partial rescue of insulin sensitivity after 6 weeks of metformin
treatment in the diabetic mouse heart. Altogether, these data confirm the antidiabetic effect
of metformin at the systemic level with a minor effect on cardiac insulin resistance.
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Figure 1. Evaluation of metformin effects on the metabolic status of the HFHSD mice. (A) Time-
line of the experimental protocol. Daily oral gavage consisted on either metformin (200 mg/kg,
HFHSD + MET) or the vehicle (0.5% methylcellulose). Measurements of glycemia following a glu-
cose (B) or insulin (D) tolerance test, and respective quantification of the area under curve (AUC) in
(C,E) (n = 5 mice/group for GTT and 14–15 mice/group for ITT). Mean ± SD, Brown–Forsythe, and
Welch ANOVA test. (F) Quantification of blood insulin level. (G,H) Analysis of insulin sensitivity
in liver (G) and heart (H) by quantification of the cardiac phosphorylation of AKT (on Ser473),
calculated as a fold increase of insulin-induced AKT phosphorylation over NaCl (n = 10 mice/group).
Mean, Brown–Forsythe, and Welch ANOVA test. * p < 0.05, ** p < 0.005, *** p < 0.001, **** p < 0.0001.
ns = non-significant. Symbols: circle: SD, square: HFHSD, triangle: HFHSD + MET.
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2.2. Metformin Does Not Preserve the Reticulum-Mitochondrial Ca2+ Coupling in HFHSD
Cardiomyocytes

We have previously shown that the reticulum-mitochondria Ca2+ coupling is altered in
the HFHSD mice [16]. We thus wondered if metformin could prevent the HFHSD-induced
MAM Ca2+ uncoupling. Proximity ligation assay between the IP3R and the porin VDAC,
both partners of the IP3R Ca2+ channeling complex between reticulum and mitochon-
dria [17], revealed a reduced number of proximity points in the HFHSD cardiomyocytes
compared to the SD ones, with no improvement by metformin (Figure 2A,B). To further
assess if these structural alterations of the MAM Ca2+ coupling translate into functional
changes, we followed the mitochondrial Ca2+ level in freshly isolated cardiomyocytes ex-
pressing the FRET sensor 4mtD3cpv by intramyocardial adenoviral injection of the different
mice, as previously described [16]. The IP3R-driven Ca2+ transfer to mitochondria was
studied upon histamine stimulation (Figure 2C). As expected, histamine induced a signifi-
cantly smaller Ca2+ transfer to mitochondria in the HFHSD cardiomyocytes (Figure 2C).
However, metformin did not improve the amplitude of the histamine-driven Ca2+ transfer
to mitochondria (Figure 2D). Our results suggest that metformin treatment for 6 weeks
does not preserve the reticulum-mitochondria Ca2+ coupling in the diabetic heart.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 4 of 9 
 

 

Figure 1. Evaluation of metformin effects on the metabolic status of the HFHSD mice. (A) Timeline 
of the experimental protocol. Daily oral gavage consisted on either metformin (200 mg/kg, HFHSD 
+ MET) or the vehicle (0.5% methylcellulose). Measurements of glycemia following a glucose (B) or 
insulin (D) tolerance test, and respective quantification of the area under curve (AUC) in (C) and 
(E) (n = 5 mice/group for GTT and 14–15 mice/group for ITT). Mean ± SD, Brown–Forsythe, and 
Welch ANOVA test. (F) Quantification of blood insulin level. (G,H) Analysis of insulin sensitivity 
in liver (G) and heart (H) by quantification of the cardiac phosphorylation of AKT (on Ser473), cal-
culated as a fold increase of insulin-induced AKT phosphorylation over NaCl (n = 10 mice/group). 
Mean, Brown–Forsythe, and Welch ANOVA test. * p < 0.05, ** p < 0.005, *** p < 0.001, **** p < 0.0001. 
ns = non-significant. Symbols: circle: SD, square: HFHSD, triangle: HFHSD + MET. 

2.2. Metformin Does Not Preserve the Reticulum-Mitochondrial Ca2+ Coupling in HFHSD 
Cardiomyocytes 

We have previously shown that the reticulum-mitochondria Ca2+ coupling is altered 
in the HFHSD mice [16]. We thus wondered if metformin could prevent the HFHSD-in-
duced MAM Ca2+ uncoupling. Proximity ligation assay between the IP3R and the porin 
VDAC, both partners of the IP3R Ca2+ channeling complex between reticulum and mito-
chondria [17], revealed a reduced number of proximity points in the HFHSD cardiomyo-
cytes compared to the SD ones, with no improvement by metformin (Figure 2A,B). To 
further assess if these structural alterations of the MAM Ca2+ coupling translate into func-
tional changes, we followed the mitochondrial Ca2+ level in freshly isolated cardiomyo-
cytes expressing the FRET sensor 4mtD3cpv by intramyocardial adenoviral injection of 
the different mice, as previously described [16]. The IP3R-driven Ca2+ transfer to mito-
chondria was studied upon histamine stimulation (Figure 2C). As expected, histamine in-
duced a significantly smaller Ca2+ transfer to mitochondria in the HFHSD cardiomyocytes 
(Figure 2C). However, metformin did not improve the amplitude of the histamine-driven 
Ca2+ transfer to mitochondria (Figure 2D). Our results suggest that metformin treatment 
for 6 weeks does not preserve the reticulum-mitochondria Ca2+ coupling in the diabetic 
heart. 

 
Figure 2. Effect of metformin on the structural and functional MAM Ca2+ coupling in the HFHSD 
cardiomyocyte. (A) Representative images of proximity ligation assay between IP3R and VDAC in 
isolated cardiomyocytes. Blue: nuclei by DAPI. Red dot: proximity between IP3R and VDAC. Scale 
bar: 25 µm. (B) Quantification of the number of interactions between VDAC and IP3R by proximity 
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Figure 2. Effect of metformin on the structural and functional MAM Ca2+ coupling in the HFHSD
cardiomyocyte. (A) Representative images of proximity ligation assay between IP3R and VDAC
in isolated cardiomyocytes. Blue: nuclei by DAPI. Red dot: proximity between IP3R and VDAC.
Scale bar: 25 µm. (B) Quantification of the number of interactions between VDAC and IP3R by
proximity ligation assay, expressed as a fold of SD; n = 4 mice/group with 10 cardiomyocytes/mouse.
(C) Representative traces of the mitochondrial Ca2+ level ([Ca2+]m) expressed as a YFP/CFP ratio,
with stimulation by 10 mM histamine. (D) Quantification of the [Ca2+]m amplitude of the histamine-
induced peak; n = 4 mice/group with 46 SD, 42 HFHSD, and 29 HFHSD + MET cardiomyocytes.
Median, Kruskal–Wallis test. **** p < 0.0001. ns = non-significant. Symbols: circle: SD, square:
HFHSD, triangle: HFHSD + MET.

2.3. Metformin Does Not Prevent the Progression towards T2D-Induced Cardiac Dysfunction

We finally questioned if metformin would prevent HFHSD-induced cardiac dysfunc-
tion, as previously reported [16]. After 16 weeks of diet, HFHSD mice displayed an
increased heart weight, which was not significantly decreased by metformin treatment
(HFHSD: 157 ± 5 mg, HFHSD + MET: 150 ± 5 mg, SD: 141 ± 6 mg). Furthermore, echocar-
diography further revealed a significant increased thickness of the posterior wall in HFHSD
hearts versus SD hearts (Figure 3A). Metformin treatment also showed a strong trend
towards enhanced posterior wall thickness compared to SD hearts (p = 0.078). Calculation
of the relative wall thickness further classified both HFHSD and HFHSD + MET hearts as
concentrically hypertrophied (mean RWT > 0.42, Figure 3B). Consistent with a phenotype
of cardiometabolic HFpEF, both HFHSD and HFHSD + MET mice exhibited a normal
fractional shortening while their strain rate function tended to be decreased (Figure 3C,D).
Therefore, metformin treatment for 6 weeks does not counteract the HFHSD-induced
cardiac dysfunction.
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Figure 3. Determination of the metformin effect on cardiac function after 16 weeks of HFHSD
by echocardiography. (A) Quantification of the posterior wall thickness in diastole (PWd).
(B) Calculation of the relative wall thickness (RWT = 2 × PWd/LVEDD) as an index of concen-
tric hypertrophy (RWT > 0.42). Quantification of the anterior wall strain rate, AW SR, in (C) and of
the fractional shortening, FS, in (D); n = 8 to 10 mice/group. Mean, one-way ANOVA with Tukey’s
multiple comparisons test. ** p < 0.005, *** p < 0.001. ns = non-significant. Symbols: circle: SD, square:
HFHSD, triangle: HFHSD + MET.

3. Discussion

Here we report that 6 weeks of metformin treatment did not prevent the progres-
sion of diet-induced T2D mice towards early DCM as it did not preserve the reticulum-
mitochondria Ca2+ coupling, although being an efficient antidiabetic treatment. Our data
demonstrate no effect of metformin on the body weight of our HFHSD + MET mice, in
accordance with Silamikele et al. [23]. However, body weight was reported to be decreased
by metformin in other studies [24,25]. Interestingly, similar controversial effects of met-
formin, oscillating between weight-neutral or weight-sparing effect, have been observed in
diabetic patients [26]. One could wonder if this differential effect of metformin on body
weight could be linked to the dose taken, the frequency of drug administration, and the
duration of treatment. In this study, we used a single dose of metformin per day, consistent
with a low dose for newly-diagnosed T2D patients (≈1000 mg per day), as previously
suggested [24,27]. Whether an oral gavage twice daily or the use of minipump infusion
for a longer period would improve the metformin effect has not been tested in this study.
Our study also mimics the fact that numerous diabetic patients do not regularly take
their antidiabetic medication, and therefore may be under the optimal dose. Additionally,
metformin distribution was shown to rely on the organic cation transporter 1 (OCT1) [28],
which is highly expressed in the liver and less in the heart [29]. A differential accumulation
of metformin between hepatocytes and cardiomyocytes could thus also explain liver rather
than cardiomyocyte contribution to metformin antidiabetic effect. Future analyses, notably
of the AMPK phosphorylation status, could help decipher the contribution of each organ
in the metformin effect.

However, we have recently reported that this metformin dose and delivery were
efficient in reducing cell death and infarct size in both in vitro and in vivo mouse models
of myocardial infarction [30], supporting an effective metformin treatment. The cardio-
protective effect of metformin against ischemia-reperfusion may rely on the previously
reported mechanisms, such as increasing nitric oxide availability, decreasing apoptosis,
and favoring the adaptation to energy deficiency [7]. Interestingly, the fact that metformin
does not prevent the T2D-induced cardiac MAM Ca2+ uncoupling could also contribute
to its cardioprotective effect against myocardial infarction by counteracting the ischemia-
reperfusion-induced increased MAM Ca2+ coupling and thus preventing the mitochondrial
Ca2+ overload [31]. Importantly, although chronic metformin treatment in diabetic patients
is linked to reduced myocardial infarct size [13], in these patients, T2D is also independently
associated with an increased risk of HF [3]; this supports our results that metformin may
not be enough to prevent the progression towards diabetic cardiomyopathy.

We have previously shown that the T2D-induced reticulum-mitochondria Ca2+ uncou-
pling is an early but reversible trigger of cardiac dysfunction [16]. The fact that metformin
treatment did not prevent the alteration of the MAM Ca2+ coupling in the HFHSD car-
diomyocytes, and the T2D-induced cardiac dysfunction, further support the crucial role of
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the reticulum-mitochondria Ca2+ coupling in controlling the excitation-energetics coupling,
as a potential therapeutic target in DCM.

In 2021, the reduction of the combined risk of cardiovascular death or hospitalization
in HFpEF patients by Empagliflozin, a sodium–glucose cotransporter 2 inhibitor (SGLT2i),
was demonstrated in the EMPEROR-preserved trial [32]. In parallel, several studies sug-
gested a potential competitive effect of metformin with HF treatments [33], including
sulphonylureas [34] and SGLT2i in the CANVAS [35] and EMPA-REG OUTCOME tri-
als [36]. Recent investigations are now suggesting a direct cardiac effect of gliflozins [37,38].
Further mechanistic studies are therefore required to determine if SGLT2i improves the
cardiac function by preserving the MAM Ca2+ coupling in models of diabetic HFpEF, and
whether metformin could interfere with the protective effect of SGLT2i.

In summary, our study shows that despite its cardioprotective role against myocardial
infarction, daily metformin treatment over several weeks is not sufficient to prevent the
alteration of the cardiac reticulum-mitochondria Ca2+ coupling induced by T2D and to
limit the progression of diabetic cardiomyopathy.

4. Materials and Methods
4.1. In Vivo Animal Experiments

Mice were from the same protocol as previously published [16,30]. At the age of
5 weeks, male C57BL/6JOlaHsd mice were either fed with a high-fat high-sucrose diet
(HFHSD: 260HF U8978 version 19, SAFE: 20% proteins, 36% lipids) or a standard diet (SD:
LASQC diet Rod16-A, Genobios: 16.9% proteins, 4.3% lipids) for 16 weeks. During the last
6 weeks of the diet, a randomly chosen group of mice under the HFHSD was subjected
daily each morning to a metformin oral gavage (200 mg/kg), whereas the other mice were
subjected to the vehicle gavage (0.5% methylcellulose). A total of 42 mice was used in this
study. Glucose and insulin tolerance tests and in vivo insulin signaling were performed at
16 weeks, as previously described [16]. Echocardiography was performed under a light
anesthesia (ketamine 80 mg/kg ip) with a digital ultrasound system (Vivid 7, GE Medical
Systems) and a 13-MHz linear-array transducer as previously described [16]. One week
before the cardiomyocyte isolation, intramyocardial injection of the 4mtD3cpv adenovirus
(5 × 108 PFU) was performed on isoflurane-anesthetized mice, as previously detailed [16].

4.2. Ex Vivo Experiments on Isolated Mouse Cardiomyocytes

Cardiomyocyte isolation protocol was performed as similarly stated in our previous
paper [16]. Freshly isolated cardiomyocytes were plated and either (1) imaged on a wide-
field Leica DMI6000B microscope to measure the mitochondrial Ca2+ level upon 10 mM
histamine stimulation, or (2) fixed to perform proximity ligation assay between IP3R1
(1/200, sc28614) and VDAC (1/200, ab14734), as previously done [16].

4.3. Immunoblot

Frozen hearts were lysed in RIPA buffer as previously described [16]. A quantity of
50 µg of proteins was loaded on SDS gels, then transferred onto a nitrocellulose membrane
after migration. Phospho-AKT (Ser473) and AKT protein levels were detected using
rabbit anti-phospho-AKT (1/1000; Cell Signaling 4060L) and rabbit anti-AKT (1/1000; Cell
Signaling 4691S).

4.4. Statistical Analysis

Analysis and graph representation were performed on GraphPad Prism 9.2.0 (Graph-
Pad Software, San Diego, CA, USA). Statistical analysis is detailed in each figure legend.
Non-parametric tests were performed for groups with less than four animals, and were
expressed as median. Otherwise, after validation of normality and homoscedasticity,
parametric tests were done and data expressed as mean.
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