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7 Abstract8

9

Using spatialised population measurements and related geographic habitat data, it is feasible10

nowadays to derive parsimonious spatially explicit population models and to carry on their pa-11

rameter estimation. To achieve such goal, reaction-diffusion models are common in conservation12

biology and agricultural plant health where they are used, for example, for landscape planning13

or epidemiological surveillance. Unfortunately, if the mathematical methods and computational14

power are readily available, biological measurements are not. Despite the high throughput of15

some habitat related remote sensors, the experimental cost of biological measurements are one16

of the worst bottleneck against a widespread usage of reaction-diffusion models. Hence we will17

recall some classical methods for optimal experimental design that we deem useful to spatial18

ecologist. Using two case studies, one in landscape ecology and one in conservation biology,19

we will show how to construct a priori experimental design minimizing variance of parameter20

estimates, enabling optimal experimental setup under constraints.21

22

1. Introduction23

Both empirical and theoretical studies havewell established that population spread is an essential ecological process24

for understanding most of the observed population dynamics. Consequently, over the last two decades spatial ecology25

has become central either in theoretical ecology or in empirical approaches. Hence, population management for their26

control, capture or protection, has started to be considered at large spatial scales that match the inherent dispersal27

capacity of the considered species. Populations can be identified and monitored using various strategies (e.g. tracking,28

trapping). However, despite the development of new technologies and devices for ecological monitoring (e.g. imaging29

sensors for animal detection (Weinstein, 2018), autonomousUnmannedAerial Vehicle (Cliff, Saunders&Fitch, 2018)),30

the survey of many species on large areas remains challenging, costly and empirically guided.31

The growing interest for space in ecology has been accompanied by a proliferation of models and statistical methods32

for analyzing and predicting the spatial distribution of populations. Nowadays, existing statistical methods allows one33

to infer the dynamics of spreading populations from noisy and sparse data. However, statistical inference of spatio-34

temporal models from common monitoring data can be subject to practical identifiability issues and is often associated35
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Optimal design for spatial ecology

with an important uncertainty on parameters estimates. Thus, given the inherent difficulty of collecting spatial data on36

most population, model-based forecasts are still associated with an important uncertainty, which could theoretically37

be reduced by more dense and efficient monitoring strategies.38

When planning a survey of population over a large area, one has to make some choices giving financial and human39

constraints: which observational method (transects, traps), where and when to start the survey, the number and times40

for repeating the survey. These questions can either be addressed empirically or using model-based techniques that41

can be organized into three major groups of methods (Ucinski, 2004). The first group transform the problem into a42

state-estimation one by augmenting the state vector (Malebranche, 1988). The second group is based on random fields43

theory (Sun, 1999) whereas the third group corresponds to the classical theory of the design of experiments (Ucinski,44

2004). We can also point out a fourth group that consists in adopting an heuristic to find the best sampling strategies45

among tested situations (Bellot, Poggi, Baudry, Bourhis & Parisey, 2018). Based on either of these groups, methods46

for designing ecological sampling has already been addressed by several authors (Hooten, Wikle, Sheriff & Rushin,47

2009; Williams, Hooten, Womble & Bower, 2018) but it has not yet percolated in the modellers community and is still48

seldom considered in population ecology.49

The use of optimal design of experiments is perhaps one of the lesser known (Cook, Gibson & Gilligan, 2008)50

whereas it is well developed for optimal sensor placements in spatially-distributed systems with non-linear dynamics51

models (Ucinski, 2004). It corresponds to an entire branch of statistics that provides criteria measuring the amount of52

information about unknown model parameters carried out by the observed data.53

Here, "experiments" is taken sensus lacto and refers to controlled observations of populations within their living54

areas that are planned given the constraints of available resources and with subsequent statistical analysis in mind.55

In this studywe use the optimal design of experiments to tackle the question of ecological monitoring of populations56

described by reaction-diffusion models. This type of partial differential equations originally emerged in chemistry57

for analyzing the change in space and time of chemical substances before becoming one of the most important58

mathematical model for the study of spreading dynamical processes in biology and ecology. Here, we consider reaction-59

diffusion equations that provides a parsimonious description of a spreading population in a domain Ω included in R260

:61

)u(x, t)
)t

= D(x)Δu(x, t) + f (u, x, t) (1)

where u(x, t) is the population density at time t and location x ∈ Ω,D(x) corresponds to the dispersion rate at x,Δu(x, t)62

is the Laplace operator of u evaluated at (x, t) that describes the random movement of individuals, and f (u, x, t) is a63
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Optimal design for spatial ecology

general reaction function accounting for local birth, death and interactions within the spreading population. To fully64

describe the system, one needs to define some boundary conditions on Ω as well as initial conditions u0(x) = u(0, x).65

In addition to their ability to capture the essential observed patterns of spreading populations, reaction-diffusion66

systems have been well studied by mathematicians for a long time. Thus, though the mathematical and the numerical67

analysis of some reaction-diffusion equations still challenge mathematicians, several systems are now well character-68

ized and understood. The most popular one is the Fisher-KPP system, that applies in ecology, for whichD(x) = D and69

the reaction term accounts for a limiting carrying capacity of the environment f (u, x, t) = u(1−u). Parameter estimation70

of mechanistic PDE models from noisy observational data, obtained during common population monitoring strategies,71

can be performed using different statistical methods. In any case, one needs to link the mechanistic PDE model that72

describes the changes in space and time of the population density with a probabilistic model describing the observation73

process. This approach refers to the physical-statistical or mechanistic-statistical models that are specific instances of74

the more general hierarchical state-space model framework (Clark & Bjørnstad, 2004; Soubeyrand & Roques, 2014;75

Wikle, 2003). Such approach has been successfully used for inferring spatio-temporal processes on large areas for76

invasive and beneficial insects (Parisey, Bourhis, Roques, Soubeyrand, Ricci & Poggi, 2016; Roques, Soubeyrand77

& Rousselet, 2011; Roques & Bonnefon, 2016), plant diseases (Abboud, Bonnefon, Parent & Soubeyrand, 2019) or78

aquatic and terrestrial mammal species (Louvrier, Papaïx, Duchamp&Gimenez, 2020). As illustrated byWilliams et al.79

(2018), the optimal design of experiments can be applied on mechanistic-statistical systems for ecological monitoring,80

but is yet poorly considered by both modellers and ecologists collecting spatio-temporal data.81

In this article we first introduce the main concepts of the optimal design of experiments applied on mechanistic-82

statistical systems for population dynamics. Then, we consider two example populations whose spatio-temporal83

dynamics is described by reaction-diffusion equations, but monitored with different strategies: beneficial insects for84

agriculture that are monitored using Barber pitfall traps at various locations within the landscape (Parisey et al., 2016),85

and invasive wild horses that are counted during aircraft transects (Beeton & Johnson, 2019). Assuming that the more86

realistic degree of freedom in the existing monitoring designs is the choice of the locations of observations we consider87

static designs, where locations of sampled populations are fixed before the start of the survey and don’t change in time,88

and focus on the spatial aspect of monitoring. We use D-optimal designs that define optimal locations for population89

observation and show how this framework can help to design ecological monitoring strategies over large areas under90

identical constraints. We finish the paper by discussing the use of the optimal design of experiments framework to91

improve the monitoring of populations over large areas, especially to reduce the cost of sampling and support the link92

between modelling and empirical studies.93
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2. Mechanistic-statistical model for population dynamics94

We consider a mechanistic-statistical approach that combines a reaction-diffusion system which describes essential95

spatio-temporal dynamics of a population with an observational equation describing the stochastic process leading to96

detection and enumeration of individuals at location x ∈ Ω and time t (as in Soubeyrand & Roques (2014)). However,97

following the framework used in control system analysis or optimal design for parameter identification (Ucinski,98

2004), we decompose the observation process into two parts: 1) the measurement process which links the ecological99

process and factors that affect the measurement of population density (e.g. equipment features, operator behaviour,100

environmental effect), and 2) the data process that links population data with the measurement process. Then, given101

some boundary conditions on Ω the spatially distributed system is described by the following hierarchical system :102

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

u(x, 0) =u0(x)
)u(x, t)
)t

=DΔu(x, t) + f (u, x, t, �p)

�(x, t) =g(u(x, t), �m)

y ∼(�(x, t), �d)

(2)

where �(x, t) is the measurement process determined from population density u(x, t) with function g(.), and the data103

process corresponds to the draw of population data y from a general probability distribution . Depending on the104

considered system, parameters that needs to be estimated, or identified, from the monitoring data y can occur in the105

population process (D, �p
), the measurement process (�m) and the data process (�d). The set of unknown parameters is106

thus given by � = (

D, �p, �m, �d
). Albeit initial conditions u0(x) of reaction-diffusion systems may also be estimated107

from noisy data (Abboud et al., 2019; Soubeyrand & Roques, 2014), in this study we assume that u0(x) is known108

and fixed. Parameter estimation can be achieved using maximum likelihood estimation (see next section). It generally109

involves a numerical optimization that requires the simulation of the reaction-diffusion systemwith a suitable numerical110

method (Fornberg & Sloan, 1994; Hundsdorfer & Verwer, 2003).111

3. Optimal design112

For monitoring a population, the questions that we should address at first are where to look at the population113

and when to observe the targeted population? Though the time scheduling of the monitoring is often constrained by114

numerous factors, the choice of spatial locations generally offers more degree of freedom. In the following, we assume115

that the dates of the monitoring design (or experiment sensus lato) are scheduled in advance and also that the sensors116
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locations will not change in time. This simplifies the problem of defining optimal monitoring designs and thus an117

optimal spatial distribution of observational locations over the survey area.118

This question can be addressed through experimental design theory, a branch of applied statistics introduced by119

Sir Ronald Fisher in his seminal book edited in 1935 (Fisher, 1935). The purpose of this section is to introduce some120

key-notions of experimental design theory, essential for understanding its application on the use cases presented in121

section 4. For a complete description of the statistical framework the reader can refer to Silvey (2013), Atkinson,122

Donev & Tobias (2007) or Walter & Pronzato (1997). We start by introducing the key notions of optimal design and123

then we give their interpretation for the mechanistic-statistical model presented in equation 2. We indifferently use the124

terminology inherited from the design of experiments theory. Therefore, the experiments will refer to the survey of the125

populations and sensors corresponds to any monitoring device or a visual inspection.126

Let us consider a random variable y with a probability distribution depending on: (1) a vector of real variables x127

that can be chosen by the experimenter, (2) and a vector of parameters �, supposed to be fixed and unknown for the128

experimenter. We assume that x belongs to the set  ⊂ Rr and that � belongs to a parametric space Θ ⊂ Rp. The129

variables composing x are called control variables. Let us suppose that for a given x and � the distribution of y is130

given by a probability density function p(y|x, �). The experimenter is allowed to takeN independent observations on131

y at vectors x1,… , xN chosen from the set  . The set x = {x1… xN} will be referred asN-observation design. The132

question, primarily, is how to select the design x ?133

The criterion of choice depends on the purpose of the experiment. Here our primary interest is in estimating the134

parameter � from the experimental data. Let us denote by x a vector (x1,… , xN ) and let y be a vector of values of y135

taken at xi. The log-likelihood function of � is defined as:136

logΛ(�; x, y) =
N
∑

i=1
log(p(yi|xi, �)) (3)

The maximum likelihood estimate of � maximizes logΛ over Θ:

�̂(x, y) = argmax
�∈Θ

logΛ(�; x, y)

Under some regularity conditions on the family of densities {p� ∶ � ∈ Θ} the estimate �̂ is asymptotically normal as
the sample sizeN tends to infinity (see Lehmann & Casella (1998) for instance). Moreover, the asymptotic variance of
�̂ reaches its lower bound given by Cramer-Rao inequality and is equal to the inverse of the Fisher Information Matrix,
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defined as:

I(�; x) =
N
∑

i=1
�(xi, �) =

N
∑

i=1
Var

( )
)�
log p(y|xi, �)

)

(4)

where �(x, �) is the information matrix for an observation on y taken at x. Roughly speaking an optimal design x⋆137

makes the variance of �̂ “as small as possible” or, alternatively, makes the Fisher matrix “as large as possible”. To138

be more precise we seek for an x⋆ that maximizes some real-valued function � of I(�; x). We assume here that � is139

homogeneous and concave.140

We consider the design with n distinct vectors x1,… , xn replicated r1,… , rn times, where∑n
i=1 ri = N . We assign

to x a discrete probability distribution �n which puts the probabilities !i = ri∕N at xi. Consequently, the Information
Matrix (4) can be rewritten as :

I(�; x) = NM(�; �n) where :M(�; �n) =
N
∑

i=1
!i�(xi, �) (5)

As a criterion function � is homogeneous, optimizing �(I(�; x)) amounts to optimizing �(M(�; �n)) over �n. An141

optimal design �n⋆ is thus defined as:142

�n⋆(�) = argmax�n∈Ξ
�(M(�; �n)) (6)

where the matrixM is assumed to be non-singular.143

D-optimal design The choice of the optimality criterion relies on the final purpose of statistical analysis. The144

experimenter may wish to improve the precision of �̂ or to reduce the variance of the predicted values of y or again145

to better discriminate between the candidate models. The main optimality criteria and the corresponding functions �146

can be found for example in Walter & Pronzato (1997). Because of its versatility of purpose, one of the mostly used147

criterion is the D criterion leading to a D-optimal design, maximizing the logarithm of the determinant of the matrix148

M :149

�(M(�; �n)) = log detM(�; �n) (7)

A D-optimal design aims at minimizing the volume of confidence ellipsoid for model parameters. Consequently150

the statistical treatment of experimental results become more efficient. For example, it helps to assess if a model’s151
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parameter, and its linked hypothesis, has a non negligible effect on a population dynamics e.g. whether a parameter152

is different from zero. The D-optimal design also helps strengthen parameter comparison. For example it’s usually153

important to estimate which habitat is the best (or worst) for a given species e.g. to significatively rank their154

corresponding growth rates. Finally, this design can also lead to minimizing the maximum variance of the predicted155

values (Kiefer, 1974).156

Exact and approximate design. When the set of the matrices defining a domain of (7) is discrete, the design is said157

to be exact.The problem of finding an exact optimal design �n⋆ could be numerically challenging, especially for the158

large values of N . The solution proposed in the theory of optimal design is to calculate the optimum of � over the159

extended domain and to look for the discrete N-observational design which is “close” to the optimum. The definition160

of the matrixM can be extended by considering the set of all probability distributions on  in place of the discrete161

distributions �n:162

M(�; �) = ∫
�(x; �)�(dx) (8)

where � is a probability distribution on  . Then the approximate solution of the initial optimization problem can
be calculated. An optimal (continous) approximate design �⋆ is defined as:

�⋆(�) = argmax�∈Ξ
�(M(�; �))

for the matrixM given by the formula (8).163

Average and local optimal design. An optimal design for a non-linear model depends on the unknown parameter164

value and is referred to as a local design. Different methods are proposed to “remove” the dependence from �. One165

possible approach is to assume that � is a random variable following a known distribution � and to maximize the166

expected value of the criterion, calculated with respect to �. Consequently, an on-average exact design maximizes:167

E�� (M(�; �n)) = ∫Θ
� (M(�; �n))�(d�) (9)

Fisher Information Matrix for generalized regression model. According to the definition given in Atkinson,
Fedorov, Herzberg & Zhang (2014), a generalized regression model is specified by the probability density p that
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depends on x and � through the k dimensional regression function �(x, �):

p(y|x, �) = p(y|�(x, �))

Consequently, the Fisher Information Matrix �(x, �) for a single observation on y can be rewritten as :168

�(x, �) = Var
( )
)�
log p(y|�(x, �)

)

= D��(x, �)Var ))� log p(y|�)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

�(�)

DT� �(x, �) (10)

where D��(x, �) is a p × k matrix of the first derivatives of the regression function with respect to � and �(�) is169

a k × k Fisher Information Matrix for the reparametrized model. The matrix �(�) is called the elemental information170

matrix and is known for many useful probability densities.171

Design settings for spatial population monitoring. We assume that the targeted population is observed at N172

locations xi,… , xN . For each location, the measurement is repeated T -times. The time measurements are fixed in173

advance and common for all the locations whereas the set of the locations is solution to the optimal design problem.174

The measurement taken at a location xi at a time moment t is denoted by y(xi, t). Typically y(xi, t) is either a population175

count or its suitable transform. In terms of mechanico-statistical model introduced in section 2, y(xi, t) is the result of a176

data process, a random variable following a probability distribution. The distribution depends on a measurement177

process �(x, �) governed by a partial differential equation and on a vector of parameters �, related to all the levels of the178

hierachical model (see eq. 2). The likelihood of �, given the vector of observations (y(xi, t))i=1,…,N
t=1,…,T is given by equation179

3. The optimal design problem adressed in this paper is to find an exact D-optimal on-average design �n∗ = (xi,… , xN )180

(implicitly !1 = … = !N = 1). According to the short introduction given in this section, �n∗ satisfies :181

�n∗ = arg max�n ∫
log det(M(�, �n))�(d�) (11)

whereM(�, �n) is calculated according to equation 5 and 10. From this point on, we assume that the parameter �182

follows a uniform distribution (�min, �max). In the following chapters, we illustrate the solution of optimal design �n∗183

for two spatial monitoring examples.184
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4. Spatial population monitoring case studies185

4.1. Agroecological case study186

As a first example we consider the dynamics of Poecilus cupreus, a carabid beetle known for its weed seed187

consumption, within agricultural landscapes. This beneficial insect often complete its life cycle in a couple of months188

and is commonly monitored using pitfall traps that are picked up and replaced weekly. This species exhibits a single189

peak during its activity season and is known to react differently to semi-natural habitats, grasslands and cereal fields190

(Marrec, Badenhausser, Bretagnolle, Börger, Roncoroni, Guillon & Gauffre, 2015). This leads to a reaction-diffusion191

model introduced in Parisey et al. (2016) with a birth rate decays parameter (�), to mimick the single pick, and a192

spatially heterogeneous growth rate r(x), to express the habitat dependencies. In Parisey et al. (2016), the population193

dynamics of carabids has been studied within a landscape of a few kilometer squared size. The dynamics of carabids194

was described by the following mechanistic-statistical model:195

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

u(x, 0) = u0(x)
)u(x, t)
)t

= DΔu(x, t) + (r(x)e−�t − �)u(x, t)

�(x, t) = � ∫

t

t−�
u(x, s)ds

y ∼ (�(x, t))

(12)

where u(x, t) is in this case the density of carabids, � describes the exponential speed at which the birth rate decays
during the activity season, � is the death rate (i.e. 1

life expectancy ), r(x) is an habitat specific growth rate such that :

r(x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

rc if x in a crop field
rs if x in a semi-natural habitat
rg if x in a grassland
0 otherwise (roads, buildings, . . . )

, � is a scaling factor that allows the integration of the carabids density over the surface of a non-attractive pitfall trap196

from which count data is described by a Poissonian data process (.) with intensity �(x, t).197

The population process is parametrized by (D, �p) with �p = (�, �, rc , rs, rg) and the measurement process depends198

on �m = (� ), that we considered known for a given type of traps. Hence the vector of unknown parameters were199

� = (D, �, �, rc , rℎ, rg). The parameters of the model were already estimated in Parisey et al. (2016) for an arbitrarily200
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chosen set of pitfall traps. We used these results in order to fix the bounds of parameters � in an on-average design.201

�min and �max were set so they were biologicaly relevant and coherent with previous estimations. All growth rates were202

explored so they give half to twice asmany descendants, during a season of several months, as previously estimated. The203

diffusion coefficient varies between a population of individuals half to twice as fast. As � is linked with life expectancy,204

it varies between a life twice as long and half as long. Finally, �, measuring birth decays during the activity season,205

varies between 0.9 and 1.1 times its nominal value. Details for all parameters values can be found in appendix A.1.206

In this example, as described in Parisey et al. (2016), the experiment consisted in placing N = 24 pitfall traps in207

an agricultural landscape, owned by several farms, and sample them over the course of a season, in that case T = 9208

times over the course of three months in 2010. The sampling design of this study was decided beforehand so that, first,209

an agricultural field was chosen then several traps (here three) were planted, spatially grouped, in the field. From now210

on, we will refer to this as a clustered design.211

4.2. Conservation biology case study212

As a second example we considered the dynamics of Equus caballus, an invasive feral horse that has detrimental213

effects to the ecosystem of the Australian Alps and whose management through aerial culling or trapping andmustering214

is under debate. This question has been addressed by Beeton & Johnson (2019) who used a two years aerial survey of215

feral horse populations, consisting in line transect data within the Australia Alps region (Cairns, 2014). They derived216

a reaction-diffusion model assuming horse populations are limited by density dependence in births via a logistic217

model, and that their movement through the landscape depends on the local horse density and, spatially heterogeneous,218

carrying capacity. We supplemented their spatio-temporal dynamics with a measurement process and a data process to219

obtain a full mechanistic-statistical model. The measurement process model the use of aerial transects to assess horse220

populations while the data process assumes normally distributed residuals with zero mean and variance �2. This lead221

to a mechanistic-statistical system given by :222

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

u(x, 0) = u0(x)
)u(x, t)
)t

= DΔ
u(x, t)
K(x)

+ (b(1 −
u(x, t)
K(x)

) − �))u(x, t)

�(x, t) = ∫Bx
u(z, t)dz

y ∼ (�(x, t), �2)

(13)

where u(x, t) is in this case the density of horses, K(x) the habitat-dependent carrying capacity, b the birth rate and
� the mortality rate. Population densities are monitored over subdomains Bx ⊂ Ω, each subdomain corresponding to
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a horizontal transect with lower-left corner position x, over which we integrate to obtain observations that are drawn
from a Gaussian distribution  (.). We assume all transects have the same width l (from aerial line of sight) but that
the length Lx will depend on each potential transect. The habitat-dependent carrying capacity was defined as :

K(x) =

⎧

⎪

⎨

⎪

⎩

KH if (x) in a highly favorable habitat field,
KO , otherwise.

The population process is parametrized by (D, �p) with �p = (b, �,KH , KO) and the data process depends on223

�d = (�2). In this second case study the question we addressed was to find the best n transects, over N . We chose to224

simulate a survey of the population performed 7 years after the original monitoring (i.e. 2021).In Beeton & Johnson225

(2019), the mortality rate � was fixed and the carrying capacity K(x) was estimated independently of the population226

process. Hence, the vector of unknown parameters, for the conservation biology case, was � = (D, b). One can note227

that � is classically not part of such optimal design as it can be estimated by residual standard deviation. There was228

no previous estimations for � but there were lower and upper boundaries, expressed as ’low growth and dispersal’ and229

’high growth and dispersal’ scenarios in the original paper. We used them to set �min and �max used in the on-average230

exact design whereas for local design, we considered �min. Details for all parameters values can be found in appendix231

A.1.232

In this example, as described in Beeton & Johnson (2019), the experiment consisted in surveying N = 32 aerial233

transects, of different lengthes, one time, in the year 2014, to estimate wild horses populations in the autralian alps234

(Cairns, 2014).235

5. Criteria for comparing designs and numerical implementation236

5.1. Performance assessment of designs237

In optimal design, one can quantify the suboptimality of any given designs compared to the D-optimal design, as238

described by eq. 5 and 7, using the notion of the D-efficiency (Ucinski & YangQuan Chen, 2005) which is defined as239

follows :240

ED(�n) =
{

det(M(�; �n))
det(M(�; �n∗))

}
1
q (14)

with q the number of parameters in �. We can use this measure to compare our designs among themselves, or241

with any other designs, e.g. taken from the literature or even randomly drawn. It can also be of interest to visualize the242
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design properties. Especially, one can review design positions onmaps. Onemight also want to focus on the relationship243

between pair of parameters, using confidence ellipses (Murdoch & Chow, 1996) derived from the inverse of the Fisher244

matrix.245

5.2. Evaluating designs according to a practical constraint246

When planning an ecological monitoring, the statistical properties of the design is only part of the decision making.247

One important factor for planning the monitoring in the two study cases considered here is the length of travelling248

that induces important costs. In order to integrate this component we consider the tour length of travelling salesman249

solutions (Rosenkrantz, Stearns & Lewis, 1977) where one start at a relevant ’base camp’, then tour a design before250

going back to camp. Formally, as defined in Dantzig (1963), we label the traps from 1,… , n and define :251

xij =

⎧

⎪

⎨

⎪

⎩

1 the path goes from trap i to trap j
0 otherwise

252

Taking cij > 0 to be the Euclidean distance from trap i to trap j, the travelling salesman problem (TSP) can be253

written as the following integer linear programming problem:254

min
n
∑

i=1

n
∑

j≠i,j=1
cijxij ∶ (15)

subject to ∶
n
∑

i=1,i≠j
xij = 1 j = 1,… , n;

n
∑

j=1,j≠i
xij = 1 i = 1,… , n;

∑

i∈Q

∑

j≠i,j∈Q
xij ≤ |Q| − 1 ∀Q ⊊ {1,… , n}, |Q| ≥ 2

As one can see, the TSP minimize the tour length while ensuring each trap is arrived at from exactly one other255

trap, departed to exactly one other trap and that the solution returned is a single tour and not the union of smaller256

tours. For the second use case, involving lines instead of points, a heuristic is used instead of the problem 15. The tour257

length is roughly approximated by a weighted mean between the diagonal of the bounding box of the transects and258

their cumulated lengthes. Finally, the best compromises between statistically efficient designs and travelling lengths259

can be visualized on a Pareto front in the D-efficiency - tour length space (Sheftel, Shoval, Mayo & Alon, 2013). Of260

course, we can note that performance assessment of an experimental design is not limited to the above examples.261
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5.3. Numerical implementation262

We implemented different strategies to solve numerically the computationally demanding problems we worked on.263

As the computation of the on-average design (eq. 11) with a uniform distribution would be cumbersome, we relied on264

a sampling from a Latin Hypercube, a space-filing design (Pronzato & Müller, 2012), to ’cover’ at best a domain with265

a limited number of sampled points.266

Moreover, we noted that one useful feature that come at no cost with our designs is the ability to filter the set267

of N possible points (or transects) before searching for a solution. For example, in the agroecological case, we used268

a regular grid to select M possible trap locations within fields (M >> N) while excluding road from pitfall trap’s269

possible positions.270

In addition, in order to solve the information matrix that requires the derivatives of the deterministic process271

models we chose to numerically extract them ahead of solving the design, i.e. to do some memoization (Michie, 1968),272

which proved relevant for the task at hand. For performance, one could also rely on analytic, symbolic or automatic273

differentiation (adjoint code) if applicable.274

Finally, we relied on an excursion algorithm (Fedorov, 1972), with multiple starts, for solving the designs. These275

algorithms take the particular form of the problem into account. Starting from a non-degenerated design (i.e. with276

positive determinant), at each iteration k, exchange one support point by a better one, in the sense of the D-optimality.277

Considering all N ∗ (M −N) possible exchanges successively, retaining the best one among these each iteration, it278

converges to a local solution. Hence, we used multiple starts to get the best local solution as an approximation of a279

global solution.280

Numerical calculations were performed in R (R Core Team, 2019). Using a Runge-Kutta solver combined with281

the method of lines to solve the reaction-diffusion models (Soetaert, Petzoldt & Setzer, 2010) and some naive282

parallelization. It took about an hour to solve an on-average design on a Intel® Xeon® E5 with 8 cores 8 Gb of RAM.283

6. Results284

We reduced the size of the original landscapes, and thus the number of sampling points, to reduce the computational285

cost. For the agroecological case study, we used a virtual agroecosystem, of one km2, inspired by Soubeyrand&Roques286

(2014) with just six pitfal traps sampled over a season. For the conservation biology case study, we used a simplified287

habitat map, of several thousand km2, of a subpart of the australian alps (see supplementary materials of Beeton &288

Johnson (2019)), sampled one time, 7 years after the first experiment (hence in 2021). For this example, we reduced289

the number of surveyed transects to eight, chosen among the original thirty two, through D-optimality.290

For each use case, we compared empirical designs (e.g. random and/or clustered) to local and on-average D-optimal291

ones, assuming they both outperform the empirical designs. Theoretically, locally optimal designs should be the most292
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efficient ones regarding the information gain on the processes. However, they require a good knowledge on parameters293

before the survey which is, in practice, rarely the case. Thus, given the usual uncertainty on populations traits and294

considering on-average designs appears more relevant.295

6.1. Agroecological case study296

In most studies investigating insect populations in agricultural landscapes, traps are placed according to what we297

call a clustered design. In practice, when a field is chosen, three spatially grouped traps are put in this field as illustrated298

in Fig. 1b. For this case, we compared some properties of local D-optimal, on-average D-optimal, clustered and random299

(i.e. where spatial locations are drawn from a binomial point process) designs. The expected value and the range of300

estimated parameters used for respectively local and on-average designs are given in Appendix A.1.301
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(d) D-optimal design
Figure 1: Pitfal trap placements comparisons : (a) initial population densities; (b) clustered design with 3 traps per field
(pseudo-replicate) in different fields; (c) randomly positioned pitfal traps ; (d) local D-optimal design
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As shown in Figure 1, the initial conditions were generated as a gradient from bottom left to top right, and the302

landscape contains 2 crop fields (orange), two grasslands (yellow), one region of semi-natural habitat (e.g. forest patch303

in green) and two crossing roads (gray).304

The local D-optimal design displayed in Figure 1d concentrates the points on the bottom left corner of the landscape305

where the highest slope of initial conditions is. Moreover, it seems to cover all the habitats, even if unequally, except306

roads where the growth rate is set to 0.307
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Figure 2: On-average exact D-optimal design : (a) position of pitfal traps in case of on-average D-optimal exact design ;
(b-d) 95% confidence ellipses for pair of growth rates, estimated by inverting the Fisher Information Matrix for �, for the
on-average optimal design (red) and the clustered design (blue) seen in fig. 1.
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Figure 2 shows the position of the traps in an on-average design and 95% confidence ellipses, estimated by inverting309

the Fisher information matrix, for the pairs of growth rates (rc , rs), (rc , rg) and (rs, rg). Interestingly, compared to the310

local-design, the stencil shape seems less apparent here as we see four points align within the initial condition density311

but two points are farther away and distributed between two different habitats. As expected, the confidence ellipses312

surface are smaller for all pairs of parameters for the on-average D-optimal design compared to the cluster one (Fig.313

2c-d & Appendix A.2 for those related to �, � and D). The uncertainty associated with semi-natural growth rate rs is314

severely reduced which is logical given the clustered design did not account for that habitat. In fact, the optimal design315

suggests that only one point within this habitat drastically reduces the variance of its estimates.316
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(b) On-average D-optimal
Figure 3: Linear approximation of the Pareto front : (a) for the local design; (b) for the on-average design. Each point
represents the D-efficiency (x) and tour length (y) of a design. Black circles represent 100 random samplings (the same
set is projected on each panel), blue dots represents the clustered sampling, green dots are optimal and red lines and dots
form the linear approximation to the pareto fronts. All the designs D-efficiencies are evaluated locally (a) or on-average
(b).

The comparison of the efficiency of the designs in relation to the tour length is presented in figure 3 for both local317

and on-average designs. Random designs are represented by black circles (there are a hundred of them), the clustered318

design by a blue dot, the D-optimal design by a green dot and if at least one red dot exist, it is a random sampling319

that is pareto optimal for at least one dimension. One can see that the clustered design is, of course, less statistically320

efficient than the D-optimal but also that it has a longer tour. In fact, the D-optimal designs here are dominant both in321

statistical and tour length. Several simulations of random designs show that it is not always the case but the optimal322

designs are still among the shortest (data not shown). One can also note that most random designs are more D-efficient323

than the clustered design. This is probably because they either place traps within semi-natural habitat and/or simply324

cover more ground, with a longer tour length. As in this study we drew only one clustered empirical design, the solid325
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comparison between random and clustered sampling strategies, which was not the scope of this work, would require326

more simulations.327

6.2. Conservation biology case study328

In this example the design problem consists in searching n = 8 aerial transects, of different lengths, chosen among329

N=32 reported in Cairns (2014). The expected values and the range of parameters � are given in Appendix A.1.330
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(c) Simple random sampling of transects
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Figure 4: Transects comparisons: In the original study, high initial densities were linked with a high carrying capacity while
mid and low densities were linked with another carrying capacity (see also Appendix A.1). We can see here (a) the initial
population densities (b) then all 32 original transects (in black) over the carrying capacities ; (c) some random subset of
8 of the transects (in blue) ; (d) finally a locally D-optimal design of 8 transects for �min (i.e. ’low growth and dispersal’
scenario) (in red)

As shown in figure 4a the monitored area has less high quality habitats (green) than average and low quality ones331

(grey). The original transect coverage was extremely dense (Fig. 4b) and it appears natural to reduce it, for instance by332

taking only 1
4 of the possible transects. As short transects are frequent in the original empirical distribution of transects,333
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there are a few chances of randomly choosing the longer ones (Fig. 4c). When defining a local D-optimal design with334

a ’low growth and dispersal’ scenario, the longer and more informative transects appear to be favored (Fig. 4d).335
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(d) Pareto front
Figure 5: On-average exact D-optimal design : (a) random transects; (b) on-average D-optimal ; (c) 95% confidence ellipse
of b and D, blue is for the random design figured in (a) and red for the optimal design, both evaluated at �min and, finally,
(d) a linear approximation of the Pareto front with D-efficiency evaluated at �min (color coding and shapes are the same
as in figure 3)

The on-average D-optimal design (5b) appears to be similar to the local design (Fig. 4d). It seems to favor longer336

transects and, in that case, only one transect on the southern part of the map. The spatial extent of the optimal transects337

is smaller than most random transects but, as it favors longer transects, the tour length, forcibly passing by transects, is338

actually longer than most (Fig. 5d). As expected, D-optimality reduces the confidence ellipse of estimated parameters339

compared to a random design (Fig. 5c). The variance reduction appears to be greater for the diffusion coefficient D340

than for the growth rate b. Finally, the Pareto front displayed in Figure 5d to assess the compromise between design341

efficiency and tour length, shows that the on-average D-optimal transects dominate the D-efficiency but is here the342

worst choice in term of tour length. This means that there are multiple point on the Pareto front that could be candidate343
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if a compromise has to be chosen between D-efficiency and tour length.344

345

7. Discussion346

In this study we addressed the question of where to make observations within a large spatial domain to efficiently347

capture the changes in space and time of a population described by a reaction-diffusion model. By considering two348

example systems, i.e. the dynamics of carabid beetles in agricultural landscapes and wild horses in the Australian349

Alps, we showed that the use of the optimal design of experiments framework can be useful to find optimal locations350

for trapping or counting individuals that maximize the information on the population for parameter estimation. In351

particular, we were able to produce spatial designs that outperform both those used in the initial studies and random352

designs.More precisely we first obtained local D-optimal designs that assume that the expected values of parameters are353

known before planning data collection. Then, as this situation is generally unlikely to occur in the population ecology,354

we investigated the situations when only bounds around population parameters are known considering on-average355

D-optimal designs. While local designs appeared to be obviously the most efficient for minimizing the variance of356

parameters estimates, our results points out the usefulness of optimal design without strong a priori to think spatial357

monitoring so it will enable efficient model fitting.358

Although the question of optimized survey in ecology or epidemiology is still seldom considered, it has already359

been addressed in several studies using various frameworks. For instance, Williams et al. (2018) proposed a framework360

that produces designs that minimizes prediction uncertainty, Cook et al. (2008) calculated optimal observation times361

for botanical epidemiology experiments by maximizing the Kullback-Leibler divergence from the posterior to the362

prior, or Bourhis, Bell, van den Bosch & Milne (2021) who proposed a strategy for choosing insect traps locations by363

minimizing uncertainty in neural networks outputs. Here, we considered the optimal design of experiments framework364

that is briefly introduced in part 3. While its use is common for solving experimental design issues in environmental365

sciences or systems biology (Steiert, Raue, Timmer&Kreut z, 2012), it is poorly considered in ecology. Themonitoring366

of population on large spatial domain is actually similar to the problem of optimal sensors placement for spatially367

distributed systems (Ucinski, 2004).368

Despite the recent development of devices for increasing ecological monitoring, in practice the survey of population369

in large spatial domains remains challenging and a major bottleneck to the study of how populations change in space370

and time and the design of efficient management strategies (Nichols &Williams, 2006; Lindenmayer & Likens, 2010).371

As stated above, statistical frameworks developed to optimize how and where one should make observations can be372

used to design more efficient population surveys. This model-based design of experiments can also take into account373

several practical constraints. In our study we chose to consider the tour length between traps for collecting carabid374
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bettles and aerial transects from which wild horses are enumerated. Then we used a Pareto front to asses how designs375

efficiency changes with the tour length. As illustrated in Fig. 5d, it is possible to find good candidate that maximizes376

design efficiency while minimizing tour length so one can choose those that fit the compromises that are acceptable. For377

the agroecology example, we found that the best design was also minimizing the tour length. This may be explained378

by the smaller spatial extent of the domain compared to the wild horse case. In fact, it is likely that increasing the379

spatial domain would create a more progressive Pareto front between design efficiency and tour length. Depending380

on the considered problem, other constraints could be included in the approach to find designs that are statistically381

efficient and minimized the constraints. For instance one could imagine several travellers and seek for the strategy that382

minimizes the cost of the survey, considering both human and transport costs.While, in our opinion, findingmonitoring383

designs that provide maximum information on population spread is an important question on which the community of384

modellers in ecology should concentrate more, integrating realistic constraints in model-based design is likely to catch385

the interest of field ecologists and practitioners. Moreover, in our two study cases we focused on the spatial aspect of386

monitoring assuming that the only degree of freedom is the survey designs was the locations of observations whereas387

the time of observations was fixed. This assumption could be relaxed and both temporal and spatio-temporal D-optimal388

designs may be obtained in further studies. Optimal times at which observations should be done may be obtained by389

solving local or on-average D-optimality problems before the survey starts. In addition, if applicable, the problem can390

also be tackled sequentially as an alternative to the on-average design. In this case, optimal groups of observations are391

proposed, over time, after having performed a parameter estimation on already acquired data, this approach is know392

as a sequential design (Chernoff, 1959).393

Apart the theoretical background, the main obstacle to a widespread usage of optimal design of experiments in394

spatially explicit systems is the computational cost. Using usual algorithms and computing strategies (i.e. memoization395

and parallelization), in this study we were able to solve local and an-average D-optimality problems on reaction-396

diffusion models with a reasonable amount of time. However, increasing the complexity of the problem, for instance397

by adding more practical or economic constraints or the temporal dimension of sampling, may require more advanced398

computing methods and grid computing. Structural and practical identifiability issues may also arise and make the399

problem even more complex. Optimal design is useful for maximizing the information gain from data collection,400

however the modeller has to ensure that enough information is available so the parameters can be determined. In this401

study, before seeking for an optimal design, we assessed the practical identifiability of the model by multiple start of402

a numerical local approach (Walter & Pronzato, 1997) within each relevant domain Θ.403

The issue of initial conditions is well known by mathematicians and modellers working with dynamic models. In404

some conditions, it is possible to estimate initial conditions from monitoring data. Nevertheless, in most studies one405

has to make strong hypothesis and find a way to fix it before performing a statistical inference, or seeking an optimal406
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design. Regarding spatial ecology, the most frequent approach is perhaps to use past (or early data) with a regression407

model to someway estimate the distribution of population density at the beginning of the study. In our study, we408

did not include the initial conditions in the designs problems. It is very likely that optimal designs are dependent409

on the initial conditions. This may be assessed by augmenting the problem and exploring how changes in the initial410

conditions impact optimal-designs. Yet, augmenting the problem for taking care of initial conditions has its limits.411

To cite in extenso Uciński (2018), it is "[a] very prospective direction [where] the infinite dimensional nature of the412

resulting parameter space is inherently associated with the ill-posedness which means that even low noise in the data413

may make the estimates extremely unstable.". The reader could refer to Alexanderian, Petra, Stadler & Gha ttas (2014)414

and Alexanderian, Petra, Stadler & Gha ttas (2016) for further information.415

In this article we focus on the D criterion but there exist different criteria (e.g. different functions �(.)) that can416

be applied to the information matrix. For example, one can seek to minimize the average variance of the estimates417

by minimizing the negative of the trace of the inverse of the Fisher information matrix (i.e. A-optimality). Here, we418

focused on the D criterion because (i) through the equivalence theorem (Kiefer, 1974), we know that main classical419

criteria are linked in some ways (e.g. A and D), (ii) the D criterion is invariant by reparameterization (e.g. helpful to420

control parameters positivity) and (iii) there exist variants of the D criterion that are useful for a variety of purposes.421

For instance, if one is interested in model selection, the Ds criterion enable to focus the problem on the parameters of422

interest versus ’nuisance’ parameters, hence being a canonical criterion in nested model selection (Atkinson & Cox,423

1974). For more general purpose model selection in case of gaussian observations, the generalized DT criterion is a424

criterion that can be described as a normalized arithmetic mean of D criterions and L2 distance between predictions,425

handling both optimal parameters estimation and model selection (Atkinson, 2008).426

One can also note that, quite often, the aim of ecological surveys is not only to estimate reaction-diffusion model427

parameters but rather to monitor the state of the population and provide abundances. For such goal, it would be better to428

use a criterion more directly related to predictions. For instance, the G criterion seeks to minimize the maximum entry429

in the diagonal of the hat matrix, minimizing the maximum variance of the predicted values i.e. ̂u(x, t). As Pázman &430

Pronzato (2014) refined the G criterion for nonlinear homoscedastic or heteroscedastic regression models, we think an431

on-average G-optimal design would be more suitable than D-optimal designs to focus on population state monitoring.432

Even if knowing model’s parameters and knowing u is related, it corresponds to different mathematical objectives (e.g.433

G versus D optimal designs) that may produce distinct designs. One can note that some limitations might have to be434

worked through for the G-optimal design in case of the generalized regression model (i.e. with any kind of data model)435

and the numerical aspects of the problem.436

To finish with, the purpose of this article was to push the discussion on the statistical efficiency of experimental437

designs linked with spatial ecological models, as question that is yet seldom expressed this way. The main goal of a438
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field ecologist is to sample ’as much as possible’ within the constraints of its budgets (monetary and manpower), but439

this strategy can either fail to capture the essential information on the population or be very expensive. In addition to440

the numerous studies that had demonstrated that formalizing ecological processes into mathematical models and using441

them to analyze empirical data offers a mean for improving our understanding of populations spread, we hope this work442

points out that the difference between optimal and non-optimal monitoring can be significant in term of information443

gained, and thus that model-based design of ecological survey is a promising path that could also contribute to reduce444

environmental costs of samples collection, storage and processing.445
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A. Appendix466

A.1. Use case’s parameters467

Table 1
Parameters used for the use cases when searching for local and on-average optimal designs. The symbol ′−′ means ’not
applicable’ e.g. when used for explored min or max, it means those parameters were not part of the optimal design problem
so they were kept at their original values. Reference [1] is (Parisey et al., 2016) and reference [2] is (Beeton & Johnson,
2019).

Parameters Original values Explored min Explored max units source

D 76.1 19.025 304.4 m2.day−1 [1]
� 0.123 0.111 0.135 − [1]
� 0.210 0.115 0.42 day−1 [1]
rs 0.155 0.144 0.166 day−1 [1]
rg 0.304 0.293 0.315 day−1 [1]
rc 0.385 0.374 0.396 day−1 [1]
rr 0 − − day−1 [1]
� 10−4 − − − [1]
� 5 − − day [1]
KH 2.462 − − horse [2]
KO 0.141 − − horse [2]
D − 2 30 nondimensional [2]
b − 0.16 0.27 year−1 [2]
� 10−3 − − horse2 arbitrarily low

A.2. Supplementary confidence ellipses468

Figure 5: Confidence ellipses at 95% for the agroecological case study, where parameters �, � and D are paired with the
crop growth rate.
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