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Abstract: Metabolic diseases, such as obesity, Type II diabetes and hepatic steatosis, are a significant
public health concern affecting more than half a billion people worldwide. The prevalence of these
diseases is constantly increasing in developed countries, affecting all age groups. The pathogenesis
of metabolic diseases is complex and multifactorial. Inducer factors can either be genetic or linked
to a sedentary lifestyle and/or consumption of high-fat and sugar diets. In 2002, a new concept of
“environmental obesogens” emerged, suggesting that environmental chemicals could play an active
role in the etiology of obesity. Bisphenol A (BPA), a xenoestrogen widely used in the plastic food
packaging industry has been shown to affect many physiological functions and has been linked to
reproductive, endocrine and metabolic disorders and cancer. Therefore, the widespread use of BPA
during the last 30 years could have contributed to the increased incidence of metabolic diseases. BPA
was banned in baby bottles in Canada in 2008 and in all food-oriented packaging in France from
1 January 2015. Since the BPA ban, substitutes with a similar structure and properties have been used
by industrials even though their toxic potential is unknown. Bisphenol S has mainly replaced BPA in
consumer products as reflected by the almost ubiquitous human exposure to this contaminant. This
review focuses on the metabolic effects and targets of BPA and recent data, which suggest comparable
effects of the structural analogs used as substitutes.

Keywords: BPA substitutes; metabolic disorders; endocrine disruptors

1. Introduction

Numerous experimental, clinical and epidemiological studies suggest that exposure to
environmental contaminants can disrupt endocrine and metabolic functions and contribute
to the development of obesity and associated metabolic disorders, such as Type 2 diabetes,
coronary heart disease and hypertension [1]. According to this new concept, environmental
contaminants would play the role of environmental obesogens. Many epidemiological
studies established a positive correlation between exposure to Bisphenol A (BPA), phtha-
lates, pesticides, alkylphenols and the prevalence of cardiovascular diseases, diabetes, and
weight gain [2]. The most studied environmental obesogen is BPA. BPA was identified
in the 1930s as a synthetic estrogen that had a potential impact on female reproductive
function. However, BPA was not used as such because of the discovery of a more potent es-
trogenomimetic compound: diethylstilbestrol (DES). The use of DES to prevent miscarriage
was then revealed to be disastrous for millions of people who developed genital anomalies,
sterility and an acute risk of cancer following in utero exposure [3]. In 1960, BPA began to be
extensively used for the industrial manufacture of polycarbonate plastics and epoxy resins.
Thereby, BPA can be found in the inner coatings of tins, beverage cans and much food
packaging. In addition, it is found in CDs, DVDs, some electronic devices, mobile phones,
glasses, contact lenses and thermic ink receipts. Epoxy resins containing BPA are also used
for water storage, transportation systems and some dentary cements [4]. Frederick Vom
Saal, a biologist and professor at the Missouri University in Columbia (United States) was
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the first to report on the effects of low doses of BPA on the reproduction system of male
mice born to mothers exposed to BPA [5]. These results were then largely supported by
many studies that revealed the effects of BPA on the reproduction system, immune system
and energy metabolism [6]. Numerous epidemiological and experimental studies focused
on BPA as a metabolic disruptor. They showed that BPA could exert effects on all organs
involved in the regulation of energy homeostasis, such as adipose tissue, pancreas, liver,
muscle and brain [7]. Exposure to low doses of BPA in adults or in the perinatal period was
associated with weight gain, the disruption of carbohydrate and lipid homeostasis and an
effect on brain regions involved in food intake [7]. These and other studies have led to the
ban of BPA in some countries. It was first banned in baby bottles in Canada in 2008 and
in all food-oriented materials in France from 1 January 2015. More recently, in 2016, BPA
was identified as a substance of very high concern, that is to say particularly dangerous,
by the Committee of the Member States of the European Chemicals Agency because of its
reprotoxic properties, and in 2017 for its endocrine disrupting properties for human health
and the environment. It has since been replaced by other compounds from the bisphenol
family such as BPS, BPF and BPAF. Most of those substitutes were selected based on their
stability properties despite a very poor toxicological evaluation. Since BPA substitutes are
structurally similar to BPA, it is expected that they may also have the same obesogenic effect.
This review summarizes the results of studies supporting the metabolic disruptive effects
reported for BPA and investigates whether the same obesogenic properties are reported for
BPA analogs.

2. A Strong Link between BPA and Metabolic Disorders

A very large number of studies are devoted to the effect of BPA on the development of
metabolic disorders. A recent meta-analysis conducted on 133 studies carried out in humans
and selected according to exposure relevance revealed an association between exposure to
BPA and a higher risk of developing Type II diabetes [8]. Urinary and plasmatic levels of
BPA are positively associated with a higher risk of developing Type II diabetes. A study
based on data from the National Health and Nutrition Examination survey (NHANES),
including 1521 participants, also revealed higher BPA concentrations in obese participants,
therefore suggesting an association between BPA and obesity [9]. An association also exists
between exposure to BPA and acute insulin resistance, general obesity, abdominal obesity
and the prevalence of diabetes [10]. Numerous epidemiological studies strengthen these
observations [11–13].

These epidemiological data are supported by experimental data mainly in rodents
showing an effect of BPA on organs involved in energy metabolism such as the liver,
skeletal muscle, adipose tissue, pancreas and central nervous system (Figure 1). These
studies have highlighted a number of characteristics of BPA, such as low-dose effects on
adipocyte differentiation and on insulin production by β-pancreatic cells [14]. The effects
are observed during adult exposure as well as after the perinatal period, which represents
a more sensitive window of exposure [15–17].

2.1. Effect of BPA on Body Weight

In rodents, maternal exposure to BPA was shown to increase postnatal body
weights [16,18–20]. The dose–response relationship between BPA exposure and body
weight gain often follows a non-monotonic inverted-U shape effect with an increase in
body and fat mass in response to low doses (below the NOAEL) that were not always
observed at high doses [16,19,20]. These non-monotonic effects are not always seen in both
sexes. In females exposed in utero, adipose tissue mass is increased at low doses of BPA
(0.26 mg/kg/j) but not at higher doses (2.72 mg/kg/j). In males, adipose tissue mass is
increased proportionally to BPA exposure dose [15]. Body weight increase is often more
pronounced and persistent in female offspring. This sexual dimorphism is not seen in
all experimental conditions. In the study by Wei et al., an increased body weight of rats
exposed in utero to BPA is observed, independently of sex, in standard feeding conditions
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and under a high-fat or carbohydrate diet [21]. Studies conducted on adults revealed that
the exposure of gestating mice to BPA (100 µg/kg) leads to an increased body weight [22].
Some studies revealed a decreased weight following perinatal exposure to BPA and others
revealed no effects on body weight [23–25]. The differences obtained by the different
studies mentioned above could be explained by the strains used, differing from one study
to another; some strains were more sensitive to estrogenomimetic processes that mediate
at least in part the effect of BPA on energy hoemostasis [26]. In addition, the exposure
window, duration and mode of administration of BPA [26], and the type of feed [27] are
key factors to take into consideration. Therefore, the impact of BPA on body weight gain
can differ according to experiments. However, observations on key organs of energetic
metabolism (liver, skeletal muscle, adipose tissue and pancreas) support the fact that BPA is
not only an endocrine disruptor but also a metabolic disruptor. Since the route of exposure
to BPA is mainly through food and beverage containers, the more an individual consumes
processed foods stored in plastic containers, the more they will be exposed to BPA.

Int. J. Mol. Sci. 2022, 23, 4238 3 of 5 
 

 

 
Figure 1. Overview of BPA effects on energy metabolism. 

2.1. Effect of BPA on Body Weight 
In rodents, maternal exposure to BPA was shown to increase postnatal body weights 

[16,18–20]. The dose–response relationship between BPA exposure and body weight gain 
often follows a non-monotonic inverted-U shape effect with an increase in body and fat 
mass in response to low doses (below the NOAEL) that were not always observed at high 
doses [16,19,20]. These non-monotonic effects are not always seen in both sexes. In females 
exposed in utero, adipose tissue mass is increased at low doses of BPA (0.26 mg/kg/j) but 
not at higher doses (2.72 mg/kg/j). In males, adipose tissue mass is increased proportion-
ally to BPA exposure dose [15]. Body weight increase is often more pronounced and per-
sistent in female offspring. This sexual dimorphism is not seen in all experimental condi-
tions. In the study by Wei et al., an increased body weight of rats exposed in utero to BPA 
is observed, independently of sex, in standard feeding conditions and under a high-fat or 
carbohydrate diet [21]. Studies conducted on adults revealed that the exposure of gestat-
ing mice to BPA (100 µg/kg) leads to an increased body weight [22]. Some studies revealed 
a decreased weight following perinatal exposure to BPA and others revealed no effects on 
body weight [23–25]. The differences obtained by the different studies mentioned above 
could be explained by the strains used, differing from one study to another; some strains 
were more sensitive to estrogenomimetic processes that mediate at least in part the effect 
of BPA on energy hoemostasis [26]. In addition, the exposure window, duration and mode 
of administration of BPA [26], and the type of feed [27] are key factors to take into consid-
eration. Therefore, the impact of BPA on body weight gain can differ according to exper-
iments. However, observations on key organs of energetic metabolism (liver, skeletal 
muscle, adipose tissue and pancreas) support the fact that BPA is not only an endocrine 
disruptor but also a metabolic disruptor. Since the route of exposure to BPA is mainly 
through food and beverage containers, the more an individual consumes processed foods 
stored in plastic containers, the more they will be exposed to BPA. 

2.2. Effect of BPA on the Central Nervous Functions Related to Energy Homeostasis 
Proopiomelanocortin (POMC) neurons in the hypothalamic arcuate nucleus (ARC) 

are anorexigenic neurons that inhibit food intake and increase metabolic rate, while 
agouti-related peptide (AgRP) and neuropeptide Y (NPY) are orexigenic neuropeptides 
that stimulate appetite and reduce metabolic rate. These two sets of neurons form the hy-

Figure 1. Overview of BPA effects on energy metabolism.

2.2. Effect of BPA on the Central Nervous Functions Related to Energy Homeostasis

Proopiomelanocortin (POMC) neurons in the hypothalamic arcuate nucleus (ARC)
are anorexigenic neurons that inhibit food intake and increase metabolic rate, while agouti-
related peptide (AgRP) and neuropeptide Y (NPY) are orexigenic neuropeptides that stim-
ulate appetite and reduce metabolic rate. These two sets of neurons form the hypothalamic
melanocortin system, the physiological system that regulates feeding and energy balance.
The activity of the melanocortin system is controlled by hormones, such as estradiol, leptin,
ghrelin, and is sexually dimorphic. MacKay et al. analyzed whether in utero BPA exposure
could alter the development of the melanocortin system and be linked to the obesogenic
effect of BPA [28]. This study revealed impaired glucose tolerance in males exposed to
BPA associated with reduced POMC neuron innervation. This effect was associated with
increased NPY and AgRP expression in ARC when mice were fed with HFD. In females,
BPA exposure induced increased body weight gain, food intake, adiposity and leptin con-
centrations, associated with reduced POMC mRNA expression in the ARC when fed an
HFD diet. In BPA-exposed females, estrogen receptor α presents similar patterns of expres-
sion than in males, suggesting a masculinizing effect of BPA. This study demonstrates that
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in utero exposure to BPA alters the structure of the hypothalamic energy balance system
and increases vulnerability to developing metabolic disorders. In 2017, the same authors
extended their study to determine whether their prior observations were simply conse-
quences of obesity or a phenotype produced by BPA exposure [29]. Therefore, they studied
leptin sensitivity and hypothalamic structures in BPA-exposed animals before the onset of
obesity or metabolic phenotypes. BPA-exposed animals were resistant to leptin-induced
suppression of food intake, body weight loss, and hypothalamic POMC upregulation.
Both males and females had a reduced density of POMC projections in the paraventric-
ular nucleus of the hypothalamus. These results suggest that BPA may exert its effects
through developmental programming of the melanocortin system, permanently altering
the neurobiology of metabolic homeostasis. Salehi et al. explored whether the effect of BPA
on POMC neurons was direct by using different cell lines, including POMC-expressing
cell models [30]. This study demonstrated that exposure to BPA significantly induced the
mRNA levels of POMC in primary cultures and cell lines. Furthermore, cell treatments
with anti-inflammatory compounds, or with a PPARγ antagonist, abolished BPA-mediated
POMC induction, indicating that BPA may have direct effects on hypothalamic POMC
neurons through neuro-inflammatory mechanisms and PPARγ receptor.

2.3. BPA, a Disruptor of Carbohydrate Homeostasis

Many studies, mainly conducted by Angel Nadal’s team, showed that exposure to
BPA leads to the dysregulation of carbohydrate metabolism by a mechanism involving
ostrogen receptors in Langherans islets [22,31–35]. In adult male mice, a few days of
subcutaneaous exposure (1 and 4 days) to low doses of BPA (10 and 100 µg/kg/day)
induces an alteration of glucose tolerance, hyper insulinemia, and increased the content
of insulin in β-cells [33,36]. The same effect was observed in vitro in the presence of
BPA at concentrations of 1 nM and 10 nM [36]. Langherans islets of adult mice orally
exposed to 100 µg/kg/day of BPA present increased insulin secretion in response to glucose
(Figure 2) [37].
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Figure 2. Mode of action of BPA on pancreatic β-cells [37]. This figure reports the mode of action of
BPA on pancreatic cells. Low concentrations of BPA interact with Erα, Erβ and GPR30 receptors. ERα
is involved in the regulation of pancreatic insulin biosynthesis in response to BPA. Erβ participates in
the insulinotropic effect of BPA on pancreatic β-cells by rapidly decreasing KATP channel activity,
enhancing glucose-induced [Ca2+] signals and insulin release. GPR30 is a non-classical membrane
estrogen receptor that may participate in the insulinotropic effect of BPA on pancreatic β-cells.
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Mice exposed to BPA (10 µg/kg/day) during gestation period also developed per-
sistent hyperinsulinemia. The offspring presented with a predisposition to metabolic
syndrome development at adulthood (insulin resistance, alteration of insulin secretion
and calcic signaling in β-cells) [22]. Similar results were observed in HFD-fed rats, which
present earlier and exacerbated effects, mainly at low doses of BPA (50 µg/kg/day) [21].
Moreover, β-cells of exposed animals present structural defects. Mitochondria and rough
endoplasmic reticulum are hypertrophied. The proportion of mature secretory granules is
decreased in animals exposed to BPA fed with a standard diet and almost absent under
a high-fat diet. In mice exposed to BPA and fed a high-fat diet, islets are disorganized
and cells undergo pycnose (irreversible condensation of chromatin leading to necrosis of
cells) [21]. In addition, chronic exposure of β-cells (TC-6) to BPA modifies the expression of
key proteins involved in endoplasmic reticulum stress response [38]. Unlike many observa-
tions suggesting that BPA is a weak agonist of estrogen receptors [39], Alonso-Magdalena
et al. revealed that BPA (1 nM range) could similarly mimic estradiol (E2) effects in β-
cells [33]. Non-genomic ERα is involved in the long-term effects of BPA by increasing gene
transcription of insulin precursor via ERK1/2 phosphorylation [36], whereas membrane
ERβ is involved in pulsatile activity of insulin. Low doses of BPA (1 nM) rapidly decrease
the activity of KATP channels via Erβ, which depolarizes the membrane and increases
intracellular calcium levels and, therefore, induces insulin secretion [32,37]. Other nuclear
receptors could be involved, such as transmembrane domains receptors (RCPG). The RCPG
GPR30/GPER, a target of BPA [40] has recently been identified as a mediator of the effects
of insulin in response to E2 [41].

BPA could also affect pancreatic α-cells. The exposure of α-cells to BPA (1 nM) mimics
E2 effect by blocking the Ca2+ effect involved in glucagon release. These effects could occur
via estrogen membrane receptors and involve G proteins that activate nitric oxide synthase
(NOS) and cGMP-dependent protein kinase [42].

These data suggest that, in the long run, exposure to BPA could be detrimental for β
and α cell function and, therefore, be an important factor in the etiology of type II diabetes
and development of insulin resistance.

2.4. BPA, a Disruptor of Lipid Metabolism

BPA has been shown in several experimental setups to alter lipid regulation in different
tissues, particularly by interfering with insulin-mediated pathways

2.4.1. Effect of BPA on Adipose Tissue

Obesity results from increased white adipose tissue mass due to an increased size and
number of adipocytes. The use of various cell lines revealed an effect of environmental
endocrine disrupters (4-nonylphenol, tributyltin . . . ) in white adipose tissue. In humans,
BPA serum concentrations are more important in obese patients than in normal patients [43].
BPA is detected in human white adipose tissues with a concentration of 3.16 ± 4.11 ng/g of
tissue [44].

Numerous studies carried out in vivo on rodents or in vitro on human adipocytes
have shown an adipogenic effect of BPA [45–48]. In vitro experiments have shown that
BPA (2 to 20 µg/mL) induces adipocyte differentiation by increasing triglyceride content
and LPL (lipoprotein lipase) activity in the presence of insulin [48,49]. BPA increases
the gene expression of adipogenic transcription factors (C/EBPβ: alpha CAAT enhancer
binding protein, PPARγ and FAS) in 3T3-L1 pre-adipocytes [46,47] and adipose-derived
mesenchymal stem cells [45]. BPA increases glucose uptake in basal conditions and in
response to insulin. This could partly be explained by an increased synthesis of glucose
transporter GLUT4 [50]. On the contrary, exposure of human stem cells to BPA decreases
LPL activity and triglyceride accumulation [51].

White adipose tissue is not only an energy storage organ but also an endocrine
gland that secretes different metabolically active peptides with regulatory properties
called adipokines. BPA affects the production and secretion of adiponectin by 3T3-L1
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adipocytes [52] and by human adipose tissue explants [53], mostly following a non-
monotone dose response [53,54].

Studies conducted on mice revealed that female offspring, in utero exposed to BPA
and fed a high-fat and carbohydrate diet, present with elevated levels of leptin, particularly
at low doses of BPA (0.3 mg/k/day), but this effect is not found in males [15]. In addition,
female rats exposed to BPA in utero (70 µg/kg/day) present an excessive white adipose
tissue mass associated with adipocyte hypertrophy and the upregulation of lipogenic genes,
such as C/EBP-alpha, PPARγ, SREBP-1c, LPL, FAS and SCD-1. In utero exposed male rats
seem less affected but present negative effects when fed a high-fat diet [20]. In the same
way, perinatal exposure of rats to 50 µg/kg/day of BPA leads to adipocyte hypertrophy
under standard feeding conditions and under a high-fat diet, independent of sex [21].

2.4.2. Effect of BPA on the Liver

Epidemiological studies link exposure to BPA to the occurrence of non-alcoholic
fatty liver disease (NAFLD), which is considered a predominant chronic liver disease
worldwide and a component of metabolic syndrome [55–58]. These studies are supported
by experimental data showing that BPA deregulates many energy metabolic pathways in
the liver [20,59–62].

Female rats exposed in utero to 70 µg/kg/day of BPA present an increased expression
of hepatic lipogenic factors (SREBP-1c, FAS et ACC) [20]. In parallel, in response to low
doses of BPA (10–12 to 10–6 M), human HepG2 hepatocytes present an accumulation of
intracellular lipids [62]. Studies conducted by Marmugi et al. revealed an accumulation of
hepatic lipids in mice exposed to BPA via food (50, 500 and 5000 µg/kg/day). This lipid
accumulation was associated with hyperinsulinemia and the disruption of genes involved
in hepatic lipogenesis and cholesterogenesis [61]. These effects on hepatic lipid metabolism
were confirmed by many studies that followed, whether they studied exposures in adults
or in perinatal mice [59,60,63,64].

All of the effects described by Marmugi et al. follow a non-monotonic dose–response
effect, as illustrated in Figure 3 [61]. BPA exposure was also shown to deregulate cholesterol
metabolism after in utero and adult exposure [64,65].
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High doses of BPA (50 mg/kg/day) induce the production of reactive oxygen species
and the repression of anti-oxidant genes (catalase glutathione reductase, glutathione trans-
ferase, glutathione peroxidase) leading to hepatotoxicity in rats [66]. Acute exposure to
BPA at a dose lower than the NOAEL (1.2 mg/kg/day) can induce hepatic lesions and
mitochondrial dysfunctions by increasing oxidative stress, inflammation and lipid perox-
idation in mice [67]. In addition, ALAT and ASAT transaminases, which are markers of
hepatic injury and serum levels of inflammatory cytokines (IL-6 and TNFα), were shown
to be strongly increased 6 h after BPA injection. Studies conducted on human hepatocyte
cell lines (HepG2) confirm these results; a short exposure to 10 or 100 nM of BPA induces
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structural and functional alterations in mitochondria (decreased oxygen consumption, ATP
production and membrane permeability) associated with increased oxidative stress and
inflammation [62,67]. BPA induces endoplasmic reticulum stress via the production of
endoplasmic reticulum oxidoreduction (ERO) in hepatic macrophages [68]. The chronic
activation of endoplasmic reticulum stress plays an important role in the development of
insulin resistance and obesity [69]. The analysis of hepatic signaling pathways of gestating
mice reveals that the Akt phosphorylation pathway (Tht308 residue) is decreased following
BPA exposure (10 µg/kg/day), which reflects insulin resistance [22]. In male mice, BPA
treatment leads to the suppression of the IRS-1 protein, but the Akt pathway does not seem
to be affected [70].

2.4.3. Effect of BPA on the Muscle

In skeletal muscle and in physiological conditions, insulin induces Akt phospho-
rylation. This response is completely suppressed in gestating mice exposed to BPA
(10 µg/kg/day), reflecting insulin resistance [22]. BPA treatment can also affect the MAPK
signaling pathway as revealed by the inability of insulin to induce ERK phosphoryla-
tion [70].

2.5. Mechanism of BPA Action

The effect of BPA on the homeostasis of energy metabolism could be linked to its
interaction with several nuclear receptors.

BPA is a weak agonist of ERα and ERβ estrogen receptors and its estrogen mimetic
properties have long been considered responsible for its effects. However, BPA presents
an affinity for ERα and ERβ receptors thousands of times less than estradiol [71]. Many
studies reveal that BPA interacts with other receptors, suggesting that its estrogenic mimetic
properties cannot explain all adverse effects of BPA [71].

Several studies also demonstrated that BPA binds to the androgen nuclear receptor
(AR) [72,73]. AR is mainly expressed in the testicles, prostate, adrenal glands, kidneys,
brain and pituitary gland. Unlike ERs, BPA antagonizes AR and its affinity is in the micro-
molar range [72]. Low-BPA-dose effects could partly be explained by synergistic actions
through ER receptors (agonist and feminizing actions) and AR receptors (antagonist of the
masculinizing effect).

BPA is a potent ligand of ERRγ nuclear receptor (estrogen-related receptor gamma) [74–76].
The fact that this receptor binds to promoters of estrogen receptor target genes suggests its
involvement in BPA endocrine disrupter effects [77]. ERRγ is known for a positive regula-
tion of adipocyte differentiation [78] the mediation of glucagon effects on liver, induction
of genes involved in gluconeogenesis (Pepck, G6Pase), increase in glucose production and
disruption of hepatic insulin signaling [79]. Therefore, ERRγ could contribute to the effects
of BPA on energetic metabolism.

Watson et al. suggested that BPA could exert part of its effects through membrane
ERα and ERβ [80,81]. Membrane localization of these receptors could result from post-
translational modifications such as palmitoylation [82], which could explain some rapid
effects of BPA. However, this mechanism of action cannot explain low-dose effects. In fact,
it is assumed that membrane forms present the same affinity for BPA as nuclear forms.

A second mediator of the non-genomic effects of BPA could be the G protein trans-
membrane receptor GPR30. In its active state, GPR30 activates a G protein triggering a
signaling cascade. During extended exposure to ligands, receptors are internalized and
desensitized leading to stoppage of signal transduction. GPR30 is localized in endoplasmic
reticulum and can bind to low doses of BPA [83,84]. GPR30 is involved in the insulinotropic
effects of E2 in β pancreatic cells suggesting a mode of action similar to BPA [35].

Xenosensors CAR and PXR are also BPA targets. BPA is described as an agonist of
PXR human form [85–87] but not of the murine form. It is suggested that specific residues
of the human PXR binding pocket allow for BPA binding [86].
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3. Are BPA Substitutes as Obesogenic as BPA?

While BPA is banned from food packaging, many questions remain regarding the isks
presented by BPA substitutes, in particular bisphenol S (BPS) and bisphenol F (BPF), which
are authorized by regulations. A study revealed that, in several countries (Japan, USA,
China, Kuwait and Vietnam), BPS was detected in urine at concentrations comparable
to those of BPA [88]. Many epidemiological studies report an association between BPA
or BPF exposure and obesity or diabetes. In an analysis of the NHANES, urinary BPS
was positively associated with general obesity, especially in children and teenagers [89,90],
and urinary 4,4-BPF concentrations were elevated in obese teens [90]. Similarly, urinary
BPS concentrations were reportedly associated with a significantly increased risk of type
2 diabetes, [91]. However, other studies did not find any association between BPS or BPF
exposure and hyperglycemia [92], or insulin resistance [93]. These epidemiological studies
are supported by experimental studies showing that BPA analogs may have an impact on
human health, especially in terms of obesity and other adverse health effects [94].

3.1. Bisphenol S Effects

As a substitute of BPA, BPS has replaced this substance in several food packaging
products, thermal papers, paper products, personal care products and various other in-
dustrial applications. BPS as BPA is mostly metabolized by conjugation reactions [95]. A
recent study carried out in piglets has shown that the amount of ingested BPS that reaches
the general bloodstream is about 100 times higher than that of BPA [96]. This finding of a
much higher oral bioavailability of BPS compared to BPA (57% vs. 0.5%) has been recently
confirmed by the high estimate of BPS oral bioavailability in humans (62%) [95]. The much
higher BPS oral bioavailability, combined with its longer persistence [97], explains the
much higher systemic exposure to active BPS than BPA [98]. In addition, BPS is a hormon-
ally active substance that displays estrogenic activities comparable to those of BPA [99].
Therefore, these results suggest that the replacement of BPA by BPS may lead to increased
internal exposure to an endocrine-active compounds. Aside from its estrogen-like activities,
many studies revealed that BPS displays metabolic effects similar to those of BPA.

3.1.1. BPS Presents the Same Adipogenic Effect as BPA

Numerous studies show that BPS has the same adipogenic properties as BPA [100–104].
Boucher et al. compared the capacity of BPA and BPS to induce adipocyte differentia-
tion [103]. The authors exposed mouse pre-adipocyte cell lines to different BPA and BPS
concentrations and analyzed its adipogenic effects by evaluating the lipid accumulation
and gene expression of adipogenesis markers. This study revealed that BPS, as with BPA,
induced lipid accumulation and increased adipogenic gene expressions, such as lipoprotein
lipase and adipocytary protein 2 and that this effect involves the PPARγ nuclear receptor.
The potency of BPS adipogenic effects were even greater than those of BPA. This greater
adipogenic effect of BPS has also been reported by other authors [103]. This adipogenic
effect was also observed in sheep and mice after gestational exposure [100,104]. Moreover,
the same effect was revealed in human primary pre-adipocytes in cultures [101] with a
differentiation of human primary pre-adipocytes exposed to BPS and an upregulation of
the gene and protein expression involved in adipogenesis and lipid accumulation. The
authors of the study suggest an involvement of ERα and PPARγ receptors.

3.1.2. Effect of BPS on Carbohydrate and Lipid Metabolism

Perinatal BPS exposure studies have shown metabolic disorders in offspring [105,106].
Brulport et al. demonstrated that perinatal exposure to BPS significantly increased body
weight, the weights of liver and epididymal white adipose tissue (epiWAT) [105]. A
histopathological analysis showed that lipids were significantly accumulated in liver tissues
and epiWAT with BPS exposure. Expressions of genes involved in the inflammatory
pathways were significantly increased in liver tissues and epiWAT. A serum metabolomics
study showed significant changes in the contents of metabolites associated with lipid
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and glucose metabolism [105]. Ivry-Del Moral et al. revealed an effect of BPS on lipid
homeostasis following the perinatal exposure of C57Bl/6 mice [106]. Following perinatal
exposure to BPS, offspring under a high-fat diet presented a more severe obesity than
control mice with more important hyper-insulinemia and fat mass. Perinatal exposure to
BPS also increased the plasmatic clearance of triglycerides in offspring, which revealed more
plasmatic lipid storage. Twenty eight days of exposure to BPS induced an increased and
fasted glycaemia and the induction of hepatic gluconeogenesis and glycogenolysis. Similar
to BPA, BPS has been shown to activate the PPARγ receptor pathway in macrophages and
significantly induce the expression of lipid-metabolism-related genes, including fatty-acid-
binding protein 4 (FABP4) and cluster of differentiation 36 (CD36) [107]. BPS also disrupted
glucose metabolism [108] and was associated with increased food consumption and body
weight gain in mice [109]. Angel Nadal’s group also demonstrated that BPS, similar to BPA,
increases glucose-induced insulin release by pancreatic β-cells. They evidenced a rapid
response due to the closure of KATP channels and a long-term response via the regulation
of ion channel gene expression [110].

3.1.3. Effect of BPS on Central Nervous System

Several studies focused on the effect of BPA on the brain and behavior, but only one
focused on the regions involved in the regulation of energy metabolism [109]. In 2018, Rezg
et al. studied the effects of BPS on hypothalamic neuropeptides and feeding behavior [109].
They administered BPS to mice in drinking water for 10 weeks at 3 doses (25, 50, 100 µg/kg)
and revealed an alteration in the mRNA levels of orexigenic hypothalamic neuropeptide
(AgRP), which regulated feeding behavior and a dysregulation of the hypothalamic apelin-
ergic system. These disruptions could lead to increased food intake and body weight. BPS
exposure could, therefore, contribute to the development of metabolic disorders.

3.2. Other Bisphenols

While BPS is the most studied BPA substitute, other bisphenols, such as BPF, BPAF
and BPB, are increasingly used in several industrial applications and are questionable in
terms of safety. An epidemiological study established a link between urinary concentra-
tions of bisphenol AF (BPAF) and type II diabetes [91]. BPA substitutes, including BPS,
BPB, BPF, and BPAF, were shown to disrupt metabolic functions and insulin signaling in
adipocytes under low, environmentally relevant concentrations through the inhibition of
the PPARγ pathway [102]. Kidani et al. demonstrated that BPB, BPE and BPF decreased
the amounts of intracellular and medium adiponectin [52]. A study conducted on zebra
fish highlighted that the treatment of different doses of BPF induces increased gluconeo-
genesis and suppresses glycolysis [111]. Furthermore, BPF treatment reduces the gene
and protein expression of insulin and gene expression of insulin receptor, suggesting a
decreased insulin sensitivity. A study carried out on humans suggested an obesogenic
effect of bisphenol F accumulation in brain [112]. This study highlighted an association
between BPF accumulation in the hypothalamus and a more important incidence of obesity
evaluated by body mass index. Some studies also showed that BPB activated nuclear
receptors involved in the regulation of energy metabolism, such as PXR [113]; the activation
of hPXR was dose-dependent, and BPB was more potent than BPA, as were hPXR agonists,
at a low concentration (5 µM), and had comparable agonistic effects at high concentrations
(10 and 25 µM) [113].

4. Conclusions

In conclusion, exposure to BPA is associated with the development of metabolic
disorders such as obesity, type II diabetes or fatty liver disease. This link is attested by
numerous epidemiological and experimental reports and reinforced by fairly extensive
mechanistic studies. The studies carried out up to now aimed to assess the effects of
exposure to BPA at doses corresponding to the ADI or the NOAEL; they will now have to
integrate the doses corresponding to the actual human exposure to these compounds. The
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molecules used as substitutes for BPA have very similar chemical structures as BPA and
could, therefore, present the same deleterious effects. In fact, the literature data reported
on some of these substitutes reveal the same deleterious effects than BPA. Regarding
the obesogenic potential of BPS, which is the most common BPA substitute, it appears
that it could be a metabolic disruptor targeting several metabolic organs, both centrally
and peripherally (liver, adipose tissue, muscle, central nervous system). The parameters
affecting the gravity of the outcomes include sex (males are more susceptible than females),
periods and duration of exposure and nutritional context (effects are more often observed in
animals fed a high-fat diet). Metabolic disruptions may include body weight gain but also
the disruption of lipid metabolism and altered food intake/behavior. Modes of action of
BPS are not clearly defined. The disruption of plasmatic levels of estradiol and testosterone
and expression levels of estrogen and glucocorticoid receptors, as well as mitochondrial
dysfunction in liver have been reported following BPS exposure. In addition, recent data
revealed that BPS was more bioavailable than BPA and a urinary analysis carried out in
the United States, Japan or China showed that BPS was already detected in most of the
population (more than 80% in the United States). BPA substitutes must, therefore, be
carefully studied so as not to have similar structures and deleterious effects as BPA.
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