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Abstract

The circulation of livestock pathogens in the pig industry is strongly related to animal move-

ments. Epidemiological models developed to understand the circulation of pathogens within

the industry should include the probability of transmission via between-farm contacts. The

pig industry presents a structured network in time and space, whose composition changes

over time. Therefore, to improve the predictive capabilities of epidemiological models, it is

important to identify the drivers of farmers’ choices in terms of trade partnerships. Combin-

ing complex network analysis approaches and exponential random graph models, this study

aims to analyze patterns of the swine industry network and identify key factors responsible

for between-farm contacts at the French scale. The analysis confirms the topological stabil-

ity of the network over time while highlighting the important roles of companies, types of

farm, farm sizes, outdoor housing systems and batch-rearing systems. Both approaches

revealed to be complementary and very effective to understand the drivers of the network.

Results of this study are promising for future developments of epidemiological models for

livestock diseases. This study is part of the One Health European Joint Programme:

BIOPIGEE.

Introduction

Livestock mobility is one of the important factors in the emergence and spread of infectious

diseases [1–3]. Therefore, studying the structure of commercial exchanges between production

holdings is particularly informative with regards to potential transmission routes [4]. Captur-

ing interactions in heterogeneous populations is proving to be very effective in providing rele-

vant information to develop network-based monitoring and control strategies [5, 6].
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In France, the swine population is distributed among different facilities, including facilities

of the industry, such as farms or slaughterhouses, but also private or event-related facilities,

such as zoos. All these facilities are connected by the trade of live animals, thus forming a com-

plex network whose drivers and structure can be analyzed. In the swine industry, the timing of

animal movements follows strict rules, with a specific residence time in each production stage

defined by the farming system. However, while the movement schedule is deterministic, the

destination of animals is left to the farmer’s choice. Even if, largely established by contractual

relationships, the global contact patterns do not vary to a large extent, the loyalty of agricul-

tural trading partners can be somehow volatile [7, 8]. Therefore, even if the global topology of

the network is stable over time, the between-farm movements change, owing to specific drivers

such as holding types [9]. The network observed at time t will have the same topology/struc-

ture as the network observed at time t + 1 but could be composed of a different set of between-

farm movements; for instance, movements observed in 2019 will probably differ from those

observed in 2015, but the global structure and properties of both networks should remain simi-

lar. Therefore, an in-depth study of the network of farm-to-farm contacts would provide a bet-

ter understanding of the spread of infectious livestock diseases. Identifying the key factors that

determine farmers’ choices of trade partnerships could provide relevant information for simu-

lating realistic connections within the production chain and identify potential hot spots for

prevention, surveillance and control.

Since the mid-1980s, during the first HIV epidemics [10], network analysis methods have

been widely used to study the spread of infectious diseases and has become more and more

common over the years [2, 4, 8, 11–14]. They have proven to be powerful to describe static

and, recently, dynamic networks [15–18]. Different methods have been developed to predict

links in complex networks [19, 20]. These methods usually take into account either structural

metrics/attributes of the networks or characteristics of nodes and edges, but rarely all at the

same time. Network drivers, affecting the contact probabilities between farms, can be analyzed

using more advanced tools such as exponential random graph models (ERGMs) that have

been under development in recent years [21–23]. ERGMs are a class of statistical models based

on exponential-family graph theory aiming to analyze network data. By specifying the proba-

bility distribution for a set of random networks, it allows to highlight the most probable con-

tacts in a structured population. They appear to be appropriate tools for analyzing farm

interactions by taking into account both network topology, and farms and movements’ charac-

teristics [24, 25].

This study uses complex network analysis (CNA) methods, including the fitting of ERGMs,

to describe French pig farm network’s characteristics and determine drivers of trade

partnerships.

Materials and methods

Data

Database description. As a part of their activities of disease surveillance and control, the

French Ministry of Agriculture has established a database on Swine owners and movements

since 2009 (BDporc). This database is managed by different professionals in the pig industry

and contains information about the pigs holdings in France, as well as livestock movements

among them. For this study we used i) the 2012–2014 data pre-processed for a previous analy-

sis [8], this dataset includes farms, slaughterhouses, gathering centers, traders, markets, stop-

ping points and agricultural cooperatives (companies), ii) annual farm exports recorded from

2015 to 2020, iii) slaughterhouses, rendering plants and gathering centers information

exported from the database in March 2021.
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Holdings. The details of the holdings were based on different exports from the database. In

the databases, swine holdings are reported with their own coordinates. Two holdings more

than 500 meters apart were considered as different holdings, even if they belonged to the same

farm/owner. The datasets include a set of elements characterizing the agricultural activities of

each establishment. These characteristics include: i) the owner identification, ii) the holding

identification, iii) the geographical information including address, post code/city, country and

GPS coordinates, iv) the production type, v) the main husbandry activity, vi) the reared spe-

cies, vii) the eventual outdoor areas, viii) the respective sizes of reproduction, post weaning

and fattening areas and ix) the eventual company identification (see details in Table 1). Slaugh-

terhouses, rendering plants and gathering centers information contained identification num-

ber, address, city and owner.

Movements. Movement information is continuously recorded by transporters, farmers and

administrations: every time an animal is moved from one holding to another the transport’s

ID number, places of origin, staging and destination, number and type of animals transported

(piglet, pig, barrow, sow or cull), and the date are recorded. This information can be aggre-

gated to establish the flows of animals between different holdings. Used datasets were extracted

from the annual pig movements database from 2017 to 2020.

Data cleaning and pre-processing. The different datasets recording holdings information

were cross-referenced by saving the most recent record when an holding appeared in several

databases. Geographical coordinates were checked and, when missing, town center coordi-

nates were used using OpenStreetMap Nominatim via the R package tmaptools [26]. Holdings

without coordinates or town information were removed. The type of some farms was adapted

according to the size of the reported areas (e.g. a finisher reporting post-weaning animals was

changed to post-weaner/finisher). The status of multiplier and nucleus was used to define the

type of farm independently of the type of farm initially declared.

The movement database included both national and international movements. However,

exports and imports of foreign animals were recorded at country level without specific geo-

graphical coordinates. Therefore, movements from/to foreign countries were only used for

descriptive purposes and were removed from further analysis. Movements for which essential

information was missing (e.g. transport identification numbers, holdings identification num-

bers or animal category) were also removed from the analysis. Movements related to direct

sales (from the producer to the consumer without going through commercial channels),

domestic slaughter and unmarked animals were also removed. Assuming that movements

Table 1. Details of holdings characteristics.

Characteristics Options

Production types Production for sale, Multipliers, Nucleus, Production for personal consumption,

Production neither for sell nor consumption, Boar station, Wild boars.

Husbandry activities Fattening, Post-weaning-Fattening, Farrowing-Fattening, Farrowing, Leisure pigs (pet),

Post-weaning, Farrowing-post-weaning, Wild boar production, Laboratory/Research,

Show pigs (park, refuge, zoo. . .).

Reared species Pigs or wild boars

Batch-rearing systems�

(BRS)

4-batchs, 5-batchs, 7-batchs, 10-batchs, 20-batchs

� Also called batch management production systems, it is characterized by the number of batch reared

simultaneously and the duration of weaning. It defines the within-farm dynamics and structure. As it was not

available in the database, it was estimated from the import and export frequencies and the size of the holdings. This

approximation was justified by the proportion of farms in each BRS in the total industry.

https://doi.org/10.1371/journal.pone.0266457.t001
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from/to the overseas territories might depend on a different agro-economic and social systems

than on the mainland, they were also removed.

The movement and holdings databases were cross-referenced. Holdings involved in at least

one loading or unloading event during the period under study (2017–2019) were considered

active. Only active holdings and movements between them were kept in the analysis. By look-

ing for consistency between the types of animals shipped and the types of farms, inconsistent

movements were removed (e.g. movements of barrows from farrowers were removed as well

as movements of piglets from finishers). Finally, as the movement database is composed of

ordered loading and unloading events, only movements with at least one loading event and

one unloading event starting with a loading were kept.

To simplify the analysis, the transit of trucks without any loading or unloading event was

not taken into account, thus focusing on diseases transmitted by direct contact. For each trans-

portation, the records were divided according to the types of animals transported. For each

type of animal, directed movements were created from the loading farms to the unloading

farms when the loading event took place before the unloading events, as described in the

method for the animal introduction model [8].

Network analysis

A general description of the movement patterns in the whole French swine population was

performed, whilst the in-depth analysis was limited only to the industrial sector. The swine

industry is made up of different actors, including farms, slaughterhouses and traders. Highly

structured in space and time, it is composed of two main sectors: the breeding sector including

boar stations (insemination centre) and nucleus that supply gilts, nulliparous female pigs and

boars to the multipliers, which produce pigs and breeding sows to supply the growing sector.

The growing sector is composed of several types of farms ensuring the different production

stages from farrowing to fattening. Depending on their type and size, each farm may consist of

a gestation/breeding area, a maternity/farrowing area, a growing/weaning area and/or a finish-

ing/fattening area. Animals are moved over time from one production area to another, either

within the same farm or from one farm to another, before being sent to slaughter.

For the network analysis, the pig industry was represented as a set of nodes/holdings

defined as geographical places where live animals are gathered. Those nodes are connected by

edges/movements of live animals due to trade. The complex network formed by the intercon-

nected pig holdings is characterized by endogenous (structural characteristics) and exogenous

(node and edge characteristics) processes. In order to understand the main drivers of between-

farm movements/farm connectivity—in other words, what motivates farmers’ import and

export choices, and to highlight the central industry actors that should be targeted for surveil-

lance and control, a comprehensive descriptive analysis of the interactions was carried out, fol-

lowed by a more advanced analysis using exponential random graph models.

Exploratory analysis. Animal movements were analysed using complex network analysis

(CNA) tools. The analysis was performed using R software [27] and more specifically the

igraph package [28]. Several directed and unweighted networks were built using specific sub-

sets of movements depending on the objectives.

The general description of the network was carried out for the whole period 2017–2020. To

serve epidemiological concerns, the CNA was then focused on industrial pig production only

including commercial farms and slaughterhouses. The network indicators, described in

Table 2, were calculated to describe the general structure of the network in relation to our epi-

demiological concerns. The industry being composed of disconnected clusters (connected

components), the closeness was not considered. In order to preserve the complexity of the
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network and to extract meaningful information, the stability of the network structure over

time was assessed. For this purpose, and considering the fact that trade in the pig production

sector in European countries is generally not seasonal [29–31], network indicators were calcu-

lated for various time windows and compared: annual networks, half-yearly networks and

monthly networks.

The observed network during the second half of 2019 was then analyzed at three different

scales: i) as a whole, and then divided into sub-networks to better analyze inter-farms interac-

tions: ii) based on both production sectors: a breeding sub-network limited to nucleus, multi-

pliers and boar stations, and a growing sub-network limited to farms raising pigs to sell them

for consumption, and iii) based on the type of transported animals: sows (including breeding

sows, gilts and nulliparous female pigs), piglets (defined as 8kg animals) and growing pigs

(defined as 25kg animals). Between-farm movements drawn by barrow and culled animals

were not considered because of the uncertainty on their consistency. The boar stations, pro-

ducing semen for artificial insemination, were considered as epidemiological dead ends and

removed from the analysis. Indeed, their role in animal movement is negligible. Furthermore,

these nodes are submitted to strict biosecurity protocols and frequent tests to avoid pathogen

transmission in semen. For all these reasons, owing to our objectives to derive the key features

Table 2. Networks metrics calculated for each network to analyse network structure.

Indicator Description

Vertices number Number of active holdings in the network

Edges number Number of movements in the network

Median indegree Median number of incoming movements per holding. The median

was calculated only considering holdings receiving animals

(indegree 6¼ 0)

Median outdegree Median number of outcoming movements per holding. The

median was calculated only considering holdings exporting

animals (outdegree 6¼ 0)

Average relative betweenness Average frequency with which a holding falls between pairs of

other holdings on the geodesic (shortest) path connecting them

divided by the maximum value it can take in the network

Weakly connected components Groups of holdings where every pair of nodes is connected by a

directed path.

Strongly connected components Groups of holdings where every pair of nodes are connected either

by a directed path or by a succession of directed path.

Transitivity Probability that the adjacent holdings of a holding are connected

to each other. Transitivity is only defined for undirected networks,

therefore, we considered that all triadic configurations were

transitive, the link direction was ignored.

Density Ratio of the number of recorded movements and the total number

of possible movements for active holdings

Diameter Largest geodesic distance in the network—maximum shortest path

length between two holdings

Degree assortativity Pearson correlation coefficient between the degrees of linked

holdings

Reciprocity ratio Proportion of mutual connections in the network

Average path length Average number of movements along the shortest paths (or

geodesics) between all pairs of nodes

Proportion of nodes with the average Jaccard

similarity coefficient equal to zero

Average number of common neighbours of two holdings divided

by the number of neighbours of each of the two considered

holdings. A neighbour being an adjacent holding

Average distance Average Euclidian (geographical) distance per pairs of holdings

https://doi.org/10.1371/journal.pone.0266457.t002
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of pig movement network in view to analyse the impact on pathogen spread, boar stations

were effectively ignored in the analysis.

Random networks simulation using exponential random graph model. An exponential

random graph model was selected and fitted for each sub-network based on the type of trans-

ported animals. ERGM is a class of statistical model for network analysis and simulation. It

aims to analyse the effect of the network topology and the characteristics of its nodes and/or

links on the presence (and absence) of network ties (movements in our case) between 2 nodes

(pig holdings in our case). Based on those features, ERGMs models the network, identifying

the probability distribution of any network so that large samples of networks can be generated.

Model selection. The analysis was performed using the R software [27] and more specifi-

cally the statnet and ERGM packages [32, 33]. A set of explaining variables was selected for

each ERGM by sequential tests, following a bidirectional stepwise procedure. Starting with a

forward approach from the simplest model including only edges as a predictor, the addition of

each network statistic was tested sequentially, to identify a relevant subset of predictors (net-

work statistics) for each final model. Then, a backward approach was used sequentially remov-

ing the previously selected predictors from the model to keep only those improving the model

fit. Forward and backward approaches were implemented in turn until the Akaike Information

Criterion (AIC) indicator of the model parsimony could not be improved by adding or remov-

ing any variable. Model fits were only considered when the ERGM fit stopped after the first

estimation (using the maximum pseudo-likelihood estimates, MPLEs) or when the maximum

likelihood estimation (MLE) converged without generating any warning (using a Markov

Chain Monte–Carlo estimation algorithm (MCMC) with a Metropolis-Hastings sampler). To

face computational issues related to the fitting of ERGMs on big networks, most of selected

attributes were dyad-independent (with only covariate effects) estimated through MPLE on

the complete network. Those estimation induced faster estimations than the Monte Carlo

maximum likelihood estimation (MCMLE) [34].

Goodness of fit, cross-validation and visual comparison. In-sample performance was

assessed for each selected ERGM by a Goodness of fit (Gof) analysis comparing six structural

statistics of the observed network to those of networks randomly simulated by the fitted

ERGM [35, 36]. 4000, 5000 and 6000 networks were randomly simulated to achieve the Gof

for sows, piglets and growing pigs sub-network models respectively. The number of simulated

networks were adjusted to stabilize the output, it depended on the size of the sub-network. The

compared statistics were the in-degree, the out-degree, the minimum geodesic distance, the

triad census distribution, the edge-wise shared partners and the dyad-wise shared partners.

Those statistics are commonly used to test the Gof of ERGMs fitted to directed networks. They

reflect the clustering of the network that can impact the disease spread dynamics [36]. Random

simulated networks were also mapped and visually compared to sub-networks observed dur-

ing the second semester of 2019 (6-months period from July to December). Finally, out-of-

sample performance was assessed for each selected ERGM by a cross-validation approach

comparing simulated statistics and maps to those of the networks observed on other semester/

6-months period (before and after 2019).

Results

Data

Information were gathered on a total of 28,061 pig holdings and 1,426,865 transportation com-

posed of 3,606,086 loading and unloading records occurring between 01/01/2017 and 31/12/

2020. In total, 372,608 loading/unloading records (10%) were removed from the initial records

for one or several of the following reasons: related to international transportation (25,073
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records—1%), related to direct selling, household slaughter, unmarked animals (14,982 rec-

ords—0%), missing site or transport identification (15,643 records—0%), related to an unre-

corded holding (63,256 records—2%), related to removal of animals (death or missing)

(148,063 records—4%), missing loading or unloading record (108,668 records—3%), related

to one of the 303 holdings belonging to overseas territories (29,223 records—1%). In total,

10,442 holdings (37% of the initial dataset) were not involved in any movement record either

because they did not report their movements or because they stopped raising pigs before 2017.

Those holdings were considered as inactive and were removed from the analysis. The final

dataset contained 3,234,289 loading and unloading records involving 17,316 holdings.

Network analysis

General desciption. Most of the holdings involved in national movements of pigs were

farms raising pigs for consumption, either to sell (86%) or for personal consumption (4%).

Almost 94% of the active holdings were part of the pig industry, including multipliers (1.37%),

nucleus (0.57%), boar stations (0.33%), farrowers (2.55%), farrowers-post-weaners (2.09%),

farrowers-to-finishers (34.20%), post-weaners (0.56%), post-weaners-to-finishers (14.58%)

and finishers (37.36%). Most of the active farms were ‘finisher’, ‘farrowers-to-finishers’ or

‘post-weaners-to-finishers’ (Fig 1 on the left). International movements involved 42 countries.

Most of the international trade involved European countries, with international exports head-

ing to Belgium (56%), Germany (15%), Italy (10%), Spain (8%) and the Luxembourg (5%)

respectively, and international imports coming from Belgium (57%), Denmark (17%), the

Netherlands (12%), Germany (7%) and Spain (5%) respectively.

Focusing on the pig industry (boar station: BS, nucleus: NU, multipliers: MU, farrowers:

FA, farrowers-to-finishers: FF, finishers: FI, farrowers-post-weaners: FPW, post-weaners: PW,

post-weaners-finishers: PWF), the total number of active farms varied on average by 1.7% per

year. For more information, see S1–S3 Tables. Most of the movements (Fig 1 on the right)

were headed to slaughterhouses (75.8%), followed by farms (19%) and gathering centers (4%).

Sows were the main animal category involved in between-farm movements (35% of move-

ments), followed by piglets (32%) and growing pigs (30%). The main observed patterns were

the export of barrows from FF (34.26%), FI (15.24%) and PWF (13.73%) to slaughterhouses.

The median number of transported animals varied with the type of transported animals as well

as the origin and the destination sites. The median and 95% confidence intervals for the num-

bers of piglets, growing pigs, barrows and sows unloaded into a farm were respectively 172 [30;

678], 180 [8; 594], 14 [1; 257] and 8 [1; 40], whereas batches of 15 [1; 114], 3 [1; 126], 100 [1;

211] and 2 [1; 72] pigs were unloaded at slaughterhouses.

The distribution of geographic distances between connected sites varied with the animal

category. Focusing on between-farm movements, the median and 95% confidence interval for

distance traveled by breeding pigs, piglets and growing pigs respectively were 99 km [7; 545],

55 km [3; 236] and 39 [1; 249]. We can also note that the distance of exchanges between breed-

ers (MU, NU, BS) was generally higher (154 km [2; 590]) than between growers (FA, PW, FI,

FPW, PWF, FF: 43 [1; 261]).

Analysis of observed networks. The distribution of active holdings and movements was

not homogeneous in space, e.g. most of the pig industry was gathered in north-western France

(Fig 2). Monthly, semestrial and annual network metrics were calculated for the whole indus-

try and the five sub-networks. For more information, see S1–S18 Tables.

The global number of active holdings (including all facilities, not only farms) per year

increased from 2017 to 2019 (1.12% in 2018 and 0.82% in 2019) and then decreased in 2020

(-3.64%). The same tendency was observed in the industry with active farms annually varying
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by 1.33%, 0.68% and -3.52%. Conversely, the number of movements, as well as the number of

loaded animals, only decreased during the studied period (Table 3).

Complex networks analysis. Focusing on understanding farmers’ choices of trading part-

ners, variables were limited to node and link attributes, with the exception of edges used to sta-

bilize the number of links generated. Based on the analysis of the sub-networks observed in the

second half of 2019, a set of variables (network statistic translated by an association of an

ERGM term with a network attribute, see [21] for more information about terms) was identi-

fied as relevant to drive the network dynamics (Table 4). Network statistics included in the

models were described in Tables 5 and 6. Model summaries including estimates and p-values,

as well as model parameters are provided in supporting information, see S1–S3 Files.

Whole network, breeding and growing sector sub-networks characteristics (Fig 3). Most

of the active holdings were part of the growing sector (FA, PW, FI, FPW, PWF and FF farms).

The number of active holdings appeared to be stable over time regardless of the studied period.

The*85,000 movements between farms per year mainly occurred within the growing sector

(54,538 mov/year on average) and between the breeding (MU and NU farms and BS) and

growing sectors, while movements within the breeding sector were in the minority (2,967

mov/year on average). Simplifying the networks by merging multiple movements did not

change this pattern. There were fewer, smaller weakly- and strongly-connected components in

the breeding sector than in the growing sector. While 99% of the connected components have

less than 10 farms in the breeding sector, the growing sector is composed of connected compo-

nents involving more than 150 farms. Although the median numbers of trading partners for

either export (outdegree) or import (indegree) were similar in the breeding and growing net-

works, the median out-degrees in the growing network were slightly higher than in the

Fig 1. Aggregated and directed French swine networks. Number of animals exchanged between the different actors of the swine production by type of animal: total

network (left), between-farm network (right). Colors of the arrows correspond to different type of animal, thickness of the arrows corresponds to the amount of

animals. Colours of the circles correspond to different type of holdings and their size corresponds to the relative number of farms of that type. BS: boar station, EX:

exposition (zoo, . . .), FA: farrowers, FF: farrowers-to-finishers, FI: finishers, FPW: farrowers-post-weaners, GC: gathering center, HP: hobby pigs, LAB: laboratory,

MU: multipliers, NU: nucleus, OT: other, PW: post-weaners, PWF: post-weaners-finishers, QU: Quarantine center, RP: rendering plant, SL: slaughterhouse, ST:

Stopping point, TR: trader, UN: unknown, WB: wild boar.

https://doi.org/10.1371/journal.pone.0266457.g001
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Fig 2. Observed French swine networks during the second semester of 2019. Mapping of active French swine holdings and animal movements during the second

semester of 2019: whole industry (top), breeding sector (center-left), growing sector (center-right), transport of piglets (bottom-left), transport of growing pigs

(bottom-center) and sows (bottom-right).

https://doi.org/10.1371/journal.pone.0266457.g002

Table 3. Recorded annual variation in pigs holdings and movements. Observed variations (%) in the whole database

and in the industry (in brackets).

2017–2018 2018–2019 2019–2020

Number of active holdings 1.12% (1.33%) 0.82% (0.68%) -3.64% (-3.52%)

Number of transports -0.12% (0.00%) -3.52% (-3.14%) -13.52% (-12.74%)

Number of transported animals -1.36% (-1.31%) -0.21% (-0.07%) -7.92% (-7.77%)

https://doi.org/10.1371/journal.pone.0266457.t003
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growing networks, likely due to the three stages of production (birth/weaning; post-weaning;

fattening) that allow for more trade along the production chain. As expected, the betweenness

was higher in the whole network than in the within sector networks. The average densities

were low, despite being higher in the breeding sector network. Except for the annual breeding

network, the degree assortativity of all networks was negative (i.e. networks were

Table 4. Network statistics included in the forward stepwise process for exponential random graph model selection. Network attributes in columns were associated

with one to five exponential random graph terms (rows). Attributes and terms are described in Tables 5 and 6.

edges distances company type BRS indus.sect size outdoor insularity

edges X

edgecov X

nodefactor X X X X X X X

nodeifactor X X X X X X X

nodeofactor X X X X X X X

nodematch X

nodemix X X X X X X

https://doi.org/10.1371/journal.pone.0266457.t004

Table 5. Description of network attributes.

Type Attribute Description

Edge attribute Between-farm

distances

Distance matrix per farm pair

Nodal attribute Batch rearing

system (BRS)

The batch rearing system (BRS) was also a qualitative variable with 8 levels

based on the capacity of the farm and the most frequent interval of days

between two imports (intD) over the 2016/2020 period as a proxy of the

number of simultaneous batches in the rearing system: “4”, “5”, “7”, “10”,

“small.10”, “20”, “small.20”, “unidentifiable”

Nodal attribute Company Farms can be either independent or be part of a specific company

Nodal attribute Insularity The holdings located in Corsica were differentiated from those on the

mainland

Nodal attribute Outdoor housing

system

Regarding the outdoor housing system, farms were divided into two

categories: those with at least one outdoor rearing area and those with no

outdoor rearing activity

Nodal attribute Sector of the

industry

According to their type, Farms can be part of the breeding sector (MU and

NU) or of the growing sector (FA, FPW, FF, PW, PWF and FI). The indus.
sect attribute was a 2-levels qualitative variable, basically synthetizing types

attributes. According to the parsimony principle, this synthetic attribute

aimed at reducing the number of variables in the final models

Nodal attribute Size Farm size is a qualitative variable with 3 levels based on the number of

animals (nA): small, regular, large. For farms with a farrowing area, the

number of sow was used as reference, however in the remaining, holdings

with a post weaning area were categorised based on the number of growing

pigs and finally finishers were categorised based on the number of barrows.

For each type of holding, quantiles were calculated and size was attributed

as follow:

nA < 25th percentile: small;

25th percentile<= nA< 75th percentile: regular;

nA >= 75th percentile: large

Nodal attribute Type of farm The farm typology was a qualitative variable of 7 levels: specifying the type

of production in the farm: farrow: “FA”, post-wean: “PW”, finish: “FI”,

farrow-to-finish: “FF”, farrow-to-postwean: “FPW”, postweaning-to-

fininsh: “PWF”, multiplier: “MU”, nucleus: “NU”

Structural

attribute

edges Number of edges in the network

https://doi.org/10.1371/journal.pone.0266457.t005
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disassortatives). The annual breeding network presented a positive degree assortativity indicat-

ing that farms were more often connected to nodes with similar number of trade partners.

While being slightly higher in the breeding network than in the growing network, the reci-

procity ratio remained low in all networks depicting rare bidirectional trade exchanges. The

longer the studied time period, the higher the transitivity. While transitivity was higher in the

breeding networks than in the growing ones, it also remained low in all networks (< 4%). The

average path length was higher in the whole networks, with farms being connected by three

animal movements over a year on average, than in the breeding or the growing networks,

where farms were connected by two animal movements over a year on average, which is con-

sistent with the pyramidal structure of the industry. In all networks, almost 100% of the farms

presented a Jaccard similarity coefficient equal to zero. Only the breeding networks presented

a small amount (<10%) of farms with a Jaccard similarity coefficient > 0. This coefficient was

decreasing with the duration of the study period. The median distance of movements within

the livestock sector was more than twice that of movements within the growing sector.

Sows, piglets and growing pigs sub-networks characteristics (Fig 4). The number of

active farms involved in the transportation of growing pigs between farms was higher than

those involved in piglets and sows movements, while the average number of movements was

similar in all sub-networks. The number of active farms composing semestrial sub-networks

was close to those of annual sub-networks. With identical numbers of movements, the growing

pigs sub-network presented the highest number of isolated connected components while sows

sub-network was composed of very few isolated connected components. Consequently, con-

nected components in the sow’s sub-network were slightly bigger than in other sub-networks.

Median out-degrees were higher in networks built from transport of sows than in networks

built from transport of piglets and growing pigs, and average betweenness was higher in net-

works built from transport of sows. The density was also higher in sows network than in piglets

network, the latter presenting higher density than growing pigs network. The diameter of

sow’s sub-networks were slightly higher than in other sub-networks. Only the sub-networks

based on sows transport presented a positive degree assortativity indicating that farms were

Table 6. Description of exponential random graph model terms used in the stepwise approach.

Type ERGM

terms

Description

Edge attribute-based edgecov Sum of quantitative edge attributes of all movements of the network

Nodal attribute-based nodefactor Number of times a farm with a given attribute is involved in a movement

of the network

Nodal attribute-based nodeifactor Number of times a farm with a given attribute is the destination of a

movement

Nodal attribute-based nodeofactor Number of times a farm with a given attribute is the origin of a

movement

Nodal attribute-based

(interaction)

nodematch Uniform or differential homophily. The ‘uniform homophily’ is the

number of movements in the network between two holdings having the

same given attribute. All categories of the attribute are assumed to have

the same propensity for within-group movements. The ‘differential

homophily’ is calculated for each level of the attribute. It is the number of

movements between two farms with the same given level of an attribute

in the entire network (e.g the number of movements connecting two

farms of a given company). Attribute levels are assumed to have

independent propensities for within-group movements.

Nodal attribute-based

(interaction)

nodemix nodemix calculates, for each possible pairing of attribute levels, the

number of edges in the network linking two farms with that pairing of

values (e.g. number of movements from nucleus to farrow)

https://doi.org/10.1371/journal.pone.0266457.t006
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more often connected to farms with similar number of trade partners. Reciprocity was close to

zero in all sub-networks, despite being relative higher in sow’s and growing pig’s sub-net-

works. As expected, transitivity was small in all sub-networks. The average path length was

close to one in all networks, indicating that farms were connected by only one animal move-

ments on average. Regardless of the considered period, most of the farms presented a Jaccard

similarity coefficient equal to zero, especially in the growing pigs sub-networks. The median

distance of sow movements was significantly longer than in piglets and growing pigs

movements.

Key drivers of movements. The selected models for the sub-networks based on the animal

transports contained 98, 70 and 96 significant co-variables respectively. 13 network statistics

were common to all three sub-networks; they included edges, various effects of the different

companies (mainly related to trade within companies), the specific movements from nucleus

to farrow-to-finish farms and the involvement of post-weaners-to-finishers farms within the

network (Table 7). Estimates for both the nucleus to farrow-to-finish movements and the

implication of post-weaners-to-finishers farms in movements were negative in piglets and

sows models and positive in growing pigs model, see S1–S3 Files. None of the selected models

included the distance effect. None of the selected models included dyad dependent network

statistics requiring MCMC estimation [32, 37]. The stepwise selection process started by dras-

tically reducing the AIC and then reached a plateau before stopping at models with AICs of

50,869.05, 59,775.3 and 84,603.91 for the sows, piglets and growing pigs models respectively.

Fig 3. Network centralities per production sector. Average network centralities per month, semester and year for the whole industry, the breeding sector and the

growing sector.

https://doi.org/10.1371/journal.pone.0266457.g003
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For all three models, the selected variables correctly reproduced the global properties of the

observed networks. The Goodness of fit (Gof) plots (Figs 5–7) showed that despite the absence

of ‘structural’ statistics in the models (except for ‘edges’), the observed network statistics (col-

ored lines) were well captured by the distribution of the simulated network statistics values

generated with the final ERGMs (underlying boxplots). While the models were fitted on the

data of the second semester of 2019 (thick blue lines), the goodness of fit diagnostic showed a

good fit with data of other semesters, whether they happened earlier (2017–2018) or later

(2020) than the calibration data. Graphical comparison of observed and simulated networks

maps also suggest a good fit of the models (Figs 8–10). According to the graphical Gof and

maps study, the sow sub-networks had the best fit among three models. It was also the smallest

sub-network.

Sows. Starting from the simplest model including only the edges and resulting in an AIC of

83,632.26, the stepwise forward procedure selected 98 network statistics among the 322 tested.

28,838 models were run and analyzed to obtain the best fit. The best fit was obtained using 98

covariables grouped into 18 different sets of term/attribute. The key variables involved edges

structural attribute, breeding sector, company, outdoor housing system, types of farm, location

on Corsica and type of batch rearing systems. The selection process allowed to reduce the AIC

to 50,869.05. The cross-validation on the Gof showed a good adjustment of the model with dis-

tribution of simulated statistics mainly including the observed distribution (Fig 5). Visually,

the mapping of the simulated networks was also very similar to the observed network (Fig 8).

Fig 4. Network centralities per type of transported animals. Average network centralities per month, semester and year for the networks respectively built from the

transport of sows, piglets and growing pigs.

https://doi.org/10.1371/journal.pone.0266457.g004
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The highly significant variables with the highest estimates were the breeding farms and finish-

ers as senders, the trade between multipliers, the trade within the Companies 31 and 40 and

the trade from nucleus to both multipliers and farrow-to-finish farms, see S1 File.

Piglets. Starting from the simplest model including only the edges and resulting in an

AIC of 84,163, the stepwise forward procedure selected 70 variables among the 312 tested.

19,070 models were run and analyzed to obtain the best fit. The best fit was obtained using

70 covariables grouped into 18 different sets of term/attribute. The key variables also

involved edges structural attribute, breeding sector, company, outdoor housing system,

types of farm and type of batch rearing systems but not location on Corsica, all farms

involved in piglets movements being located on the mainland, this was expected. The AIC

of the selected model was equal to 59,775.3. Although the number of farms with high inde-

grees and outdegrees was slightly under-predicted, the cross-validation on the Gof still

showed a good fit of the selected model (Fig 6). Visually, the mapping of the simulated net-

works appeared denser than the observed network, but the main patterns in the western

side of the country were correctly reproduced by the ERGM (Fig 9). The highly significant

variables with the highest estimates were the trade within companies (homophily) and espe-

cially within Company 37 and the trade from farrowers to both post-weaners and post-

weaners/finishers, see S2 File. Edges variable was significant with a negative estimate, limit-

ing the number of generated links.

Growing pigs. Starting from the simplest model including only the edges and resulting in

an AIC of 111,648.9, the stepwise forward procedure selected 96 variables among the 334

tested. 27,252 models were run and analyzed to obtain the best fit. The best fit was obtained

Table 7. Network statistics selected for each exponential random graph model.

Attribute ERGM term Sows model Piglets model Growing pigs model

edges edges X X X

Batch rearing system nodefactor X X X

nodeifactor X X

nodeofactor X X X

nodematch X X

nodemix X X X

Company nodefactor X X X

nodeifactor X X X

nodeofactor X X X

nodematch X X X

Insularity nodeifactor X

nodemix X X

Outdoor housing system nodefactor X X

nodeofactor X

nodemix X X X

Size of farm nodeifactor X

nodeofactor X X

nodematch X

nodemix X X X

Type of farm nodefactor X X X

nodeifactor X X

nodeofactor X X X

nodemix X X X

https://doi.org/10.1371/journal.pone.0266457.t007
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using 96 covariables grouped into 23 different sets of term/attribute. The key variables also

involved edges structural attribute, breeding sector, company, outdoor housing system, types

of farm, location on Corsica and type of batch rearing system. The AIC of the selected model

was equal to 84,603.91. As for the piglet network, even though the distribution of simulated

indegrees and outdegrees was slightly lower than the observed distribution, the cross-

Fig 5. Goodness of fit of the sows model. Goodness of fit of the model adjusted for the transport of sows. Metrics of 4000 simulated networks (boxplot) are compared

to metrics of observed semestrial network. Data of the second semester of 2019 were used for model fit (thick blue line). Colors correspond to different semesters’

networks. Details of the network metrics: A: indegree distribution, B: outdegree distribution, C: edgewise shared partners distribution, D: dyadwise shared partners

distribution, E: minimum geodesic distance distribution, F: triads census, G: performance of the final model on in-model statistics.

https://doi.org/10.1371/journal.pone.0266457.g005
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validation on the gof showed a good fit of the selected model (Fig 7). Visually, the mapping of

the simulated networks seems to show that this is the least well fitted model with simulated

networks slightly less structured than the observed network however once again the main pat-

terns were correctly reproduced by the selected ERGM (Fig 10). The highly significant vari-

ables with the highest estimates were the trade within companies and especially within

companies 5 and 13, the trade from farrow-to-finish farms to finishers, post-weaners/

Fig 6. Goodness of fit of the piglets model. Goodness of fit of the model adjusted for the transport of piglets. Metrics of 5000 simulated networks (boxplot) are

compared to metrics of observed semestrial network. Data of the second semester of 2019 were used for model fit (thick blue line). Colors correspond to different

semesters’ networks. Details of the network metrics: A: indegree distribution, B: outdegree distribution, C: edgewise shared partners distribution, D: dyadwise shared

partners distribution, E: minimum geodesic distance distribution, F: triads census, G: performance of the final model on in-model statistics.

https://doi.org/10.1371/journal.pone.0266457.g006
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finishers, nucleus and farrow-to-finish farm and finally the status of farrower-post-weaners,

post-weaners and more generally breeding farms as senders, see S3 File for more details. Like

for piglet network, edges variable was significant with a negative estimate, limiting the number

of generated links.

Fig 7. Goodness of fit of the growing pigs model. Goodness of fit of the model adjusted for the transport of growing pigs. Metrics of 6000 simulated networks

(boxplot) are compared to metrics of observed semestrial network. Data of the second semester of 2019 were used for model fit (thick blue line). Colors correspond to

different semesters’ networks. Details of the network metrics: A: indegree distribution, B: outdegree distribution, C: edgewise shared partners distribution, D: dyadwise

shared partners distribution, E: minimum geodesic distance distribution, F: triads census, G: performance of the final model on in-model statistics.

https://doi.org/10.1371/journal.pone.0266457.g007

PLOS ONE Complex network analysis to understand trading partnership in swine production

PLOS ONE | https://doi.org/10.1371/journal.pone.0266457 April 7, 2022 17 / 27

https://doi.org/10.1371/journal.pone.0266457.g007
https://doi.org/10.1371/journal.pone.0266457


Discussion

This study follows on from previous network analyses carried out for the 2014–2016 period

[8]. Applying a similar approach, the present analysis was based on more recent data from the

whole country covering a longer period of time. The various stages of data cleaning carried out

over the years ensure quality of the data, as well as it corroborates the reliability of the results.

The overall outputs of the network analysis were in line with those of the period 2014–2016.

The low levels of transitivity in the breeding and growing networks indicates a tree structure

and the presence of hubs, along with the differential distribution of distances, it well reflects

the pyramidal structure of the industry. However, there were some variations in specific pat-

terns that deserved more consideration. The increasing number of active facilities observed

between 2017 and 2019 was unexpected and could be related to recent efforts from database

managers to inform and register all facilities/actors, as well as the cumulative amount of record

over the years reducing the number of sites removed from the analysis because of missing

Fig 8. Maps of observed and simulated networks for sows. Mapping of semestrial networks drawn by the transport of sows. The network on the left was observed

during the second semester of 2019, those data were used to fit the model, the network in the center was observed during the first semester of 2018, and the one on the

right was simulated using the fitted exponential random graph model.

https://doi.org/10.1371/journal.pone.0266457.g008

Fig 9. Maps of observed and simulated networks for piglets. Mapping of semestrial networks drawn by the transport of piglets. The network on the left was observed

during the second semester of 2019, those data were used to fit the model, the network in the center was observed during the first semester of 2018, and the one on the

right was simulated using the fitted exponential random graph model.

https://doi.org/10.1371/journal.pone.0266457.g009
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critical information. On the other hand, there was a sharp decrease in the number of active

holdings in 2020. In 2020, the European pig production was strongly affected by both the

Covid-19 crisis and the African Swine Fever pandemic [38], therefore some of the changes

occurring in 2020 could be linked to those health crises [39–41]. The overall decrease in the

number of movements and more generally in the number of transported animals confirms the

general tendency observed over 2014–2016. Similarly, the average and median size of active

farms per year remained stable from 2017 to 2019 and decreased slightly in 2020. The tempo-

ral-median degree illustrates some degree of loyalty between farms, at least on a yearly basis, as

well as a prioritization of whole batch trading rather than disseminating animals among neigh-

bouring farms for example. Median degrees of the network quantify the connectivity between

farms and average betweenness measures the importance of a farm as an intermediary between

different subnetworks. From an epidemiological perspective, the in-degrees and out-degrees

respectively illustrate the capacity of a farm to be reached (infected) by other parts of the net-

works and to reach other parts of the network (and spread pathogens), and betweenness illus-

trates the vulerability of the nodes (the possibility of being reached at larger scale). As shown

in Valdano et al. [42], stability of neighboring contacts increase the vulnerability of the node.

Focusing on the disease spread potential of the network, both of them presenting small values,

they support the hypothesis of an expected slow spread of pathogens via pig movements, with

a slightly higher risk of spread when introduction occurs in multipliers or nucleus (higher

median out-degrees in sows networks) [29, 43]. Moreover, the low levels of transitivity could

reflect a diffuse circulation of pathogens in the network, without clustering effects. Temporal

network and associated contact chains analysis could be performed to support this hypothesis.

Applying classic social network analysis to animal movement data considering static aggre-

gated networks already demonstrated its usefulness to identify the epidemiological hot spots

and drivers. Pushing further to account for temporality in network topology could help disen-

tangling spatio-temporal transmission patterns related to the production schedule.

Some spatial trade patterns seem to have changed since 2016. While the main partners

countries remain the same European ones, the share of imports per country changed. While

47.3% of international imports came from Spain during the 2014–2016 period, it became

much lower in 2017 representing only 5% of international imports and slightly increased over

the studied period to reach 26% in 2020 to the benefit of Belgium, which increased its share of

Fig 10. Maps of observed and simulated networks for pigs. Mapping of semestrial networks drawn by the transport of growing pigs. The network on the left was

observed during the second semester of 2019, those data were used to fit the model, the network in the center was observed during the first semester of 2018, and the

one on the right was simulated using the fitted exponential random graph model.

https://doi.org/10.1371/journal.pone.0266457.g010
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French international imports from 33.3% over 2014–2016 to 57% over 2017–2020 [8]. Also,

the distance distribution was different, with the average traveled distance halved for growing

pigs and sows. The distances calculated from our datasets were smaller to those generally

observed in other European countries such as Germany, Bulgaria or Spain than in 2014/2016

[25, 44, 45]. This may reflect a change in the network structure favoring short-distance

exchanges. As recommended by other studies, using effective distances or travel-time instead

of Euclidean distance could provide more accuracy on the actual distance traveled by trucks

[46].

The annual number of active holdings (nodes) and movements (edges) were quite well rep-

resented by semestrial networks and no seasonal variation was detected. For all sub-networks,

the centralities were similar, whether by month, semester or year, suggesting that the network

structure was stable over time and that relatively short periods remain relevant to study net-

work patterns. Those results are consistent with previous studies on static aggregation versus

temporal approach to analyze European pig trade networks [3, 30]. Regarding the period

under study, if the fitted ERGMs were used to define the probabilities of contact between

farms in the context of epidemic surveillance (in “peace time”), the choice of the period would

be sensitive in order to avoid over- or underestimating contacts. Used to feed an epidemiologi-

cal model, over- or underestimating contact probabilities would lead to an over- or underesti-

mation of the between-farm pathogen spread whether in space or time [47]. However,

excluding the slaughterhouses from the analysis, we only observed inter-farms movements

thus, according to the duration of the different growth stages, at least 180 days are required to

observe complete pig production cycles and allow for most of the farms to be involved in

inter-farms movements [30]. The period of one semester was chosen in order to allow the

observation of several production cycles, (the growth period lasts 180 days) and the potential

multiplicity of trading partners during the study period. This choice was all the more relevant

as this period is commonly used in trade network analysis [3, 6, 48].

The high number of selected variables in all three ERGMs illustrates the inherent complex-

ity of the trading patterns. Nevertheless among the multiplicity of selected variables, the most

impacting ones are particularly relevant and expected. In the sows network, the influence of

breeders (NU and MU) was clearly highlighted, as well as their privileged connection to FF.

However, the position of FI as main senders in between-farm movements is less consensual

and might be due to misinterpretation of some records in the database. In the same manner,

the position of FA as main senders in the piglets networks was expected. To a lesser extent,

other farrowing farms (FPW and FF) were also highlighted as significant senders. Finally, the

key variables of the growing pigs networks, including breeders and especially FPW and PW as

main senders and the privileged connection between FF and FI, illustrate the splitting of post-

wean batches due to growing of pigs needing more space. It is also in line with a variable dura-

tion of fattening according to the animals implying potential sharing of batches between FI. In

all three networks, the selection of homophily variables (nodematch) for companies reveals a

certain form of clustering within companies, this was expected due to specific partnership and

contract through the company. The companies highlighted in the three networks were differ-

ent, indicating a specialization in the production stages. Companies 31 and 40 seemed special-

ized in breeding activities both absent from variables selected for the piglets networks but

involved as main senders in the growing pigs networks. Company 37 seems specialised in far-

rowing/post-weaning without being selected in the sows network variables and being

highlighted as a main exporter in the growing pigs networks. Finally, companies 5 and 13

seems specialised in post-weaning/finishing both selected as non-significant variables in the

sows networks and the company 13 only selected to favour the within company exchanges in

the piglets network. Those companies might be targeted by surveillance and control activities
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to reduce the risk of introducing contaminated animals into the food chain. In the growing

pigs and piglets networks, as expected farms organized as a 10-BRS or a 20-BRS were more

involved in the movements. The movements of piglets and growing pigs seemed to be privi-

leged between farms with the same BRS, that could be explain by a synchronisation of the pro-

duction stages. In the sows networks model, expect for the connection from 10-BRS to 20-BRS

that was weakly significant, all other variables related to BRS had negative estimates limiting

the implication of 10-BRS and 20-BRS as senders. Also, in all models, the variables associated

to the 5-BRS had negative estimates. Since BRS is estimated from movement frequency and

farm size, these results should be viewed with caution, and should be confirmed using data

with a validated BRS. In both piglets and growing pigs networks, the traditional production

systems (without outdoor areas) were more involved in the movements especially as senders

in the growing pigs networks. In the piglets and sows networks, interactions were favoured

between farms with outdoor housing (positive estimates in piglets networks for this interaction

and negative estimates for the exchanges between farms with traditional housing and outdoor

housing in the sows network). This was expected. In this study, a 2-categories factor was used

nevertheless, the relations could be more detailed including specific production systems such

as straw farming or organic farming. Size effect were specific to each model, with an expected

homophily effect in the sows and growing pigs networks, as well as some specific interactions

between sizes favoured or hindered in all three models. We also observed an expected prioriti-

zation of movements from larger to smaller farms in piglets and growing pigs networks. This

pattern is not observed in sow networks, which is not surprising since sows in batches are gen-

erally culled and renewed over time and not by full batches. The insularity effect was only sig-

nificant in the growing pigs networks, favouring the within island exchanges. Given the small

number of farms on the island, the companies and type of farm effects may be sufficient to pre-

dict island movements.

Euclidean distances or other spatial attributes such as the region, are generally identified as

a key factor responsible for movements [24, 25, 29, 44], however the present results reveal that,

it might not be mandatory to correctly represent the spatial structure of the pig networks. In

France, the supply chain between agricultural companies being already spatially organized, it

seems sufficient to represent its spatial structure. This highlights the need for a prior descrip-

tive analysis of the network to identify objective characteristics that could explain the structure

of contacts. All others a-priori selected attributes were involved in at least two sub-networks.

This suggests that our prior selection was accurate, even if more features could probably be

added to the models, such as road density used in other studies [25]. While the stepwise selec-

tion does not consider all possible combinations of potential predictors, the two-ways

approach improves variable selection and provides a robust fit. Performing the stepwise selec-

tion over another semester could also support the predictor selection. However, the Gof,

cross-validation and graphical validation showed that these variables were already able to cor-

rectly fit the models to the observed networks. The identification of factors responsible for the

choice of trading partners revealed and confirmed the important role of companies, type of

farming, farm size, outdoor housing systems and BRS in the French between-farm network.

The selection of BRS attribute as a key driver of movements corroborates the classification that

was made. By highlighting the specific relationship related to BRS in the three sub-networks,

this study reveals the importance of this factor and the relevance of including it in further data

collection. Integrating structural statistics related to local structures and clustering, such as

geometrically weighted edgewise shared partner (GWESP), geometrically weighted dyadic

shared partner (GWDSP), or geometrically weighted degree (GWD), could also improve the

prediction, however the low levels of transitivity seems to reflect low clustering effect and the

variables related to dyad-dependent centralities seems not yet adapted to networks as big as
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the one analyzed in this study [36]. ERGMs are still in development and, although they are

increasingly used in social network studies, their use in animal health remains uncommon [5,

24, 25, 49–52]. However, they provide better knowledge of network structure [23, 32, 53, 54]

and, although fitting ERGMs explaining large networks is particularly challenging, time-con-

suming and requires dedicated powerful computer clusters [32, 34, 35, 53, 55], it eventually

provides relevant information on key factors of farm-to-farm contacts. Allowing to understand

complex networks, ERGMs seem to be a relevant tool to simulate more realistic probabilities

of contact between farms and consequently, the probability of disease spread in various epide-

miological contexts.

The division of the general network into three sub-networks based on growth stages is

probably responsible for the relatively low values of the minimum geodesic distance, the triad

census distribution, the edge-wise shared partners and the dyad-wise shared partners in each

sub-network. For a more accurate validation, a demographic model describing animal move-

ments in the meta-population formed by the industry’s farms should be developed. The con-

tact probabilities estimated from the fitted ERGM could feed such demographic model greatly

improving its predictive capabilities without further need of observed data. The resulting sim-

ulated network would probably present more heterogeneity in contact patterns, especially in

the type of triad and geodesic distances distribution. Analyzing those simulated networks

using dynamic network approaches would highlight the central farms (e.g. those with persis-

tent highest betweenness, outdegree or indegree) and provide relevant information to guide

national veterinary services designing network-based surveillance, prevention, and control

interventions [56, 57]. In addition, it could be used to compare simulated and observed contact

chains with tools such as EpiContactTrace [58] and support the validation of current models.

To go even further, the outputs of such model could be used to feed multi-levels epidemiologi-

cal models, such as the one developed by [59] using SimInf [60], to compare preventive and

control strategies [61]. In case of foodborne diseases contracted through the consumption of

contaminated pork, such as hepatitis E, a better understanding of the movement of live ani-

mals in the production chain could help to estimate the circulation of pathogens in the pig

industry and, consequently, to better assess the risk of introduction in the human food chain.

Such tools can significantly contribute to forecasting epidemics and improving epidemiologi-

cal surveillance and control.

Conclusion

This study is one of the first to use ERGMs to understand and predict the pig exchanges within

the production chain at the scale of a whole country (except for the overseas territories). Better

understanding farmer’s choices for trading partners in peace time at the national scale could

better inform French policy makers on transmission routes of pathogens that silently circulate

in swine industry.

CNA methods provided a better knowledge of the network structure [8, 12, 18, 62] and,

even though the fit of ERGMs explaining large network is particularly challenging [34, 55],

ERGMs ends up to provide relevant information on key drivers of between-farm contacts.

ERGMs were used to analyze and predict the structure of networks built by the between-

farm movements of live animals in the French pig industry. This study focuses on the sub-net-

works formed by the movements of sows, piglets and growing pigs. The analysis of these net-

works improves our understanding of the factors affecting farmers’ choices in terms of

farming partnerships. Outputs provided in this study could certainly contribute to feed predic-

tive epidemiological model of between-farm disease transmission such as [59]. Rightly

designed, simulated networks can be used to feed spatio-temporal simulation tools such as
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epidemiological models, significantly improving their predictive capacities, they could provide

essential information on transmission routes and better inform French policy makers on pre-

vention and control of swine diseases in France [56, 63, 64].
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