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Abstract

We consider a two-patches SIR model where communication occurs thru commuters, distinguish-
ing explicitly permanently resident populations from commuters populations. We give an explicit
formula of the reproduction number, and show how the proportions of permanently resident pop-
ulations impact it. We exhibit non-intuitive situations for which allowing commuting from a safe
territory to another one where the transmission rate is higher can reduce the overall epidemic thresh-
old and avoid an outbreak.
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1 Introduction

Since the pioneer work of Kermack and McKendrick [21], the SIR model has been very popular in
epidemiology, as the basic model for infectious diseases with direct transmission (e.g. [1]). It retakes great
importance nowadays due to the recent coronavirus pandemic. While early models were not spatialized,
the importance of accounting for spatial heterogeneity has been often reported in the literature (see,
e.g. [2, 29, 17, 19, 20, 23]). However, different mechanisms come into play to explain the spatial spreading
of a disease. Although diffusion appears to be a natural process to describe the local propagation of
an infectious agent among a population, which leads to models with partial differential equations [28], it
appears to be not well suited for describing long distance spreading. In particular, transportation between
cities comes into the picture as a major source of rapid spreading among non-homogeneous populations
[5, 3, 30, 25, 27, 8, 36, 31, 24]. Meta-populations or multi-patches models are then more appropriate
to describe the spatial characteristics of the propagation [34, 35, 6, 13, 4], as already well considered in
ecology [15, 26]. These models require a precise description of the movements between patches, which
are most of the time assumed to be linear and thus encoded into a connection matrix [6, 4]. Typically
one obtains a system of ordinary differential equations on a graph, which couples the communication
dynamics with the epidemiological one.

For diseases spreading among human populations living in different cities, ”commuters” (individuals
leaving in a city, traveling regularly for short periods in a neighboring city, and coming back to their home
city) play a crucial role in the disease propagation among territories [18, 17, 19, 27, 36]. Such coupling
between patches have been already considered in the literature, distinguishing among populations Ni
attached to a city i the sub-population Nii present in its permanent housing from other sub-populations
Nij temporary present in another city j 6= i (it can be also seen as multi-groups models as in [9, 14, 16]).
However, such models explicitly assume that the whole population housing in a given city can potentially
commute to another one. We believe that this is not always fully realistic and that a sub-population that
never (or very rarely) moves to another city should be distinguished from the sub-population that visits
at a regular basis another city. The study of this extension, which has not been yet considered in the
literature to our knowledge, and how it impacts the disease spreading, is the primary objective of the
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present work. For this purpose, we establish an analytical expression of the reproduction number (as the
epidemic threshold formerly introduced and analyzed in [10, 32, 11, 12]) for the two patches case (that
is also valid for the particular case when the whole populations travel, for which the exact expression of
the reproduction number has not been yet provided in the literature).

We also had in mind to consider heterogeneity among territories when disease transmission differs from
one city to another one. Typically, non-pharmaceutical interventions (such as reducing physical distance
in the population) could be applied with different strength in each city, providing distinct transmission
rates. Then, we aim at analyzing how the proportions of commuters in each city can increase or decrease
the overall reproduction number. Intuitively, one may believe that the best way to reduce the spreading
is to encourage commuters from the city with the lowest transmission rate to do not travel to the other
city, and on the opposite to encourage as much as possible commuters from the other city to spend time
in the safer city. Indeed, we shall see that this is not always true... The second objective of the present
work is thus to study the minimization of the epidemic threshold of the two-patches model with respect
to these proportions, depending on the commuting rates. This analysis can potentially serve for decisions
making to prevent epidemic outbreak (as in [22] for instance).

The paper is organized as follows. In the next section, we present the complete model in dimension
18 and give some preliminaries. Section 3 is devoted to the analysis of the asymptotic behavior of the
solutions of the model. We give and demonstrate an explicit expression of the reproduction number,
introducing four relevant quantities qij (i, j = 1, 2). In a corollary, we also give an alternative way of
computation, which is useful in the following. In Section 4, we study the minimization of the reproduction
number with respect to the proportions of commuters in each patch. Finally, Section 5 gives a numerical
illustration of the results, considering two territories with intrinsic basic reproduction numbers lower and
higher than one. We depict the relative sizes of the permanently resident populations that can avoid the
outbreak of the epidemic depending on the commuting rates, and discuss the various cases. We end by
a conclusion.

2 The model

We follow the modeling of commuters proposed in [18] between two patches (such as cities or territories),
but here we consider in addition that a part of the population in each patch do not commute (the
”permanently resident” sub-population). We consider populations of size Ni whose home belongs to a
patch i ∈ {1, 2}, structured in three groups:

i. permanently resident, being all the time in patch i, whose population size is denoted Nir,

ii. commuters to patch j, but located in patch i at time t, of population size denoted Nii,

iii. commuters to patch j and located in patch j at time t, of population size denoted Nij .

We shall denote Nic = Nii + Nij the size of the total population of commuters having home in patch i.
The individuals commutes to patch j at a rate λi with a return rate µi. For each group g ∈ {ir, ii, ij}
we denote by Sg, Ig, Rg the sizes of susceptible, infected and recovered sub-populations.

We consider the SIR model assuming that the recovery parameter γ is identical everywhere while the
transmission rate βi depends on the patch i but is identical among each group. The model writes as
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follows (with i 6= j in {1, 2}).

Ṡir = −βiSir
Iir + Iii + Iji
Nir +Nii +Nji

,

İir = βiSir
Iir + Iii + Iji
Nir +Nii +Nji

− γIir,

Ṙir = γIir,

Ṡii = −βiSii
Iir + Iii + Iji
Nir +Nii +Nji

− λiSii + µiSij ,

İii = βiSii
Iir + Iii + Iji
Nir +Nii +Nji

− γIii − λiIii + µiIij ,

Ṙii = γIii − λiRii + µiRij ,

Ṡij = −βjSij
Ijr + Ijj + Iij
Njr +Njj +Nij

+ λiSii − µiSij ,

İij = βjSij
Ijr + Ijj + Iij
Njr +Njj +Nij

− γIij + λiIii − µiIij ,

Ṙij = γIij + λiRii − µiRij

One can straightforwardly check that the population sizes Nir, and Nic are constant. Moreover Nii, Nij
fulfill the system of equations {

Ṅii = −λiNii + µiNij ,

Ṅij = λiNii − µiNij
whose solutions verify

lim
t→+∞

Nii(t) = N̄ii :=
µi

λi + µi
Nic, lim

t→+∞
Nij(t) = N̄ij :=

λi
λi + µi

Nic (1)

We shall assume that populations are already balanced at initial time i.e. that one has Nii = N̄ii,
Nij = N̄ij (constant). For simplicity, we shall drop the notation¯ in the following, and denote

Nip := Nir +Nii +Nji

which represents the (constant) size of the total population present in patch i.

3 The epidemic threshold

We denote the vectors

I = (I1r, I11, I12, I2r, I22, I21)>, S = (S1r, S11, S12, S2r, S22, S21)>

and consider the state vector

X =

[
I
S

]
which belongs to the invariant domain

D := {X ∈ R12
+ ; MX ≤ N}

where N is the vector
N = (N1r, N11, N12, N2r, N22, N12)>

and M the square matrix
M = [I6, I6]

(where I6 denotes the identity matrix of dimension 6× 6). The disease free equilibrium is defined as

X? =

[
0
N

]
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Let Ri be the intrinsic reproduction number in the patch i (i.e. when there is no connection between
patches), that is

Ri :=
βi
γ
.

We give now an explicit expression of the epidemic threshold when the two patches communicates via
commuters.

Proposition 1. Let

R1,2 :=
q11 + q22 +

√
(q22 − q11)2 + 4q12q21

2
(2)

where 

q11 = R1

(
N1r

N1p
+ N11

N1p

γ+µ1

γ+λ1+µ1
+ N21

N1p

γ+λ2

γ+λ2+µ2

)
q22 = R2

(
N2r

N2p
+ N22

N2p

γ+µ2

γ+λ2+µ2
+ N12

N2p

γ+λ1

γ+λ1+µ1

)
q21 = R1

(
N11

N1p

λ1

γ+λ1+µ1
+ N21

N1p

µ2

γ+λ2+µ2

)
q12 = R2

(
N12

N2p

µ1

γ+λ1+µ1
+ N22

N2p

λ2

γ+λ2+µ2

)
(3)

Then, one has the following properties.

i. If R1,2 > 1, then X? is unstable.

ii. If R1,2 < 1, then X? is exponentially stable with respect to the variable1 I.

iii. If R1 = R2 := R, then R1,2 = R.

Proof. Write the dynamics of X as Ẋ = f(X). The jacobian matrix J of f at X? is of the form

J =

[
A 0
? B

]
with A = F − V

where

F =



β1
N1r

N1p
β1

N1r

N1p
0 0 0 β1

N1r

N1p

β1
N11

N1p
β1

N11

N1p
0 0 0 β1

N11

N1p

0 0 β2
N12

N2p
β2

N12

N2p
β2

N12

N2p
0

0 0 β2
N2r

N2p
β2

N2r

N2p
β2

N2r

N2p
0

0 0 β2
N22

N2p
β2

N22

N2p
β2

N22

N2p
0

β1
N21

N1p
β1

N21

N1p
0 0 0 β1

N21

N1p


, V =



γ 0 0 0 0 0

0 γ + λ1 −µ1 0 0 0

0 −λ1 γ + µ1 0 0 0

0 0 0 γ 0 0

0 0 0 0 γ + λ2 −µ2

0 0 0 0 −λ2 γ + µ2


and

B =



0 0 0 0 0 0

0 −λ1 µ1 0 0 0

0 λ1 −µ1 0 0 0

0 0 0 0 0 0

0 0 0 0 −λ2 µ2

0 0 0 0 λ2 −µ2


Note that F is a non-negative matrix and V is a non-singular M-matrix. We recall (see for instance from
[32]) that one has the property

maxRe(Spec(A)) <
>

0⇐⇒ ρ(FV −1) <
>

1

1We refer to [33] for the definition of partial stability.
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A straightforward computation gives the following expression of the matrix M := FV −1

M =



R1
N1r

N1p
R1

N1r(γ+µ1)
N1p(γ+λ1+µ1)

R1
N1rµ1

N1p(γ+λ1+µ1)
0 R1

N1rλ2

N1p(γ+λ2+µ2)
R1

N1r(γ+λ2)
N1p(γ+λ2+µ2)

R1
N11

N1p
R1

N11(γ+µ1)
N1p(γ+λ1+µ1)

R1
N11µ1

N1p(γ+λ1+µ1)
0 R1

N11λ2

N1p(γ+λ2+µ2)
R1

N11(γ+λ2)
N1p(γ+λ2+µ2)

0 R2
N12λ1

N2p(γ+λ1+µ1)
R2

N12(γ+λ1)
N2p(γ+λ1+µ1)

R2
N12

N2p
R2

N12(γ+µ2)
N2p(γ+λ2+µ2)

R2
N12µ2

N1p(γ+λ2+µ2)

0 R2
N2rλ1

N2p(γ+λ1+µ1)
R2

N2r(γ+λ1)
N2p(γ+λ1+µ1)

R2
N2r

N2p
R2

N2r(γ+µ2)
N2p(γ+λ2+µ2)

R2
N2rµ2

N1p(γ+λ2+µ2)

0 R2
N22λ1

N2p(γ+λ1+µ1)
R2

N22(γ+λ1)
N2p(γ+λ1+µ1)

R2
N22

N2p
R2

N22(γ+µ2)
N2p(γ+λ2+µ2)

R2
N22µ2

N1p(γ+λ2+µ2)

R1
N21

N1p
R1

N21(γ+µ1)
N1p(γ+λ1+µ1)

R1
N21µ1

N1p(γ+λ1+µ1)
0 R1

N21λ2

N1p(γ+λ2+µ2)
R1

N21(γ+λ2)
N1p(γ+λ2+µ2)


Let us consider the diagonal matrix

D :=



R1
N1r

N1p

R1
N11

N1p

R2
N12

N2p

R2
N2r

N2p

R2
N22

N2p

R1
N21

N1p


and the matrix Q = D−1MD. A straightforward computation gives the expression

Q =



R1
N1r

N1p
R1

N11(γ+µ1)
N1p(γ+λ1+µ1)

R2
N12µ1

N2p(γ+λ1+µ1)
0 R2

N22λ2

N2p(γ+λ2+µ2)
R1

N21(γ+λ2)
N1p(γ+λ2+µ2)

R1
N1r

N1p
R1

N11(γ+µ1)
N1p(γ+λ1+µ1)

R2
N12µ1

N2p(γ+λ1+µ1)
0 R2

N22λ2

N2p(γ+λ2+µ2)
R1

N21(γ+λ2)
N1p(γ+λ2+µ2)

0 R1
N11λ1

N1p(γ+λ1+µ1)
R2

N12(γ+λ1)
N2p(γ+λ1+µ1)

R2
N2r

N2p
R2

N22(γ+µ2)
N2p(γ+λ2+µ2)

R1
N21µ2

N1p(γ+λ2+µ2)

0 R1
N11λ1

N1p(γ+λ1+µ1)
R2

N12(γ+λ1)
N2p(γ+λ1+µ1)

R2
N2r

N2p
R2

N22(γ+µ2)
N2p(γ+λ2+µ2)

R1
N21µ2

N1p(γ+λ2+µ2)

0 R1
N11λ1

N1p(γ+λ1+µ1)
R2

N12(γ+λ1)
N2p(γ+λ1+µ1)

R2
N2r

N2p
R2

N22(γ+µ2)
N2p(γ+λ2+µ2)

R1
N21µ2

N1p(γ+λ2+µ2)

R1
N1r

N1p
R1

N11(γ+µ1)
N1p(γ+λ1+µ1)

R2
N12µ1

N2p(γ+λ1+µ1)
0 R2

N22λ2

N2p(γ+λ2+µ2)
R1

N21(γ+λ2)
N1p(γ+λ2+µ2)


The matrix Q is non-negative and irreducible. By Perron-Frobenius Theorem (see for instance [7]), this
matrix admits a unique positive eigenvector (up to a scalar multiplication) that corresponds to the simple
(positive) eigenvalue ` = ρ(Q) = ρ(M).

Note that the rank of Q is two. We posit

Y = (1, 1, 0, 0, 0, 1)>, Z = (0, 0, 1, 1, 1, 0)>

and define QY , QZ the first and third lines, respectively, of the matrix Q. Then, for any vector X ∈ R6,
on has one has QX = (QYX)Y + (QZX)Z. We look for an positive eigenvector X of the form X =
αY + (1− α)Z with α ∈ (0, 1). One has then

QX = αQY + (1− α)QZ = α
(
(QY Y )Y + (QZY )Z

)
+ (1− α)

(
(QY Z)Y + (QZZ)Z

)
=
(
α(QY Y ) + (1− α)(QY Z)

)
Y +

(
α(QZY ) + (1− α)(QZZ)

)
Z (4)

On another hand, as X is an eigenvector, one has

QX = `X = α`Y + (1− α)`Z (5)

The vectors Y and Z being orthogonal, one obtains from (4)-(5) the conditions{
αQY Y + (1− α)QY Z = α`
αQZY + (1− α)QZZ = (1− α)`

(6)

Let r = 1−α
α . Eliminating ` in the two previous equations, r is the positive solution of the polynomial

r2QY Z + r(QY Y −QZZ)−QZY = 0
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and ` = QY Y + rQY Z. One obtains straightforwardly the expression of the eigenvalue

` =
QY Y +QZZ +

√
(QY Y −QZZ)2 + 4(QY Z)(QZY )

2

Finally, from the expression of Q, one gets

q11 = QY Y = R1

(
N1r

N1p
+ N11

N1p

γ+µ1

γ+λ1+µ1
+ N21

N1p

γ+λ2

γ+λ2+µ2

)
q22 = QZZ = R2

(
N2r

N2p
+ N22

N2p

γ+µ2

γ+λ2+µ2
+ N12

N2p

γ+λ1

γ+λ1+µ1

)
q21 = QZY = R1

(
N11

N1p

λ1

γ+λ1+µ1
+ N21

N1p

µ2

γ+λ2+µ2

)
q12 = QY Z = R2

(
N12

N2p

µ1

γ+λ1+µ1
+ N22

N2p

λ2

γ+λ2+µ2

)
and thus ` = R1,2, which is exactly ρ(M).

i. When R1,2 > 1, the matrix A has at least one eigenvalue with positive real part and the matrix J
as well. The equilibrium X? is thus unstable on D.

ii. When R1,2 < 1, the matrix A is Hurwitz, but X? is not an hyperbolic equilibrium. However, on
can write the dynamics of the vector I as an non-autonomous system

İ = g(t, I) :=



β1S1r(t)
I1r+I11+I21

N1p
− γI1r

β1S11(t) I1r+I11+I21N1p
− (γ + λ1)I11 + µ1I12

β2S12(t) I2r+I22+I12N2p
+ λ1I11 − (γ + µ1)I12

β2S2r(t)
I2r+I22+I12

N2p
− γI2r

β2S22(t) I2r+I22+I12N2p
− (γ + λ2)I22 + µ2I21

β1S21(t) I1r+I11+I21N1p
+ λ2I22 − (γ + µ2)I21


Note that this dynamics is cooperative and as for any t ≥ 0 one has Sij(t) ≤ Nij for ij ∈ {1r, 11, 12, 2r, 22, 21},
one get

g(t, I) ≤ ḡ(I) := AI, I ≥ 0

Therefore, any solution I(·) of İ = g(t, I) with I(0) = I0 ≥ 0 verifies 0 ≤ I(t) ≤ Ī(t) for any t ≥ 0, where

Ī(·) is solution of the linear dynamics ˙̄I = ḡ(Ī) with Ī(0) = I0. As A is Hurwitz, we conclude that X? is
exponentially stable with respect to I, which proves point ii.

iii. For the particular case R1 = R2 := R, the transpose of the matrix M writes

M> = R



N1r

N1p

N11

N1p
0 0 0 N21

N1p

N1r(γ+µ1)
N1p(γ+λ1+µ1)

N11(γ+µ1)
N1p(γ+λ1+µ1)

N12λ1

N2p(γ+λ1+µ1)
N2rλ1

N2p(γ+λ1+µ1)
N22λ1

N2p(γ+λ1+µ1)
N21(γ+µ1)

N1p(γ+λ1+µ1)

N1rµ1

N1p(γ+λ1+µ1)
N11µ1

N1p(γ+λ1+µ1)
N12(γ+λ1)

N2p(γ+λ1+µ1)
N2r(γ+λ1)

N2p(γ+λ1+µ1)
N22(γ+λ1)

N2p(γ+λ1+µ1)
N21µ1

N1p(γ+λ1+µ1)

0 0 N12

N2p

N2r

N2p

N22

N2p
0

N1rλ2

N1p(γ+λ2+µ2)
N11λ2

N1p(γ+λ2+µ2)
N12(γ+µ2)

N2p(γ+λ2+µ2)
N2r(γ+µ2)

N2p(γ+λ2+µ2)
N22(γ+µ2)

N2p(γ+λ2+µ2)
N21λ2

N1p(γ+λ2+µ2)

N1r(γ+λ2)
N1p(γ+λ2+µ2)

N11(γ+λ2)
N1p(γ+λ2+µ2)

N12µ2

N1p(γ+λ2+µ2)
N2rµ2

N1p(γ+λ2+µ2)
N22µ2

N1p(γ+λ2+µ2)
N21(γ+λ2)

N1p(γ+λ2+µ2)


One can check that one has M>U = RU where U = (1, 1, 1, 1, 1, 1)>. As U is a positive vector, we
deduce from the Perron-Frobenius Theorem that one has ρ(M) = ρ(MT ) = R, which ends the proof.

Remark 1. The explicit expression (2) of the epidemic threshold given in Proposition 1 is also relevant
in absence of permanently resident populations, which has not been yet provided explicitly in the literature
(up to our knowledge).
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Corollary 1. One has
min (R1,R2) ≤ R1,2 ≤ max (R1,R2) .

Proof. Denote by M(R1,R2) the matrix FV −1 for the parameters R1, R2, and let R− := min (R1,R2),
R+ := max (R1,R2). From the expression of the non-negative matrices M , one gets

M(R−,R−) ≤M(R1,R2) ≤M(R+,R+)

which implies (see for instance [7]) the inequalities

ρ(M(R−,R−)) ≤ ρ(M(R1,R2)) ≤ ρ(M(R+,R+))

and thus
R− ≤ R1,2 ≤ R+.

Alternatively, the number R1,2 can be determined as follows.

Corollary 2. Assume R2 > R1. Then, one has

R1,2 = αR1 + (1− α)R2 (7)

where α ∈ [0, 1) is the smallest root of the polynomial

P (α) = α2(R2 −R1)− α(R2 −R1 + q12 + q21) + q12

Proof. One can check, from expressions (3), that one has q11 + q21 = R1 and q22 + q12 = R2. Then, from
(6), one get

R1,2 = l = αR1 + (1− α)R2 (8)

where α is a root of the polynomial P obtained from (6) by eliminating l, that is

P (α) = α2(R2 −R1)− α(R2 −R1 + q12 + q21) + q12

From Corollary 1, we know that α belongs to [0, 1]. Note that one has P (0) = q12 ≥ 0 and P (1) =
−q21 ≤ 0. Therefore, when R2 −R1 > 0, P admits exactly one root in [0, 1) and another one in [1,→).
However, if α = 1 one should have q21 = 0 and thus λ1 = 0, µ2 = 0, which implies N11 = N1c, N12 = 0,
N22 = 0, N21 = N2c. Then, one obtains q11 = R1, q22 = R2 and from the expression (2) on gets
R1,2 = max(R1,R2) = R2 which contradicts α = 1. We conclude that α belongs to [0, 1) and is thus the
smallest root of P .

Remark 2. When there is no communication between patches (that is N1r = N1p = N1, N2r = N2p =
N2), one has q21 = 0 and q12 = 0. If R2 > R1, resp. R1 > R2, one has α = 0, resp. α = 1, which gives

R1,2 = max(R1,R2).

We look now for a characterization of the minimum value of the threshold R1,2.

4 Minimization of the epidemic threshold

In this section, we assume that the mixing is fast compared to the recovery rate (as its is often considered
in the literature), which amounts to have numbers λi, µi large compared to γ. Our objective is to study
how the proportions of commuters in the populations impact the value of R1,2.

Given R1, R2, we consider the approximation R̃1,2 of the threshold R1,2 which consists in keeping
γ = 0 in the expressions (3). For convenience, we posit the numbers

ηi :=
λi

λi + µi
∈ (0, 1) (i = 1, 2)

One has a first result about the variations of R̃1,2 with respect to N1c, N2c.
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Proposition 2. Fix parameters Ni, βi, γ, λi, µi (i = 1, 2) such that R2 > R1.

i. For any N1c ∈ (0, N1), the map N2c 7→ R̃1,2(N1c, N2c) is decreasing.

ii. The map N1c 7→ R̃1,2(N1c, N2c) is increasing at (N1c, N2c) when

η2(1− η2)N2c > (1− η1)(N2 − η2N2c) (9)

iii. The map N1c 7→ R̃1,2(N1c, N2c) is increasing, resp. decreasing, at (N1c, N2c) if the numbers A and
B are negative, resp. positive, where

A := R2

N2

2 − η1( 1
2 − η1)N1c − ( 3

2 − η2)η2N2c

N2 − η2N2c + η1N1c
−R1

N1

2 − ( 3
2 − η1)η1N1c − η2( 1

2 − η2)N2c

N1 − η1N1c + η2N2c
,

B := R2
(1− η1)(N2 − η2N2c)− η2(1− η2)N2c

(N2 − η2N2c + η1N1c)2
−R1

(1− η1)(N1 + η2N2c) + η2(1− η2)N2c

(N1 − η1N1c + η2N2c)2

Proof. Following Corollary 2, one has

R̃1,2 = α̃R1 + (1− α̃)R2 (10)

where α̃ is the smallest root of the polynomial

P̃ (α) = α2(R2 −R1)− α(R2 −R1 + q̃12 + q̃21) + q̃12

where q̃12, q̃21 are the approximations of q12, q21 defined in (3). Let us note that one can write Nii =
(1 − ηi)Nic, Nij = ηiNic (for j 6= i) and also Nip = Ni − ηiNic + ηjNjc, which leads to the following
expressions of q̃12, q̃21

q̃21 = R1
(1− η1)η1N1c + η2(1− η2)N2c

N1 − η1N1c + η2N2c
, q̃12 = R2

η1(1− η1)N1c + (1− η2)η2N2c

N2 − η2N2c + η1N1c
(11)

For simplicity, we shall drop the notation˜ in the rest of the proof. Note than α being the smallest root
of P , it verifies

α <
R2 −R1 + q12 + q21

2(R2 −R1)
(12)

Let us differentiate the equality P (α) = 0 with respect to q12 and q21:

2α
∂α

∂q12
(R2 −R1)− ∂α

∂q12
(R2 −R1 + q12 + q21)− α+ 1 = 0

2α
∂α

∂q21
(R2 −R1)− ∂α

∂q21
(R2 −R1 + q12 + q21)− α = 0

which gives

∂α

∂q12
=

1− α
R2 −R1 + q12 + q21 − 2α(R2 −R1)

∂α

∂q21
=

−α
R2 −R1 + q12 + q21 − 2α(R2 −R1)

Then, one can write

∂α

∂Nic
=

∂α

∂q12

∂q12
∂Nic

+
∂α

∂q21

∂q21
∂Nic

=
(1− α) ∂q12∂Nic

− α ∂q21
∂Nic

R2 −R1 + q12 + q21 − 2α(R2 −R1)
(i = 1, 2)

and from inequality (12), we obtain that the signs of the derivatives ∂α
∂Nic

are given by the sign of the
numbers

σi := (1− α)
∂q12
∂Nic

− α ∂q21
∂Nic

(i = 1, 2) (13)

We begin by the dependency with respect to N2c. One has first

∂q12
∂N2c

= R2η2
(1− η2)(N2 + η1N1c) + η1(1− η1)N1c

(N2 + η1N1c − η2N2c)2
> 0
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Note that one has

q21 =
R1(N2 + η1N1c − η2N2c)

R2(N1 − η1N1c + η2N2c)
q12 (14)

and thus
∂q21
∂N2c

=
R1(N2 + η1N1c − η2N2c)

R2(N1 − η1N1c + η2N2c)

∂q12
∂N2c

− R1η2(N1 +N2)

R2(N1 − η1N1c + η2N2c)2
q12

Then, one gets the inequality

σ2 >

(
1− α− αR1(N2 + η1N1c − η2N2c)

R2(N1 − η1N1c + η2N2c)

)
∂q12
∂N2c

On another hand, one gets from P (α) = 0 the inequality

(1− α)q12 − αq21 = α(1− α)(R2 −R1) > 0

and with (14)

(1− α)q12 − αq21 =

(
1− α− αR1(N2 + η1N1c − η2N2c)

R2(N1 − η1N1c + η2N2c)

)
q12 > 0

We then conclude that σ2 is positive, and from (10) we deduce that the map N2c 7→ R1,2 is decreasing.
This proves the point i.

We study now the dependency with respect to N1c. A straightforward calculation gives

∂q12
∂N1c

= R2η1
(1− η1)(N2 − η2N2c)− η2(1− η2)N2c

(N2 − η2N2c + η1N1c)2
(15)

and
∂q21
∂N1c

= R1η1
(1− η1)(N1 + η2N2c) + η2(1− η2)N2c

(N1 − η1N1c + η2N2c)2
> 0 (16)

When ∂q12
∂N1c

< 0, we can conclude that σ1 is negative and R1,2 is thus increasing with respect to N1c.
This condition is equivalent to (9). This proves the point ii. When this last condition is not satisfied,
having ∂q12

∂N1c
< ∂q21

∂N1c
with α > 1

2 is another sufficient condition to obtain σ1 < 0 from expression (13).

However, having α > 1
2 amounts to have P ( 1

2 ) > 0, that is

R2 −R1

4
− R2 −R1 + q12 + q21

2
+ q12 > 0

or equivalently
R2

2
− q12 <

R1

2
− q21

One can straightforwardly check that this last condition is equivalent to A < 0 and that the condition
∂q12
∂N1c

< ∂q21
∂N1c

is equivalent to B < 0. In the same manner, having A > 0 and B > 0 implies α < 1
2 and

∂q12
∂N1c

> ∂q21
∂N1c

, which is a sufficient condition to have σ1 > 0, and thus R1,2 increasing with respect to N1c.
This proves the point iii.

This result suggests that the map N1c 7→ R̃1,2(N1c, N2c) is not necessarily monotonic, differently to

the map N2c 7→ R̃1,2(N1c, N2c). We show now that the possibilities of its variations are limited.

Proposition 3. Under hypotheses of Proposition 2, for each N2c ∈ (0, N2) the map N1c 7→ R̃1,2(N1c, N2c)
possesses one of the three properties

a. it is decreasing on (0, N1),

b. it is increasing on (0, N1),

c. there exists N?
1c ∈ (0, N1) such that it is decreasing on (0, N?

1c) and increasing on (N?
1c, N1).
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Proof. Fix N2c ∈ (0, N2). If the map N1c 7→ R̃1,2(N1c, N2c) is not monotonic, there exists N̂1c ∈ (0, N1)

such that
∂R̃1,2

∂N1c
(N̂1c, N2c) = 0. For simplicity, we shall drop the notation ˜ in the rest of the proof.

Following the proof of Proposition 2, one has R1,2 = αR1 + (1− α)R2 with

∂α

∂N1c
=

(1− α) ∂q12∂N1c
− α ∂q21

∂N1c

R2 −R1 + q12 + q21 − 2α(R2 −R1)
:=

σ1
ν

where ν > 0. Therefore, one has ∂α
∂N1c

= 0 and σ1 = 0 at N1c = N̂1c, and thus

∂2α

∂N2
1c

∣∣∣∣
N1c=N̂1c

=
∂σ1

∂N1c

ν

∣∣∣∣∣
N1c=N̂1c

=
(1− α)∂

2q12
∂N2

1c
− α∂

2q21
∂N2

1c

ν

∣∣∣∣∣∣
N1c=N̂1c

From expressions (15) and (16), a straightforward calculation gives

∂2q12
∂N2

1c

=
−2η1

∂q12
∂N1c

N1 − η1N1c + η2N2c
,

∂2q21
∂N2

1c

=
2η1

∂q21
∂N1c

N2 − η2N2c + η1N1c

where ∂q21
∂N1c

> 0 and from σ1 = 0 one gets ∂q12
∂N1c

> 0 for N1c = N̂1c. Finally, one obtains

∂2R1,2

∂N2
1c

(N̂1c, N2c) = −(R2 −R1)
∂2α

∂N2
1c

(N̂1c, N2c) < 0

Consequently, any extremum of the map N1c 7→ R1,2(N1c, N2c) is a a local minimizer, which implies that
this map has at most one local minimizer.

Finally, we give conditions for which the minimization of the threshold R1,2 presents a trichotomy.

Proposition 4. Let parameters βi, γ be such that R2 > R1 and assume that N1, N2 satisfy N1R2 >
N2R1. Then, provided that γ is small enough compared to λi and µi, the function (N1c, N2c) 7→
R1,2(N1c, N2c) admits an unique minimum at (N?

1c, N
?
2c) with N?

2c = N2. Moreover, one has the fol-
lowing properties.

1. N?
1c = 0 if η2 > 1− η1,

2. N?
1c = N1 if η1 and η2 are sufficiently small,

3. there exists η1, η2 for which N?
1c ∈ (0, N1).

Proof. We first show that the announced properties are satisfied for the approximate function R̃1,2.

From Propositions 2 and 3, we know that R̃1,2 admits an unique minimum at (N̂1c, N̂2c) with N̂2c =
N2. For N2c = N2, the condition (9) simply writes η2 > 1−η1 which implies from point ii. of Proposition
2 that one has N̂1c = 0 when this condition is fulfilled. This shows that point 1 is verified for the function
R̃1,2.

One obtains the limits

lim
η1,η2→0

A =
R2

2
− R1

2
> 0, lim

η1,η2→0
B =

R2

N2
− R1

N1
> 0

which show that numbers A and B are positive when η1, η2 are small, and thus one has N̂1c = N1 from
point iii of Proposition 2. This shows that point 2 is verified for the function R̃1,2.

Take now any N1c ∈ (0, N1). When η2 > 1 − η1, one has
∂R̃1,2

∂N1c
(N1c, N2) > 0, and for η1, η2 small,

∂R̃1,2

∂N1c
(N1c, N2) < 0 is verified. Then, by continuity of the function R̃1,2 with respect to parameters η1,

η2, one deduce that the existence of values η̂1, η̂2 for which
∂R̃1,2

∂N1
(N1c, N2) = 0. As the function R̃1,2

cannot have more than a local extremum (see Proposition 3), we deduce that N1c realizes the minimum
of the function N1c 7→ R̃1,2(N1c, N2) when η1 = η̂1 and η2 = η̂2. This shows that point 3 is verified for

the function R̃1,2.

Finally, note that the exact thresholdR1,2 amounts to replace in the expression of q̃12, q̃21 the numbers

ηi by λi+γ
λi+µi+γ

, which is continuous with respect to γ and equal to ηi for γ = 0. By continuity of R̃1,2

with respect to q̃12, q̃21 , we deduce that uniqueness of the minimizer of R1,2 and properties 1. to 3. are
also fulfilled by the function (N1c, N2c) 7→ R1,2, provided that γ is small enough.
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5 Numerical illustration

We consider two territories of same population size N = N1 = N2 with different transmission rates such
that one has R1 < 1 < R2 (values are given in Table 1). Typically, some precautionary measures (such
as social distance) are taken in the first territory so that the disease cannot spread in this territory if
it is closed, while the epidemic can spread in the second territory in absence of communication with
territory 1. We aim at studying how the epidemic can die out when commuting occur between territories,
depending on the proportions of resident in each population, denoted

pi =:=
Nir
N

= 1− Nic
N

, (i = 1, 2)

(in other words, how to obtain R1,2 < 1 playing with p1, p2). Note that when N1 = N2, the threshold
R1,2 depends on the proportions p1, p2 independently of N .

γ β1 β2 R1 R2

0.3 0.24 0.33 0.9 1.1

Table 1: Characteristics numbers of the epidemic

Conditions of Proposition 4 are satisfied provided that commuting parameters λi, µi are large enough.
We have considered three sets of these parameters, given in Table 2, that correspond to the three possible
situations depicted in Proposition 4.

case λ1 µ1 λ2 µ2 η1 η2

A 10 10 10 1 0.5 0.9090909
B 10 100 10 100 0.009901 0.009901
C 10 10 10 70 0.5 0.125

Table 2: Three sets of commuting parameters

The approximate expression R̃1,2 turns out to be a very good approximation of the exact value R1,2,
even in case A for which γ is not so small compared to µ2 (see Table 3).

case A B C

max
p1,p2

|R̃1,2 −R1,2| 1.9 10−3 1.4 10−4 6 10−4

Table 3: Quality of the approximation R̃1,2

Figures 1, 2, 3 show families of curves p1 7→ R1,2 for different values of p2 ∈ [0, 1]. One can observe
that theses curves possess the properties given by Propositions 2 and 3:

- they are either decreasing, increasing or decreasing down to a minimum and then increasing,

- they are ordered and the lower one is obtained for p2 = 0 (i.e. N2c = N2).

This last feature is suite intuitive: the more there are commuters from territory 2 (that spend time
in territory 1 where the conditions of transmission disease is lower), the less the epidemic spreads. A
way to reduce the value of R1,2 is thus to encourage commuting towards territory 1 (whatever are the
commuting rates). However, the role of the resident population in territory 1 is far less intuitive because
it does depends on the commuting rates.

1. In case A, commuters from territory 2 return more rarely to home than commuters from territory
1 do. The condition of point 1. of Proposition 4 is fulfilled. Then, the threshold R1,2 can be made
small (and below 1) when the proportion of resident in territory 1 is high i.e. when the inhabitants
of territory 1 are encouraged not to commute.

2. In case B, both commuters return rapidly to their home. This means that the numbers of commuters
from one territory present in the other one at a given time is low. Then the condition of point 2
of Proposition 4 is fulfilled. Here, it is better to encourage inhabitants of territory 1 to commute
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to the other territory where the disease spreads yet more easily... which is counter-intuitive at first
sight. Indeed, commuters do not send much time in the other territory, and have thus heuristically
less time to meet and transmit the disease...

3. In case C, commuters from territory 2 return more rapidly to home than commuters from territory
1 do, on the opposite of case A. Conditions of points 1 and 2 of Proposition 4 are not fulfilled here
and we are in an intermediate situation for which point 3 of Proposition 4 occurs. It is theoretically
possible to have R1,2 < 1 on the condition that the proportion of commuters of territory 1 is well
balanced.

Finally, this example shows that playing only with the return rates µ1, µ2 provides the three possible
scenarios, but other changes could also exhibit them.

Figure 1: R1,2 as a function of p1 in case A (each curve corresponds to a value of p2 ∈ [0, 1])

Figure 2: R1,2 as a function of p1 in case B (each curve corresponds to a value of p2 ∈ [0, 1])
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Figure 3: R1,2 as a function of p1 in case C (each curve corresponds to a value of p2 ∈ [0, 1])

6 Conclusion

In this work, we have been able to provide an explicit expression of the reproduction number, although
the model is in dimension 18. This expression has allowed us to study its minimization with respect to
the proportions of permanently resident populations in each patch. We discovered a trichotomy of cases,
with some counter intuitive situations. In each case, it is always beneficial to have commuters traveling
to a safer city where the transmission rate is lower. However, for the safer city, three situations occurs:
either it is better to avoid commuting to the other city, or on the opposite encouraging commuting to the
more risky city reduces the reproduction number, and in a third case there exists an optimal intermediate
proportion of commuters of the safer city which minimizes the epidemic threshold. In some sense, the
permanently resident populations, which have been ignored in former modeling, can play an hidden role
in an epidemic outbreak. This is illustrated on an example for which only right proportions of commuters
(or permanently resident) avoid the outbreak. This suggests that counter-intuitive situations may also
occur when considering networks with more than two nodes. The extension of the present results to more
general networks is an open problem, that might be the matter of a future work.
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