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Chapter 14

Phenomic Selection: A New and Efficient Alternative
to Genomic Selection

Pauline Robert, Charlotte Brault, Renaud Rincent, and Vincent Segura

Abstract

Recently, it has been proposed to switch molecular markers to near-infrared (NIR) spectra for inferring
relationships between individuals and further performing phenomic selection (PS), analogous to genomic
selection (GS). The PS concept is similar to genomic-like omics-based (GLOB) selection, in which
molecular markers are replaced by endophenotypes, such as metabolites or transcript levels, except that
the phenomic information obtained for instance by near-infrared spectroscopy (NIRS) has usually a much
lower cost than other omics. Though NIRS has been routinely used in breeding for several decades,
especially to deal with end-product quality traits, its use to predict other traits of interest and further
make selections is new. Since the seminal paper on PS, several publications have advocated the use of spectral
acquisition (including NIRS and hyperspectral imaging) in plant breeding towards PS, potentially
providing a scope of what is possible. In the present chapter, we first come back to the concept of PS as
originally proposed and provide a classification of selected papers related to the use of phenomics in
breeding. We further provide a review of the selected literature concerning the type of technology used,
the preprocessing of the spectra, and the statistical modeling to make predictions. We discuss the factors
that likely affect the efficiency of PS and compare it to GS in terms of predictive ability. Finally, we propose
several prospects for future work and application of PS in the context of plant breeding.

Key words Plant breeding, Phenomic selection (PS), Genomic-like omics-based (GLOB) selection,
Genomic selection (GS), Near-infrared spectroscopy (NIRS), Hyperspectral imaging

1 Introduction: The Concept of Phenomic Selection and its Relationship with Other
Uses of Spectra in Breeding

In their recent publication, Rincent et al. [1] proposed to replace
genomic information by phenomic information, such as near-
infrared (NIR) spectra, to predict quantitative traits and further
perform what they coined “phenomic selection” (PS). The use of
spectroscopy in agriculture and plant breeding is not novel;
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however, its use as an alternative to molecular markers to build
relationship matrices and further predict individual performances in
the context of selection is new. PS is similar to genomic-like omics-
based (GLOB) selection, in which molecular markers are replaced
by endophenotypes such as transcriptomics, metabolomics, or any
other omics [2–8]. Endophenotypes are generally measured once
and for all in controlled conditions, and used to build a predictive
model for field agronomic traits. This approach is thus similar to
genomic selection (GS) with genotyping in the lab replaced by
endophenotypic characterization in controlled conditions. In
these publications, models such as G-BLUP or multi-BLUP were
generally used with the kinship matrix replaced by relationship
matrices estimated with the omics data, and the predictive abilities
obtained were generally similar and sometimes higher than those
obtained with GS. Even if endophenotypic characterization
remains costly, improved efficiency to capture non-additive effects
(epistasis, genotype by environment interaction, GEI) can be
highly valuable. To decrease and scale both cost and throughput,
Rincent et al. [1] proposed to replace genotyping or omics charac-
terization by NIRS.

They illustrated that NIR spectra were indeed able to capture
genetic similarities, and thus resulted in accurate predictions, even
for traits unrelated to the tissue on which NIR spectra were
measured. A GLOB selection approach based on NIR spectra
acquired in one given environment was for instance able to accu-
rately predict yield in other environments, as long as the calibration
set was phenotyped in these environments. Note that PS, and in
particular GLOB selection, is radically different from the classical
NIRS use. In the classical use, NIRS predicts the chemical compo-
sition of the analyzed tissue. In PS and GLOB selection, NIR
spectra (or other phenomics data) are used to capture the genetic
similarities between the genotypes, which allows accurate predic-
tions of any polygenic trait.

Spectroscopy techniques, such as NIRS, measure the emission
or reflection of light on a sample for a given wavenumber range,
e.g., for NIR from 780 nm to 2500 nm. Various chemical bonds
absorb light at different wavelengths, and this can be used in a
quantitative manner. NIRS provides a non-destructive and high-
throughput measurement of living samples (where water absor-
bance bands do not overlap) as well as dried or crushed tissues.
Absorption or reflectance values at a given wavelength are propor-
tional to molecule concentrations, as depicted in the Beer–Lambert
law. Thus, spectra variations are due to the combination of mole-
cules in the tissue and their respective absorption bands. This
chemical property has been widely used in agriculture and forestry
in many species to predict traits of interest, such as those related to
grain composition for cereals [9], milk composition for dairy cattle
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[10], wood properties for forest trees [11], quality traits for fruits
and vegetables [12].

Apart from this classical use of NIRS, which can be exploited in
breeding to make selections on traits related to end-product com-
position, other uses of NIRS in breeding have been reported in the
literature, which can be classified into four main categories as
proposed in Table 1: NIR spectra as proxy of the target trait, NIR
spectra as a secondary trait, PS within environments, and PS across
environments as a particular case of GLOB selection. In the follow-
ing paragraphs, we provide a definition of each of these four
categories.

The first category concerns the use of NIR spectra as a proxy of
complex traits such as grain yield, water stress, or chlorophyll
content with vegetation indices (VIs), which are based on a few
wavelength bands. Several indices were successively developed
across years, the most famous one being NDVI (normalized differ-
ence vegetation index). These indices are strongly correlated with
photosynthetic activity and sometimes with yield [13] and are still
widely used to reflect biomass or yield of the analyzed plants or
plots [14–18]. The advantage here of using NIR spectra as a proxy
trait is to avoid expensive phenotyping and to enable indirect
selection of target traits before harvest.

In the second category, we have gathered studies that com-
bined NIRS measurements with molecular markers to increase the
accuracy of genomic prediction. In that case, NIR spectrum was
considered as a secondary trait to be associated with the target trait
in a multivariate prediction model [19–21]. It is worth mentioning
that such studies report two distinct examples of application: one
based on canopy reflectance [19, 21], which relates to the overall
plant health; and the other based on grain NIRS [20], which relates
to the end-product or cumulative energy accumulation of the plant.
In any case, this approach is particularly valuable when the pre-
dicted set is phenotyped with NIRS (trait-assisted prediction).
Other authors have used NIR measurements to specifically account
for GEI in the genomic prediction model [22, 23], but this requires
NIRS data for each environment to be measured.

The third category includes studies that have investigated using
NIR spectra to build a (hyper)spectral relationship matrix between
plots/individuals, referred to as H matrix, and integrated it in the
prediction equation with or without the genomic relationship
matrix (kinship), referred to as G matrix [22–25]. The NIRS-
based similarity between two plots/individuals H(i, j) can be esti-
mated with the following formula:

H i, jð Þ ¼
Pnw

k¼1 S i, kð Þ � S jð , kÞ½ �
nw

,
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Table 1
Selection of work using NIRS information in the context of breeding. The papers are sorted according
to the type of prediction made with NIRS information from NIRS as a proxy trait to phenomic selection
(PS). For details, see the text. PLS-R Partial Least Squares Regression; VI Vegetation Index; UAV
Unmanned Aerial Vehicle; OLS Ordinary Least Squares; G-BLUP Genomic Best Linear Unbiased
Prediction; LASSO Least Absolute Shrinkage and Selection Operator; GLOB Genomic-Like Omics-
Based

References Type of technology
Statistical
method Type of prediction Prediction setting

Ferrio et al.
[15]

NIR spectroscopy in the
laboratory on milled
grains, wavelength
range: 1100–2500 nm

PLS-R NIRS as a proxy trait Plot/individual level

Hernandez
et al. [18]

NIR spectroscopy in the
field on plant canopy,
wavelength range:
350–2500 nm

VIs, ridge
regression

NIRS as a proxy trait Plot/individual level

Aguate et al.
[17]

Hyperspectral imaging in
the field (UAV),
wavelength range:
392–850 nm

VIs, PLS-R,
OLS,
BayesB

NIRS as a proxy trait Plot/individual level

Hayes et al.
[20]

NIR spectroscopy in the
laboratory on grains,
wavelength range:
400–2498 nm

Multi-trait
G-BLUP

NIRS as a secondary
trait

Plot/individual level

Rutkoski
et al. [19]

Hyperspectral imaging in
the field (UAV)

Multi-trait
G-BLUP

NIRS as a secondary
trait

Entry/genotype
level within each
site-year

Sun et al.
[21]

Hyperspectral imaging in
the field (UAV)

Multi-trait
G-BLUP

NIRS as secondary
trait

Entry/genotype
level within each
site-year

Montesinos-
Lopez
et al. [22]

Hyperspectral imaging in
the field (UAV),
wavelength range:
392.03–850.69 nm

VIs, PLS-R,
OLS,
BayesB,
functional
regressions

PS Entry/genotype
level within each
site-year

Krause et al.
[23]

Hyperspectral imaging in
the field (UAV),
wavelength range:
380–850 nm

G-BLUP
Single and
multi-
kernel

PS Entry/genotype
level within each
site-year

Galán et al.
[25]

Hyperspectral imaging in
the field (UAV),
wavelength range:
410–993 nm

G-BLUP
Single and
multi-
kernel,

LASSO and
EN for
feature
selection

PS Entry/genotype
level within each
site-year

(continued)
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with S(i, k) the preprocessed absorbance or reflectance (see hereaf-
ter) measured on the ith plot/individual for the kth wavelength. S is
centered and scaled for each wavelength and has the dimension
n (number of plots/individuals) times nw (number of wavelengths).

In matrix notationH ¼ SS 0
nw

:This PS approach resulted in promising

accuracies; however, in these publications, predictions were still
made for a specific site-year trial, and so NIR spectra have to be
measured on each plot in each environment, with the strong limi-
tation that all varieties have to be grown in each environment.

Thus, we propose here a fourth category to further make a
distinction between PS applied to the plots on which NIR spectra
were acquired (previous category) and PS predictions across envir-
onments with NIR spectra measured in a reference site only, a
particular case of what we called GLOB selection (scenario S2 in
Rincent et al. [1] and Fig. 1). In GLOB selection, we suppose that
NIRS captures genetic similarities, which means that spectra
acquired in any environment can be useful to make prediction in a
particular environment. These external spectra can be (but not
necessarily) combined with the spectra potentially collected in the
predicted environment. The derived H similarity matrix is then
used in replacement of the G matrix in the classical GS models.
To date, we have found only two publications (Rincent et al. [1],
Lane et al. [26]), that performed GLOB selection with NIRS, and

Table 1
(continued)

References Type of technology
Statistical
method Type of prediction Prediction setting

Cuevas et al.
[24]

NIR spectroscopy in the
laboratory on grains,
wavelength range:
400–2500 nm

G-BLUP
Gaussian
kernel

Arc-cosine
kernel

PS Entry/genotype
level within a
single
environment

Lane et al.
[26]

NIR spectroscopy in the
laboratory on grains,
wavelength range:
1000–2500 nm

PLSR,
G-BLUP,
functional
regression

PS & GLOB Plot/individual level
& entry/genotype
level within and
across
environments

Rincent
et al. [1]

NIR spectroscopy in the
laboratory on milled
leaves and grains for
wheat (wavelength
range: 400–2500 nm)
and milled wood for
poplar (wavelength
range: 1250–2500 nm)

G-BLUP,
Bayesian
LASSO

PS & GLOB Entry/genotype
level within and
across
environments
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they both resulted in accurate predictions, often more accurate than
GS and with dramatically reduced costs. These publications and the
results obtained with GLOB selection using other kinds of omics
prove that variations other than DNA markers can efficiently cap-
ture genetic similarities between genotypes and result in accurate
predictions.

2 Literature Review on the Use of Spectra in Selection

Following previous definitions, we have selected a number of
papers illustrating each of the four categories of use of NIRS in
the context of breeding. The main features of these papers are
summarized in Table 1, and further presented and detailed hereaf-
ter, with respect to the type of technology employed to obtain
spectra, the statistical pretreatments of the spectra, and the statisti-
cal model applied for phenotype prediction. We also provide in
Table 2 a comparison of the relative performances of phenomic
and genomic predictions for the very few papers which enable such
a comparison. Finally, we discuss the factors that affect the predic-
tive ability of PS.

Fig. 1 Prediction of a target trait for the selection candidates in different environments with GLOB selection.
Training population is phenotyped for the target traits (e.g., productivity) in the target environments. Omics or
phenomic data (e.g., NIR spectra) are collected on both the candidate and the training individuals in a same
reference environment, for capturing a genetic similarity between individuals. Genotypic values of the
selection candidates are predicted for the target traits in each target environment
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2.1 Types of

Technology

Traditionally, NIRS measurements are conducted in laboratories
under controlled conditions for either dried vegetative tissue (e.g.,
forages) or dried reproductive tissue (e.g., grain). This kind of data
displays many advantages: measurements are robust, low cost and
routinely applied by breeders to predict quality traits. There are also
a number of disadvantages, there is substantial extra effort needed
to bring these materials from the field to the lab, and to dry them so
that water absorbance (which overlaps other chemical bond absor-
bance) is minimized. In these laboratory conditions, spectra are
constituted of many wavelengths possibly from the visible and near
infrared (400 to 2500 nm approximately), constituting a dataset of
hundreds of variables [9].

With the rise of high-throughput phenotyping, spectrum mea-
surements have benefited from technological developments which
enables the direct collection of spectra in the field possibly at several
time points, like hyperspectral imaging from Unoccupied Aerial
Vehicle (UAV) or direct measurements of fresh material with por-
table (micro-)spectrometers. Hyperspectral imaging takes images
with several wavelengths for each pixel, possibly at multiple time

Table 2
Comparative predictive ability reported for prediction based on G and H matrices

References Species Traits

Mean predictive ability

G matrix H matrix

Krause et al. [23] Wheat GY (without
DTHD correction)

0.41 (0.19–0.6) 0.42 (0–0.75)

Galán et al. [25] Winter rye DMY 0.6 0.59

Cuevas et al. [24] Wheat GY 0.46 0.37

Rincent et al. [1] Wheat S1 HD
GY

0.57
0.38

0.84 (0.78–0.88)
0.51 (0.37–0.62)

Wheat S2 HD
GY

0.61
0.46

0.78 (0.67–0.83)
0.44 (0.28–0.53)

Poplar HT.ORL
CIRC.ORL
CIRC.SAV
Bf.ORL
Bf.SAV
BS.ORL
BS.SAV
Rust.ORL

0.56
0.61
0.77
0.72
0.73
0.73
0.59
0.61

0.64 (S1)/0.49 (S2)
0.72 (S1)/0.48 (S2)
0.80 (S1)/0.46 (S2)
0.15 (S1)/0.33 (S2)
0.32 (S1)/0.09 (S2)
0.53 (S1)/0.44 (S2)
0.34 (S1)/0.45 (S2)
0.45 (S1)/0.33 (S2)

GY grain yield;DTHD days to heading date;DMY dry matter yield;HD heading date;HT height;CIRC circumference;

BF bud flush; BS bud set; RUST resistance to rust. ORL Orléans site (France); SAV Savigliano site (Italy). Several

predictive abilities were available in the study of Krause et al. (2019), one per flying date. When several methods were
tested, the one with the highest predictive ability was kept for each modality. When the prediction was made in several

environments, years or on different tissues for PS, the range of predictive ability is indicated in brackets
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points in the visible and in a small portion of the NIR spectrum. A
reflectance measure is attributed to some groups of wavelengths
(bands) or to individual wavelengths directly. The measurements at
the pixel level can be integrated at the microplot level to character-
ize a unique variety [17, 22, 24, 25]. Portable (micro-)
spectrometers have also been developed to measure the reflectance
directly in fields on undestroyed fresh material covering the visible
and NIR spectrum [18]. Wavelengths can be used directly as vari-
ables in predictive models or they can be derived in several indexes,
like VIs [17, 22]. VIs describe vegetation properties by summariz-
ing the information of large amounts of data to facilitate processing
of camera and satellite images. However, in Aguate et al. [17] the
use of all the hyperspectral bands achieved better prediction than
using VI individually.

Technologies used to collect NIR spectrum are numerous, each
with advantages and disadvantages. On the one hand, the use of
NIR spectrometers in laboratory conditions is a robust method but
can be time consuming due to collection and possibly preparation
of samples. On the other hand, UAV and portable (micro-)
spectrometers are quick techniques to collect NIRS but the number
of wavelengths available is usually reduced and measurements can
be affected by environmental noise which is harder to control in the
field than in the laboratory. Depending on the application, trade-
offs must be found between labor intensity, costs, and spectrum
quality.

To date, very few studies have tried to compare the predictive
ability of different spectrum measurements, especially in the con-
text of plant breeding. Recently, Zgouz et al. [27] have reported a
dataset of spectra collected on 60 sugarcane samples with 8 visible/
NIR spectrometers including handheld micro-spectrometers. Such
a dataset is very useful to compare different tools, although results
might be context dependent, i.e., the most accurate model for
different traits and species might be obtained with different spec-
trometers. Still, quantifying the gain or the loss of predictive ability
for each technique will be helpful to guide in using one technique
rather than another for a specific objective. Other techniques could
be used to facilitate measurement, for example to combine hyper-
spectral images and laboratory spectra. Instead of using a spectrom-
eter to measure samples one by one, hyperspectral images can
measure several samples at the same time. This would enhance
robustness of spectra collection and reduce time of measurements.
Beyond technical issues, it is also important to consider practical
organizational questions, such as the period at which spectra are
measured, to make sure that the predictions are available before the
sowing of the next season.

404 Pauline Robert et al.



2.2 Preprocessing

NIR Spectra

In ideal conditions, NIR spectra are based on the Beer–Lambert
law and the sample absorbance is directly linked to the concentra-
tion of chemical compounds of the sample. However, in practice,
many factors (independent from the sample composition) will
influence the measured absorbance. This is the case for instance of
temperature or granulometry, which will deform the final spec-
trum, biasing spectra comparison. To deal with external effects, a
mathematical correction or preprocessing can be applied as illu-
strated in Fig. 2 for spectra collected on bread wheat grains. Mainly
two external effects usually need to be corrected: additive and
multiple effects. In additive effects, noise affects spectra irrespec-
tively of the wavelength and usually yields a baseline shift which can
be corrected with a detrend [28] or a derivation (Fig. 2c) typically
carried out through a Savitzky–Golay filter which consists in a
polynomial smoothing [29]. The baseline shift appears when the
absorbance increases with the wavelength due to the increased light
intensity. Multiplicative effects typically affect spectra differently
depending on the wavelength and are usually linked to an increase
of the distance crossed by the photons (due to different

Fig. 2 Visualization of different filters applied on a spectrum dataset. Each color represents a bread wheat
variety. Spectra were collected on grains with a lab spectrometer NIRS 6500 FOSS. (a) Raw spectra
(no preprocessing); (b) normalization (standard normal variate); (c) first derivative of raw spectra; (d) first
derivative on normalized spectra
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granulometry for example). They can be corrected by a normaliza-
tion (Fig. 2b). This effect is present when for low absorbances at a
wavelength, the variability is also low and for high absorbances at a
wavelength, the variability is high. Other preprocessing techniques
have also been proposed to specifically deal with an external param-
eter known to bias spectra such as temperature or hygrometry. This
is the case for instance of the method called External Parameter
Orthogonalization (EPO, [30]).

The preprocessing methods briefly introduced in the previous
paragraph have been previously developed in the chemometrics
literature. This preprocessing is routinely and widely used when
applying NIRS in the classical way, i.e., to predict the composition
of end-products. In the context of breeding and PS, further pre-
processing taken from the breeding literature can be carried out to
improve the ability of the spectra to predict genetic values. Such
preprocessing includes building a model on the absorbance or
reflectance at each wavelength taking into account the effects of
the experimental design (e.g., blocks or spatial effects) together
with genetic effects to further extract genotypic values
[25, 26]. Genotypic values may be BLUEs or BLUPs depending
on whether the genotype effect is considered as fixed or random in
the model. This preprocessing typically comes from the fact that PS
is carried out at the genotype level rather than at the individual or
plot level, and consequently one needs to obtain a unique NIRS
matrix at the genotype level for model training and prediction. It is
interesting to note that if the entire spectrum is considered rather
than absorbance or reflectance at given wavelengths, such correc-
tions are related to the orthogonalization approaches from the
chemometrics literature. Indeed, recently Ryckeweart et al. [31]
proposed to make use of spectra replicates, typically obtained when
characterizing plants under genetic trials, to reduce the repeatabil-
ity error. They developed a new preprocessing technique based on
orthogonalization after an ANOVA–simultaneous component
analysis (REP-ASCA).

The filters mentioned previously are not an exhaustive list but
have been the most commonly used in NIRS chemometric predic-
tion. Preprocessing can be done in numerous ways, as shown across
different studies, suggesting that no one standard preprocessing
approach exists. We have noticed that PS predictions were influ-
enced by the preprocessing applied on spectra, consequently we
recommend testing different filters on a subset of data to cross-
validate filters efficiency, before carrying out deeper analysis.

2.3 Statistical

Models for Phenotype

Prediction

NIRS reflectances or absorbances are quantitative variables, like
bi-allelic markers usually coded numerically with allelic dosages,
basically all models developed or used in the frame of genomic
selection can also be used for PS, from the “infinitesimal” model
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to Bayesian models with various prior distributions or machine
learning methods.

One such reference model for PS is the H-BLUP, similar to
G-BLUP but with a similarity matrix (H) estimated with NIRS
[1, 23, 25]. Different kernels can be used within such a framework,
including Gaussian kernel or arc-cosine kernel [24]. As with molec-
ular markers, this model can be equivalent to a ridge regression on
the wavelengths, provided the Hmatrix is computed accordingly, as
demonstrated hereafter. The predictive ability of the H-BLUP
model can be measured with cross-validation, as with G-BLUP or
other GS models.

The H-BLUP model is defined as: y ¼ μ + u + e,
with var yð Þ ¼ Hσ2u þ Iσ2e , and where y is a vector of phenotypes,
H is the NIR spectra-based similarity matrix as defined above, μ is
the intercept, u and e are random genetic and residual effects,
respectively. The RRN-BLUP model (Ridge Regression NIRS
BLUP) is defined as: y ¼ μ + Sv + e, with var yð Þ ¼ SS 0σ2S þ Iσ2e ,
and where S is the matrix of preprocessed, centered, and scaled
NIRS as defined above. The mean of y is equal to μ in both models,
thus H-BLUP and RRN-BLUP are equivalent if Hσ2u ¼ SS 0σ

2
S ,

which is for instance the case when H ¼ SS 0
nw

and σ2S ¼ σ2u
nw
.

Functional regression models seem particularly interesting for
PS, as they model the linear trend of the spectra [22]. Different
kinds of functional regressions were proposed such as functional
B-Spline, functional Fourier [22], and Bayesian functional
[32]. H-BLUP and functional regression models have proven to
yield accurate predictions while reducing computational time by
diminishing the number of parameters to estimate. This could be
important if several spectra from different environments are avail-
able, resulting in a high number of predictors.

Partial Least Squares (PLS) regression, classically used in che-
mometrics, or variable selection approaches (such as LASSO or
BayesB) can also be used to tackle multicollinearity and high
dimensionality. PLS regression consists of condensing the informa-
tion contained across all wavelengths into a few orthogonal vari-
ables that maximize the covariation between the predictor matrix
and the response variable. In LASSO and BayesB, it is assumed that
only a portion of the variables has an effect on the trait. Variable
selection seems promising for PS, because the spectrum could be
restricted to its most heritable parts [25, 33]. However, it should be
noted that the preselection of wavelengths using vegetation indices
or with knowledge on the genomic heritability of the wavelengths
generally result in lower prediction accuracies than when using the
full spectrum [17, 25].

In GS, the choice of the prediction model can be guided by the
expected genetic architecture of the predicted trait. The choice of a
PS model adapted to a given trait cannot yet rely on such assump-
tions, and it is not clear how the optimal prediction model can be
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related to the trait characteristics. The various models tested in the
literature sometimes resulted in contrasted prediction accuracies,
but in general, sophisticated models were not better than a simple
H-BLUP. Models relying on a mixture of distributions such as
BayesR [34] are accurate for contrasted genetic architecture in
GS; it would be interesting to test them in PS. In any case, alterna-
tive prediction models should be compared using cross-validations
within the calibration set.

Contrary to molecular markers in GS, in PS several spectra
corresponding to different replicates of genotypes possibly across
different environments can be available to build predictive models.
In this case, one possibility for calibration is to test each spectrum in
order to determine the one which yields the most accurate predic-
tions. Another possibility is to make use of all the available spectra.
Lane et al. [26] proposed in the frame of the H-BLUP model to
compute the mean of the relationship matrices calculated from each
spectrum individually. It is noteworthy that this proposition is
equivalent to computing the relationship matrix from a large com-
bined spectra matrix, providing that the individual spectra matrices
have the same number of wavelengths, as shown hereafter.

The similarity matrix HT(i, j) computed with the combined
spectra matrix (in which all spectra matrices are included one next
to the other) is given by:

HT i, jð Þ ¼
Pnt

k¼1 ST i, kð Þ � ST jð , kÞ½ �
nt

HT i, jð Þ ¼
Pnw

p¼1 S1 i, pð Þ � S1 jð , pÞ½ � þ . . .þPnw

p¼1 Snl
i, pð Þ � Snl

jð , pÞ½ �
nl � nw

HT i, jð Þ ¼ 1
nl

�
Pnw

p¼1 S1 i, pð Þ � S1 jð , pÞ½ �
nw

þ . . .þ
Pnw

p¼1 Snl
i, pð Þ � Snl

jð , pÞ½ �
nw

" #

T i, jð Þ ¼ 1
nl

�
XT

u¼1
Hu i, jð Þ

h i
ST has dimension n (number of individuals) times nt ¼ nl � nw,

with nl the number of spectra (e.g., number of environments in
which NIRS was acquired) and nw the number of wavelengths of
each spectrum (we consider that all spectra have the same wave-
lengths). Sud(i, k) is the absorbance or reflectance measured on the
ith individual for the kth wavelength in the uth NIR preprocessed
spectrum. Sud has the dimension n (number of individuals) times nw
(number of wavelengths). Hu(i, j) is the similarity between indivi-
duals i and j estimated with one given u spectrum.

2.4 Relative

Performance of PS

Versus GS

There are very few studies that compare PS (and in particular
GLOB selection) with GS (Table 2). Although Lane et al. [26]
was one of the two studies that implemented GLOB prediction
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with spectra following our definition, it could not be included in
this comparison because they did not apply GS. Table 2 illustrates
that PS and GLOB selection have been mainly implemented on
cereal species, probably because of the widespread and routine use
of NIR measurements on grains to predict protein content. Krause
et al. [23] and Galán et al. [25] reported similar accuracies for GS
and PS, while Cuevas et al. [24] showed lower accuracies for PS
compared to GS (0.37 and 0.46, respectively). The highest PS
accuracy compared with GS was observed in Rincent et al. [1] in
wheat. The lowest PS accuracy compared to GS was observed in
Rincent et al. [1] in poplar for which NIR spectra were collected on
wood for a reduced range of wavelengths. From these data, it is
apparent that PS had comparable or higher accuracies than GS in
most cases. Even in cases where PS is less accurate than GS, as NIR
measurements are high throughput and low cost compared to
genotyping, PS could still provide higher genetic gains than GS,
as demonstrated in Rincent et al. [1]. In our ongoing research we
compared GS and PS at different generations of elite bread wheat
selection. We found that PS could be as accurate as GS and even
better when applied to early generations. Further work on other
species is clearly needed to deepen this comparison and provide
valuable information on the factors and conditions (e.g., tissue,
environment) that determine the predictive ability of NIRS.

By considerably reducing the costs of implementation, PS is a
tool of choice to improve the balance between costs and benefits in
comparison with GS. PS would be particularly valuable for orphan
crops for which genotyping is expensive, or for major crops for
which phenomic data are already routinely collected (e.g., maize
and wheat). In the latter case, phenomic prediction already opens
new possibilities in existing breeding programs without any addi-
tional cost, and with predictive abilities similar to those obtained
with genomic prediction [1].

2.5 Factors Affecting

PS Predictive Ability

In the past, several kinds of omics were used to make genomic-like
predictions with promising results [8]. NIRS captures an integra-
tive signal, and is biologically more difficult to interpret than other
omics, which describe each molecule individually (e.g., transcrip-
tomics, proteomics, metabolomics). However, because prediction
models do not necessarily need to be interpreted biologically, NIRS
can be used to make predictions using “black-box” models.

There are two factors that contribute to the predictive ability
and consequently to the success of PS: (1) the ability to capture
target trait proxies and (2) the ability to infer genetic relatedness.
The former depends on the physiological connectedness between
the target trait and the composition and features of the tissue
analyzed with NIRS. This is for example the case when NIR spectra
collected on wood powder is used to predict wood properties, or
when NIR spectra collected on fruits is used to predict fruit
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composition. In these cases, PS should be nearly equivalent or
superior to the traditional way of using NIRS (prediction of the
tissue composition), the only difference being that when doing PS
we usually work at the genotype level because we aim at ranking and
selecting the best genotypes while in the traditional use of NIRS we
make predictions at the plot or plant level [26]. However, we could
think of more indirect relationships between the target trait and
NIR spectra to explain its predictive ability, for instance in wheat
the good predictive ability of PS for yield could be due to the fact
that NIRS is a very good predictor of grain composition, that is
often negatively correlated to yield. This could also be the case for
maturity: the spectra are influenced by the maturity of the plants,
and this maturity is sometimes correlated to yield [23]. However, it
is important to stress that even in the absence of any direct rela-
tionship between the predicted trait and the tissue analyzed with
NIRS, PS can still be accurate. It was for instance shown in Rincent
et al. [1] that NIR spectra collected on leaves in one environment
could be used to estimate a covariance matrix resulting in accurate
prediction of yield in a completely independent environment. In
this particular example, the correlation between yield in the envi-
ronment in which NIR spectra were obtained, and yield in the
predicted environment (by cross-validation within the predicted
environment) was as low as 0.16, whereas PS predictive ability
was above 0.5. This means that NIRS-derived relationship matrices
were able to capture genetic relatedness between lines valuable for
predicting yield. This was further demonstrated by the fact that
genomic heritability was significant for many wavelengths. A fur-
ther demonstration could be done with a simulation study, by
estimating the predictive ability of PS for traits simulated with
genotype data. In this case, the predictive ability of PS averaged
over a large number of simulated traits would provide an evaluation
of the ability of NIRS to infer genetic relationships for predicting
quantitative traits unrelated to the tissue composition.

PS is a recent research topic, and further investigations are
required to use it in an optimal way. One can expect that, as for
genomic selection, prediction accuracy will be strongly dependent
on the target trait and its heritability, as well as the size and compo-
sition of the training set. In comparison to GS, prediction accuracy
obtained with PS can also be affected by the origin of the spectrum
(tissue, environments, kind of sensors). This is similar to the choice
of a SNP array and marker filtering in GS, but the effect of the
origin of the spectrum appears to be more pronounced. First results
suggest that NIR spectra collected under plant stress conditions are
more efficient [1, 26], but other experiments are required before it
can be understood if this is the rule or the exception. An interesting
result is that, in practice, the combination of different NIR spectra
(collected on different tissues or different environments) leads to
predictive abilities at least as good as those obtained with the best
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NIR spectrum taken alone ( [1], unpublished results). This means
that in some cases, it is not necessary to identify the best conditions
to obtain NIR spectra, but simply to aggregate all the spectra
collected (e.g., spectra obtained on the same genotypes at the
different steps of the breeding program). As shown in the present
review, aggregating NIRS matrices prior to computing the H
matrix is equivalent to averaging H matrices estimated with indi-
vidual NIRS matrices and is thus quite straightforward. However,
in any case, the choice of the tissue, timing, and sensors could and
should also be optimized. We can think that NIR spectra collected
on homogeneous, representative samples (leaf powder, seed sam-
ple, or flour) are more useful than NIR spectra obtained on a tiny
area of raw material. The way NIR spectra are collected should also
be optimized in terms of practical feasibility. For instance in wheat,
it would be much more feasible to measure NIR spectra during the
growing season, than on grain after harvest, because the few weeks
between harvest and sowing of the next generation is labor inten-
sive and so NIR spectra acquisition would be difficult during this
period.

3 Prospects

As introduced above, there are numerous ways of using PS in
breeding. We particularly foresee several applications to be
addressed with PS and that we detail hereafter. Some of them are
quite direct applications, which can already be deployed in breeding
programs (see below Subheadings 3.1–3.6), while others are pro-
spects which deserve research investments prior to their adoption in
breeding in a relatively longer term (Subheading 3.7). Although
many of the prospects presented here are also shared with GS, we
have tried in what follows to underline their specificity with respect
to PS.

3.1 Prebreeding:

Screening Diversity

Collections at Low

Cost

Gene banks are a reservoir of genetic diversity in which genes of
tolerance to biotic or abiotic stress can be discovered. These collec-
tions will become crucial, as the genetic diversity in the breeding
program will not be sufficient to face upcoming changes due to the
evolution of management practices or climate change. However,
the identification of promising genes or individuals require the
phenotyping of the collection for the target trait, which could be
too expensive given the number of accessions stored in these col-
lections. Yu et al. [35] and Crossa et al. [36] have proposed to run
GS to screen these collections. However, this requires genotyping
the full collection, which is also expensive considering the large size
of the gene banks. Another option would be to measure NIR
spectra on each accession, phenotype a subset, and predict the
remaining accessions using PS. In most gene banks, accessions are
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regularly sown in nurseries to produce new seeds, as the germina-
tion rate decreases with time. NIRS could thus either be collected
on seeds directly in gene banks or on other tissues in these nur-
series. The same approach could also be extended to other species
like perennials which are usually not conserved as seeds but as living
plants in the field.

3.2 Sparse Testing:

Experimental Design

Optimization in

Breeding Programs

For most species, selection candidates are evaluated in multi-
environment trials to estimate their stability and productivity in
contrasted environments. This is an expensive step as the number
of variety/environment combinations can rapidly become very
high. To increase the number of environments or varieties with
the same costs, one option would be to run a sparse testing design,
in which all varieties are evaluated at least in one environment, but
with a given proportion of varieties/environments not tested.
Sparse testing is sometimes imposed to breeders because part of a
trial is accidentally destroyed, or not harvested for some reason.
Sparse testing is a scenario for which genomic predictions are
particularly accurate, in comparison to predicting a completely
new variety or a new environment [37–39]. Our proposition is to
use PS to predict the unobserved variety/environment combina-
tions. In wheat, this approach is already applicable as NIR spectra
are usually collected in nurseries the year before the multi-
environment trials. Our first unpublished results on sparse testing
show that the prediction accuracy of PS under this scenario can be
as high as to the one obtained with GS.

3.3 Combining

Reduction of

Generation Time

(Speed Breeding) and

Performance

Prediction (PS) to

Increase Genetic

Progress

One challenge in breeding is to accelerate programs to quickly
release new varieties. Breeding is often constrained to one to two
generations per year for annual crops, which limits genetic prog-
ress. Several methods have been proposed to reduce generation
time, including recently “speed breeding” [40]. Speed breeding
consists in controlling photoperiod and temperature to get optimal
growing conditions and accelerate the time elapsed from seed to
seed, allowing up to six spring wheat generations per year. Thus, a
great number of segregation and recombination events can occur in
a short time, allowing to rapidly produce varieties combining favor-
able alleles. PS could have two applications that could work partic-
ularly well if combined with speed breeding. The first application
could be implemented in the speed breeding process itself. During
this process, each plant is unique and is phenotypically quite differ-
ent from what it would look in the field, which makes direct
selection impossible except for phenology, height, and some disease
resistance traits. But molecular markers or NIR spectra could be
measured on the plants or on the seeds which would allow predict-
ing performance traits using GS [41], or at a lower cost PS. This
would considerably increase genetic progress by reducing both the
generation interval (speed breeding) and the phenotyping process
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(partially replaced by predictions). The second application would
be to apply PS to reduce the field trials size after the speed breeding
process. Thousands of genotypes can be produced by speed breed-
ing, and it would be difficult to phenotype all of them in field
experiments (after multiplication in the nurseries). As NIR spectra
can be collected at the end of the process or in the nurseries, PS
could be used to predict genotype performance in the nurseries or
with sparse testing in the following field experiments as described
above.

3.4 GEI Prediction Unlike molecular markers, NIR spectra are directly influenced by
the response of the plants to the environmental conditions. This
seems likely to result in a lack of stability of the spectra in different
environments. It also may mean that the spectra are able to capture
the genetic responses to a given environment (GEI), as illustrated
in Rincent et al. [1], which opens new perspectives of application
for PS. This GEI variance could be exploited to enhance predictive
ability of local adaptation. One possibility to improve the GEI
prediction models is to use NIRS collected in each environment
to estimate environment-specific covariance matrices. Krause et al.
[23] compared different models (single and multi-kernel) using
molecular marker, pedigree, or NIR spectra, to predict wheat
grain yield in multi-environment trials. They found that the best
multi-kernel integrating GEI was the one with the hyperspectral
matrix. Using NIRS enhanced predictive accuracy of GEI com-
pared to models that use molecular markers or pedigree. Similar
results were observed by Montesinos-López et al. [22] and Lane
et al. [26] where the interaction between NIR bands and environ-
ments was integrated in the models. The introduction of NIR
information in the prediction model allowed increasing GEI pre-
diction accuracy, which was not the case with molecular markers.

This multi-kernel method requires collecting the spectra of all
genotypes in all the environments of the multi-environment trials,
which is not possible with classical sparse testing designs. One
possibility would be to grow a nursery in parallel of each trial,
which would be much cheaper than a real trial. In this case, the
trial will be dedicated to phenotype the training population and the
nursery to collect spectra on both training and predicted lines.
Krause et al. [23] proposed to reduce the size of the microplots,
to measure NIR spectra on all lines in all environments using a
UAV. The objective is to find a compromise between the number of
candidate varieties predicted with PS and the number of training
varieties phenotyped for the target traits.

Another potential application would be to use NIR spectra
collected in the different environments to estimate similarities
between them, as proposed in Jarquin et al. [37] and Heslot et al.
[42] with environmental covariates. In comparison to classical
environmental covariates (e.g., temperature, hydric balance,
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radiation), NIRS has the advantage of capturing signals from the
plant that could be influenced by the experienced stresses. GEI
models enriched with NIRS would be particularly useful to make
predictions in multi-environment trials. This application of PS
could potentially allow making predictions in new environments
(no other phenotype than NIR spectra are collected in these envir-
onments) by estimating the similarity between the new environ-
ment and the calibration environments. NIR spectra can also be
used as a covariate in the predictive model to characterize the GEI.
Lane et al. [26] proposed to take into account the GEI by using
wavelengths as covariates in the predictive model through func-
tional regression. They predicted yields of known hybrids in an
unknown environment and found that taking into account GEI
with covariates worked better than regular H-BLUP. The different
models tested in these studies underline that NIRS can be a good
predictor of GEI, and in many different ways. These results are very
promising to enhance predictive ability in the context of multi-
environment trials.

3.5 Making Use of

Historical NIRS Data in

Prediction

In GS, the enrichment of the training set with historical data from
multiple environments can improve predictive ability by increasing
the size of the training set and by limiting the effect of atypical years
that are difficult to predict with reduced and traditional datasets
[43]. The use of historical data might be more complicated with
PS, as NIR spectra are likely to be more specific to the environment
in which they are measured. To estimate the NIR similarity matrix
(H) between historical varieties characterized with NIRS over suc-
cessive years (the varieties changing from 1 year to another), the
effect of environment and GEI should be accounted for and cor-
rected from the spectra. One option would be to use check varieties
for which NIR spectra would be collected each year to determine
the transformation from the spectra collected in one environment
to the spectra collected in another environment.

3.6 The Case of

Perennials

Genetic resources for perennials are usually conserved as collections
in nurseries. These collections typically include individuals from
different species, populations, genotypes as well as clones. In this
case, we foresee several potential applications of PS. First, as already
mentioned in the case of gene banks, NIRS could be used to rapidly
screen these resources for target traits that are typically difficult to
evaluate on a large number of individuals, such as fruit quality or
phenology. Second, in a more advanced breeding context, one
could imagine that progenies from controlled crosses could be
planted near a well-characterized reference panel of widely
cultivated varieties. NIRS data could be collected at the same time
on both reference and candidate individuals to limit environmental
heterogeneity between NIRS matrices from training and test sets,
and a model could be trained by using phenotypic data potentially

414 Pauline Robert et al.



obtained in other sites for the reference panel in order to predict
the performance of the candidates in these particular sites. This
scenario corresponds to GLOB prediction, which proved to be
quite efficient for some traits in wheat and poplar in Rincent
et al. [1].

3.7 Other

Applications

3.7.1 Genotype Inference

Whalen et al. [44] described a new application of NIRS for breed-
ing beyond PS: the use of High-Throughput Phenotypes (HTP)
such as NIRS to infer genotypes. They illustrated their approach
with simulations, in which spectra resulted from an additive genetic
model, with 100 QTLs per chromosome and heritability of wave-
length ranging between 0.1 and 0.7. From that, they fit a model,
which links the segregation states at each locus with the HTP, for
the training population. Then, this model was applied to predict the
segregation states of non-genotyped individuals. They concluded
that under certain conditions it was possible to infer the genotypes
of individuals derived from biparental crosses. The HTP-enabled
genomic prediction (with genotypes inferred from HTP data)
yielded higher accuracies than PS, the best accuracies being from
classic genomic prediction models with real genotypes. However, it
is important to note that PS does not only capture additive genetic
effects, but also epistatic and GEI. This advantage of PS over GS
could not be illustrated here, as only additive effects were
simulated. Nevertheless this application seems very promising for
breeding, especially for species with high genotyping cost. Further-
more, as PS relies on global relatedness between genotypes derived
from NIRS, it could be difficult to predict traits with mono- or
oligogenic genetic architecture. Hence, this transition proposed by
Whalen et al. [44] fromNIRS tomarker data allows to apply GS but
also QTL detection. This shows that the use of NIRS instead of
genotyping in breeding may be adapted to contrasted genetic
architectures. A demonstration of its usefulness with real data
remains to be conducted.

3.7.2 Hybrid Prediction As NIR spectrum is a phenotype, it captures both additive and
interaction effects. For this reason, it could be possible to use the
NIRS covariance matrix to predict hybrid performances, taking
into account both general and specific combining abilities. The
idea would be to collect NIR spectra on the hybrids to estimate a
covariance matrix taking interaction effects into account. One
option would be to collect NIRS data on large collections of
hybrids in nurseries, and phenotype only part of the hybrids in
classical multi-environment trials, possibly with the sparse testing
approach described above.

3.7.3 Progeny sorting In some programs, breeders are interested in quickly characterizing
progenies from controlled crosses with respect to their resemblance
to their parents. This is typically the case when crossing an
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established widely used variety with a donor genotype with the aim
to introgress particular features from the donor to the variety. An
example of this would be the case of grapevine for which a current
challenge is to quickly breed varieties with resistance to biotic
factors while maintaining some established quality for wine making.
In this case when a given variety is crossed with a disease resistant
genotype, it is usually quite straightforward using marker-assisted
selection to select the progenies that carry disease resistant genes,
but for wine quality it is much more complicated. The goal would
be to select among the resistant progenies those that are more
similar to the parental wine-making variety, which using molecular
markers is a very difficult task without considering prior knowledge
on the genetic architecture of the traits. In this particular case,
NIRS could be useful to provide a distance between the resistant
progenies and their parents.

4 Conclusion

We have reviewed the different approaches that have so far been
proposed in literature to predict agronomic traits with NIRS, from
prediction at the plot/individual level to PS and GLOB selection.
NIRS has been intensively used to make predictions at the plot or
genotype level, considering NIRS as a secondary trait or as a yield
proxy. The originality of PS and GLOB selection as defined in
Rincent et al. [1] is that NIR spectra are used in a similar way as
molecular markers in GS. They indeed supposed that NIR spectra
were able to capture genetic relationships between individuals. PS
resulted in good predictive abilities (often similar or even higher
than those obtained with GS), even when the predicted trait was
completely independent from the tissue analyzed with NIRS (e.g.,
different environments). The high throughput and low cost of this
approach makes it interesting to increase breeding efficiency in
comparison to GS, particularly for species for which genotyping is
expensive, or for crops for which NIRS data are already routinely
collected in the breeding programs. We have also proposed differ-
ent promising applications of PS in breeding and prebreeding
among which some can readily be applicable, while others require
further work in order to test and optimize this approach.
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