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Abstract 

Background: Conflicting results regarding alterations to sperm DNA methylation in cases of spermatogenesis 
defects, male infertility and poor developmental outcomes have been reported in humans. Bulls used for artificial 
insemination represent a relevant model in this field, as the broad dissemination of bull semen considerably alleviates 
confounding factors and enables the precise assessment of male fertility. This study was therefore designed to assess 
the potential for sperm DNA methylation to predict bull fertility.

Results: A unique collection of 100 sperm samples was constituted by pooling 2–5 ejaculates per bull from 100 
Montbéliarde bulls of comparable ages, assessed as fertile (n = 57) or subfertile (n = 43) based on non‑return rates 
56 days after insemination. The DNA methylation profiles of these samples were obtained using reduced representa‑
tion bisulfite sequencing. After excluding putative sequence polymorphisms, 490 fertility‑related differentially methyl‑
ated cytosines (DMCs) were identified, most of which were hypermethylated in subfertile bulls. Interestingly, 46 genes 
targeted by DMCs are involved in embryonic and fetal development, sperm function and maturation, or have been 
related to fertility in genome‑wide association studies; five of these were further analyzed by pyrosequencing. In order 
to evaluate the prognostic value of fertility‑related DMCs, the sperm samples were split between training (n = 67) 
and testing (n = 33) sets. Using a Random Forest approach, a predictive model was built from the methylation values 
obtained on the training set. The predictive accuracy of this model was 72% on the testing set and 72% on individual 
ejaculates collected from an independent cohort of 20 bulls.

Conclusion: This study, conducted on the largest set of bull sperm samples so far examined in epigenetic analyses, 
demonstrated that the sperm methylome is a valuable source of male fertility biomarkers. The next challenge is to 
combine these results with other data on the same sperm samples in order to improve the quality of the model and 
better understand the interplay between DNA methylation and other molecular features in the regulation of fertility. 
This research may have potential applications in human medicine, where infertility affects the interaction between a 
male and a female, thus making it difficult to isolate the male factor.
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Background
Understanding the causes of infertility and subfertility is 
a challenge in human medicine as these conditions affect 
approximately 15% of couples. Infertility is defined as an 
inability to conceive a child after 12  months of unpro-
tected intercourse. In 30% of cases, male factors are 
recognized as the primary cause of infertility because 
anatomical, hormonal or known genetic anomalies have 
been clearly diagnosed but no female factors have been 
identified [1–3]. However, in 15–30% of cases, male 
infertility is described as idiopathic [1, 4], meaning that 
the aforementioned causes have been excluded. Altered 
semen parameters are commonly observed in cases of 
idiopathic male infertility, suggesting that unidentified 
factors that impair spermatogenesis might have compro-
mised fertility [4]. Idiopathic infertility also affects nor-
mozoospermic patients, thus making it more difficult to 
determine the causes and highlighting the need for addi-
tional analyses of sperm in order to deepen our under-
standing of fertility [5].

Mature spermatozoa represent the ultimate form of 
male germ cell differentiation, which is a tightly regu-
lated process that starts in utero and is achieved in adult-
hood during spermatogenesis. Sperm cells are meant 
to survive outside the organism, fertilize an oocyte and 
contribute to a new individual; and although they are 
transcriptionally inactive, they bear a remarkable epi-
genome in line with their high degree of specialization 
and unique nature [5]. Thus DNA methylation, chroma-
tin, as well as non-coding RNAs, all display unique fea-
tures inherited from sperm differentiation that are also 
essential for embryonic development [6, 7]. It has been 
postulated that alterations to this sperm-specific epi-
genome due to lifestyle factors, advanced age, medical 
conditions or environmental exposure may provide an 
explanation for male infertility or subfertility [8–13]. Of 
all epigenetic mechanisms, DNA methylation has been 
a particular focus for studies on male fertility. Manipu-
lations of DNA methylation in pharmacological or 
genetic models have indeed demonstrated the essential 
role it plays in male germ cell differentiation and fertil-
ity [14–16]. Alterations to the sperm methylome caused 
by advanced paternal age or exposure to harmful con-
ditions have also been reported to interfere with male 
fertility, pregnancy outcomes and the health of the next 
generation [17–21]. Furthermore, from a technical point 
of view, the starting point for all DNA methylation assays 
is the preparation of high quality genomic DNA, which is 
relatively straightforward when compared to other types 
of epigenetic assays. Standardized platforms such as the 
Illumina EPIC assay or earlier versions have thus been 
developed in humans, opening the way to the analysis of 
large cohorts at a genome scale [22].

Numerous studies in human cohorts have identified 
specific DNA methylation profiles associated with altered 
semen parameters [23–25], embryo quality after in vitro 
fertilization [26], and infertility or subfertility in normo-
zoospermic patients [27, 28]. However, these studies did 
not reach a consensus regarding a DNA methylation sig-
nature for subfertility or infertility [29], with the excep-
tion of specific alterations targeting imprinting genes 
[30], although this view has also been disputed recently 
[31]. These inconsistent results may have technical or 
biological origins, such as the diversity of the methods 
used to process semen and obtain DNA methylation data 
or the heterogeneity of phenotypes associated with infer-
tility [29]. They may also be related to confounding fac-
tors that are inherent to studies on human fertility which 
make it very difficult to isolate male factors (one male 
partner, one female partner, both living in the same envi-
ronment) [32].

Unlike the situation in humans, the widespread use of 
artificial insemination (AI) in dairy cattle and the dissem-
ination of bull semen to many herds markedly reduces 
these limitations; the bull is therefore an excellent ani-
mal model to investigate the etiology of male subfertility. 
Indeed, each bull is usually mated with hundreds of cows 
maintained in different herds, and the outcome of each 
insemination is recorded. Bull fertility can therefore be 
measured accurately in the field and corrected for many 
confounding factors. Moreover, bull fertility is an impor-
tant economic trait. Unsuccessful AI can indeed give rise 
to direct costs, extended calving intervals and increased 
culling rates of the inseminated cows. Considerable 
efforts have therefore been made in an attempt to predict 
bull fertility and to understand the causes of subfertil-
ity based on genotypes, semen functional parameters or 
sperm molecular features, including epigenetic modifica-
tions [33, 34]. Some studies on alterations to the sperm 
methylome in bulls belonging to different fertility classes 
have recently been published [35–40]. Although they 
highlighted genes potentially important to fertility and 
were informative from a biological point of view, all these 
studies involved small numbers of individuals. These 
studies also investigated a variety of breeds, considered 
different phenotypes for fertility, and applied a range 
of technologies to obtain genome-wide DNA methyla-
tion profiles, resulting in marked variations in terms of 
the magnitude of the DNA methylation changes and the 
nature of impacted genes. As a result, the link between 
sperm DNA methylation and male fertility remains 
poorly understood in cattle, despite all the benefits of the 
bull model.

In order to contribute knowledge in this field, we inves-
tigated the nucleotide-level resolution, genome-wide 
DNA methylation profiles of semen samples collected 
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from a total of 120 carefully selected Montbéliarde bulls 
with contrasting fertility levels. We report here on the 
biological characterization of the loci that were differen-
tially methylated between fertile and subfertile bulls, and 
on the potential for using these loci to build models pre-
dictive of fertility status.

Results
Experimental design and overall strategy
In order to clarify the relationships between sperm DNA 
methylation and male fertility and to use variations in the 
methylome to establish a predictive model, 100 semen 
samples were obtained from marketed Montbéliarde 
bulls categorized as fertile (n = 57) or subfertile (n = 43) 
according to hundreds of AI records (main cohort, 
Fig. 1A, B). The bulls were selected based on non-return 
rates at 56 days (NRR 56), i.e. the proportion of cows that 
were not re-bred within 56 days of an insemination and 
could therefore be considered as pregnant. Because these 
NRR 56 scores were corrected from confounding factors, 
they fully characterize the bulls and are hardly affected by 
other sources of variation. The distribution of corrected 
NRR 56 among all marketed Montbéliarde bulls was nor-
mal and quite narrow, and considering its large size and 
inclusion criteria, the main cohort reflected the most 
contrasting differences in fertility that could be inves-
tigated within this distribution (Fig.  1A). Although the 
differences in corrected NRR 56 were relatively limited 
between fertile and subfertile bulls, they were highly sig-
nificant (Fig.  1B), demonstrating that fertile and subfer-
tile bulls represented two distinct fertility classes.

Several ejaculates representative of the overall fertil-
ity of each bull were pooled in order to minimize envi-
ronmentally or physiologically driven variations that 
might affect individual ejaculates. To prevent the con-
founding effect of age on the sperm methylome [41, 42], 
all ejaculates were collected from animals between 17 
and 19 months of age (Additional file 2: Table S1). An 

assessment of semen functional parameters revealed 
no statistically significant differences between the fer-
tile and subfertile samples (Additional file  3: Table  S2 
and Fig.  1C), suggesting that subfertility is not related 
to defective spermatogenesis. The genome-wide DNA 
methylation profile of these 100 semen samples was 
investigated using reduced representation bisulfite 
sequencing (RRBS) which enabled the identification of 
fertility-related differentially methylated CpGs (DMCs), 
which were then annotated and used for functional 
enrichment analyses and technical validation (Fig. 1D). 
A Random Forest approach was then applied to the 
DNA methylation percentages at these DMCs, the aim 
being to create and validate a model that could predict 
the fertility class of each bull (Fig. 1E).

The main cohort used to identify DMCs and to build 
the predictive model was also used to evaluate the 
model (see “Methods”), which might have led to an 
overestimation of the model’s performance. To over-
come this source of bias and assess the potential of the 
model for field application, an independent and less 
controlled cohort that did not contribute to identify-
ing the DMCs was also investigated. This independent 
cohort comprised 20 individual ejaculates collected 
from 20 marketed Montbéliarde bulls of contrasting 
fertility (16 fertile and 4 subfertile) and various ages 
that had not been included in the main cohort (Fig. 1F, 
G). Like the main cohort, semen functional parameters 
did not differ significantly between the fertile and sub-
fertile samples (Fig.  1H; Additional file  3: Table  S2). 
After RRBS analysis, the DNA methylation values at 
the genomic positions previously identified in the main 
cohort as DMCs were extracted (Fig.  1D). The predic-
tive model built on the main cohort was then applied to 
these values in order to classify the samples as fertile or 
subfertile. Model quality indicators were calculated for 
both cohorts, based on the consistency between pre-
dicted and actual fertility classes (Fig. 1E).

Fig. 1 Experimental design and overall strategy. Fertile and subfertile bulls are shown in red and blue, respectively. A distribution of the corrected 
non‑return rate at 56 days post‑insemination (NRR 56) for all the Montbéliarde bulls born between 2011 and 2014 (519 bulls in total, in grey) 
and for fertile (n = 57) and subfertile bulls (n = 43) included in the main cohort. B The main cohort comprised 100 bulls with contrasting fertility, 
based on the differences in corrected NRR 56 (Wilcoxon test, p < 0.05). C for each bull, straws representing several ejaculates prepared for AI were 
thawed and pooled. Semen functional parameters corrected for batch preparation effects (see “Methods”) were assessed on these pools and no 
significant difference in mitochondrial status, motility or viability could be detected between fertile and subfertile bulls (Wilcoxon test, p ≥ 0.05). 
D DNA methylation was analyzed on these samples by RRBS, enabling the selection of a subset of CpGs at which DNA methylation could be 
measured with sufficient precision (CpGs10). These CpGs10 were then subjected to differential analysis and fertility‑related DMCs were identified. 
E Using the methylation values at DMCs, a predictive model for fertility was constructed and validated. F Distribution of the corrected NRR 56 for 
all the Montbéliarde bulls born between 2009 and 2012 (485 bulls in total, in grey) and for fertile (n = 16) and subfertile bulls (n = 4) included in the 
independent cohort. G The independent cohort included 20 bulls with contrasting fertility based on the differences in corrected NRR 56 (Wilcoxon 
test, p < 0.05), and was only used to evaluate the potential for field application of the predictive model built on the main cohort. H Semen functional 
analysis and RRBS were performed on one ejaculate per bull. The model previously built on the main cohort was applied to the methylation values 
obtained in the independent cohort at CpGs10 identified as DMCs using the main cohort. Model quality indicators assessing the consistency 
between the actual and predicted fertility were then calculated for both the main and independent cohorts

(See figure on next page.)
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Reduced representation bisulfite sequencing of 120 semen 
samples
The sequencing parameters, alignment statistics and 
overall DNA methylation values for both cohorts were 
analyzed and compared between fertile and subfertile 
bulls (Table  1; the asterisks indicate significant differ-
ences between fertile and subfertile bulls). Sequencing 
generated an average of 33.6 million read pairs with 
an average quality (Phred) score of 38.4, meaning that 
more than 91% of the sequenced bases had high qual-
ity scores. The average bisulfite conversion rate reached 
99%. The reads were then aligned on the bovine refer-
ence genome. Unique mapping efficiency (34.3% on aver-
age) was low but consistent with previous RRBS studies 
in the bovine species [40, 43, 44]. On average, these 
uniquely mapped reads aligned on 3.2 million CpGs (out 
of 28 million CpGs in the genome), of which 60.7% on 
average were covered by at least 10 reads (CpGs10) and 
were retained for further analysis. This low unique map-
ping efficiency was due to the high percentage of reads 
that aligned at multiple locations on the genome (mul-
timapped reads); this feature was attributed to the large 

number of repetitive elements targeted by RRBS in the 
bovine species [43]. Because of their repetitive nature in 
the genome context, repeats are supposed essentially to 
be covered by multimapped reads that are filtered-out 
during bioinformatics analysis. This process results in 
a loss of information regarding these sequences, which 
are of functional importance and subject to changes that 
affect DNA methylation in the sperm of infertile men 
[27, 45]. In order to obtain additional information on 
the methylation status of repeats in fertile and subfertile 
bulls, the reads were also aligned on an artificial genome 
containing one specimen of each repeat, as defined in 
Repbase [46]. Although the reads aligned with only 1106 
CpGs on average, unique mapping efficiency on this Rep-
base genome reached an average of 20.7%, translating 
the stacking of a huge amount of reads at each CpG (an 
average of 38,341 reads per CpG). There were no statisti-
cally significant differences regarding sequencing param-
eters and alignment statistics on the two genomes when 
comparing fertile and subfertile bulls from either cohort 
(Table  1). This eliminated the possibility of technical 

Table 1 Characterization, mapping efficiency on the bovine reference genome (ARS‑UCD2.1) and on a Repbase artificial genome, 
coverage and average methylation in RRBS libraries

Values are mean ± standard error of the means. CpGs10: CpGs covered by at least 10 uniquely mapped reads. Hypermethylated, intermediate and hypomethylated 
CpGs10 indicate CpGs10 with average methylation percentages > 80%, [20%; 80%], and < 20%, respectively. Fertile and subfertile bulls were compared in both 
cohorts, and the asterisks indicate a significant difference in the independent cohort regarding the percentage of hypermethylated CpGs10 (Wilcoxon test, p < 0.05)

Main cohort Independent cohort

Fertile (n = 57) Subfertile (n = 43) Fertile (n = 16) Subfertile (n = 4)

Sequencing parameters

Number of read pairs (million) 32.9 ± 5.6 33.9 ± 5.4 35.5 ± 5.6 33.9 ± 2.5

Average quality score (Phred score) 38.2 ± 0.3 38.4 ± 0.3 39.0 ± 0.3 38.9 ± 0.4

Bisulfite conversion rate (%) 99.0 ± 0.4 99.0 ± 0.4 99.3 ± 0.6 99.1 ± 0.6

Alignment on ARS-UCD2.1

Uniquely mapped reads (%) 33.9 ± 1.5 34.3 ± 1.6 35.8 ± 2 35.0 ± 3.1

Number of covered CpGs (million) 3.2 ± 0.1 3.2 ± 0.09 3.3 ± 0.1 3.3 ± 0.1

Average coverage per CpG 23.2 ± 3.6 24.0 ± 3.5 24.1 ± 3 22.9 ± 1.8

Percentage of CpGs10 60.2 ± 3.9 60.9 ± 3.5 62.2 ± 2.9 60.3 ± 1.9

Average DNA methylation at CpGs10 (%) 46.2 ± 1.6 46.5 ± 1.2 47.5 ± 1.7 47.8 ± 1.8

Percentage of hypomethylated CpGs10 50.9 ± 2 50.4 ± 1.2 49.3 ± 2 49.0 ± 2.1

Percentage of intermediate CpGs10 6.0 ± 1.1 6.0 ± 0.4 5.8 ± 0.6 6.1 ± 0.2

Percentage of hypermethylated CpGs10 43.4 ± 2.4 43.7 ± 1.1 44.9 ± 1.7 44.9 ± 1.9

Alignment on RepBase

Uniquely mapped reads (%) 20.6 ± 1.7 20.4 ± 1.2 21.6 ± 1.9 22.4 ± 1.6

Number of covered CpGs (million) 1104 ± 72 1124 ± 85 1080 ± 38 1048 ± 4

Average coverage per CpG 36,996 ± 6451 37,722 ± 6606 43,479 ± 8507 43,603 ± 6136

Percentage of CpGs10 70.8 ± 3 70.8 ± 3.1 73.5 ± 2 73.3 ± 2

Average DNA methylation at CpGs10 (%) 30.8 ± 3 31.1 ± 3.2 31.3 ± 2.1 30.6 ± 2.9

Percentage of hypomethylated CpGs10 50.4 ± 2.7 49.5 ± 2.9 49.7 ± 2.9 48.4 ± 5.4

Percentage of intermediate CpGs10 41.3 ± 2 42.1 ± 1.8 40.8 ± 2.5 43.1 ± 5.4

Percentage of hypermethylated CpGs10 8.2 ± 1.9 8.5 ± 2.4 9.4 ± 1.7* 8.5 ± 1.5*
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bias during RRBS library preparation or sequencing that 
might have affected subsequent results.

The average methylation at CpGs10 was 46.5%, which 
is consistent with values previously obtained on bovine 
sperm using RRBS [43] and also with the overall under-
methylation reported for bovine sperm when compared 
to adult somatic cells using whole genome bisulfite 
sequencing [47]. Accordingly, a large proportion of the 
CpGs10 were hypomethylated (50.4% of CpGs10 with 
DNA methylation below 20% for the reference genome 
and 49.9% for the Repbase genome). Except for the per-
centage of hypermethylated CpGs10 in the Repbase 
genome, which was slightly reduced in the four subfer-
tile samples from the independent cohort, there were no 
statistically significant differences between fertile and 
subfertile bulls in terms of the percentage of CpGs10 that 
were hypomethylated (DNA methylation below 20%), 
intermediate (DNA methylation between 20 and 80%) 
and hypermethylated (DNA methylation higher than 
80%), thus indicating that subfertility is not related to 
global DNA methylation changes (Table 1).

In line with this finding, hierarchical clustering run 
on the DNA methylation values at CpGs10 failed to seg-
regate samples according to bull fertility (Additional 
file  1: Fig. S1A). The main cohort included bulls from 
two semen collection centers and was split into several 
batches for semen processing and library preparation 
because of its huge size; we therefore also confirmed that 
neither the bulls’ origin nor technical artefacts affected 
the DNA methylation patterns (Additional file  1: Fig. 
S1B–D).

Taken together, these results show that high quality 
RRBS data could be obtained regarding DNA methyla-
tion analysis in sperm, enabling the investigation of dif-
ferences related to fertility in the largest cohort so far 
constituted in cattle.

Identification of fertility‑related differentially methylated 
CpGs and regions
In order to determine any differences in DNA meth-
ylation between the fertility groups in the main cohort, 
1,949,735 CpGs10 covered in at least 22 samples per 

group (which represents half of the smallest group) 
were subjected to differential analyses using two types 
of algorithms (see “Methods”). While no DMCs were 
identified using DSS, which is described as dealing with 
intra-group inter-individual variability [48], 3252 DMCs 
were obtained using methylKit [49]. Because sequence 
polymorphism is an important source of inter-individual 
variability in DNA methylation patterns [50], this strik-
ing difference in the number of DMCs obtained using 
either DSS or methylKit called for a careful examination 
of the genomic sequences imputed in the 100 bulls. The 
presence of polymorphisms affecting C and/or G in the 
CpG was indeed observed in 2352 out of 3252 methyl-
Kit DMCs, suggesting that in our dataset, this algorithm 
tended to select genetic rather than epigenetic variations. 
At these sites, the methylation differences between fertil-
ity groups were probably emphasized by a biased distri-
bution of genotypes, resulting in a marked intra-group 
inter-individual variability that precluded their identifica-
tion as DMCs by DSS but not by methylKit.

To suppress the polymorphisms affecting CpGs that 
could interfere with DMC detection, all putative variants 
recorded in the 1000 Bull Genome database and targeting 
the CpGs covered by RRBS were filtered out, resulting in 
a background of 1,548,563 CpGs10 covered in at least 22 
samples per fertility group (22 samples representing half 
of the smallest group). Using methylKit, 490 DMCs and 
46 differentially methylated regions (DMRs) were iden-
tified, which contrasts with no DMCs being obtained 
with DSS, and suggests that sources of intra-group inter-
individual variations still existed in our dataset. This was 
also visible from the hierarchical clustering run on the 
CpGs10 before and after the filtering of sequence vari-
ants, which demonstrates that inter-individual epigenetic 
variations unrelated to fertility shape the sperm methy-
lome independently of the presence of polymorphisms 
(Additional file 1: Fig. S1A, E). These inter-individual epi-
genetic variations were clearly not due to the presence of 
variable amounts of somatic cells in the samples (Addi-
tional file 1: Fig. S2).

Although a certain degree of overlap existed 
between the fertile and subfertile bulls, they 

(See figure on next page.)
Fig. 2 Discrimination of fertile and subfertile bulls based on fertility‑related differentially methylated CpGs and regions. A, B principal component 
analysis (A) and correlation clustering (B) run on the DMCs identified after variant filtering between fertile (red) and subfertile (blue) bulls in the 
main cohort. A Although a certain degree of overlap exists between the groups, they clearly segregate along dimension 1. Confidence ellipses 
are represented. B The cluster on the left mostly contains subfertile bulls, while the cluster on the right mostly contains fertile bulls. C Heatmap 
showing the average DNA methylation values at 18 DMRs covered in all 100 samples. Each cell of the heatmap is colored according to the average 
methylation value in the corresponding sample (displayed in columns, with fertile and subfertile bulls shown in red and blue, respectively) and DMR 
(in rows, with DMRs hyper‑ and hypomethylated in subfertile bulls shown in red and black, respectively). For each DMR, the genomic coordinates 
and the gene containing the DMR (if any) are indicated on the right‑hand side. Three different clusters of DMRs were obtained manually. Cluster 1 
included 5 DMRs that were highly methylated in subfertile bulls, while cluster 2 included 9 DMRs with low methylation in fertile bulls
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Fig. 2 (See legend on previous page.)
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segregated as two distinct groups in a principal com-
ponent analysis (PCA, Fig.  2A) and in hierarchical 
clustering run on the DMCs found after variant filter-
ing (Fig.  2B). Likewise, among 18 DMRs covered in 
all 100 samples of the main cohort, the average DNA 
methylation status enabled the clustering of samples 
according to fertility on a heatmap (Fig. 2C). To verify 
that the overlap between fertile and subfertile bulls 
was not due to remaining polymorphisms directly tar-
geting DMCs, the imputed genomic sequences in the 
100 bulls were examined at DMCs. Only 21 over 490 
DMCs (and 5 over the 107 DMCs without missing val-
ues used in the PCA) showed the presence of a poly-
morphism affecting the C and/or the G. Although we 
cannot definitely rule out that indirect genetic mecha-
nisms could influence DNA methylation at DMCs and 
lead to this overlap, this result demonstrates that the 
1000 Genomes filtering strategy efficiently suppressed 
most of the variations of methylation artificially due 
to variants affecting the DMCs. All together, these 
results suggest that despite the presence of marked 
inter-individual variability unrelated to fertility at 
the level of CpGs10, epigenetic information relevant 

to fertility was embedded in the 490 DMCs and 46 
DMRs.

Fertility‑related differentially methylated CpGs and regions 
target distinct genome features according to their 
methylation status in subfertile bulls
To characterize the 490 DMCs from a genomic point of 
view, their location was first examined as a function of 
their methylation status in subfertile bulls versus fertile 
bulls. Most DMCs were hypermethylated in subfertile 
bulls (386 out of 490; Additional file  4: Table  S3), and 
these hypermethylated DMCs were found on every 
chromosome analyzed in the genome (Fig.  3). They 
were not distributed uniformly but scattered along 
regions with a dense accumulation of the background 
CpGs10 (represented by a grey line in Fig. 3), thus indi-
cating no specific enrichment. By contrast, although 
the DMCs hypomethylated in subfertile bulls only 
accounted for 21% of all DMCs (104 out of 490), they 
clustered in discrete regions such as the extremities of 
chromosome 10 (Fig. 3), which could indicate the pres-
ence of restricted domains that tend to lose DNA meth-
ylation in subfertile bulls.

Fig. 3 Genomic location and methylation status of fertility‑related differentially methylated CpGs. Black and red dots represent DMCs that 
are hypo‑ and hypermethylated in subfertile bulls, respectively. The left y‑axis indicates a log function of the methylKit q‑value that reflects 
the significance of the DMC. Chromosomes are displayed on the x‑axis. The grey line shows the density of CpGs10 analyzed by RRBS (number 
of CpGs10 analyzed per window, each window corresponding to the length of the chromosome divided by 300; right y‑axis). While DMCs 
hypermethylated in subfertile bulls are scattered throughout the regions targeted by RRBS, hypomethylated DMCs concentrate at discrete and 
specific regions of the genome
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Consistent with the fact that most DMCs were hyper-
methylated in subfertile bulls, 38 out of 46 DMRs were 
also hypermethylated in subfertile bulls (Additional file 5: 
Table S4). At the 18 DMRs covered in all 100 samples of 
the main cohort, most subfertile bulls exhibited a DNA 
methylation value higher than 50% (orange to yellow, 
Fig.  2C) while the DNA methylation value of most fer-
tile bulls was close to or below 50% (purple and blue). Of 
note, among the few DMRs that were hypomethylated 
in subfertile bulls, two were located on chromosome 10 
where stretches of DMCs can be seen in Fig.  3 (Addi-
tional file 5: Table S4).

The DMCs and DMRs were annotated relative to gene 
features, repetitive elements and CpG islands, shores 
and shelves (Additional files 4 and 5: Tables S3 and S4), 
and the distribution of these different genome features 
in hypo- and hypermethylated DMCs was analyzed rela-
tive to the background. There were only small differences 
between the DMCs hypermethylated in subfertile bulls 
and the background (Fig. 4A, upper and middle panels), 
such as an enrichment in intergenic sequences, in long 
interspersed nuclear elements (LINEs) and in shelves; in 
parallel, there was a depletion of promoters, transcrip-
tion start sites (TSSs), 5′ untranslated regions (5′UTRs) 
and CpG islands (CGIs). These results were quite similar 
to the genome features targeted by the 46 DMRs, most of 
which were made up of DMCs hypermethylated in sub-
fertile bulls (Additional file  1: Fig. S3). The differences 
between DMCs hypomethylated in subfertile bulls and 
the background were more marked (Fig.  4A, upper and 
lower panels). Indeed, there was a clear enrichment of 
DMCs in intergenic sequences and depletion in exons, 
promoters and TSSs, which paralleled an overrepresen-
tation of DMCs present in open sea relative to regions 
dense in CpGs (CGIs, shores and shelves). A striking 
enrichment in repetitive elements, and particularly in 
tandem repeats and LINEs, was also observed among 
these hypomethylated DMCs.

To further analyze these repeats, a differential analy-
sis was performed between fertile and subfertile bulls 
using the methylation values obtained after alignment 

on the Repbase genome (Additional file  6: Table  S5). 
This approach failed to highlight any CpGs10 displaying 
significant differential methylation with respect to bull 
fertility. However, individual CpGs10 located in the con-
sensus LINE L1 consistently exhibited lower DNA meth-
ylation in subfertile bulls when compared to fertile bulls 
(Fig.  4B). Furthermore, the average DNA methylation 
of LINE L1, but not of LINE BovB, tended to be slightly 
decreased in subfertile bulls (Additional file 1: Fig. S4A), 
thus supporting the finding that DMCs hypomethylated 
in subfertile bulls are enriched in LINEs. The principal 
reason why no CpG in LINE L1 was found to be differ-
entially methylated was due to the methylation difference 
between groups (2.7% on average), which was lower than 
the threshold of 10% set for the methylKit analysis. The 
same approach was applied to other families of repetitive 
elements referenced in Repbase, but no differences could 
be found between fertile and subfertile bulls, as exempli-
fied by members of the long terminal repeat (LTR) family 
(Additional file 1: Fig. S4B).

To conclude this section, DMCs and DMRs hyper-
methylated in subfertile bulls accounted for most of the 
methylation differences found between the two fertility 
groups, and targeted genome features distinct from those 
targeted by hypomethylated DMCs and DMRs. Inter-
estingly, LINEs were enriched in both hypermethylated 
(33% vs. 16% LINEs in the background) and hypometh-
ylated (38% vs. 16%) DMCs. However, at least for LINEs 
in the L1 family, a trend toward hypomethylation in sub-
fertile bulls was observed using a Repbase genome that 
has the potential to capture information from the multi-
mapped reads.

Differentially methylated genes are related 
to development and sperm physiology
The next step was to analyze the biological function of 
the genes targeted by differential methylation between 
fertile and subfertile bulls. For this purpose, a functional 
enrichment analysis and an extensive review of the lit-
erature were conducted on the 170 genes containing 
at least one DMC in genic regions and/or in upstream 

(See figure on next page.)
Fig. 4 Fertility‑related DMCs target different genome features according to their methylation status in subfertile bulls. A The background CpGs10 
and DMCs were annotated as described in the Methods. The percentage of each genome element in three functional genome features (genes, 
repetitive elements and CpG islands) is indicated on the different pie charts. DMCs were split into hypo‑ and hypermethylated DMCs according to 
their methylation status in subfertile bulls compared to fertile bulls. TSS: transcription start site, TTS: transcription termination site, UTR: untranslated 
region, upstream region: up to − 10 kb from the TSS, downstream region: up to + 10 kb from the TTS. B DNA methylation percentages (y‑axis) were 
obtained for 60 individual CpGs10 included in the consensus sequence of the LINE L1 element (x‑axis) after the alignment of RRBS sequences on a 
Repbase artificial genome. Each dot represents one sample, with fertile and subfertile bulls shown in red and blue, respectively. Red and blue lines 
indicate the trend over the 60 CpGs in fertile and subfertile bulls, respectively, and were obtained using the geom_smooth function of the ggplot2 
R library. The 95% confidence interval is shown in light grey. The L1 element was slightly but consistently less methylated in subfertile bulls than in 
fertile bulls at all CpG positions
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or downstream regions (up to 10  kb from a gene). To 
increase the number of genes in the analysis at this 
step, all DMCs were considered independently of their 
hypo- or hyper-methylation status in subfertile bulls. A 

Database for Annotation, Visualization and Integrated 
Discovery (DAVID) analysis highlighted a unique cluster 
of enrichment that reached significance (EASE score of 
1.84, 1.3 being the lower limit for significance; Fig. 5A). 

Fig. 5 Differentially methylated genes are relevant to male fertility. A functional enrichment analysis was performed using DAVID, where genes 
containing DMCs (170 genes) were compared to those covered in the background CpGs10 (19,829 genes). The enrichment cluster with an EASE 
score of 1.84 is represented, with genes in the cluster displayed on the x‑axis and the different terms on the y‑axis. A correspondence between a 
gene and a term is indicated by a light blue color on the heatmap. B A systematic review of the literature was undertaken for all genes associated 
with DMCs that contained a gene name (n = 139). The NCBI Pubmed database was interrogated using the gene names successively associated with 
each of the following terms: “embryo*”, “sperm*” and “fertility”. Some genes matched with several terms and are represented in several categories, 
explaining why the total number of counts exceeded the number of unique genes of interest (46 unique genes)
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Three genes located on three different chromosomes, 
PLXNA4 (chromosome 4), PLXNB2 (chromosome 5) and 
PLXNA1 (chromosome 22), which belong to the Plexin 
family, were associated with all the terms in the cluster. 
Plexins are present on the surface of cells and interact 
with the semaphorin family of proteins to trigger a rear-
rangement of the cytoskeleton and to regulate cell shape, 
differentiation, junctions, motility and survival. All these 
processes are involved in the remodeling of epithelia and 
endothelia during organogenesis as well as in axon guid-
ance during development of the nervous system [51].

To go further, we performed a systematic review of 
the literature targeting the differentially methylated 
genes. Genes relevant to development, sperm function 
and fertility accounted for a large share of all differen-
tially methylated genes (46 unique genes out of 139; 
33%) and are listed, together with the corresponding 
references, in Additional file  7: Table  S6. The largest 
share of these 46 unique genes was involved in embry-
onic and fetal development (Fig. 5B). It is noteworthy 
that genes involved in nervous system development 
were highly represented, which was consistent with 
the results of the DAVID analysis. By contrast, only 
five genes were related to early embryonic develop-
ment, which concern cytokinesis, blastocyst formation 
and gastrulation. As for sperm function, genes related 
to the formation of the acrosome and capacitation rep-
resented eight out of 19 genes. Finally, two genes were 
associated with male and female fertility in genome-
wide association studies in cattle.

We next compared the 139 genes differentially meth-
ylated between fertile and subfertile bulls with genes 
differentially methylated between cases and controls 
in four human studies investigating male fertility [26–
28, 52]. Twenty-five differentially methylated genes 
were found in common with at least one human study, 
among which 18 genes exhibited a consistent methyla-
tion status between our study and the human studies 
(Additional file  8: Table  S7). Out of these 25 genes, 

17 were not highlighted during the systematic litera-
ture mining we performed (Additional file 7: Table S6). 
Because they were differentially methylated as a func-
tion of fertility in two different species, these 17 genes 
may be additional candidates relevant to male fertility.

In conclusion, differential methylation between fer-
tile and subfertile bulls targeted genes with reported 
functions in sperm physiology, differentiation and 
post-testicular maturation, early and post-implanta-
tion development and processes important to organo-
genesis and nervous system development, all being 
relevant to male fertility.

Validation by bisulfite pyrosequencing
The quantification of DNA methylation using RRBS is 
reliant on the counts of reads bearing “C” and “T”, which 
can lead to a certain degree of imprecision and to sam-
pling biases, especially for CpGs where coverage is lim-
ited [53]. The quantification of DNA methylation at some 
CpGs using an independent technique was therefore nec-
essary to validate both the molecular and bioinformatics 
aspects of the RRBS results.

Here, 11 DMCs located in five genes relevant to devel-
opment (PLXNB2, NPAS1, LBX1 and SORCS2) and 
sperm function (ATG7) were validated using bisulfite 
pyrosequencing (Fig.  6). These DMCs are located in 
diverse genomic contexts, such as gene upstream regions 
(LBX1, Additional file 1: Fig. S5), exons (NPAS1), introns 
(SORCS2), intron–exon junctions (PLXNB2) and 3′ 
UTRs (ATG7), and reflected the overall hypermethyla-
tion of DMCs in subfertile bulls when compared to fertile 
bulls (Fig. 6A). Because the main cohort was too large to 
be fully analyzed with the low-throughput system used 
for pyrosequencing, ten samples with contrasting levels 
of methylation were selected in each fertility category 
for each gene (Additional file 9: Table S8). For all genes, 
the average DNA methylation values at DMCs obtained 
using RRBS and bisulfite-pyrosequencing were signifi-
cantly correlated (Spearman’s correlation coefficient 

(See figure on next page.)
Fig. 6 Bisulfite‑pyrosequencing validations on twenty fertile and subfertile semen samples. A IGV browser views of the regions targeted for 
pyrosequencing in the ATG7, NPAS1, SORCS2, LBX1 and PLXNB2 genes. The red and blue bar charts represent the methylation percentages at each 
CpG10 position for fertile (n = 10) and subfertile (n = 10) bulls, respectively. The CpGs analyzed by pyrosequencing are numbered according to 
their 5′–3′ position along the genome. The CpGs identified as fertility‑related DMCs are indicated in black text and red boxes, while non‑DMCs are 
indicated in grey. B For each gene region, the average methylation percentage measured by pyrosequencing (y‑axis) was calculated for the DMCs 
included in the region and plotted against the average methylation percentage measured by RRBS at the same DMCs (x‑axis). Each dot represents 
one sample from the fertile (in red, n = 9 to 10) and subfertile (in blue, n = 9–10) groups. The least squares lines of best fit and Spearman’s rank R 
correlation coefficients are indicated. All correlations were highly significant (Spearman’s rank correlation test; p < 0.05). C Methylation percentages 
of individual CpGs assayed by pyrosequencing in fertile (in red, n = 10) and subfertile (in blue, n = 10) bulls. CpGs are numbered according to 
A and DMCs are highlighted in black. Dots show the methylation levels of individual samples, while the trends per fertility group are indicated 
by red and blue lines obtained using the geom_smooth function of the ggplot2 R library, together with 95% confidence intervals in light grey. 
Asterisks indicate that the methylation percentage measured by pyrosequencing differed significantly between fertility groups for all analyzed CpGs 
(Wilcoxon test, p < 0.05)
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between 0.88 and 0.97; p < 0.05), thus validating our RRBS 
data from a technical perspective (Fig. 6B). As expected, 
pyrosequencing confirmed the significantly higher DNA 
methylation level in subfertile bulls at all the DMCs 
investigated (Fig. 6C).

Pyrosequencing enabled the quantification of 15 addi-
tional CpGs surrounding DMCs. Interestingly these 
CpGs displayed the same behavior as nearby DMCs, 
being significantly more methylated in subfertile bulls 
in the pyrosequencing data (Fig.  6C). This trend could 
also be seen in the RRBS data (Fig. 6A) and was in line 
with the many reports showing that CpGs located 
within the same region tend to behave in the same way 
[54–56]. Despite the similar behavior of nearby CpGs, of 
the five genes we analyzed more closely only LBX1 and 
NPAS1 contained a DMR; more generally, only 225 out 
of 490 fertility-related DMCs clustered into DMRs. These 
results may be linked to the maximal inter-DMC distance 
required to constitute a DMR (see “Methods”), which 
could be a limitation under an RRBS approach that cov-
ers discontinuous portions of the genome [57]. Another 
reason may have been the insufficient coverage of nearby 
CpGs which were therefore not integrated into the back-
ground and did not undergo differential analysis.

Taken together, the bisulfite-pyrosequencing results (1) 
were strongly aligned with the RRBS findings; (2) con-
firmed the hypermethylated status of DMCs in subfertile 
bulls compared to fertile bulls for five genes relevant to 
male fertility, and (3) suggest that the number of DMRs 
identified during our analysis may have been underes-
timated because of the stringency of the bioinformatics 
settings. Fertility-related DMCs could therefore be used 
with confidence in subsequent steps of our study.

Bull fertility status can be predicted from the sperm 
methylome using a Random Forest approach
Bull fertility was next modelled using the DNA methyla-
tion values obtained on the main cohort at 107 DMCs 
with no missing values (Additional file 4: Table S3). For 
the model construction and validation, the cohort was 
split randomly into a training set (2/3 of the animals) 
and a testing set (1/3) with the same proportion of fer-
tile and subfertile bulls as in the original dataset (Fig. 7A). 
Using a Random Forest approach, which is described 
as suitable for molecular biology data [58], a model was 
then built using the training set, and the prediction was 
assessed by comparing the estimated fertility and actual 
fertility of the testing set. The average performances of 
the model were calculated from 50 iterations of this pro-
cess, with resampling of the training and testing sets at 
each iteration. This cross-validation indicated satisfac-
tory performance, with values for the area under the 
receiver operating characteristics (ROC) curve (AUC) 

and accuracy of 0.80 and 0.72, respectively (Fig. 8A). The 
model displayed higher sensitivity (0.80) than specific-
ity (0.63), which means that errors were most frequently 
caused by a misclassification of subfertile bulls.

Because the sperm methylome is sensitive to a wide 
range of environmental variations [59] there is a poten-
tial risk that DNA methylation at fertility-related DMCs 
may vary beyond fertility, which could alter the predic-
tive performance of the model that was developed using 
these DMCs. The main cohort included bulls that were 
commercialized by two breeding companies, maintained 
in two different semen collection centers 100 km distant 
from each other and under different animal management 
practices. This experimental design offered an opportu-
nity to assess the degree to which the performance of the 
model was affected by the origins of the bulls (Fig.  7B). 
Using the 107 DMCs with no missing values, a new Ran-
dom Forest predictive model was built from the meth-
ylation values measured on the 56 samples collected in 
center 1 and tested on the 44 samples collected in center 
2 (Fig. 8B), and vice-versa (Fig. 8C). Satisfactory perfor-
mance was achieved in both cases, with accuracies of 
0.77 and 0.83, and AUCs of 0.84 and 0.76, respectively. 
Sensitivity and specificity varied more markedly and in 
opposite directions. Indeed, the model trained on the 
samples collected in center 1 and tested on samples col-
lected in center 2 was best for the correct prediction 
of subfertile bulls (specificity of 0.75). By contrast, the 
model trained on the samples collected in center 2 and 
tested on samples collected in center 1 failed to correctly 
predict subfertile bulls (specificity of 0.55) but outper-
formed in terms of the correct prediction of fertile bulls 
(sensitivity of 0.92). This result thus demonstrated that 
the model’s performance was only moderately impacted 
by the origins of the bulls, suggesting the robustness of 
the model regarding a certain degree of environmental 
variation.

In order to understand why 20–30% of the bulls were 
systematically misclassified in our model, PCA was run 
on the DNA methylation values measured at DMCs, 
and individuals were classified as fertile bulls predicted 
as being fertile (FF), fertile bulls predicted as being sub-
fertile (FS), subfertile bulls predicted as being subfertile 
(SS) and subfertile bulls predicted as being fertile (SF). 
Very similar results were observed with the three mod-
els: fertile and subfertile bulls that were correctly pre-
dicted were discriminated by the first dimension of PCA, 
while misclassified bulls tended to cluster with the oppo-
site fertility class (Fig. 8D–F). This result clearly showed 
that at DMCs, the 20–30% misclassified bulls displayed 
a DNA methylation signature typical of the opposite 
class, thus producing the wrong predictions. Several fac-
tors were therefore investigated in order to relate these 
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unexpected DNA methylation patterns to biological or 
technical features specifically affecting the misclassified 
bulls. No significant differences between misclassified 
and correctly classified bulls in both fertility classes were 

observed regarding fertility (Additional file 1: Fig. S6A), 
which indicated that although they displayed a DNA 
methylation pattern that mimicked that of fertile bulls, 
the misclassified subfertile bulls were indeed subfertile; 
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Fig. 7 Strategies to evaluate the performance of models predictive of fertility status. A model construction and cross‑validation. The main cohort 
was split into a training set and testing set. The training set contained 2/3 of the samples (n = 67) randomly selected but with conservation of the 
original proportion of fertile and subfertile samples, and was used to create the model. The testing set contained 1/3 of the remaining samples 
(n = 33) and was used to evaluate the predictive ability of the model previously constructed on the training set. This process was iterated 50 times 
with a resampling of the training and testing sets, and the model performance was averaged over these 50 iterations. B Effect of the bulls’ origin on 
the model performance. The main cohort was split into a semen collection center 1 set (n = 56) and a semen collection center 2 set (n = 44), which 
were then used alternatively to train and test the predictive model. C Potential of the model for field application, using an independent and less 
controlled cohort. The whole main cohort was used to train the model, which was then tested on the independent cohort
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the reverse was also found for misclassified fertile bulls. 
Moreover, a later fertility indicator (sire conception 
rate, SCR) further confirmed their correct assignment 
to the two fertility classes (Additional file  1: Fig. S6B), 
which was initially performed according to the NRR 56 

(Additional file  1: Fig. S6A). No significant differences 
between the FF, FS, SF and SS groups were found regard-
ing the number of AIs used to measure fertility (Addi-
tional file 1: Fig. S6C) and semen functional parameters 
(Additional file 1: Fig. S6D–F). The four groups were also 
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and predicted fertility status was compared against the actual fertility status of bulls included in each type of testing set. Receiver operating 
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equivalently distributed in terms of the season of semen 
collection, number of ejaculates per sample and technical 
batches (Additional file 1: Fig. S6G–J), thus demonstrat-
ing the absence of confounding factors in our experi-
mental design. In the absence of any identified source of 
bias, it is therefore possible that the fertility of misclas-
sified bulls was independent from DNA methylation at 
these 107 DMCs. To extend the panel of CpGs, we tried 
to impute missing values and built a model using 295 
DMCs, but this did not cause any significant change to 
the results (Additional file 1: Supplementary Results and 
Additional file 1: Fig. S7).

The performance of the model was next assessed on 
bulls in the independent cohort that had not been used 
to identify DMCs (Fig. 7C). It should be noted that this 
independent cohort was less controlled in terms of the 
age of the bulls, which ranged from 15 to 39 months, and 
each bull was only represented by one ejaculate, since the 
pooling of several ejaculates would clearly limit the prac-
tical applications of our study. The accuracy and AUC of 
the model on this independent cohort (respectively 0.72 
and 0.78 in Fig.  9A) were comparable to those found 
using the main cohort, suggesting that practical appli-
cations of the model could be envisioned in field condi-
tions. Unlike the results described above, sensitivity was, 
however, lower than specificity, which indicates that the 
misclassifications resulted from fertile bulls predicted 
as being subfertile. A PCA was run on the methylation 

values of the independent cohort and, as previously 
observed with the main cohort, FS bulls clustered sepa-
rately from FF bulls (Fig.  9B), suggesting again that the 
fertility of misclassified bulls was independent of DNA 
methylation. Unlike the main cohort, no misclassification 
was observed for subfertile bulls. This result may have 
been related to the unbalanced number of bulls in each 
class (n = 4 subfertile bulls vs. n = 16 fertile bulls), which 
was closer to the incidence of subfertility in the whole 
population than that seen in the main cohort.

Taken together, these results demonstrate that for 
approximately 75% of the bulls, field fertility could con-
sistently be predicted from the sperm DNA methyla-
tion status of 107 CpGs, whatever the origin and age of 
the bulls and the number of ejaculates in the sample. 
For 25% of the bulls belonging to both fertility classes, 
prediction was hampered by a reversed DNA methyla-
tion status at these CpGs, but also at an extended panel 
of 295 CpGs. In the absence of any identified source of 
bias, these results suggest that the fertility of a subset of 
bulls was independent of DNA methylation, at least at 
the CpGs investigated.

Discussion
This study was performed on the largest cohort so far 
used to investigate the relationships between male fer-
tility and DNA methylation in cattle, and one of the 
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Fig. 9 Fertility in an independent cohort can be predicted from DMCs. A a Random Forest model was built on the main cohort using the 
DNA methylation values of 107 fertility‑related DMCs without missing values. The model was then run on the independent cohort, and the 
predicted fertility status was compared with the actual fertility status. ROC curves, accuracy, AUC, sensitivity and specificity were comparable to 
the performance indicators obtained when the testing set was included in the main cohort. B principal component analysis was run on the 107 
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ellipses are indicated. Misclassified bulls were found in the fertile class only and displayed a DNA methylation pattern similar to that of the subfertile 
class
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largest cohorts of any mammals, including humans. 
Field fertility was very precisely assessed for 120 bulls 
using two different indicators and we also demon-
strated that the experimental design was devoid of 
any obvious confounding effects. Using this valuable 
resource, we generated high quality and technically 
validated genome-wide DNA methylation data using 
RRBS. Our main finding was that although they did 
not differ in terms of semen functional parameters at 
17–19  months of age, fertile and subfertile bulls dis-
played subtle DNA methylation differences in the same 
semen samples, and these differences could be used 
successfully to build models predictive of fertility status 
for the whole career of the bulls.

Inter‑individual variability of the sperm DNA methylome
One striking finding revealed by our analysis was the 
important inter-individual variability observed in the 
sperm methylome at both the genome-wide and DMC 
levels. This inter-individual variability, which could be 
appreciated for the first time in cattle thanks to the large 
size of the main cohort, was independent of fertility and 
impacted all the results of our study. It firstly precluded 
the identification of DMCs using a stringent algorithm 
such as DSS [48], leading to a certain degree of overlap 
between fertile and subfertile bulls at the DMCs identi-
fied using the less stringent algorithm methylKit [49]. 
Heterogeneity at DMCs then slightly altered the perfor-
mance of the predictive model, as it led to the misclas-
sification of 20–30% bulls displaying a DNA methylation 
profile typical of the opposite class.

Inter-individual variability was not related to variations 
affecting individual ejaculates, since each bull was repre-
sented by several ejaculates. Because the automation of 
DNA methylation assays has been reported to improve 
reproducibility [60], we used a partially automated pro-
cess to generate libraries, and checked that technical 
artefacts did not confound our results at each step of 
data generation. The sequencing parameters thus varied 
within the same range for the two fertility groups, and the 
RRBS results were not affected by semen processing and 
library preparation batches. Moreover, the excellent cor-
relations between the RRBS and bisulfite-pyrosequenc-
ing results demonstrated that the technical limitations 
inherent to RRBS did not account for inter-individual 
variability in our data, and confirmed that our study was 
adequately powered in terms of sample size and sequenc-
ing depth to detect small differences between groups 
[53]. Genetic factors are another important source of 
variation in DNA methylation patterns [50], and it has 
been proposed that both genetic factors and somatic 
cell contamination confound DNA methylation analyses 
in human sperm [31]. Although we cannot definitively 

rule out the possibility that genetics interfered with our 
results via indirect mechanisms, we limited this effect 
by filtering out putative variants from the CpGs we ana-
lyzed. We also checked that the DNA methylation results 
were not altered because of residual contamination by 
somatic cells.

Because the effects of most technical factors could 
be regarded as insignificant in our study, one possibil-
ity is that stochastic, indirect genetic effects or uncon-
trolled environmental or physiological factors underlie 
inter-individual variability in the sperm methylome [61]. 
Among the physiological factors that have been described 
to impact the sperm methylome, age has a major effect in 
cattle [41, 42], humans [62] and mice [63], but could be 
excluded here as only ejaculates collected from bulls aged 
between 17 and 19 months were used. Because the sperm 
epigenome is also responsive to a wide range of environ-
mental factors [59], we confirmed that the bulls’ origins 
with respect to semen collection center did not interfere 
with the RRBS results and model performance. How-
ever, bulls are usually maintained in various herds before 
being recruited by a breeding company, and these diverse 
conditions may have modified the sperm methylome as 
a function of each individual bull’s environment, finally 
affecting fertility without inducing a homogenous DNA 
methylation signature. Male germ cells are indeed sub-
ject to intense epigenetic remodeling during in utero and 
early post-natal life, and the vulnerability of the methy-
lome to environmental variations during these periods 
may alter fertility [11, 12, 64]. Another common prac-
tice that might also affect the sperm methylome is that 
once arrived in a station, male calves are fed in order to 
optimize their average daily gain. The sperm epigenome 
is sensitive to nutrition [9] and modifications to early life 
nutrition in cattle have been reported to induce persis-
tent changes to the sperm methylome [65]. The metabolic 
response of each bull to this practice may therefore vary 
as a function of its genetics and initial body condition, 
leading to epigenetic inter-individual variability. Finally, 
because it has also been suggested that heat stress might 
alter bull fertility through epigenetic mechanisms [66], 
we investigated the effects of the season of ejaculate col-
lection on our experimental design. The distribution of 
fertile and subfertile bulls in both hot and cold seasons, 
whatever their methylation pattern and the outcome of 
the prediction, means that a risk of heat stress confound-
ing the overall results of our study is unlikely, but does 
not completely exclude that it contributed to a certain 
degree of inter-individual variability. Therefore, although 
we controlled numerous factors likely to interfere with 
fertility-related variations in the sperm methylome, 
uncontrolled factors still remained in our study. Because 
humans live under far less standardized conditions and 
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display more genetic diversity than cattle, it is probable 
that the magnitude of inter-individual variability is even 
more important in the human sperm methylome. Of all 
the confounding factors present in humans, the effect of 
this epigenetic inter-individual variability on the consist-
ency of the results reported on male fertility may have so 
far been overlooked [29, 32].

Prognostic value of the sperm DNA methylome for male 
fertility
Despite the important inter-individual variability we 
observed in our methylation data, the majority of the 
bulls displayed a DNA methylation profile at DMCs that 
enabled the creation of a predictive model with satisfac-
tory performance. Importantly, this model displayed 
comparable performance regardless of the bulls’ origin, 
and also when tested on individual ejaculates from an 
independent cohort that included bulls of various ages, 
thus demonstrating its robustness to certain variations 
in environmental or physiological factors. Interestingly, 
fertility status could be successfully predicted for all indi-
viduals with a DNA methylation pattern typical of their 
fertility class at DMCs, which demonstrated the potential 
of Random Forest approaches to model phenotypic out-
comes from DNA methylation.

To our knowledge, this study represents the most com-
prehensive attempt to model bull fertility from the sperm 
methylome, which was probably enabled by the large size 
of the main cohort. Inadequate sample size has indeed 
been proposed as a major obstacle to replicating fertility-
related DNA methylation signatures in human sperm 
[29]. In line with this view, the important inter-individ-
ual variability we report here makes it unlikely that the 
methylation differences previously reported between 
small numbers of bulls of contrasting fertility (n = 3–9 
per group; [35–40]) can reflect those in a larger popula-
tion with less extreme differences in fertility, thus limit-
ing modelling approaches adapted from these datasets. 
Only Takeda et al. [39] confirmed the differential meth-
ylation between low and high fertility bulls using a wider 
population (n = 50) at 10 loci and were able to construct a 
predictive model that has now to be assessed on an inde-
pendent cohort.

In our model, 20–30% of bulls with divergent DNA 
methylation profiles were consistently misclassified what-
ever the testing set used, underscoring the importance 
of a thorough assessment of models using independent 
populations. Of note, comparable model performance 
was also achieved using an extended panel of DMCs 
after the imputation of missing values. From a statisti-
cal point of view, this observation suggests that whatever 
the number of variables in the model, DNA methylation 
at DMCs does not suffice to explain the whole variance 

related to fertility. It is possible that the relatively limited 
differences in fertility that exist between fertile and sub-
fertile bulls, together with the important inter-individual 
variability we report, may have precluded the identifica-
tion of more discriminant DMCs from which the per-
centage of misclassifications would have been weaker. 
Importantly, both fertile and subfertile bulls were found 
to be misclassified, which indicates that a DNA methyla-
tion profile typical of fertile bulls is not sufficient to be 
fertile, which might be expected given the multifactorial 
nature of fertility. More surprisingly however, a DNA 
methylation profile typical of subfertile bulls does not 
necessarily lead to subfertility, suggesting the existence 
of compensatory mechanisms. In line with this finding, 
a study investigating the association between the sperm 
methylome and fecundity in humans reported that only 
54% of men displaying the unfavorable DNA methylation 
pattern actually failed to conceive [28]. To improve pre-
dictive performance, a future direction might be to build 
the model using a less biased selection of CpGs than that 
resulting from a between-group differential analysis, as 
DNA methylation patterns at fertility-related DMCs are 
not conserved in all individuals. A further step would be 
to integrate other types of epigenetic features that might 
capture complementary aspects of the variance related to 
male fertility.

Biological features targeted by differential methylation
From a biological perspective, the comparable model 
performances obtained on the main and independent 
cohorts demonstrated that at DMCs, fertility-related 
variations of DNA methylation could be replicated in a 
significant proportion of animals that were completely 
independent from DMC identification. The biological 
features associated with these DMCs therefore repre-
sent a valuable source of information that could help to 
improve our understanding of male fertility.

Among the 139 genes targeted by DMCs, 19 were found 
to be important for sperm physiology, differentiation and 
post-testicular maturation, which is obviously of consid-
erable interest regarding fertility. For instance, ATG7, on 
which we focused during the bisulfite-sequencing valida-
tion, is involved in autophagy and associated with for-
mation of the acrosome and with spermiogenesis [67]; 
impairment of these functions in ATG7 −/− germ cell-
specific mice drive complete infertility [68]. Although 
several genes related to acrosome function were found to 
be differentially methylated in our study, it is unlikely that 
the subfertile bulls suffered from major spermiogenesis 
defects, which would probably have led to a more severe 
phenotype than that observed. However, in light of the 
phenotype described in ATG7 −/− germ cell-specific 
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mice, it would be interesting to analyze the acrosome 
function in these bulls in greater detail.

During our study, 27 genes involved in development, 8 
of them related to nervous system development, were also 
found to be differentially methylated between fertile and 
subfertile bulls. This finding agreed well with the absence 
of major alterations to semen functional parameters in 
subfertile bulls, as impaired development could lead to 
loss of the embryo and subsequently to a reduction in 
fertility without necessarily affecting semen functional 
parameters. We focused in particular on three genes, 
which were further analyzed by bisulfite-pyrosequencing: 
NPAS1, LBX1 and SORCS2. NPAS1 is a member of the 
basic helix-loop-helix per-ARNT-SIM (bHLH-PAS) fam-
ily of transcription factors. Several genes in this family 
are known to be involved in nervous system development 
[69]; NPAS1 in particular has been related to fertility in a 
genome-wide association study conducted on cattle [70]. 
SORCS2 encodes a VPS10 domain-containing recep-
tor that is highly expressed in developing neural tissues 
[71, 72], and LBX1 is a homeobox gene orthologous to 
the ladybird gene in Drosophila, which is important for 
limb, neural and heart development [73–76]. A DAVID 
analysis also highlighted three genes involved in axon 
guidance: PLXNA1, PLXNA4, PLXNB2 (which we fur-
ther analyzed by bisulfite-pyrosequencing). Strikingly, 
these three genes encode plexins of different classes that 
are located on different genome regions, suggesting the 
functional importance of this protein family to bull fertil-
ity. Plexins are receptors of semaphorins and both types 
of protein belong to the semaphorin signaling pathway 
that regulates cell adhesion, migration, division, differ-
entiation and survival, acting on a wide range of devel-
opmental processes [51]. PLXNB2 in particular is highly 
expressed in neuronal progenitors and its knockout 
leads to severe brain malformations and to developmen-
tal arrests before birth [77, 78]. Interestingly, the relative 
abundance of genes involved in neuron differentiation 
and axon guidance has also been reported by two stud-
ies which compared the sperm methylome of fertile and 
infertile men [26, 79]. Because selection of the bulls in 
our study was based on the NRR 56, differences in devel-
opmental outcomes up to 56 days of gestation may con-
tribute to subfertility. Gestational stages until 56 days are 
critical for neural tube patterning in cattle [80]; meth-
ylation changes affecting genes involved in this process 
may therefore compromise the viability of the embryo or 
fetus, hence affecting NRR 56.

Twenty-five differentially methylated genes were found 
in common between our study and four human studies 
[26–28, 52], and the same biological functions related 
to sperm physiology and development were affected in 
previous studies published on bull fertility [35–40]; thus 

strengthening the relevance of these genes and func-
tions to male fertility. Another biological feature that 
appeared to be conserved in other studies conducted 
on fertility-related variations in the sperm methylome 
was that most differentially methylated loci were hyper-
methylated in subfertile or infertile cases when com-
pared to controls in bulls [40], boars [81] and humans 
[28, 31, 52, 79, 82]. Because sperm cells are hypometh-
ylated relative to somatic cells in many species, includ-
ing humans [83] and cattle [43, 47], it has been proposed 
that the genome-wide erasure of DNA methylation was 
impaired during the differentiation of male germ cells in 
infertile men with spermatogenesis defects [82]. More 
recently, hypermethylation at DMRs has been attributed 
to a larger proportion of contaminating somatic cells 
in sperm samples from oligozoospermic patients [31]. 
However, these two hypotheses are unlikely to apply to 
the present study, since we demonstrated that hyper-
methylation at DMCs and DMRs in subfertile bulls was 
not due to residual somatic cells, and that subfertile bulls 
did not suffer from obvious spermatogenesis defects. 
The functional role of DNA methylation in gene expres-
sion cannot be predicted as a whole, because it varies as 
a function of the gene elements targeted by differential 
methylation [84]. Furthermore, many distant regulatory 
elements such as enhancers are still poorly characterized 
in cattle and will fall into the intergenic class, which is 
enriched among DMCs independently of their methyla-
tion status in subfertile bulls. The absence of significant 
transcriptional activity in sperm cells is a further com-
plication encountered during functional analyses of the 
sperm methylome. Considering all these limitations, it 
can be speculated that the DNA methylation differences 
we detected in transcriptionally silent sperm cells may 
reflect suboptimal transcriptional activity, either earlier 
during a bull’s life for genes involved in sperm differen-
tiation and physiology, or later after fertilization with 
respect to developmental genes, both processes resulting 
in subfertility.

In contrast with the overall hypermethylation of 
DMCs/DMRs in subfertile bulls, we observed a strong 
enrichment in LINE retrotransposons among hypometh-
ylated DMCs, as well as a trend toward hypomethylation 
for LINEs in the L1 family but not the BovB family. Inter-
estingly, the bovine genome contains more potentially 
active copies of L1 than of BovB retrotransposons; and 
consistent with this, L1 repeats also seem to have arisen 
more recently during evolution than the BovB family 
[85]. De novo DNA methylation guided to L1 repeats 
by PIWI-interacting RNAs (piRNAs) offers a safeguard 
against the mobilization of retrotransposons in the ger-
mline, and disruption of this defense mechanism in male 
mice leads to genome invasion and meiotic arrest [86], 
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suggesting that the demethylation of L1 repeats might be 
at risk regarding the genome integrity of cattle germ cells. 
The hypomethylation of L1 has been reported in the tes-
tes of patients with spermatogenic failure, and associated 
with the down-regulation of genes in the piRNA path-
way, suggesting that the molecular mechanisms involved 
in the epigenetic silencing of retrotransposons were not 
fully functional in these patients [87]. In line with this 
hypothesis, L1 expression has been claimed to increase in 
the testes of patients with impaired spermatogenesis [88]. 
However, other studies have not reported any significant 
changes to L1 DNA methylation in the sperm cells of 
infertile men [27, 30], which is also consistent with the 
small degree of difference we observed between fertile 
and infertile bulls. The expression of L1 repeats needs to 
be tightly regulated not only in germ cells but also after 
fertilization, where it regulates global chromatin accessi-
bility in mouse embryos [89]; a loss of L1 silencing mech-
anisms in germ cells or embryos has also been proposed 
to cause early spontaneous miscarriage in humans [90]. 
Given the absence of severe spermatogenic defects in 
subfertile bulls, it is tempting to speculate that the slight 
hypomethylation we observed in sperm may lead to a 
suboptimal level or timing of the expression of L1 repeats 
after fertilization rather than to massive genome invasion 
during germ cell differentiation. This suboptimal expres-
sion may alter the dynamics of post-fertilization repro-
gramming, ultimately resulting in developmental arrest 
or pregnancy losses.

Conclusion
Using the largest cattle cohort in the field and extensive 
DNA profiling analyses, we were able to demonstrate that 
the bull sperm methylome displays important inter-indi-
vidual variability. This inter-individual variability remains 
poorly investigated in humans and deserves further 
attention, as it may reflect earlier exposures that could be 
passed to the next generation. We identified a facultative 
DNA methylation signature that predisposed to subfertil-
ity and from which fertility status for the whole career of 
the bulls could be predicted consistently in at least 70% 
of bulls from different breeding companies and of differ-
ent ages. Our results are promising in terms of applica-
tions, but also suggest the existence of independent and/
or compensatory mechanisms for the regulation of male 
fertility. Identifying these mechanisms will offer further 
opportunities regarding the practical use of these bio-
markers to predict fertility.

Methods
Bull cohorts and semen samples
Semen samples from 120 French Montbéliarde bulls, 
grouped in two independent cohorts, were used for this 

study. All samples were prepared from frozen semen 
straws commercialized for AI and stored in liquid 
nitrogen.

The main cohort was used to generate DNA meth-
ylation data using RRBS, identify fertility-related DMCs 
and construct and validate the predictive model. This 
included 100 bulls born between 2011 and 2014 and 
commercialized by the breeding companies Umotest and 
Evajura, and maintained in two different semen collec-
tion centers located 100  km distant from each other in 
France (n = 56, center 1 and n = 44, center 2), 57 of which 
were classified as fertile and 43 as subfertile. Fertility was 
defined at the bull level based on the non-return rate at 
56 days post-insemination (NRR 56), obtained as follows. 
For each bull, the AI outcomes were obtained from all 
the AIs performed using the semen of this bull in 2017, 
2018 and 2021. Each AI was given a score of 0 if another 
AI of the mated cow was observed within the 56-day 
subsequent interval, and 1 otherwise. To eliminate any 
bias due to the spurious association with other factors, 
the bull fertility indicator was estimated with the linear 
model applied to the 0/1 score of all AIs in the popula-
tion, and used in the French bovine genetic evaluation 
of female fertility for selection purpose [91]. This model 
included the fixed effects of herd-year, month-year, par-
ity of the cow, interval between calving and insemina-
tion, week day, AI technician, category of semen (sexed 
vs. conventional), and the random effects of genetic and 
permanent environmental effects of the cow, and of the 
bull. The bull effect was assumed to be normally distrib-
uted with zero mean and variance equal to 0.01 pheno-
typic variance. The bull effect estimate was used in the 
present study and referred to as “corrected NRR 56”. To 
obtain one semen sample, 8–10 straws per bull that rep-
resented 2 to 5 ejaculates collected at 17–19  months of 
age and within a short period of time (6–52 days), were 
pooled after thawing for 30 s at 37 °C. Subsamples of 15 
µL were used immediately to analyze semen functional 
parameters. The remaining semen was centrifuged for 
7  min at 3500  g at room temperature and the extender 
was removed. Although microscopic examination did not 
reveal any significant contamination by somatic cells, the 
cell pellets were washed once with  H2O. Unlike somatic 
cells, bull spermatozoa are resistant to this treatment, 
which therefore guaranteed the absence of any resid-
ual somatic cells in the samples. After a further wash in 
phosphate buffer saline (PBS 1×), the sperm pellets were 
resuspended in PBS 1× and divided into aliquots for vari-
ous experimental purposes. The equivalent of one straw 
(20 million sperm cells) was used for DNA extraction.

The independent cohort was used to produce RRBS 
data and evaluate the potential of the model built on the 
main cohort for field applications. This included 20 bulls 
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born between 2009 and 2012 and marketed by the breed-
ing company Umotest. One ejaculate was analyzed per 
bull, whose age at semen collection ranged from 15 to 
39 months. Ejaculates were defined as fertile (n = 16) or 
subfertile (n = 4) based on the corrected NRR 56 calcu-
lated for each bull and as explained above for the main 
cohort. One straw was used to assess semen functional 
parameters and extract DNA, as described above.

The entire process, from straw thawing to semen 
assessment and DNA extraction, was conducted in 7 
batches of 2–24 samples per batch for the main cohort, 
and 7 batches of 1–6 samples per batch for the inde-
pendent cohort. For each sample, information on the 
batch, the bull (year of birth, semen collection center), 
ejaculates (dates of collection, number of straws in the 
sample), the corrected NRR 56 and SCR are provided in 
Additional file 2: Table S1. Corrected SCR was obtained 
as described above for corrected NRR 56, except that 
each AI was given a score of 0 if no birth was reported for 
the mated cow after the expected gestation length, and 1 
otherwise, as described by Barbat et al. [91].

Semen functional parameters
Semen motility was assessed by computer-assisted semen 
analysis (CASA, IVOS II, Hamilton Thorne, IMV Tech-
nologies). Five µL out of 15 µL pooled semen were mixed 
with 10 µL Easy buffer B (IMV Technologies) and incu-
bated for 5  min at 37  °C. After incubation, 4 µL of this 
mix was loaded into a standardized four-chamber count-
ing slide (Leja), which was then placed into the CASA 
system. Sperm motility was averaged from 10 microscope 
fields analyzed using the predetermined starting point set 
within each chamber. Results were expressed as percent-
ages of motile sperm in the sample. Sperm viability and 
mitochondrial status were assessed from 5000 cells using 
the easyCyte 8HT flow cytometer and CytoSoft software 
(Guava, IMV Technologies). For sperm viability, mem-
brane integrity was assessed using EasyKit 1 Viability 
and Concentration (IMV Technologies) that stains viable 
spermatozoa with intact membranes in green. Results 
were expressed as percentages of viable sperm in the 
sample. Sperm mitochondrial status was assessed using 
the EasyKit 2 (IMV Technologies) and expressed as the 
percentage of polarized mitochondria that appeared in 
orange fluorescence. Both kits were used as described by 
Sellem et al. [92].

In order to account for variations between the differ-
ent series of experiments, the data were corrected for the 
batch effect using a linear model, with the sample prep-
aration batch (Additional file  2: Table  S1) set as a fixed 
effect. Residuals of this model were extracted for further 
analyses. The results obtained for viability, mitochondrial 
status and motility, with and without correction for the 

batch effect, are provided in Additional file  3: Table  S2 
and Additional file 1: Fig. S8.

Genomic DNA preparation
Approximately 20 million spermatozoa prepared as 
described above were pelleted and resuspended in 200 
μL lysis buffer (10 mM Tris–HCl pH 7.5, 25 mM EDTA, 
1% SDS, 75 mM NaCl, 50 mM dithiothreitol and 0.5 μg 
glycogen), and incubated overnight at 55 °C in the pres-
ence of 0.2  mg/ml proteinase K. After incubation with 
25 μg/ml RNAse A for 1 h at 37  °C, genomic DNA was 
extracted twice using phenol:chloroform (1:1) and chlo-
roform, then precipitated with ethanol and washed. The 
dried pellet was resuspended in TE buffer (10  mM Tris 
HCl pH 7.5, 2  mM EDTA) and the DNA concentra-
tion was measured using a Qubit 2.0 Fluorometer with 
the dsDNA BR Assay kit (Invitrogen). The integrity of 
genomic DNA was confirmed for all samples by agarose 
gel electrophoresis.

Reduced representation bisulfite sequencing
RRBS libraries were produced in 12 batches for the main 
cohort and 4 batches for the independent cohort. All 
pipetting steps before final amplification were carried out 
using an NGS STARlet liquid handling system with four 
channels (Hamilton), ensuring reproducibility between 
the different library preparation batches. Genomic DNA 
(200  ng) was digested with MspI, end-repaired and 
ligated overnight with Illumina adapters [43, 93]. The fol-
lowing day, size selection was performed using SPRIse-
lect magnetic beads (Beckman-Coulter) as previously 
reported [65]. The DNA was then converted twice with 
sodium bisulfite using the EpiTect bisulfite kit (Qiagen) 
following the manufacturer’s instructions. Converted 
DNA was amplified with Pfu Turbo Cx hotstart DNA pol-
ymerase (Agilent) using 14 PCR cycles. The libraries were 
purified using AMPure XP beads (Beckman-Coulter) and 
DNA concentrations were measured with a Qubit 2.0 
Fluorometer with the dsDNA HS Assay kit (Invitrogen). 
Electrophoresis on a 4–20% precast polyacrylamide TBE 
gel (Invitrogen) and staining with SYBR green confirmed 
the homogeneous pattern for all libraries, with frag-
ments ranging from 150 to 400 bp (40–290 bp genomic 
DNA fragments + adapters). The libraries were finally 
sequenced on an Illumina HiSeq4000 sequencer to pro-
duce 75 bp paired-end reads (Integragen SA).

Bioinformatics analyses
On average, sequencing generated 33 and 35 million 
read pairs per library for the main cohort and independ-
ent cohort, respectively. The sequences displayed the 
expected nucleotide composition based on MspI diges-
tion and bisulfite conversion according to FastQC quality 
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control (https:// www. bioin forma tics. babra ham. ac. uk/ 
proje cts/ fastqc/). Subsequent quality checks and trim-
ming were carried out using TrimGalore v0.4.4 (https:// 
www. bioin forma tics. babra ham. ac. uk/ proje cts/ trim_ 
galore/), which removed adapter sequences, poor qual-
ity bases (Phred score below 20) and reads shorter than 
20 nucleotides. The bisulfite conversion rate was esti-
mated from unmethylated cytosine added in  vitro dur-
ing the end-repair step. This reached 99% on average 
(Table 1) and the minimal value for all 120 samples was 
98.1%. High quality reads were aligned on the bovine 
reference genome (ARS-UCD2.1 assembly) using Bis-
mark v0.20.0 in the default mode with Bowtie 1.2.1 [94, 
95]. Only CpGs covered by at least 10 uniquely mapped 
reads (CpGs10) were retained for subsequent analy-
sis. To avoid the confounding effects of sequence poly-
morphisms and bisulfite conversion, 401,172 CpGs10 
that co-localized with a putative sequence polymor-
phism affecting the C and/or G were filtered out [96]. 
Since no sequence polymorphism information was 
available for unplaced scaffolds, CpGs located on 
unplaced scaffolds were also filtered out. Each remain-
ing CpG10 was assigned a methylation percentage per 
sample calculated from Bismark methylation calling 
(

number of reads with “C ′′
× 100

)

/(number of reads

with C + number of reads with “T ′′
)

 , which could be 
visualized using the Integrative Genome Viewer (IGV) 
genome browser [97]. PCA and hierarchical clustering 
were then computed on the matrix of methylation per-
centages for each CpG10 with no missing values, using 
the FactoMineR R package [98]. For hierarchical cluster-
ing, the distance between samples was calculated using 
Pearson correlation coefficients and Ward’s method was 
applied as the linkage function.

A subset of 1,548,563 CpGs10, covered in at least 22 
samples per fertility group of the main cohort, con-
stituted the background. The DMCs were identified 
from this background using methylKit v1.0.0 [49] and 
DSS v2.14.0 [48] in the default mode. With methylKit, 
a CpG10 was considered as a DMC when the adjusted 
p value (q value, obtained after SLIM correction) was 
lower than 0.01 and the average methylation difference 
between the two groups was at least 10% according to 
the methylKit calculation mode, which takes account of 
the coverage per sample. With DSS, the same minimal 
methylation difference applied, but the threshold for the 
adjusted p value was set at 0.1, and p value adjustment 
was performed according to the Independent Hypothesis 
Weighting method, using the alpha parameter set at 5% 
and the average methylation per group as a covariable 
[99]. DMRs were defined as regions containing at least 
3 DMCs with an inter-distance between each DMC of 
100 bp or less. It should be noted that both the DMC and 

DMR datasets contained missing values because of sam-
ples in which the coverage thresholds were not reached.

For Fig.  2C, an average DNA methylation value per 
DMR and per sample was calculated from all the CpGs10 
included in the DMR. The heatmap was then generated 
for 18 DMRs displaying DNA methylation values for all 
100 samples using the R package pheatmap (v1.0.12).

Annotation of the background CpGs10, DMCs and 
DMRs was performed as described [65] relative to gene 
features, CpG density and repetitive elements using an 
in-house pipeline. The reference files were downloaded 
from Ensembl (ftp:// ftp. ensem bl. org/ pub; release 95). The 
following criteria were applied: TSS, − 100 to + 100  bp 
relative to the transcription start site (TSS); pro-
moter, − 2000 to − 100 bp relative to the TSS; TTS, − 100 
to + 100 bp relative to the transcription termination site 
(TTS); shore, up to 2000 bp from a CGI, and shelf, up to 
2000  bp from a shore. A site/region was considered to 
belong to a CGI (respective shore and shelf ) if an overlap 
of at least 75% was observed between the site/fragment 
and the CGI (respective shore and shelf ). A site/region 
was considered as being overlapped by a repetitive ele-
ment whatever the extent of this overlapping. The lists of 
fertility-related DMCs and DMRs with annotation fea-
tures are provided in Additional files 4 and 5: Tables S3 
and S4, respectively.

Genes containing DMCs in intragenic regions and/
or in the upstream (up to − 10  kb from the TSS) and 
downstream (up to + 10 kb from the TTS) regions were 
subjected to an enrichment analysis using DAVID with 
default parameters [100]. The 19,829 genes covered by 
RRBS (i.e., all genes containing at least one background 
CpG10) were used as the reference. Clusters with an 
enrichment score above 1.3 were taken into account.

To better characterize repetitive elements, an artifi-
cial genome containing the consensus sequence of each 
bovine repeat was constituted from the Repbase data-
base [46]. Reads were aligned on this artificial genome 
as explained above, and the average methylation rate was 
calculated per CpG10 for each repeat and each sample. A 
differential methylation analysis between fertile and sub-
fertile bulls was then performed using methylKit [49], as 
described above.

Bisulfite pyrosequencing
For five genomic regions, ten samples per fertility group 
were selected based on their contrasting methylation pat-
terns under RRBS analysis (Additional file  9: Table  S8). 
Bisulfite conversion was performed on 0.5  µg genomic 
DNA using the EpiTect bisulfite kit (Qiagen). Primers 
were designed using the Qiagen Pyromark assay design 
software (Additional file 10: Table S9) and amplifications 
were performed using the Pyromark PCR kit (Qiagen) 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
ftp://ftp.ensembl.org/pub
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according to the manufacturer’s instructions. The fol-
lowing PCR program was used: 15 min at 95 °C followed 
by 45 cycles of 30 s at 94 °C, 30 s at 56 °C, 30 s at 72 °C, 
and finally 10  min at 72  °C. The reverse primers were 
5′-biotinylated for all five regions. After denaturation and 
washes, the purified biotinylated strand of PCR products 
was employed as a template for pyrosequencing with 
0.3 µM pyrosequencing primer, using the Pyromark Q24 
device and Pyromark Gold Q96 reagents (Qiagen). Each 
CpG was analyzed in duplicate, and inconsistent dupli-
cates (more than 5% difference) were repeated. For each 
sample, the DNA methylation percentage per CpG was 
obtained by calculating the mean of all consistent rep-
licates that passed quality control by the Pyromark Q24 
software. DNA methylation values obtained by pyrose-
quencing were compared between fertile and subfertile 
bulls using a Wilcoxon test. The significance of corre-
lations between the average DNA methylation values 
obtained by RRBS and pyrosequencing for each region 
was tested using Spearman’s rank correlation test.

Random Forest predictive model
The predictive model was built on the matrix of methyla-
tion percentages at DMCs, where samples were in rows 
and DMCs in columns. The DMCs with missing values 
were either filtered out before model construction or 
conserved if they contained less than 10% missing val-
ues; the latter were then imputed using the R package 
missMDA with default options [101]. Random Forest 
models were built using the ‘rf ’ option from the R pack-
age caret (v6.0-84) [102]. The “mtry” parameter was esti-
mated by the square root of the number of features in the 
model, and the number of trees was set at 500.

Three different strategies were applied to assess the 
performance of the predictive model (Fig.  7), and the 
predicted fertility status was compared with the actual 
fertility status of samples included in each type of test-
ing set. For this purpose, ROC curves were computed 
[103], and four model quality indicators were calculated: 
model accuracy (correct prediction rate), AUC, sensitiv-
ity (true positive rate) and specificity (true negative rate). 
For the first strategy with 50 resamplings of the testing 
test, the average accuracy, AUC, sensitivity and specific-
ity were considered to evaluate the model performance 
by cross-validation.

Other statistical analyses
The groups were compared using the non-parametric 
Wilcoxon test if the following criteria did not apply: 
(1) more than 15 values available per group; (2) nor-
mal distribution according to the Shapiro–Wilk test; (3) 
same variance of the two groups according to the F-test. 

Among a series of comparisons, the Wilcoxon test was 
used for all comparisons regarding consistency, even if 
some comparisons fulfilled the above criteria.

Literature mining
A systematic review of the literature was performed for 
all genes differentially methylated with the Biomart anno-
tation available (“Gene name” column in Additional file 4: 
Table S3; 139 genes out of 170). The NCBI Pubmed data-
base was interrogated using the gene names successively 
associated with each of the following terms: “embryo*”, 
“sperm*” and “fertility”, and all the relevant references 
were collected (Additional file 7: Table S6).

The comparison with human case studies was per-
formed as follows: among all the listed references, 
those focusing on the comparison of genome-wide 
DNA methylation patterns between fertile and infer-
tile/subfertile human sperm samples, and with acces-
sible supplementary data available, were pointed out. 
This led to the selection of four studies highlighting 
1843 [27], 31 [26], 3 [28] and 384 [52] differentially 
methylated genes. These four gene lists were com-
pared with the 139 genes with the Biomart annota-
tion available identified during the current study. The 
genes found in common are listed in Additional file 8: 
Table S7. For studies where the information was avail-
able, the methylation status in subfertile samples is 
indicated.
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