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45075, Orléans, France. We have read with interest an opinion paper recently published in the

Email: dominique.arrouays@inrae.fr European Journal of Soil Science (Berthelin et al., 2022). This paper presents

some interesting considerations, at least one of which is already well known to
soil scientists working on soil organic carbon (SOC), that is, a large portion
(80%-90%) of fresh carbon inputs to soil is subject to rapid mineralization. The
short-term mineralization kinetics of organic inputs is well-known and
accounted for in soil organic matter models. Thus, clearly, the long-term pre-
dictions based on these models do not overlook short-term mineralization. We
point out that many agronomic practices can significantly contribute to SOC
sequestration. If conducted responsibly whilst fully recognising the caveats,
SOC sequestration can lead to a win-win situation where agriculture can both

contribute to the mitigation of climate change and adapt to it, whilst at the
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1 | INTRODUCTION

We have read with interest ‘Soil carbon sequestration for
climate change mitigation: Mineralization kinetics of
organic inputs as an overlooked limitation’ recently pub-
lished in the European Journal of Soil Science (Berthelin
et al., 2022). This paper presents some interesting consid-
erations, at least one of which is already well known to
soil scientists working on soil organic carbon (SOC), that
is, a large portion (80%-90%) of fresh carbon inputs to
soil is subject to rapid mineralization. Here, we argue
that rapid mineralization of organic inputs is an impor-
tant factor for soil carbon sequestration and that agro-
nomic practices to increase SOC do exist.

2 | RAPID MINERALIZATION
OF ORGANIC INPUTS IS NOT
OVERLOOKED

In brief, after a short review, mainly citing papers that
question or criticise the potential of soils to sequester
CO, to mitigate climate change, Berthelin et al. (2022)
claim that, for the ‘very first time’, they ‘analyze in
detail’ the short-term mineralization kinetics of fresh
organic inputs added to soils, which according to them
‘is occasionally alluded to in the literature, but almost
always subsumed in a broader modelling context’. How-
ever, the authors simply put on the table a fact that has
been known for nearly a century, that is, all organic car-
bon (C) added to the soil is subject to mineralization and
is not entirely stabilised or sequestered into the soil, just
a small fraction of it is. Clearly, this is not a ‘blind spot’
or ‘untold story’ as the authors write. In fact, the

enhanced biodiversity.
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same time delivering other co-benefits such as reduced soil erosion and
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« Mineralization kinetics of organic inputs are well-known and accounted for
in soil organic matter models.

practices can contribute significantly to SOC

« SOC sequestration can lead to a win-win situation where agriculture can
both contribute to the mitigation of climate change and adapt to it.
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mineralization kinetics of organic inputs have been
described and quantified as far back as the pioneer work
of Hénin and Dupuis (1945). There are numerous long-
term field experiments under various environments
(e.g., Cardinael et al., 2022; Fujisaki et al., 2018; Kong
et al.,, 2005; Thomsen & Christensen, 2004) and field-
isotope studies (e.g., Aita et al, 1997; Voroney
et al., 1989), which show that crop residues decompose
quickly in soil and that conversion of organic C inputs to
SOC is in the range of 10%. The short-term mineraliza-
tion kinetics of organic inputs is well-known and
accounted for in soil organic matter models. Decomposi-
tion of added organic material is typically represented by
two or more organic matter pools. These are defined as
rapidly and slowly decomposing plant fractions, with
exponential decay rate constants varying between 35 and
0.6 yr ', depending on the pool and model. First-order
kinetics is used, with C flows from those pools to micro-
bial biomass and recalcitrant soil organic matter pools
with concomitant production of CO, (Corbeels, 2001).
The partitioning of C between microbial biosynthesis and
mineralization is generally driven by the C-use efficiency
ratio (e.g., Manzoni et al., 2018). Thus, clearly, the long-
term predictions based on these models do not overlook
short-term mineralization.

The authors also point out that ‘perpetually hungry
microorganisms’ will lead to an inexorable release of CO,
to the atmosphere. This is, of course, absolutely true and
is actually recognised as a fundamental process of SOC
stabilisation. Microorganisms have a high turnover rate
in soil and generate large amounts of organic molecules
and necromass that can contribute to the stable SOC frac-
tion (e.g. Liang et al., 2019; Six et al., 2006). This is now a
well-established pathway of SOC formation and
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stabilisation (e.g., Cotrufo et al, 2013; Kallenbach
et al., 2016; Sokol et al., 2022).

3 | AGRONOMIC PRACTICESTO
INCREASE SOIL ORGANIC CARBON

Berthelin et al. (2022) emphasise the role that organic
inputs can play in storing additional SOC. The impact of
crop residue retention on SOC is generally positive but
indeed variable depending on soil, climate and agro-
nomic contexts (e.g., review by Bolinder et al., 2020).
Many other agronomic practices (e.g., reviews by
Paustian et al., 2016, Chenu et al., 2019) can significantly
contribute to SOC sequestration. For instance, a global
meta-analysis showed that cover crops increased SOC
storage by an average of 0.32 Mg C ha™" yr~' (Poeplau &
Don, 2015). This is roughly equivalent to 0.6% per year
for a soil initially at 50 Mg C ha™! until a new equilib-
rium is reached within a few decades. There are also
examples showing that combining cover crops and no-
tillage, without exogenous organic inputs, can result in
even much larger SOC sequestration rates, for example,
in Southern Brazil (Veloso et al.,, 2018) or in France
(Autret et al., 2016). Other practices or systems that can
improve SOC levels include agroforestry systems
(Cardinael et al.,, 2018; Corbeels et al., 2019; Mayer
et al., 2022), the addition of available exogenous organic
matter that would otherwise not be applied to soil (Bruni
et al., 2022; Maillard & Angers, 2014), and finally, the
removal of soil constraints that result in increased crop
productivity and thus C inputs from the crop itself,
including roots (Emde et al., 2021; Ladha et al., 2011).
Obviously, the impact of these management practices on
other greenhouse gas emissions (particularly N,O) has to
be carefully accounted for.

Implementing SOC sequestering practices at a scale
large enough that significant atmospheric CO, removals
are achieved can be challenging but is possible. An exam-
ple is provided in the semi-arid Canadian Prairies where
the elimination of summer fallow and the implementa-
tion of no-till practices result in significant SOC seques-
tration (Liang et al., 2020; VandenBygaart et al., 2008).
Their combined implementation at a large scale (tens of
millions of hectares) over the past several decades has
resulted in large quantities of additional C stored in soils.
For example, for the year 2018, the increase in no-till and
the decrease in summer fallow resulted in approx. 12 Mt
CO,eq removals in soils (Environment and Climate
Change Canada, 2021). This is significant relative to
approx. 20 Mt CO,eq emissions of N,O from soils (appli-
cation of inorganic and inorganic fertilisers, and crop res-
idue decomposition) during the same year (Environment

ence

and Climate Change Canada, 2021). Another example of
large-scale C sequestration is in China (Zhao et al., 2018).

We fully agree with Berthelin et al. (2022) when they
write: ‘it is not reasonable to ask of soil carbon sequestra-
tion to compensate all of the greenhouse gas emissions of
other anthropogenic sectors’ and ‘one should also ensure
that soils will be sufficiently resilient to adapt to a rapidly
changing climate in the near future, and still be able to
fulfill their essential functions, on which humanity
depends crucially’. Yet, we think it is important to add
here that increasing SOC and enhancing resilience to cli-
mate change is crucial to minimise the negative feedback
effect of climate change on net primary production and
on resulting C inputs to soils (IPCC, 2019; Lal, 2016).
This is especially the case for the most degraded soils of
the planet or soils that are ‘at-risk’ (e.g., Mediterranean
soils, arid soils, and several soils in sub-Saharan Africa)
for which urgent actions need to be taken to ensure food
security (IPCC, 2019). These degraded soils are also plau-
sibly the ones where appropriate interventions bring the
most SOC gains, with steep increments from low initial
levels.

4 | CONCLUSIONS

Finally, although we also agree that policymakers should
focus on other possible avenues to halt climate change,
like transitioning promptly to renewable forms of energy,
it is unreasonable to suggest that SOC sequestration in
soils to mitigate climate change is off the table. The great
majority of papers about the potential of SOC sequestra-
tion do not consider it as a ‘silver bullet’, which will
alone solve the current climate crisis. Fossil fuels are the
main source of greenhouse gases and climate change.
The absolute priority should be to reduce greenhouse gas
emissions from all sectors, including agriculture, and that
includes preventing further losses from already C-rich
soils. Equally important is to restore the SOC in our crop-
lands. Even in a decarbonized world, some residual emis-
sions will remain, and negative emissions technologies to
remove CO, from the atmosphere will be needed to reach
net-zero emissions by 2050 to meet the goal set in the
Paris Agreement (Minx et al., 2018). As with many other
land-based solutions, SOC can contribute to the partial
and temporary mitigation of anthropogenic emissions
(IPCC, 2019), and all practical possibilities to partially
slow down the effects of climate change should be con-
sidered. If conducted responsibly whilst fully recognising
the caveats, SOC sequestration can lead to a win-win sit-
uation where agriculture can both contribute to the miti-
gation of climate change and adapt to it, whilst at the
same time delivering other co-benefits such as reduced
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soil erosion and enhanced biodiversity. We should not
miss this opportunity.
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