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Genic and non‑genic SNP 
contributions to additive 
and dominance genetic effects 
in purebred and crossbred pig traits
Mahshid Mohammadpanah1, Ahmad Ayatollahi Mehrgardi1*, Hélène Gilbert2, 
Catherine Larzul2, Marie‑José Mercat3, Ali Esmailizadeh1, Mehdi Momen4 & Llibertat Tusell2,5

The present research has estimated the additive and dominance genetic variances of genic 
and intergenic segments for average daily gain (ADG), backfat thickness (BFT) and pH of the 
semimembranosus dorsi muscle (PHS). Further, the predictive performance using additive and 
additive dominance models in a purebred Piétrain (PB) and a crossbred (Piétrain × Large White, CB) 
pig population was assessed. All genomic regions contributed equally to the additive and dominance 
genetic variations and lead to the same predictive ability that did not improve with the inclusion of 
dominance genetic effect and inbreeding in the models. Using all SNPs available, additive genotypic 
correlations between PB and CB performances for the three traits were high and positive (> 0.83) and 
dominance genotypic correlation was very inaccurate. Estimates of dominance genotypic correlations 
between all pairs of traits in both populations were imprecise but positive for ADG‑BFT in CB and 
BFT‑PHS in PB and CB with a high probability (> 0.98). Additive and dominance genotypic correlations 
between BFT and PHS were of different sign in both populations, which could indicate that genes 
contributing to the additive genetic progress in both traits would have an antagonistic effect when 
used for exploiting dominance effects in planned matings.

Crossbreeding schemes have largely driven genetic progress in pigs during the last 40–50  years1. With cross-
breeding, specific alleles of parental purebreds are inherited by the offspring generating many heterozygous 
loci contributing to increase the favorable heterosis effects on the traits of interest. Dominant gene action has a 
major role on  heterosis2,3. Predominantly, genetic selection in pigs is performed on purebred lines using purebred 
data and accounting solely for additive genetic effects, whereas crossbred performance is the ultimate product 
to improve as a correlated  response4. If the genetic correlation between purebred and crossbred performances 
substantially differs from unity, a combined crossbred and purebred selection method is  advised5. In addition 
to selection strategies, if dominance effects are important, assortative mating strategies might enhance the total 
genetic values of the crossbred offspring at a given  generation6–10. Thus, estimates of additive and dominance 
genetic parameters for traits of interest and for purebred and crossbred performances are required to determine 
the best breeding and management strategies in crossbreeding schemes. With technological developments in the 
recent years, these strategies can now be based on marker information and several genomic models to account 
for dominance effects are available for purebred and crossbred genetic evaluations (e.g.9–15).

In addition, separately estimating and accounting for additive and dominance effects of genic and non-genic 
regions could provide a better understanding of the genetic architecture and potentially improve predictive 
ability of models for complex traits in pigs. The contribution of genic and non-genic regions of the genome to 
additive genetic variance has been investigated in humans and some livestock  species16–18 to provide a better 
understanding of the genetic architecture and improve predictive ability of models for complex traits. A further 
step is to investigate the contribution of these genome regions to dominance genetic variance across purebred 
and crossbred populations.
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The present research has estimated the additive and dominance genetic variances due to genic and non-genic 
segments for average daily gain (ADG), backfat thickness (BF) and pH of the semimembranosus dorsi muscle 
(PHS) and their predictive performance in a purebred Piétrain (PB) and a crossbred (Piétrain × Large White, 
CB) pig population. Estimates of additive and dominance genotypic correlations between purebred and crossbred 
performances for these traits as well as between traits within PB and CB populations are also provided.

Material and methods
Ethics approval. Data used for this study was originated in the UtOpIGe project ANR-10-GENOM_BTV-
015. All experimental protocols of the project were approved on the 01/23/2013 (R-2012-NM-01) by the local 
ethic committee (Comité Rennais d’Ethique en matière d’Expérimentation Animale). The Comité Rennais 
d’Ethique en matière d’Expérimentation Animale is registered in the French National Committee of ethical 
reflexion on animal experimentation number 7 (Comité National de Refléxion Ethique sur l’Expérimentation 
Animale). All methods were carried out in accordance with guidelines and the French regulation in Animal 
research (articles R214-87 to R214-137 of the French rural code https:// www. reche rche- anima le. org/ sites/ defau 
lt/ files/c_ rural_ 2013. pdf) updated by the 2013–118 decree and five orders from February 1st 2013, published on 
February 7th, according to the 2010/63 directive from the EU. This regulation is under the responsibility of the 
French Ministry of Agriculture.

The study was carried out in compliance with the ARRIVE guidelines (http:// www. nc3rs. org. uk/ page. asp? 
id= 1357).

Animal material. Animals were provided by the three French breeding companies of the Alliance R&D 
association (composed of Axiom, Choice Genetics France, Nucléus and IFIP) involved in the UtOpIGe project 
ANR-10-GENOM_BTV-015. We used 636 purebred Piétrain (PB) and 720 crossbred Piétrain × Large White 
(CB) entire “intact” male piglets produced on selection and multiplication farms and tested at a single test sta-
tion INRA UE3P France Génétique Porc phenotyping station (UE3P, INRA, 2018. Unité expérimentale Physi-
ologie ET Phénotypage des Porcs, France, https:// doi. org/ 10. 15454/1. 55739 32732 03992 7E12). Both, PB and CB 
animals were descendants of 90 Piétrain boars. They entered the test station facilities in Le Rheu (France) at 
approximately 5 weeks of age and were slaughtered at a fixed weight of 110 kg (at 5–6 months of age).

Phenotypes. Animals were misspelled weighed at the beginning (when the animals reached approximately 
35 kg) and at the end of the test period (when they reached 110 kg). Average daily gain (ADG, kg/day) was 
calculated as the body weight gained during the test period divided by the duration of the period. Rib back 
fat thickness (BFT, mm) was measured on carcass with the Capteur Gras Maigre  method19. At the slaughter-
house, carcasses were chilled in a cooling room at 4 °C for 24 h. Ultimate pH of the semimembranosus dorsi 
muscle (PHS, pH units) was measured using a Xerolyt electrode (Mettler-Toledo, Australia) and a Sydel pH 
meter (Sydel, France) at 24 h post- mortem. Further details regarding complete data collection and experimental 
design can be found in Tusell et al.10.

Genotypes. Animals were genotyped using the Illumina Porcine SNP60 Bead Chip (Illumina, Inc., San 
Diego). Single nucleotide polymorphisms (SNPs) with a call rate lower than 0.90 and a minor allele frequency 
lower than 0.05 were removed. For the remaining SNPs. Missing genotypes were imputed using a naïve method 
that sampled genotypes with probability weights of the allele frequencies at each locus. The missing genotypes 
were then replaced with these sampled genotypes. Animals that presented Mendelian inconsistencies with their 
parents were discarded. After quality control, 46,816 SNPs were included in the analyses. Due to separate data 
edition, the number of animals with records and number of SNPs retained for the analyses slightly differed for 
each trait. Summary statistics of the three analyzed phenotypes in the two populations are presented in Table 1.

SNP annotation. Chromosome information of SNPs (i.e. the map file containing SNP-ID and RS-Num-
bers) was downloaded from the Animal Genome Database (https:// www. anima lgeno me. org/ repos itory/ pig/). 
The SNPs that did not have RS number or a non-unique RS number were discarded leading to 39,727 SNPs 
available for the analysis. The physical positions of the SNPs obtained through Ensembl database (https:// useast. 
ensem bl. org/ Sus_ scrofa/ Tools/ VEP) for pig (Sus Scrofa, Assembly: Sscrofa11.1, accession date: December 2018) 
allowed to locate each SNP into a genic or an intergenic region.

SNPs were classified in three categories. Genic region category (Genic, 19,672 SNPs) encompassed the SNPs 
annotated into the following categories: introns (15,824 SNPs), synonymous (321 SNPs), upstream the gene 

Table 1.  Summary statistics of the purebred (PB) and crossbred (CB) phenotype data. ADG average daily gain 
(g/day), BFT  backfat thickness (mm), PHS pH of the semimembranosus muscle (pH units).

Trait

PB CB

Number of records Mean (SD) Number of records Mean (SD)

ADG 636 940 (94) 720 1003 (92)

BFT 607 10.14 (1.81) 620 11.51 (2.13)

PHS 632 5.68 (0.18) 727 5.72 (0.19)

https://www.recherche-animale.org/sites/default/files/c_rural_2013.pdf
https://www.recherche-animale.org/sites/default/files/c_rural_2013.pdf
http://www.nc3rs.org.uk/page.asp?id=1357
http://www.nc3rs.org.uk/page.asp?id=1357
https://doi.org/10.15454/1.5573932732039927E12
https://www.animalgenome.org/repository/pig/
https://useast.ensembl.org/Sus_scrofa/Tools/VEP
https://useast.ensembl.org/Sus_scrofa/Tools/VEP
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(1,595 SNPs), downstream the gene (1,338 SNPs), 5′ (77 SNPs) and 3′ untranslated regions (UTR) (382 SNPs), 
missense (108 SNPs), other exon mutations (27 SNPs). Intergenic region category (Intergenic, 20,055 SNPs) 
encompassed all SNPs annotated outside these genic regions. All region category (All) included the 39,727 SNPs.

Statistical analysis. Genic and intergenic additive and dominance variances in purebred and crossbred popu-
lations. To explore the additive and dominance variance explained by the SNPs of the categories (i.e., Inter-
genic, Genic and All SNPs) in ADG, BF and PHS in the two populations, the following general univariate model 
was fitted separately for each trait, population and genomic  region9,14:

where y was the phenotypic value of individuals, β is a vector of systematic effects and p a vector of pen nested 
within batch random effects. Term e is the vector of residual effects. Terms X1 and X2 are incidence matrices that 
assign systematic and nested within batch effects to the phenotypes, respectively. Model for ADG included the 
effects of weight at the beginning of test (covariate), and pen nested within batch effect (random effect, 65 levels). 
Model for BFT included the effects of hot carcass weight (covariate) and pen nested within batch effect (random 
effect, 62 levels). Model for PHS included the effects of hot carcass weight (covariate) and date of slaughter 
(systematic effect, 43 levels). Term  f  is a vector of inbreeding coefficients calculated as the average homozygosity 
per individual and b is the inbreeding depression  coefficient14. Terms a and d are the vectors of animal additive 
and dominance genotypic effects, respectively. Terms Z and W are incidence matrices relating additive and 
dominance genotypic effects to either PB or CB animals with −1, 0, 1 (additive) and 0, 1, 0 (dominance) values 
for the AA, Aa and aa genotypes, respectively. Additive and dominance genotypic (co)variances were modelled 
as G = ZZ

′

{

tr([ZZ
′

])/n
}σ 2

A∗ and D = WW
{

tr([WW
′

])/n
}σ 2

D∗
12, where σ 2

A∗ and σ 2
D∗ are the estimated variance components, 

and n the number of animals.
A Bayesian framework was adopted for inference. The prior distributions for the parameters of the model 

were P(β , b) ∼ k  ,  P

(

p|σ 2
p

)

∼ N(0, Iσ 2
p) ,  P(a|G, σ 2

A∗) ∼ N(0,Gσ 2
A∗) ,  P(d|D, σ 2

D∗) ∼ N(0,Dσ 2
D∗) and 

P
(

e|σ 2
e

)

∼ N(0, Iσ 2
e ) where k is a constant, I is an identity matrix, and σ 2

p  and σ 2
e  are the nested within batch and 

residual variances, respectively.
The variance components were estimated either using all the 39,727 available SNPs (All), the 19,672 SNPs 

located in the genic regions (Genic) or the 20,055 SNPs located in the intergenic regions (Intergenic). Thus, for 
each genomic region, the SNPs included in Z and W differed according to the genomic region used (i.e., All, 
Genic or intergenic SNPs).

Following12, the variance components σ 2
A∗ and σ 2

D∗ estimated in the genotypic models were then used to 
retrieve the additive and dominance SNP variances that, together with the allelic frequencies of each popula-
tion, allowed to obtain the additive and dominance deviation variances for the two populations across the three 
analysed traits. Hence, with the SNPs of the three regions, three different models (using either Genic, Intergenic 
or All SNPs) were implemented per trait (ADG, BFT and PHS) and per population (i.e. PB or CB) leading to 
18 different models.

Predictive ability. Predictive ability of a model including only additive genetic effects and an inbreeding coef-
ficient was compared to a model including additive and dominance effects and an inbreeding coefficient. These 
two models (additive model or additive and dominance model) were run separately for each combination of pop-
ulation (PB or CB), trait (ADG, BFT and PHS) and genomic region (Genic, Intergenic and All markers) leading 
to 36 different models. All models included the same systematic and non-genetic random effects described above 
for each of the three traits. Predictive ability of the models was evaluated by cross-validation (CV). Specifically, a 
four-fold CV scheme was used by attributing animals randomly to one of four separate subsets. From these four 
subsets, three folds were combined to create a training set and the remaining fold was used as testing set. Each 
of the four subsets was applied as a testing set only once. Because of the small size of the sample, the four-fold 
CV was replicated 10 times at random, and results were averaged over  replications20. Predictive abilities were 
assessed via Pearson’s correlation between pre-adjusted phenotypes and predicted phenotypes in the testing sets.

Additive and dominance genotypic correlations between PB and CB populations. Additive and dominance geno-
typic correlations between PB and CB performances were estimated using all SNPs available and separately for 
each trait. In this case, PB and CB performances of the trait (i.e., ADG, BFT or PHS) were considered to be dif-
ferent traits in PB and CB populations and were jointly analyzed with a bivariate genotypic model accounting for 
additive and dominance  effects12 and a genomic inbreeding  coefficient14. The following general two-trait model 
was applied:

Index k (for k = PB,CB) is used to denote either the PB ( k = PB ) or the CB ( k = CB ) populations. Term yk 
is a vector of phenotypes, βk is a vector of systematic effects, pk is a vector of pen nested within batch effects (only 
included in ADG and BFT models), fk is a vector of inbreeding coefficients and its corresponding inbreeding 
depression coefficient ( bk ), and ek is a vector of residual effects. Terms X1,k, X2,k, ZA,k and ZD,k are incidence 

y = X1β+ fb+ X2p+ Za +Wd + e

[

yPB
yCB

]

=

[

X1,PB 0

0 X1,CB

][

βPB
βCB

]

+

[

fPB
fCB

][

bPB

bCB

]

+

[

X2,PB 0

0 X2,CB

][

pPB
pCB

]

+

[

ZA,PB 0

0 ZA,CB

][

aPB
aCB

]

+

[

ZD,PB 0

0 ZD,CB

][

dPB
dCB

]

+

[

ePB
eCB
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matrices that assign systematic, pen nested within batch effects, additive genotypic effects, and dominance geno-
typic effects to the phenotypes, respectively. There were no correlations assumed between pen nested within 
batch effects, between residual effects or between these effects and other random effects. The (co)variance matrix 

for the pen nested within batch effects is var
[

pPB
pCB

]

= I⊗ P = I⊗

[

σ 2
p,PB 0

0 σ 2
p,CB

]

 and the (co)variance matrix 

for the residuals is var
[

ePB
eCB

]

= I⊗ R = I⊗

[

σ 2
e,PB 0

0 σ 2
e,CB

]

 , where σ 2
p,kandσ

2
e,k are the pen nested within batch 

and residual variances in the PB and CB populations, respectively. Vector ak is the vector of additive genetic 
effects and vector dk is the vector of dominance genotypic effects. The (co)variance matrix for the genotypic 
additive effects is:

var

[

aPB
aCB

]

 = G0 ⊗ G =

[

σ 2
A∗PB σA∗PB,CB

σA∗PB,CB σ 2
A∗CB

]

⊗ ZZ
′

{

tr([ZZ
′
])/n

}where σ 2
A∗k is the additive genotypic variance in 

either PB or CB, and σA∗PB,CB is the additive genotypic covariance between PB and CB populations. Similarly, 
the (co)variance matrix for the genotypic dominance effects is:

where σ 2
D∗k and σD∗PB,CB are the dominance genotypic variances in PB and CB, and the additive genotypic 

covariance between PB and CB populations. Terms Z and W are incidence matrices relating additive and domi-
nance genotypic effects to the PB and CB animals coded as described in the models above. In this bivari-
ate genotypic model, the Z and W matrices include all PB and CB animals and the model estimates additive 
and dominance genotypic covariances which cannot be interpreted in the same way as the statistical covari-
ance of breeding values and dominance  deviations12. The prior distributions for the parameters of the model 
were P(β , b) ∼ k , P

(

p|P
)

∼ N(0, I⊗ P) , P(a|G0 ) ∼ MVN(0,G0 ⊗ G) , P(d|D0 ) ∼ MVN(0,D0 ⊗D) and 
P(e|R ) ∼ MVN(0, I⊗ R).

Additive and dominance genotypic correlations between BFT, ADG and PHS in PB and CB populations. A tri-
trait genotypic model including additive and dominance effects and a genomic inbreeding coefficient was used 
to estimate additive and dominance genotypic correlations between BFT, ADG and PHS within each PB and 
CB population. This approach allowed estimating (co)variances of additive and dominance genotypic effects 
between these three traits within purebred and crossbred populations. To achieve that, the following tri-trait 
model was applied separately in each population:

Index j is used to denote either ADG, BFT or PHS trait (i.e.,k = ADG,BFT , PHS ). Term yj is the phenotypic 
value of individuals, βj is a vector of systematic effects, pADG and pBFT are the vector of pen nested within batch 
effects for ADG and BFT. Terms aj and dj are the vectors of additive and dominance genotypic effects, respectively. 
Term ej is the vector of residual effects. Matrices X1,j , X2,ADG, X2,BFT , ZA,j and  ZD,j are incidence matrices that 
assign the corresponding systematic effects and pen nested within batch effects, additive and dominance geno-
typic random effects to the phenotypes. There was no correlation between pen nested within batch effects, 
between residual effects or between these effects and other random effects. The (co)variance matrix for the pen 

nested within batch effects is var

�

pADG
pBFT
pPHS

�

= I⊗ P = I⊗





σ 2
p,ADG 0 0

0 σ 2
p,BFT 0

0 0 0



, where σ 2
p,ADG and σ 2

p,BFT are the 

pen nested within batch random variances for ADG and BFT, respectively. The (co)variance matrix for the 

residuals is var

�

eADG
eBFT
ePHS

�

= I⊗ R = I⊗





σ 2
e,ADG 0 0

0 σ 2
e,BFT 0

0 0 σ 2
e,PHS



, where σ 2
e,j is the residual variance for each 

trait. Pen nested within batch effect and the residuals were assumed to be uncorrelated due to overparameteriza-
tion of the models.

The (co)variance matrix for the additive genotypic effects is

whereas the (co)variance matrix for the dominance genotypic effects is

var
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Terms σ 2
A∗j and σ 2

D∗j are the additive and dominance genotypic variances for each trait, respectively, and σA∗i,j 
and  σD∗i,j are the additive and dominance genotypic covariances between the traits.

Terms Z and W are incidence matrices relating additive and dominance genotypic effects of either the 
PB or the CB animals coded as described in the models above, respectively. The prior distributions for the 
parameters of the model were P(β , b) ∼ k , P

(

p|P
)

∼ MVN(0, I⊗ P) , P(a|G0 ) ∼ MVN(0,G0 ⊗ G) , 
P(d|D0 ) ∼ MVN(0,D0 ⊗D) and P(e|R ) ∼ MVN(0, I⊗ R).

Parameter inference. A Bayesian framework was adopted for inference. Flat prior distributions were assumed 
for the elements of the matrices of the variance components of all the models. Marginal posterior distributions 
of the parameters of interest were estimated via Gibbs’s sampling algorithm. Mean, highest density interval at 
95% (HPD95%) and probability of the parameter of being higher or lesser that certain value, were obtained 
from these marginal posterior distributions. Univariate models were initially implemented using BGLR software 
(https:// github. com/ gdlc/ BGLR-R)21, and the multiple-trait models were later run with GIBBS2f90 software 
(http:// nce. ads. uga. edu/ wiki/ doku. php? id= start)22. For each proposed model, single chains of 200,000 iterations 
were run by discarding the first 20,000 iterations. The burn-in was determined by visual inspection of the chains 
and by the procedures of Raftery and  Lewis23 and  Geweke24. Samples of the parameters of interest were saved 
every 10 rounds.

Results and discussion
To provide knowledge for determining the best breeding and management strategies in crossbreeding schemes, 
the magnitude of additive and dominance genotypic correlations between PB and CB performances of three 
traits of interest in pork production as well as additive and dominance genotypic correlations between these 
traits within PB and CB populations have been investigated. In addition, the present research has estimated the 
contributions of genic and non-genic regions to additive and dominance variance for the same traits in pork 
production in a purebred and a crossbred population.

Genic and intergenic additive and dominance genetic variances in purebred and crossbred 
populations. Table 2 shows the additive (i.e., heritability), dominance and pen effect ratios of variance com-
ponents with respect to the phenotypic variance for ADG, BFT and PHS traits in both PB and CB populations 

var

�

dADG
dBFT
dPHS

�

= D0 ⊗D =





σ 2
D∗ADG σD∗ADG,BFT σD∗ADG,PHS

σD∗ADG,BFT σ 2
D∗BFT σD∗BFT ,PHS

σD∗ADG,PHS σD∗BFT ,PHS σ 2
D∗PHS



⊗
WW

′

�

tr([ZZ
′
])/n

� .

Table 2.  Mean (SD) of the estimated marginal distribution of heritability ( h2A ), ratio of dominance variance 
( h2D ), pen variance ( p2 ) for average daily gain (ADG), backfat thickness (BFT) and pH semimembranosus 
(PHS) obtained with univariate genomic models in purebred (PB) and crossbred (CB) populations. a Univariate 
genomic model that used all SNPs available to compute additive and dominance genomic relationship 
matrices. b Univariate genomic model that used SNPs located in genic regions to compute additive and 
dominance genomic relationship matrices. c Univariate genomic model that SNPs located in intergenic regions 
to compute additive and dominance genomic relationship matrices.

Trait Population Model h2A h2D p2

ADG

PB

Alla 0.15 (0.08) 0.07 (0.08) 0.20 (0.06)

Genicb 0.15 (0.08) 0.08 (0.08) 0.20 (0.06)

Intergenicc 0.13 (0.08) 0.07 (0.07) 0.20 (0.06)

CB

All 0.31 (0.11) 0.07 (0.11) 0.17 (0.04)

Genic 0.27 (0.11) 0.08 (0.12) 0.18 (0.05)

Intergenic 0.31 (0.10) 0.07 (0.09) 0.17 (0.04)

BFT

PB

All 0.33 (0.11) 0.11 (0.11) 0.09 (0.08)

Genic 0.33 (0.11) 0.10 (0.10) 0.08 (0.08)

Intergenic 0.30 (0.11) 0.11 (0.11) 0.09 (0.08)

CB

All 0.46 (0.11) 0.08 (0.10) 0.10 (0.12)

Genic 0.44 (0.12) 0.10 (0.06) 0.10 (0.15)

Intergenic 0.45 (0.10) 0.06 (0.09) 0.10 (0.12)

PHS

PB

All 0.22 (0.08) 0.12 (0.10) –

Genic 0.22 (0.08) 0.11 (0.10) –

Intergenic 0.20 (0.08) 0.11 (0.10) –

CB

All 0.29 (0.09) 0.14 (0.12) –

Genic 0.29 (0.09) 0.11 (0.11) –

Intergenic 0.28 (0.08) 0.15 (0.10) –

https://github.com/gdlc/BGLR-R
http://nce.ads.uga.edu/wiki/doku.php?id=start
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obtained using genotype information of the different genomic regions (i.e., All SNPs, Genic and Intergenic 
SNPs).

The results showed that the estimated additive and dominance variance components are relatively the same 
regardless of the G matrices computed from the various genomic regions (All, Genic, and Intergenic SNPs). This 
indicates that all genomic regions have nearly the same contribution to the captured genetic variance, either in 
PB or CB individuals.Our results are in accordance with Do et al.25 that indicated that the contribution of each 
SNP to total genomic variance was similar for genic and non-genic regions on feed intake, daily feed intake, 
ADG, BFT in pigs. In chickens, Abdollahi-Arpanahi et al.16 concluded as well that both genic and non-genic 
regions contributed to phenotypic variation to body weight, ultrasound measurement of breast muscle and hen 
house egg production.

Regulatory functions such as promoter, enhancer or transcription factor binding sites are located the upstream 
and downstream regions of genes, and Gusev et al.26 reported that this part of the genome is responsible for 
genetic variation in 11 human diseases. However, also in humans, Yang et al.18 indicated that genic regions 
described more genetic variation than intergenic regions for height and body mass index. Given the precision 
of the pig genome annotation and quantity of data available in our study, the hypothesis of different shares of 
variance for these categories could not be further tested in our dataset. In this study, as a limitation, we used 
the commercial SNP panel for pigs that was the only one available to us. So, we supposed that the SNPs from 
genic and non-genic regions from a 60 K commercial SNP chip explain the same amount of genetic variance. 
However, with availability of the whole genome sequence data it might be a clearer result would be achievable.

Estimated heritabilities were within the range of the previously reported values in Piétrain breed and other 
pig  breeds27,28. Heritabilities for the three analyzed traits were higher in CB than in PB populations, however the 
difference was never significant. This suggests that the gamete effect of the PB population could not be the same 
when mated within the PB than mated to gamete of another population to produce the crossbreds. Dominance 
ratio remained of equal magnitude across populations and represented about 7 to 14% of phenotypic variance 
depending on the trait, suggesting that, for example, assortative matings could slightly enhance both purebred 
and crossbred performances. In a previous study using the same dataset, different contributions of ratios of 
dominance deviation variance with respect to the total phenotypic variance were reported across a wide variety 
of traits related to growth and feed efficiency, carcass composition, meat quality, behavior, boar taint and puberty 
(ratios ranging from 6 to 18% across 22 traits, Tusell et al.10. Our results in some cases were slightly different 
from the previous study which could be due to the inclusion of the inbreeding effect in the model or related to 
using the different software’s  algorithm6,29. Using a model that did not account for inbreeding, the proportion 
of phenotypic variance explained by dominance was of about 14%, 13% and 8% for lifetime daily gain and 6%, 
8% and 10% for backfat weight in Piétrain, Landrace, and Large White populations,  respectively28. Dominance 
variance represented about 5% of the phenotypic variance of average daily gain in Duroc pigs using a geno-
typic  model11. However, those estimated are genotypic variances, which are slightly different from the variances 
expressed in terms of breeding values and dominance  deviations13 of the present study which precludes a proper 
comparison between estimates.

Predictive ability. Figure 1 shows boxplots of the predictive correlation obtained in the testing sets of the 
fourfold cross-validation repeated 10 times of the model with only additive genetic effects and the model with 
additive plus dominance genetic effects for the three different genomic regions.

All boxplots from the figure overlapped indicating that there were no differences in predictive ability across 
models within trait and population. Hence, all genomic regions had the same predictive ability. Obtained pre-
dictive abilities for ADG and PHS were slightly higher than those obtained in a previous study that used same 
datasets and slightly different  models30. This could be because in the previous study, CV folds were split accord-
ing to the sires to keep all records of the offspring of a sire assigned to the same fold. This precludes an over-
estimation of the model predictive ability due to strong family relationships between training and testing sets. 
However, the data split used in the present study does not preclude making fair comparisons between models 
because both models were evaluated using exactly the same CV split. Our results are in accordance with Do 
et al.25. In that study, predictive accuracy and bias of feed intake, daily feed intake, ADG, BFT in pigs obtained 
with a model with specific genomic regions did not significantly differ from those models that used randomized 
SNP  groups25. Morota et al.31, in chickens, found that for body weight and hen house production, non-genic 
regions performed marginally better than genic regions in terms of prediction ability, whereas for ultrasound 
area of breast meat, genic regions had a better predictive performance than non-genic regions. However, they 
indicated that whole-genome distributed SNPs was a better choice for genomic prediction purposes than using 
only SNPs located in genomic regions.

This was in accordance with Abdollahi Arpanahi et al.16 that also found that a whole-genome approach was 
better for prediction in body weight, ultrasound measurement of breast muscle and hen house egg production 
in broiler traits than using genomic regions individually. These authors also observed minor differences between 
classes of genomic regions in terms of predictive ability, being the lowest predictive ability obtained when using 
missense genomic SNPs. In contrast, Wei et al.32 analyzed a natural rice population of 524 accessions with 
3,616,597 SNPs to compare the genetic contributions of functionally distinct genomic regions to five agronomic 
traits. The distributions of the genetic effects revealed that the significant SNPs in non-genic regions generally had 
larger genetic effects than those in the genic regions. These results support the hypothesis that non-genic regions 
in the genome are the main source of genetic variations that account for the variability in some complex traits. 
In our study, we used a smaller number of SNPs (from a standard commercial 60 K SNP chip panel). It would 
be interesting for further research to investigate in pig populations what would be the contribution to additive 
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and dominance genetic variance of SNPs located in different genomic regions when using a high-density SNP 
chip panel or whole genome sequence data.

In addition, inclusion of dominance genetic effect and inbreeding in the model did not improve predic-
tive ability already attained with an additive genetic model in the two populations. Xiang et al.14 showed that 
accounting for dominance did not increase the predictive ability of litter size in crossbred pigs but inbreeding 
depression did.

Additive and dominance genotypic correlations between PB and CB populations. Table  3 
shows estimates of the correlation between purebred and crossbred additive ( rgA ) and dominance ( rgD ) geno-
typic effects obtained in bivariate models where purebred and crossbred performances were considered different 
traits.

Figure 1.  Boxplots of the predictive correlation obtained in the testing sets of fourfold cross-validations 
repeated ten times of a model with only additive genetic effects (G) and a model with additive and dominance 
genetic effects and inbreeding (G + D) using SNPs located in All, Genic and Intergenic regions in purebred and 
crossbred populations for average daily gain (ADG), backfat thickness (BFT) and pH of the semimembranosus 
muscle (PHS).

Table 3.  Mean [highest posterior density interval at 95%] of the correlation between purebred and crossbred 
additive ( rg

A
 ) and dominance ( rg

D
 ) genotypic effects estimated in a bivariate model where purebred and 

crossbred performances are considered different traits. ADG  average daily gain, BFT backfat thickness, PHS 
pH of the semimembranosus muscle. a Probability of a positive dominance genotypic correlation (P ( rgD> 0)).

Trait rgA rgD P ( rgD> 0)a

ADG 0.92 [0.74, 1] 0.21 [−0.94, 1] 0.67

BFT 0.83 [0.54, 1] 0.38 [−0.66, 1] 0.77

PHS 0.86 [0.58, 1] 0.30 [−0.67, 1] 0.72
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Correlation between purebred and crossbred additive genotypic effects were high and positive for the three 
analyzed traits ( rgA > 0.83 ) and none of the highest posterior density interval at 95% included values below 0.50. 
This indicates that genetic interaction between the Piétrain and Large White breeds for those traits is small in this 
dataset, which suggests that the genetic progress attained in the purebreds can mostly be completely transferred 
to the crossbreds as a genetic correlated response. This could be because PB and CB animals of this study were 
raised in the same environmental conditions, which is not the standard practice in pig breeding schemes where 
purebred lines are raised in highly sanitized environments and crossbred animals in commercial farms. Using 
the same dataset in a previous  study33, genetic correlation between purebred and crossbred was estimated to be 
of 0.50 for ADG and 0.94 for PHS. Dugué et al. (2020), used bivariate models but did not account for dominance 
genetic effects. We believed that incorporating dominance effects and inbreeding coefficient simultaneously 
can improve phenotypic prediction accuracy. Wientjes and  Calus5 reviewed 201 purebred-crossbred correla-
tion estimates reported from 27 studies in pigs and the average estimate was 0.63, with 50% of the estimates 
between 0.45 and 0.87. These values indicate that for those correlations departing from unity, accounting for 
crossbred performance in genetic evaluations of purebred candidates could be advisable for boosting crossbred 
performance. In a further step, Xiang et al.14 estimated for the first time the correlations of allele substitution 
effects between purebred and crossbred performance for Landrace and Yorkshire breeds and proposed these 
correlations as consistency measurements of SNP substitution effects across breeds. For purebred performance, 
it was estimated to be 0.19 with a high imprecision indicating that SNP effects estimated in one breed cannot be 
readily applied to the other breed. For crossbred performances, this figure was estimated to be 0.98 indicating 
that SNP effects estimated in a crossbred population can be used to estimate crossbred breeding values in the 
two purebred parental  populations14.

Estimates of the correlation between purebred and crossbred dominance genotypic effects were highly impre-
cise, precluding us to have strong evidence of the magnitude and sign of this parameter across the analyzed traits. 
However, the probability of a positive value was 0.67, 0.72 and 0.77 for ADG, PHS and BFT, respectively. The 
estimates of this parameter reported in the literature are scarce and imprecise. Dominance genotypic correla-
tions for litter size between two pure lines and a crossbred pig population were estimated to be 0.47 ± 0.41 and 
0.59 ± 0.3612. Further research with more data would improve the precision of these estimates and may allow 
being conclusive about if underlying genetic mechanisms responsible for the dominance effects differ between 
PB and CB populations. If this were the case, mate allocation strategies to improve total genetic value of the 
descendants would differ between populations.

Ratios of additive genetic variance (i.e., heritability), dominance genetic variance and pen nested within batch 
variance with respect to the phenotypic variance estimated via the bivariate models of PB and CB performances 
for the three traits are shown in supplementary file S1. All of them were consistent and within the range of the 
estimates obtained with the univariate models using all SNPs discussed above so they are not discussed here.

Additive and dominance genotypic correlations between BFT, ADG and PHS in PB and CB 
populations. Table 4 shows the estimates of the additive and dominance genotypic correlations between 
ADG, BFT and PHS obtained separately in the purebred and the crossbred population.

Additive genetic correlation between ADG and BFT was estimated to be high in PB and moderate in CB, 
being the latter more in the range of previous reported  estimates34–37 . Additive genetic correlation between ADG 
and PHS was estimated to be highly negative and moderately positive in PB and CB populations, respectively, 
the latter being in accordance with the estimate obtained by Lo et al. in Duroc pigs (0.24 ± 0.11)38. Although 
estimates are highly imprecise, this is a contradictory result, as one would expect to encounter an estimate given 
that genetic correlations for ADG and pH between PB and CB populations were high. A clearly negative genetic 
correlation between BFT and PHS was estimated in PB and CB populations used in the present study, whereas 
it was estimated moderate and positive in Duroc pigs (0.47 ± 0.10)38. Genetic relationships between growth 
performance and meat quality traits are scarce and not clear in  pigs35 but the reported estimates suggest that 
genetic correlations are highly influenced by the breed type.

Estimates of dominance genotypic correlations were very imprecise between all pair of traits in both popu-
lations. This is not surprising since it is more difficult to estimate accurately covariance between effects if the 
variances of these effects are low. However, there is some evidence of positive value for some of the estimated 

Table 4.  Mean [highest posterior density interval at 95%] of the estimated marginal distribution of the 
additive and dominance genotypic correlations between traits estimated in a purebred (PB) and a crossbred 
(CB) population. ADG average daily gain, BFT backfat thickness, PHS pH of the semimembranosus muscle. 
a Additive genotypic correlation ( rgA). b Dominance genotypic correlation ( rgD). c Probability of a positive 
dominance genotypic correlation (P ( rgD> 0)).

Traits rgA
a rgD

b P ( rgD> 0)c

ADG, BFT
PB 0.83 [0.31, 1] 0.11 [−0.61, 0.86] 0.62

CB 0.30 [−0.11, 0.65] 0.77 [0.47, 0.99] 0.99

ADG, PHS
PB −0.70 [−1, −0.24] −0.34 [−0.99, 0.56] 0.26

CB 0.15 [−0.39, 0.69] −0.15 [−0.57, 0.30] 0.23

BFT, PHS
PB −0.57 [−0.97, −0.22] 0.55 [0.14, 0.95] 0.98

CB −0.66 [−0.97, −0.14] 0.46 [0.09, 0.87] 0.98
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dominance genotypic correlations because the probability of a positive dominance genotypic correlation was 
high between ADG-BFT and BFT-PHS. Additive and dominance genotypic correlations between BFT and PHS 
were of different sign. This makes it difficult to discuss its implications, but one can hypothesize that genes con-
tributing to the additive genetic progress in both traits would have an antagonistic effect when used for exploiting 
dominance effects in planned matings. to our knowledge, there are no reported estimates of dominance correla-
tions in the literature for these traits, which precludes us from making further discussion about these estimates. 
Nonetheless, the different values of dominance genotypic correlations between traits indicate that maximizing 
total genetic gain of several traits simultaneously might not be straightforward.

Conclusions
In this study, genic and intergenic regions were able to capture the same genomic relationships among either 
PB or CB populations. Correlations between purebred and crossbred additive genotypic effects were high and 
positive whereas estimates of the correlations between purebred and crossbred dominance genotypic effects were 
highly imprecise for the three traits analyzed. The later precludes us being conclusive about if genetic mechanisms 
responsible for the dominance effects differ between PB and CB populations. Estimates of dominance genotypic 
correlations were imprecise but with strong evidence of positive values for ADG-BFT and BFT-PHS. Additive 
and dominance genotypic correlations between BFT and PHS were of different sign in both populations indi-
cating that genes contributing to the additive genetic progress in both traits would have an antagonistic effect 
when used for exploiting dominance effects in planned matings. The different values of dominance genotypic 
correlations between traits indicate that maximizing total genetic gain of several traits simultaneously would not 
be straightforward. Finally, all genomic regions lead to the same predictive ability, that did not improve with the 
inclusion of dominance genetic effects and inbreeding in the models.

Data availability
The data that support the findings of this study are co-own by INRAE, IFIP and Alliance R&D association 
(Axiom, Choice Genetics France, Nucléus, IFIP). Restrictions apply to the availability of these data, which were 
used under license for this study.
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