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ABSTRACT 34 

Background: Familial hypercholesterolemia (FH) is the most common genetic disorder 35 

associated with a high risk for premature atherosclerotic cardiovascular disease attributable to 36 

increased levels of LDL-cholesterol (LDL-C) from birth. FH is both underdiagnosed and 37 

undertreated.  38 

Objective: We describe the clinical, biological, and genetic characteristics of 147 patients in 39 

France with clinical FH (including a group of 26 subjects aged < 20 years); we explore how 40 

best to detect patients with monogenic FH. 41 

Methods: We retrospectively reviewed all available data on patients undergoing genetic tests 42 

for FH from 2009 to 2019. FH diagnoses were based on the Dutch Lipid Clinics Network 43 

(DLCN) scores of adults, and elevated LDL-C levels in subjects < 20 years of age. We 44 

evaluated LDLR, APOB, and PCSK9 status.  45 

Results: The mutations of adults (in 25.6% of all adults) were associated with DLCN scores 46 

indicating “possible FH,” probable FH,” and “definitive FH” at rates of 4%, 16%, and 53%, 47 

respectively. The areas under the ROC curves of the DLCN score and the maximum LDL-C 48 

level did not differ (p = 0.32). We found that the pediatric group evidenced more monogenic 49 

etiologies (77%, increasing to 91% when an elevated LDL-C level was combined with a 50 

family history of hypercholesterolemia and/or premature coronary artery disease). 51 

Conclusion: Diagnosis of monogenic FH may be optimized by screening children in terms of 52 

their LDL-C levels, associated with reverse-cascade screening of relatives when the children 53 

serve as index cases.  54 

 55 

KEYWORDS: familial hypercholesterolemia, adult population, pediatric population, 56 

monogenic disease, DLCN score, LDL cholesterol 57 

 58 

 59 

  60 
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INTRODUCTION 61 

Familial hypercholesterolemia (FH) is a common genetic disorder. It is an autosomal 62 

codominant disease usually attributable to loss-of-function mutations in genes encoding the 63 

low-density lipoprotein receptor (LDLR) or apolipoprotein B (APOB), or to gain-of-function 64 

mutations in the proprotein convertase subtilisin/kexin type 9 (PCSK9) gene.1 The overall 65 

prevalence of clinical FH in general populations is about 1:310,2 but it is 1:120 in French 66 

subjects.3 Biallelic LDLR-related FH is rare (estimated prevalence ~1/160,000–1/300,000).4 67 

FH is characterized by elevated low-density lipoprotein-cholesterol (LDL-C) levels and a 68 

high risk for premature atherosclerotic cardiovascular disease (ACD), particularly in those 69 

not or inadequately treated.5,6 FH diagnosis is based on clinical and biological factors that 70 

contribute to the Dutch Lipid Clinic Network (DLCN) score7,8 in adults but on the LDL-C 71 

level in children. Genetic testing (of at least the LDLR, APOB, and PCSK9 genes) is strongly 72 

recommended for patients with clinically confirmed or suspected monogenic FH; this 73 

formalizes the diagnosis and facilitates molecular screening of relatives.9 Here, we present 74 

the clinical, biological, and genetic data on 147 French patients diagnosed with FH based on 75 

the DLCN score (for adults) and on severe elevations in LDL-C levels in 26 subjects < 20 76 

years of age.  77 

 78 

MATERIALS AND METHODS 79 

Study design and patients 80 

We describe unrelated patients with clinical FH who underwent genetic analyses. None had 81 

been identified via cascade testing following a diagnosis of FH in a relative. All had been 82 

referred to specialist physicians (principally endocrinologists, cardiologists, and 83 

pediatricians) of the Bordeaux University Hospital between October 2009 and December 84 

2019. Patients who underwent monogenic FH genetic testing were retrospectively selected 85 

(regardless of outcome). Written informed consent was obtained from all patients or their 86 

legal representatives. We adhered to the requirements for protection of personal health data 87 

and privacy set out in Article 65–2 of the (amended) Data Protection Act and the General 88 

Regulation on the Protection of Personal Data. The study was approved by our institutional 89 

ethics committee (CHU Bordeaux, France). 90 

Adult patients were stratified by the DLCN criteria prior to genetic testing as 91 

recommended by the guidelines of the Consensus Statement of the European Atherosclerosis 92 

Society (EAS).8 The highest known LDL-C level was used for scoring. A diagnosis of FH 93 

was considered “possible” (3–5 points), “probable” (6–8 points), or “definitive” (>8 points). 94 

Patients who could not be scored due to missing data were excluded. The pediatric population 95 

consisted of children or adolescents < 20 years of age in whom FH was suspected on the 96 
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basis an elevated LDL-C level (>4 mmol/L [155 mg/dL]) and a family history of 97 

hypercholesterolemia and/or premature coronary artery disease (CAD).  98 

Collection of data  99 

Clinical and biological data were collected from medical records, as were the DLCN scores 100 

calculated by clinicians. Demographics (age and sex), family or personal histories of 101 

hypercholesterolemia and cardiovascular events, evidence for the presence of lipid deposits 102 

(tendon xanthomas, xanthelasmas, and corneal arci), lipid profiles, any lipid-lowering therapy 103 

at the time of genetic analysis, and genetic test results were recorded. The maximum LDL-C 104 

was the highest recorded LDL-C level. Blood samples for lipid profiling were obtained after 105 

a 12 h fast. Serum levels of total cholesterol (TC), triglycerides (TGs), and HDL cholesterol 106 

(HDL-C) were quantified enzymatically on an autoanalyzer (AU5800, Beckman). LDL-C 107 

levels were obtained using either the Friedewald equation10 (when TG < 3.5 mmol/L) or 108 

quantified enzymatically (AU5800, Beckman). Acquired causes of hypercholesterolemia11 109 

including hypothyroidism, chronic kidney disease, nephrotic syndrome, and cholestasis, and 110 

the use of medications that may increase LDL-C levels, were recorded. Smoking status, high 111 

blood pressure (HBP) readings, diabetes mellitus status, and the body mass index (BMI) were 112 

also collected. 113 

Genetic analysis 114 

All EDTA-containing blood samples were sent to the laboratory of Saint-Antoine Hospital 115 

(Paris, France). Genomic DNA was extracted from peripheral leukocytes using a 116 

QIAsymphony DSP DNA Midi Kit (Qiagen, Hilden, Germany). Sanger sequencing included 117 

the promoter region, all 18 exons, the flanking intronic sequences of LDLR, and exon 26 of 118 

APOB. Of patients with no identified variant in LDLR or APOB, 59 underwent multiplex 119 

ligation-dependent probe amplification (Salsa MLPA Kit P062, MRC-Holland, Amsterdam, 120 

the Netherlands) to search for large LDLR rearrangements and 49 underwent PCSK9 121 

sequencing. Sequencing was performed using a 3500xL Dx Genetic Analyzer (Applied 122 

Biosystems, Thermo Fisher Scientific, USA) and the chromatograms were analyzed using 123 

SeqScape software (Applied Biosystems, Thermo Fisher Scientific).  124 

All identified variants were sought in the Leiden Open Variation Database (LOVD 125 

v.3.0, www.lovd.nl/) and ClinVar (www.ncbi.nlm.nih.gov/clinvar/). Functional prediction 126 

was performed using Sorting Intolerant From Tolerant software (SIFT 4.0.3, sift.bii.a-127 

star.edu.sg/)12 and Polymorphism Phenotyping software (Polyphen2, 128 

genetics.bwh.harvard.edu/pph2/).13 Mutation Taster (www.mutationtaster.org/)14 and 129 

Combined Annotation Dependent Depletion (CADD, cadd.gs.washington.edu/)15 were used 130 

to evaluate missense variants. Human Splicing Finder (HSF, www.umd.be/HSF3/)16 was 131 

employed to predict the effects of splice variants. All variants were evaluated in terms of 132 
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pathogenicity following the recommendations of the American College of Medical Genetics 133 

(ACMG).17 Only pathogenic variants, likely pathogenic variants, and variants of uncertain 134 

significance (VUS) are reported here.  135 

Statistical analyses 136 

Categorical variables are presented as numbers (n) with percentages (%). Differences 137 

between groups were compared using the Pearson chi-square test (or the Fisher exact test 138 

when values < 5 were expected). The distributions of continuous data were tested employing 139 

the Shapiro-Wilk test. Normally distributed continuous variables are reported as means with 140 

standard deviations (SDs) and differences among groups were analyzed via one-way 141 

ANOVA. Non-normally distributed parameters were compared using the Kruskal-Wallis test 142 

and are described as medians with interquartile ranges (IQRs). The significance level (alpha) 143 

was set to 0.05. All statistical analyses were performed using Rcmdr ver. 2.7–1. The Proc 144 

package was used to draw receiver operating characteristic (ROC) curves and the DeLong 145 

test was employed to compare areas under the ROC curves (AUROCs). 146 

 147 

RESULTS 148 

Populations  149 

A total of 166 subjects genetically tested in terms of monogenic FH were eligible (according 150 

to their DLCN scores); 19 were excluded because of missing data. The final study population 151 

thus consisted of 147 individuals including 26 children. Acquired causes of 152 

hypercholesterolemia were investigated. One instance of uncontrolled hypothyroidism, one of 153 

cholestasis, and 12 cases taking medications that could impact the LDL-C level were noted 154 

among the adults.  155 

Table 1 lists the characteristics of the adult population (n = 121, age 20 to 77 years, 156 

38.8% males). Family histories of hypercholesterolemia and/or premature CAD were found 157 

in only 82.1% of cases (no data for four patients). As expected, the lipid profiles obtained at 158 

the time of genetic testing revealed increases in serum concentrations of LDL-C and 159 

premature CHD in 24% of patients, but the groups did not differ significantly in terms of the 160 

DLCN score (p = 0.09; data not shown). By contrast, physical examination identified tendon 161 

xanthomas and other extravascular lipid deposits in 7.5% and 14.2% of the patients, 162 

respectively, almost all of whom were in the “definite FH” group. A total of 114 patients 163 

(95%) underwent lipid-lowering therapy using either statins (n = 113) or an alternative such 164 

as anti-PCSK9 (n = 16) combined with statins if the desired decrease in LDL-C was not 165 

achieved using statins, and in patients exhibiting statin intolerance.  166 

Table 2 lists the data for the pediatric population (n = 26, age 3 to 18 years, 42.3% 167 

males). Of these, 92.3% had family histories of hypercholesterolemia and/or premature CAD 168 
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and 22 family histories of hypercholesterolemia. Only two patients had no known family 169 

history of either hypercholesterolemia or premature CAD. One underwent lipid profiling 170 

during follow-up of diabetes (this revealed an elevated LDL-C level) whereas the other 171 

achieved a normalized LDL-C level after a dietary change. The maximum LDL-C level was 172 

4–10.1 mmol/L (155–394 mg/dL); 92% of patients lacked lipid deposits. Prior to genetic 173 

testing, 50% of young patients eligible for lipid-lowering therapy (≥8 years of age, n = 18) 174 

were prescribed statins.  175 

  176 
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 177 

Table 1. Clinical and biochemical characteristics of the adult population 178 

 179 

 180 

N=121 

Demographics 

Age, years 53.2±12.2 

Male, n (%) 47 (38.8) 

DLCN score  

       Possible (3-5 points)       n=24 

       Probable (6-8 points)      n=57 

       Definitive (> 8 points)                      n=40 

Family history of hypercholesterolemia and/or premature CAD, 

n (%)                                                                        96 (82,1)        

Hypercholesterolemia, n (%)  

        Yes 72 (62.6) 

        No  43 (37.4)  

Premature CAD, n (%)  

        Yes 58 (48.7) 

        No 61 (51.3) 

Clinical history 

BMI, kg/m² (n=102) 

        Median (IQR) 26.8 (24.0-31.5) 

Smoker, n (%) 

        Ever smoker 60 (50.8) 

        Non smoker 58 (49.2) 

Hypertension, n (%) 

        Yes  47 (39.8) 

        No  71 (60.2) 

Diabetes mellitus, n (%)  

        Yes 17 (14.3) 

        No 102 (85.7) 

Premature CHD, n (%)  

        Yes 29 (24.0) 

        No 92 (76.0) 

Ischemic stroke, n (%)  

        Yes 11 (9.1) 

        No 110 (90.9) 

Physical examination  

Tendinous Xanthomata, n (%)  

        Yes 9 (7.5) 

        No 111 (92.5) 

Other lipid deposits*, n (%)  

        Yes 17 (14.2) 

        No 103 (85.8) 

Biochemical profile, mmol/L  
Total cholesterol (n=108) 

        Median (IQR) 8.1 (6.5-9.4) 

LDL cholesterol (n=114) 

        Median (IQR) 5.8 (4.6-6.9) 

HDL cholesterol (n=110) 

        Median (IQR) 1.3 (1.1-1.6) 

Triglycerides (n=110) 

       Median (IQR) 1.7 (1.2-2.6) 

LDL cholesterol maximum (n=106) 

       Median (IQR) 7.1 (6.2-8.5) 

LLT, n (%)  

        Yes 114 (95.0) 

        No 6 (5.0) 
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◄ * including corneal arcus and xanthelasmas 181 

Continuous variables are presented as mean ± SD for normally distributed data and as median with IQR for 182 

non-normal distributed data. Categorical variables are described as absolute values and frequency.  183 

Patients with missing data were excluded from the statistical analysis.  184 

Cholesterol : mmol/L x 38.7 = mg/dL. Triglycerides : mmol/L x 87.5 = mg/dL 185 

 186 

Abbreviations: FH, familial hypercholesterolemia; DLCN, Dutch Lipid Clinic Network, SD, standard 187 

deviation; BMI, body mass index; IQR, interquartile range; CAD, coronary artery disease; CHD, coronary 188 

heart disease; LDL, low-density lipoprotein; HDL, high-density lipoprotein; LLT, lipid-lowering therapy. 189 

 190 

 191 

 192 

 193 

Table 2. Clinical and biochemical characteristics of the pediatric population 194 
 195 

 196 

* including corneal arcus and xanthelasmas 197 

Continuous variables are presented as mean ± SD for normally distributed data and as median with IQR for 198 

non-normal distributed data. Categorical variables are described as absolute value and frequency.  199 

Cholesterol : mmol/L x 38.7 = mg/dL. Triglycerides : mmol/L x 87.5 = mg/dL 200 

 201 

Abbreviations: SD, standard deviation; IQR, interquartile range; LDL, low-density lipoprotein; HDL, high-202 

density lipoprotein; LLT, lipid-lowering therapy. 203 

 204 

 205 

 206 

 207 

  208 

 
Children and adolescents 

 N=26 

Demographics  

Age, years (n=26) 

        Mean ± SD 11.2 ± 4.8 

Male, n (%) 11 (42.3) 

  

Family history of hypercholesterolemia and/or premature 

CAD, n (%)                                                      24 (92.3) 

  

Clinical phenotype  

Lipid deposits*, n (%)  

        Yes 2 (8.0) 

        No 24 (92.0) 

  

Biochemical profile, mmol/L  

Total cholesterol (n=22) 

        Median (IQR) 7.8 (7.1-8.3) 

LDL cholesterol (n=22) 

        Median (IQR) 6.0 (5.3-6.8) 

HDL cholesterol (n=22) 

        Median, (IQR) 1.5 (1.1-1.7) 

Triglycerides (n=22) 

       Median, (IQR) 0.8 (0.6-1.2) 

LDL cholesterol max (n=25) 

       Median, (IQR) 6.7 (5.7-8.0) 

  

LLT, n (%)  

        Yes 9 (36.0) 

        No 16 (64.0) 
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Prevalence of FH-causing genetic variants 209 

Thirty-one adults (25.6%) evidenced monogenic FH-causing genetic variants in LDLR, 210 

APOB, or PCSK9 (87.1%, 9.7%, and 3.2%, respectively) and three VUS in LDLR. Twenty 211 

pediatric patients (77%) exhibited pathogenic (n = 15) or likely pathogenic (n = 5) variants 212 

(95% in LDLR and 5% in APOB). Overall, 40 variants were pathogenic or likely pathogenic, 213 

and 4 were VUS; one patient bore both a pathogenic variant (c.261G>A in LDLR) and a VUS 214 

(c.262A>G in LDLR Supplementary Data Table S1). The pathogenic or likely pathogenic 215 

variants affected LDLR (n = 38) more often than APOB (n = 1) and PCSK9 (n = 1). The 216 

LDLR variants were distributed along the gene (Figure S1) and included missense (50%), 217 

nonsense (24%), frameshift (8%), and splicing (8%) mutations as well as large 218 

rearrangements (10%). To the best of our knowledge, LDLR (NM_000527) c.945del and 219 

c.2284del have not been previously described. Four individuals (three adults, one young 220 

patient) were heterozygous for the classic APOB missense variant p.R3527Q (rs5742904) 221 

associated with the monogenic FH phenotype. The PCSK9 variant was detected in one adult 222 

and was classified as pathogenic.18 223 

Figure 1 shows the proportions of adults among whom variants were reported by the 224 

DLCN scores and LDL-C subgroups. The variant detection rate was associated with the 225 

DLCN score (4%, 16%, and 53% in the “possible FH,” “probable FH,” and “definitive FH” 226 

groups, respectively), paralleling the LDL-C findings (0%, 10%, 16%, and 61% in the LDL-227 

C ranges 4–4.9, 5–6.4, 6.5–8.4, and ≥ 8.5 mmol/L, respectively). The AUROCs significantly 228 

differed by the differences between the DLCN scores and the maximum LDL-C values 229 

(compared to the values at the time of genetic analysis) (76.6% vs. 58.7%, p < 0.02 and 230 

70.7% vs. 58.7%, p < 0.04, respectively). No significant differences were noted when the 231 

DLCN score was compared to the maximum LDL-C level (p = 0.32) (Figure 2). 232 

 233 

 234 
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 235 

Figure 1. Detection rate of FH-related variants according to the DLCN or LDL-C 236 

subgroups. 237 

Frequency of detected variants in adults by DLCN score (left) or maximum LDL-cholesterol range (right). 238 

The table shows the number of adult patients with (+) or without (-) likely pathogenic or pathogenic 239 

variants according to both maximum LDL-C levels and DLCN score.  240 

 241 

Abbreviations: FH, familial hypercholesterolemia; DLCN, Dutch Lipid Clinic Network  242 

 243 

 244 

Figure 2. Receiver Operating Characteristic (ROC) curves of three parameters in 245 

predicting monogenic FH. 246 

AUC score for DLCN (purple line), LDL max (blue line) and LDL at the time of genetic analysis 247 

request (green line) in adults. 248 

 249 

Abbreviations: AUC, Area Under the Curve; DLCN, Dutch Lipid Clinic Network; LDL max, 250 

maximum LDL-cholesterol 251 
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DISCUSSION 252 

We describe the biochemical, clinical, and genetic characteristics of 147 unrelated patients 253 

referred to the Bordeaux University Hospital with suspected FH, including 26 patients <20 254 

years of age. Our principal finding is the high level of monogenic FH in children with 255 

elevated LDL-C concentrations.  256 

In patients aged < 20 years, an elevated LDL-C level associated with a family history 257 

of hypercholesterolemia and/or premature CAD suggests FH.19 Of our 26 children and 258 

adolescents, 2 had no relevant family histories and 2 attained normal LDL-C levels via 259 

dietary changes alone; all 4 lacked mutations. Thus, only 22 met the selection criteria prior to 260 

genetic testing. Twenty (91%) were genetically confirmed to have FH. All had family 261 

histories of hypercholesterolemia, consistent with the known semi-dominant pattern of 262 

inheritance. The two other cases remain uncharacterized; we lack MLPA and PCSK9 263 

sequence data.  264 

It is more difficult to predict monogenic FH in adults than children, as evidenced by 265 

the lower yield (25.6%) of positive genetic tests in our adult population. The detection rate of 266 

FH-causing variants unsurprisingly increased with the DLCN score; the figures were 4%, 267 

16%, and 53% for the “possible FH,” “probable FH,” and “definitive FH” groups, 268 

respectively. Other studies have reported comparable distributions20 or higher frequencies21,22 269 

depending on patient ethnicity and/or the techniques used, but also the efforts made to 270 

eliminate acquired causes of hypercholesterolemia. Phenotypic FH in adult patients lacking 271 

pathogenic or likely pathogenic variants may reflect age-related hypercholesterolemia 272 

(particularly in patients with mild or moderate increases in LDL-C levels)23 or an elevated 273 

lipoprotein a (Lpa) level (a known independent risk factor for ACD).24 We lack Lpa data. 274 

However, note that a negative genetic analysis does not exclude the presence of an 275 

undetected FH-causing variant. Finally, when the AUROCs of the DLCN score, the 276 

maximum LDL-C level, and the LDL-C level at the time of genetic testing were analyzed, the 277 

maximum LDL-C level and the DLCN score were equally effective at predicting monogenic 278 

FH in adults. 279 

Our results highlight the need to carefully explore family histories (elevated 280 

cholesterol levels in first-degree relatives, ages of onset of ACD events) and the maximum 281 

LDL-C levels, and to exclude all acquired factors that might trigger hypercholesterolemia. 282 

This should increase the yield of genetic testing. However, although family histories are 283 

helpful, they may be incomplete, inaccurate, or unavailable. Genetic confirmation is 284 

recommended from the perspectives of patient care and disease prevention. Thus, FH is 285 

recognized in France as a long-term illness that may require financial support. Genetic data 286 

may trigger LDL apheresis, which would aid the planning of patient management (including 287 
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a lower LDL-C target); such data would also facilitate the genetic counselling that must 288 

precede a “cascade” family analysis. Pathogenic/likely pathogenic variants are associated 289 

with an increased risk for ACD.25,26 The cumulative LDL-C burden imposed since birth may 290 

play an important role in ACD development in monogenic FH individuals. Khera et al.25 291 

showed that a pathogenic variant increased the ACD risk independent of the LDL-C level, 292 

compared to that of patients lacking mutations. Adults with elevated LDL-C levels and 293 

monogenic variants exhibit earlier-onset ACD.27 A diagnosis of monogenic FH should trigger 294 

the management suggested by the 2019 European guidelines,6 commencing at a young age. 295 

Genetic diagnosis should be scheduled for children and adolescents with LDL-C levels > 4 296 

mmol/L (155 mg/dL). The ESC/EAS guidelines6 recommend FH testing from the age of 5 297 

years, or earlier if biallelic FH is suspected. FH diagnosis is too often delayed; an appropriate 298 

diet and statin treatment commencing in childhood are essential to prevent ACD.19,28 A recent 299 

review reported lower rates of ACD in FH patients placed on statins in childhood (compared 300 

to adulthood).29 Several studies have advocated the screening of all children aged 5–10 years 301 

(at least via LDL-C testing).30–32 302 

 303 

CONCLUSION 304 

FH is underdiagnosed in general populations.8 We recommend systematic evaluation of 305 

monogenic FH in children as young as 5 years based on LDL-C levels and genetic testing. 306 

Early FH diagnosis followed by lipid-lowering therapy is cost-effective and would 307 

successfully mitigate cardiovascular morbidity and mortality. Such a strategy should be 308 

complemented by reverse cascade screening of relatives; young FH patients should serve as 309 

index cases. 310 
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