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A B S T R A C T   

Background and aims: Several studies have shown an increase in tree mortality in intact tropical forests in recent 
decades. However, most studies are based on networks of field plots whose representativeness is debated. We 
examine the potential of repeated Airborne LiDAR Scanning data to map forest structure change over large areas 
with high spatial resolution and to detect tree mortality patterns at landscape level. 
Methods: The study site is a complex forested landscape in French Guiana with varied topographic positions, 
vegetation structures and disturbance history. We computed a Gap Dynamics Index from Canopy Height Models 
derived from successive LiDAR data sets (2009, 2015 and 2019) that we compared to field-measured mortality 
rates (in stem number and basal area loss) obtained from regular monitoring of 74 1.56-ha permanent plots. 
Results: At the plot level, the relation between gap dynamics and absolute basal area loss rate (combining fallen 
and standing dead trees) was overall highly significant (R2 = 0.60) and especially tight for the 59 ha of unlogged 
forest (R2 = 0.72). Basal area loss rate was better predicted from gap dynamics than stem loss rate. In particular, 
in previously logged plots, intense self-thinning of small stems did not translate into detectable gaps, leading to 
poor predictability of stem mortality by LiDAR in those forests severely disturbed 30 years before. At the 
landscape scale, LiDAR data revealed spatial patterns of gap creation that persisted over the successive analysis 
periods. Those spatial patterns were related to local topography and canopy height. High canopy forests and 
bottomlands were more dynamic, with a higher fraction of canopy affected by gaps per unit time indicating 
higher basal area loss rates. 
Conclusion: Gap detection and mapping via multitemporal LiDAR data is poised to become instrumental in 
characterizing landscape-scale forest response to current global change. Meaningful comparison of gap dynamics 
across time and space will, however, depend on consistent LiDAR acquisitions characteristics.   

1. Introduction 

Evidence for an accelerating global warming trend is accumulating. 
Each of the last four decades has been successively warmer, with the 
most significant increase in temperature between 2003 and 2012 
(+0.19 ◦C) (IPCC, In Press). The Amazon, a region considered the richest 
in terrestrial species (Barlow et al., 2018) and one of the largest global 
sinks of terrestrial carbon, sequestering ~25% of annual global CO2 

emissions (Brienen et al., 2015; Pan et al., 2011), is also one of the 
terrestrial areas most vulnerable to global warming (Laurance and 
Williamson, 2001; Malhi et al., 2008). In this region, a change in pre-
cipitation during the transition from the dry to the wet season has been 
shown to cause trees to die more frequently (Aleixo et al., 2019). In 
addition, the intensification of extreme events, such as wind-throw, 
fires, floods or landslides (Gale, 2006), in synergy with human activ-
ities (Cochrane and Barber, 2009), intrinsically affects the intensity and 
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frequency of large-scale mortality (Allen et al., 2015; Leitold et al., 2018; 
McDowell et al., 2018). Furthermore, over the last decades, change in 
tree turnover rate has been hypothesized to be a major determinant of 
the recently documented decline of intact forest C sink (Brienen et al., 
2015; Phillips et al., 2008). Therefore, spatial and temporal monitoring 
of tree mortality rates is of direct relevance to better understand the 
drivers of mortality and should, in particular, help ascertain if the intact 
Amazonian forests are still carbon sinks or have become net sources of 
CO2 (Brienen et al., 2015; Pan et al., 2011; Vieira et al., 2004). 

For decades, these conclusions have been derived from field in-
ventories of networks of permanent field plots (Baker et al., 2021; For-
estPlots.net et al., 2021; Malhi et al., 2002). Nevertheless, this approach 
is limited by inventory plots’ representativeness of surrounding land-
scapes, which is especially critical for the mortality process and impedes 
drawing robust conclusions by not sufficiently capturing the dynamics of 
different habitats (Di Vittorio et al., 2014; Marvin et al., 2014). For 
example, according to a study covering four lowland and six mountain 
landscapes ranging 500–1.200 ha in size (Marvin et al., 2014), at least 
100 1-hectare plots per landscape would be needed to optimally mea-
sure above-ground carbon density in heterogeneous landscapes with 
90% accuracy, so it would be challenging to have robust and realistic 
global models covering diverse habitats with currently available net-
works. Thus, a strategy combining repeated, standardized, and 
adequately replicated measurements at plot scale with remote sensing 
approaches to extrapolate at landscape-scale should be prioritized in the 
coming years (Chave et al., 2019; Kellner and Asner, 2009; Phillips et al., 
2016; Réjou-Méchain et al., 2019). 

A majority of remote sensing studies that quantify the extent, 
severity and timing of the disturbance events on the C cycle have been 
conducted at medium to coarse resolution, varying from a few hundred 
meters to tens of square kilometers (Xiao et al., 2019). This enables the 
identification of factors captured at the regional level (Asner and 
Alencar, 2010). However, higher spatial resolution over large 
geographic areas in the measurement of biomass primary gross or net 
production and gap dynamics remains a priority. For example, a study of 
biomass change in a natural Amazonian forest with multiple plots and 
remote sensing data sources found that 98.6% of biomass losses corre-
spond to mortality at a small scale (<0.1 ha) (Espírito-Santo et al., 
2015). New remote sensing technologies, such as Airborne LiDAR 
Scanning (ALS), have great potential here as they can detect a change in 
canopy structure, which can inform about biomass dynamics (Cao et al., 
2016; Dubayah et al., 2010; Meyer et al., 2013; Rex et al., 2020) and tree 
mortality (Dalagnol et al., 2021; Thomas et al., 2013). Another advan-
tage of ALS over other technologies is that it documents terrain elevation 
as well as canopy structure. Accurate land surface models provide the 
ability to represent variables associated with local topography and hy-
drological networks. These variables often co-vary with the structure 
and dynamics of tropical forests (Coomes et al., 2019; Detto et al., 2013). 
They have been shown to predict mortality (Campbell et al., 2020), 
including drought-vulnerable or drought-resistant areas associated with 
the concept of refuge (orographic wet spots) (Sousa et al., 2020), 
waterlogged soil that can produce anoxia (Parent et al., 2008), soil 
fertility related to topography and nutrient deposition (Allié et al., 2015; 
de Toledo et al., 2011), and treefall vulnerability due to slopes or slope 
exposure to wind (Alexander et al., 2018). Other advantages offered by 
ALS technology are the possibility of repeatedly covering large areas, 
even if remote, that are adequately replicated over relevant spatial 
scales. ALS can monitor large areas quickly, which is crucial for tracking 
the demography of millions of trees. ALS can provide data to inform 
models of forest responses to change (Bustamante et al., 2016; Longo 
et al., 2020). 

Studies exploring tropical forest dynamics from ALS mostly rely on a 
static definition of gaps (Asner et al., 2013; Asner and Mascaro, 2014; 
Espírito-Santo et al., 2015) but see (Hunter et al., 2015). However, the 
relation between gap frequency and mortality is indirect and likely to 
vary with forest structure. In addition, confounding permanent canopy 

openings (clearings, rocky outcrops, etc.) may further blur the expected 
relation between gap frequency and tree turnover rate. For instance, 
(Dalagnol et al., 2021) reported an R2 of 0.7 for a non-linear logarithmic 
relationship between static gap fraction (%) and annualized dynamic 
gap fraction (% yr− 1) for 5-ha plot areas over five sites in the Brazilian 
Amazon, suggesting a considerable distortion between the static and 
dynamic perception of gaps. Studies relating to gap dynamics measured 
from repeated remote sensing data and ground measurement of tree 
mortality remain limited in intact tropical forests. 

In this study, we use long-term monitoring of 84,675 stems from 115 
ha of permanent forest plots to evaluate the ability of repeated ALS data 
to monitor tree mortality in a complex forest landscape. Dense forests 
dominate the landscape, including undisturbed plots and plots recov-
ering from past logging conducted in the mid-80s. In particular, we 
address the following questions: 

How tightly correlated are field-observed stem and basal area loss 
rates with ALS-detected gap dynamics? 

How does mortality derived from the ground census vary with local 
drainage regime, past logging history, and local canopy height? 

Do the same factors affect gap dynamics at landscape scale as 
captured by repeated ALS data? 

Is the recent acceleration of mortality observed in undisturbed plots 
confirmed at the landscape scale using ALS data? 

2. Methodology 

2.1. Study site and forest inventory data 

The study site is Paracou Experimental Station, located in the coastal 
part of French Guiana (5◦18′N − 52◦53′). It is covered by lowland 
rainforest on acrisol soil type with haplic gleysol type (Epron et al., 
2006) in hydromorphic bottomlands with a permanent water table. 
Rainfall is determined by long periods of precipitation (annual mean of 
2829 mm during 1980–2019, source Météo France) interrupted by a 
short dry season in March and a long one from mid-August to mid- 
November. The climate is described as tropical rainy climate Af in 
(Köppen classification) with a mean annual temperature of 26.7 ◦C. 

Paracou Experimental Station benefits from an extensive collection 
of forest inventory and remote sensing data. A network of 15 6.25-ha 
plots (Fig. 1), submitted to various logging intensities between 1986 
and 1988, is surveyed every 1 to 2 years since 1996. Logging intensity 
has four levels: control plots (unlogged) and plots subjected to silvi-
cultural treatments of increasing intensity (T1 to T3; see Table 1 and 
(Gourlet-Fleury et al., 2004) for more details). An additional 25-ha 
unlogged plot established in 1992 is surveyed every five years. In all 
plots, trees over 10 cm DBH (diameter at breast height, measured at 130 
cm above the ground or 50 cm above the buttresses) are regularly 
measured for girth increment, mortality and recruitment. 

From these data, tree mortality was estimated per 125 m × 125 m 
subplots (~1.56 ha), calculated as the basal area (BA) or stem (Stem) 
loss from a plot during the studied periods. Relative mortality rates were 
standardized by the number of live stems or the basal area at the 
beginning of the observation periods. A subplot of 1.56 ha from one 
logged plot (P3) was excluded as it lacked data in 2015. These simple 
mortality rate indicators proved to be robust compared to more so-
phisticated individual-based models (Kohyama et al., 2018); r = 0.997, 
p < 0.001). 

The logged plots show clear successional dynamics illustrated by an 
increase in basal area and a simultaneous decrease in stem density over 
the last two decades. The number of stems is higher in the most severe 
treatments and remains higher than in the control plots in treatments T2 
and T3, 35 years after logging (Fig. 2). A higher frequency of small 
diameter stems and a lower mean wood density are observed with 
increasing logging intensity (Appendix 5), both patterns being charac-
teristic of post-harvest successional dynamics. In the rest of the paper, 
we used information from the 2009, 2015 and 2019 inventories to 
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compare with the ALS data, except for the 25-ha unlogged plot (P16- 
Fig. 1), where 2010, 2015 and 2020 censuses were used. 

2.2. ALS data and processing 

Data from 2009, 2015 and 2019 (Appendix 2) covering a common 
area of 5.24 km2 slightly differed in acquisition characteristics: vehicle 
(helicopter or airplane), scan angle, flight altitude, pulse rate and LiDAR 
acquisition mode (single last return in 2009 or multiple returns) - (Ap-
pendix 2). In 2009 three different flights were conducted (April, 
September and October) with two different sensors. The different data 
sets from 2009 were combined to achieve a relatively high pulse density 

(10 pulses.m− 2). The other two higher density flights (2015 and 2019) 
were down-sampled to 10 pulses per m2 after restricting the scan angle 
to +/-20◦to increase consistency with 2009 data. Local maximum return 
height is known to depend on pulse density (Roussel et al., 2017). We 
found that resampling was necessary as without pulse density stan-
dardization gap dynamics estimate (see below) was biased by 10% 
(Appendix 8). 

All point cloud data was processed using LidR package (version 3.2.1 
(Roussel and Auty, 2020) in R, except for denoising, which used lasnoise 
function in Lastools software (version 210128). 

To assess canopy change dynamics, a canopy height model (CHM) 
was calculated from the standardized ALS data points at each date. The 

Fig. 1. Left. Map of the study area, showing the different plots and the soil hydrological classes (Habitats; see text). Plot numbers refer to Forest type characteristics 
summarized in Table 1. Right. Boxplot showing the consistency between Habitat classification and Topographic Wetness Index (TWI) computed over the entire 
landscape based on the digital terrain model derived from Aerial LiDAR Scanning data (see text). 

Table 1 
Forest Types definition combining silvicultural treatments of increasing intensity (T1 to T3) and canopy height (HC) for undisturbed plots. Plot numbers refer to Fig. 1. 
Forest stature was defined from the 2009 Canopy Height Model (CHM) derived from Aerial LiDAR Scanning data as the 90th percentile of pixel-wise CHM values in a 
125 m radius (see text). Biomass loss corresponds to the total woody biomass loss attributed to silvicultural treatments (see for details Appendix 1 and (Gourlet-Fleury 
et al., 2004)).  

Forest type Plot number Plot 
area 

Mean plot-wise canopy height 
(HC) 

Mean Quadratic Diameter 
(2015) 

Sylvicultural 
treatment 

Harvested 
biomass 

Undisturbed plots 
Short undisturbed forest 

(SUF) 
1,6,11,13,14,15 6.25 ha 28.6 m 25.6 cm None 0 

Tall undisturbed forest 
(TUF) 

16 25 ha 30.8 m 27.6 cm None 0 

Logged plots 
Treatment 1 (T1) 2,7,9 6.25 ha 28.5 m 24.8 cm Timber 12–33% 
Treatment 2 (T2) 3,5,10 6.25 ha 26.7 m 23.2 cm Timber and Thinning 33–56% 
Treatment 3 (T3) 4,8,12 6.25 ha 26.1 m 22.2 cm Timber, Thinning 

and Fuelwood 
35–56%  
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point cloud was first normalized by subtracting the ground height from 
the original point cloud measurement. For this purpose, the 2015 digital 
terrain model calculated with the R package Raster (version 3.4–13 
(Hijmans, 2020)) was used for the different dates as it was considered 
the most accurate (highest density of terrain points). This was equivalent 
to using differences in the canopy surface model non-normalized by 
terrain height, since the same terrain model was used for all dates. The 
height-normalized point clouds were then rasterized with a resolution of 
1 m, taking the maximum height of the first returns (Hmax). Hmax was 
also found to minimize the impact on CHM of leaf density variation 
(phenology effect), affecting penetration and mean height of returns 
(Appendix 6 and Appendix 7). We also tested a CHM produced using 
mean first return height per cell instead of maximum, which proved to 
be less effective for our analysis. 

We also defined a height of canopy variable (HC) as the 90th 
percentile of pixel-wise CHM 2009 values in a 125x125 m neighbor-
hood. HC should be less sensitive than mean canopy height to gap fre-
quency and to the inclusion of small bottomlands which have a more 
open canopy (Vincent et al., 2010). 

2.3. Gap dynamics index 

Gaps were measured dynamically (canopy height loss events) by 
calculating the difference of CHM between date 1 and date 2. A gap was 
defined as contiguous pixels affected by a canopy height decrease be-
tween two ALS campaigns, larger than a specified threshold. Contiguity 
was defined in an eight-pixel direction, i.e., including corner contacts. 
Different thresholds were tested according to different gap detection 
methods reported in the literature. The various methods (presented in 
Appendix 4) were assessed by comparison to ground-based mortality 
rates. The approach of Leitold et al. (2018), defining a minimum gap size 
of 4 m2 and a minimum height loss of 3 m between two ALS surveys, 
showed the highest correlation with field data (r = 0.78, p < 0.001 with 
absolute BA loss; r = 0.41, p < 0.001 with relative Stem loss). A binary 
raster image was obtained from mapping gaps formed between succes-
sive ALS campaigns. A gap dynamics index (GDI) was computed at the 
125-m subplot level as the ratio of total pixels detected as gaps to the 
total subplot area. This GDI was annualized for comparison with ground- 
based mortality rates. 

For the ten years (2009–2019), the final gap raster was obtained as 
the combination of gaps newly formed in each of the two intervals 
2009–2015 and 2015–2019. Gap opening and closure being a contin-
uous process, the perceived yearly gap fraction will decrease as the time 
between ALS campaigns increases. For instance, when GDI was esti-
mated directly from the 2009 and 2019 CHMs only, the canopy dy-
namics was about 20 % lower than estimated per period (2009–2015 

and 2015–2019). This bias was more significant in more dynamic plots 
(Appendix 3). 

2.4. Tree mortality and gap dynamics models 

We used simple linear models to compare GDI with Stems and BA 
mortality rates estimated at the plot level (research question 1). To 
compare the effects of environmental variables on mortality rates and 
GDI (research questions 2 and 3), which all ranged from 0 to 1, we used 
generalized linear models (GLM) with a logit link function and a bino-
mial distribution, and homologous independent variables defined at the 
plot and landscape levels. 

At the plot level, stem and BA loss rates were predicted from Habitat 
and Forest type variables using observation units corresponding to the 
total area occupied by a habitat class in the 125 × 125 m sampling units. 
Habitat classes correspond to the four soil hydromorphological cate-
gories defined by (Ferry et al., 2010; Morneau, 2007) (Fig. 1): hilltop 
(flat to gentle slope, soil waterlogging very rare), slope (medium to steep 
slope, low-intensity waterlogging), downslope (flat to gentle slope, 
medium-intensity waterlogging) and bottomland (flat, high-intensity 
waterlogging). These units were delineated based on waterlogging and 
slope angle (a proxy for soil weathering intensity (Pélissier et al., 2002)). 
Habitat, defined in this way, was previously identified as a significant 
factor in predicting spatial variation in mortality rates (Ferry et al., 
2010). Forest type combines past disturbance history (logging intensity) 
and canopy height (HC) information. Plot-wise, mean HC was used to 
separate undisturbed plots as Short undisturbed forest (SUF) and Tall 
undisturbed forest (TUF) (see Table 1). Not only do these forests differ in 
canopy height and Height-Diameter allometry (Vincent et al., 2010; 
2014) but also in diameter distribution and dynamics (see Fig. 2 and 
Appendix 5). These differences in forest stature are suspected to reflect 
differences in parent material, TUF developing on migmatitic bedrock 
(Gourlet-Fleury et al., 2004) that tends to be better drained (Schmitt, 
1984). 

Disturbed forest areas (logged plots, tracks and camps) were masked 
at landscape level prior to analysis. The elementary observation 
considered was the 1-meter pixel GDI value (gap vs. non-gap), with HC 
and a Topographic Wetness Index (TWI) as independent variables. TWI 
was used to extrapolate at the landscape level the Habitat classification 
used at the plot level. TWI is widely used in hydrology studies to 
describe the tendency of an area to accumulate water (Mattivi et al., 
2019). It was computed from the digital terrain model derived from ALS 
data, using the r.topidx tool in the GRASS GIS (version 7.8.2) software, 
at a resolution of 60 m, then resampled to 10 m using bilinear interpo-
lation. The consistency of TWI and Habitat assessed at 60 m resolution 
was good despite some overlap in TWI distribution between bottomland 

Fig. 2. Mean stem density (stems.ha− 1, left) and basal area (BA in m2.ha− 1, right) over 20 years in the different forest types. TUF: Tall Undisturbed Forest; SUF: Short 
Undisturbed Forest; T1-3: Logged forests of increasing intensity (see ha− 1 for details). 
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and downslope classes (see boxplot in Fig. 1). To limit spatial autocor-
relation effects in the GLM fitted at the landscape level to predict GDI, 
we did not run the model on the entire set of pixels but instead selected a 
subset of pixels along a 50 × 50 m grid, so that they can be considered as 
spatially independent. The grid was randomly located, and the analysis 
was repeated 100 times. Nested GLMs were ranked using the Akaike 
Information Criterion (AIC). We also computed the evidence ratio (ER =
exp(0.5xΔAIC), which compares the relative likelihood that one model 
is better than another. All analyses were conducted in R version 3.6.3. 

3. Results 

3.1. Comparison of gap dynamics and mortality rates within plots 

BA and stem loss rate (both absolute and relative) were compared 
across undisturbed and logged forests to the GDI estimated from ALS 
data (Fig. 3). BA loss rate was more highly correlated to GDI than stem 
loss rate. BA relative loss rate was more strongly correlated to GDI than 
BA absolute loss rate when the analysis was restricted to undisturbed 
plots (r = 0.85, p = <0.001 vs. r = 0.78, p = <0.001). GDI was 
moderately correlated with relative but not with absolute stem loss rate 
when disturbed and undisturbed plots were pooled. The relative stem 
loss rate was better predicted than the absolute rate due to co-variation 
in small stem density and mortality rate across the disturbance gradient 
(see Fig. 2). 

Scatter plot of absolute BA loss rate and GDI per forest type illustrates 
the sensitivity of the relation to disturbance level. When restricted to 
unlogged plot (SUF and TUF), the relation was particularly strong (R2 =

0.72, RSE = 0.0032; Fig. 4). 

3.2. Mortality and gap dynamics determinants 

Relative BA and stem loss rates predicted from the GLMs show 
similar response patterns to Habitat and Forest Type (Fig. 5). Stem and 
BA loss rates were predicted to be higher in TUF than SUF and to in-
crease with treatment intensity (T1 to T3). While global responses were 
similar, there were differences between Forest Types as the relation 
between both variables (BA and stems) is mediated by stem diameter 
distribution density which varied across Forest Types (see Quadratic 
mean diameter in Table 1). 

GDI, as predicted from Habitat and Forest Type, matched the pat-
terns modeled from ground data (Fig. 5), with the notable exception of a 

low predicted GDI in highly disturbed plots (T2 and T3) and Hilltop 
habitat. 

Differences between predicted stem loss, BA loss and GDI for T2 and 
T3 result from the peculiar diameter distribution in these severely log-
ged plots, which contain a high abundance of short-lived pioneers with a 
high mortality from self-thinning of small trees. This mortality is well 
captured by stem loss predictions, less so by BA loss predictions and not 
at all by GDI predictions as it does not leave a canopy gap detectable by 
ALS. 

The slight divergence between predictions for Hilltop class was less 
expected. It reflects a difference in diameter distribution of dead trees 
between habitats and notably a reduction in mean quadratic diameter 
on hilltops (Appendix 9). 

At a landscape scale, we compared the GLM predictions of GDI with 
TWI and HC (Fig. 6) effects separately or together, including their 
interaction. The analysis was repeated 100 times (see M&M). The best 
model included both predictors without interaction (Table 2). 

As a complement, the spatial cross-correlation between individual 1- 

Fig. 3. Adjusted R-squared of the linear regression between GDI and BA or stem loss rates according to different periods. Absolute loss rates in red and relative loos 
rates in blue. Upper graphs include all plots, and lower graphs include only undisturbed plots. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 4. Absolute basal area loss (m2.ha− 1.yr− 1) versus GDI (annual rate of 
canopy subsidence) for 2009–2019 per 125 × 125 m subplot for all types of 
forests. Regression lines (solid) with a 95% confidence level. TUF: Tall Undis-
turbed Forest; SUF: Short Undisturbed Forest. T1 to T3: Sylvicultural treatments 
of increasing intensity (see Table 1 for more details). 
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m pixel values of TWI and GDI over undisturbed areas (i.e., logged plots, 
tracks and camp masked) was equal to r = 0.35 (P < 0.001 - torus 
translation test; (Harms et al., 2001)). On the other hand, the correlation 
between HC and GDI was 0.40 (P < 0.001 - torus translation test; (Harms 
et al., 2001)). 

3.3. Temporal changes in mortality detection with ALS 

We tested spatial cross-correlation of GDI overtime at landscape- 
level and observed a significant correlation between the periods 
2009–2015 and 2015–2019 (Fig. 7) (r = 0.50, p = <0.001, torus 
translation test). 

Mean and median absolute BA and stem loss increased in the un-
disturbed forest at the 125-m subplot level between 2009 and 2015 and 
2015–2019. Mean change in BA relative loss rate, stem relative loss rate 
and GDI were 14%, 12% and 9%, respectively (Fig. 8). A Wilcoxon 
signed-rank test concluded to a significant change over time for BA (Z =
268, p = 0.028) and stem (Z = 238, p = 0.011) but not for GDI (Z = 340, 
p = 0.177). 

The increase in BA and stem mortality rate between 2009 and 2015 
and 2015–2019 was higher in short (SUF) than in tall (TUF) forests 

Fig. 5. Effect of Habitat and Forest type (TUF = Tall Undisturbed Forest, SUF = Short Undisturbed Forest, T1-T3 = increasing level of logging intensity) on annual 
basal and stem loss rates predicted for the period 2009–2019 per hectare. Error bars represent 95% confidence limits. 

Fig. 6. a) GDI per pixel of 1 m. b) TWI (calculated at 60 m, resampled at 10 m. c) and canopy height (HC) taken as the 90th percentile (p90) of 1-m CHM period 2009 
values in a 125 m radius neighborhood. 

Table 2 
Median values of statistics of nested models of gap dynamic index computed at 1 
m pixel for 100 random pixel selections.  

Model GDI ~ TWI +
HC 

GDI ~ 
HC 

GDI ~ 
TWI 

GDI ~ 
HC*TWI 

Median AIC  1162.74  1174.45  1170.25  1164.37 
Median Evidence 

Ratio  
–  299.7  40.3  2.24  
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(+19% vs. + 10%, and + 28% vs. + 8%, respectively for BA and stem). 
Masking all field plots and disturbed areas (tracks and camps), we 

found a slight increase (+6%) in GDI during the second period, albeit 
lower than the change in GDI observed within undisturbed plots (+9%). 
Differences between periods were, however, not statistically significant 
(Wilcoxon’s signed-rank test: p = 0.82). 

4. Discussion 

4.1. Gap dynamics is strongly related to BA loss rate across all forest types 

We found that gap dynamics sensu (Leitold et al., 2018) was 

generally well correlated to mortality rates at 125 m resolution. The 
strength of this correlation nonetheless varied with the mortality rates 
indicators considered: relative or absolute loss rates expressed on a stem 
or BA basis. When restricted to undisturbed forest plots, the relation 
between mortality rates and the gap dynamics index (GDI) was high (R2 

= 0.72 and 0.49 for absolute basal area and stem loss rates, respec-
tively), but it decreased significantly when logged plots were included 
(Fig. 3). Correlation was typically higher for relative BA loss rates than 
relative stem loss rates because ALS is more sensitive to the death of 
large trees. Failure to predict the number of stems lost per unit area 
resulted from many more small stems undetected by ALS dying in logged 
plots (Appendix 5). Conversely, when expressed in terms of basal area 

Fig. 7. Map of a Gap Dynamics Index derived from repeated Aerial LiDAR Scanning data in two successive periods: 2009–2015 and 2015–2019, showing a persistent 
spatial pattern. 

Fig. 8. Mortality (BA and stem loss rates) and gap dynamics index GDI (annual rate of canopy subsidence) derived from repeated Aerial LiDAR Scanning data for 
different study periods (unlogged plots only). The red dots correspond to the mean value. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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loss, the smaller basal area in logged plots increased the discrepancy 
between GDI and basal area loss expressed in relative terms. 

These results indicate that the canopy height model derived from 
repeated ALS was not sensitive to subcanopy trees mortality. Hence, gap 
frequency cannot be considered a robust proxy of stem mortality rates 
across a landscape including mature stands recovering from recent 
disturbance with accelerated demographic rates. However, the corre-
lation with basal area loss appears to be much more stable and carbon 
flux monitoring from repeated ALS remains a valid option. 

4.2. Spatial and temporal variation in mortality rates 

Analysis at the landscape level (excluding logged plots) showed 
significantly correlated spatial patterns of GDI in two successive periods 
(r = 0.48 60 m resolution 2009–2015, 2015–2019). Those persistent 
spatial patterns of canopy dynamics were related to differences in local 
drainage (TWI) and forest stature (HC) (Fig. 6) and the effects of these 
two variables appeared to be additive (Table 2). Similar response pat-
terns of GDI to Habitat and HC were observed at the plot level (Fig. 5, 
undisturbed forest). 

Habitat effects on tree mortality had already been documented at the 
plot scale on this site (Ferry et al., 2010; Morneau, 2007). We extended 
those results to the tall forest (TUF) and logged forest (Fig. 5). Thanks to 
ALS, mortality patterns in relation to forest height and local drainage 
were further confirmed to exist at a larger spatial scale (>5 km2) across 
undisturbed forest types. 

The acceleration in yearly GDI from 2009 to 2015 to 2015–2019 
(+9%) was not as strong as the acceleration in mortality rates observed 
in ground data (+14% increase in BA loss rate). This may be due to 
several limitations in the data used here. 

4.3. Limitations in the current study 

The observed relation between basal area loss and GDI may be 
blurred by the imperfect match between ground inventories’ monitoring 
dates and ALS campaigns. For instance, TUF (plot 16), ground data were 
collected in 2010 and 2020, while ALS was acquired in 2009 and 2019 
and we know from a previous study at the same site (Vincent et al., 
2012) that a 1-yr time lag between ground and ALS data can result in c. 
1% uncertainty in LiDAR-derived BA estimations. We decided never-
theless to keep this plot in the present study because its structure and 
dynamics differed markedly from SUF. This brought more significance 
to the findings presented by including a more diverse set of forest types. 

Another source of temporal mismatch stemmed from the long time 
span over which ground censuses extend (it takes up to six months to 
complete the measurement of all 16 plots) compared to the few hours it 
takes to complete an ALS overflight covering all plots. To further 
complicate matters, the exact ground census date was not available for 
each plot every year. This introduced uncertainty in ground-based es-
timates of mortality rates. 

ALS data used in the present study was not devoid of limitations of 
their own. Differences in ALS acquisition characteristics between 2009 
and subsequent dates other than point density and scan angle could not 
be mitigated. These included footprint size, penetration and single last 
vs. multiple return modes (Appendix 2). This may notably have affected 
the temporal comparison between 2009 and 2015 and 2015–2019. 
Therefore, the net effect of the differing LiDAR system characteristics on 
CHM differences is difficult to assess. Another significant source of un-
certainty affecting the 2009 pooled data set may come from mixing data 
acquired at six-month intervals (in different seasons). 

Deriving CHM from the local maximum height (rather than the mean 
return height, for instance) made the CHM fairly robust to differences in 
penetration or scanning angle (Appendix 6). It also allowed seasonal leaf 
loss not to be confused with gap creation (Appendix 7). Conversely, 
defoliation, which may also be an early sign of tree death, will not be 
picked up. 

ALS may also fail to detect standing dead trees in the upper canopy 
until they undergo a significant degree of decay which may take months 
or even years. For example, in Paracou, 48% of the trees dying from 
1991 to 2020 in SUF plots have been recorded as dying standing. 

False-positive errors may occur as well. Large branch fall, stem 
breakage without tree death, partial die-back may all generate a local 
change in CHM that our indicator may pick up while not associated with 
tree death. Such events are probably frequent and of significant 
magnitude, as suggested by previous studies (Chambers et al., 2001; 
Chave et al., 2003; van der Meer and Bongers, 1996). 

4.4. Future research directions 

Detecting the change in canopy structure not affecting the uppermost 
canopy would have required using the entire point cloud rather than a 
surface model extracted from the point cloud. At least two different 
strategies could be considered: individual tree death detection and 
change in estimated plant area density. However, both strategies suffer 
from methodological limitations due to the lack of accuracy of 3D in-
formation below the canopy, as the ALS signal is rapidly attenuated 
through the vegetation layers (Vincent et al., 2017). A solution to better 
describe below canopy structure may be to massively increase sampling 
density while using an extremely narrow laser beam (low flying UAV 
LiDAR System for instance). Monitoring tree death below the canopy 
would further require detecting, segmenting, and ideally tracking indi-
vidual tree crowns over time. Individual crown monitoring and frequent 
overflights would further allow detecting permanently leafless dead 
crowns, improving detection of trees dying standing. Indeed, leaf-
lessness can readily be detected in high-density point clouds (Appendix 
7). While progress is being made in 3D individual tree crown segmen-
tation in ALS point cloud (Aubry-Kientz et al., 2021; 2019), reliable 
segmentation of non-dominant or non-emergent trees is still a difficult 
task in dense multi-layered forests since spectral information which is 
needed to individualize crowns is restricted to the sunlit upper canopy. 

5. Conclusions 

This study demonstrated that multitemporal ALS can produce reli-
able estimates of relative and absolute basal area loss and stem mortality 
rates in natural forests and confirmed the ability of ALS to detect pre-
viously identified patterns of mortality rates related to local topography 
and its association with terrain wetness index. Mortality rates expressed 
as basal area loss rates were generally better predicted than stem mor-
tality loss rates, especially in severely disturbed plots. Gap dynamics can 
help track change in forest carbon fluxes and should usefully comple-
ment carbon net change monitoring derived from static carbon estimates 
modeled from ALS at different dates. Standardization of ALS acquisition 
parameters across dates (and sites) is a prerequisite for drawing mean-
ingful comparisons. It is also essential to compare periods of similar 
duration due to the dynamic nature of gap creation and closure. If such 
conditions are met, repeated ALS should effectively detect and map 
possible changes in mortality rates triggered by climatic change. 

The fine description of the spatial organization of canopy dynamics 
may further help identify likely environmental drivers of the variability 
of forest turnover rates, even if, as evidenced in the present paper, ab-
solute estimations of mortality rates from ALS data are still tainted with 
uncertainty. In addition, wall-to-wall maps of canopy gap dynamics will 
inform about the representativeness of existing plots. 
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Appendix 1. Silvicultural treatments implemented on the plots in Paracou. The number of individuals dead under “silviculture” heading 
includes dead trees following forest treatment (timber, fuelwood, and thinning) and trees destroyed by forest works. Adapted from: 
[72].  

Intensity Plots Treatments 
implemented 

Trees dead Canopy height 
increase* (m ha¡1 

yr¡1) Timber Fuelwood Thinning Felled Logging Poison- 
girdling 

Silviculture 

T0: SUF 1,6,11,13,14,15    0 0 0 0  0.15 
T1:Low 

intensity 
2,7,9 DBH ≥ 50 or 60 cm   3.3 2.3 0 5.6  0.19 

T2: Medium 
intensity 

3,5,10 DBH ≥ 50 or 60 cm  DBH ≥ 40 
cm 

3.8 2.6 5.2 11.6  0.23 

T3: Heavy 
intensity 

4,8,12 DBH ≥ 50 or 60 cm 40 cm ≤ DBH ≤
50 cm 

DBH>50 
cm 

6.3 4.2 3.6 14.1  0.24 

P16: 25 ha plot 
– TUF 

16    0 0 0 0   

* Measured from 2009 and 2019 canopy models. 

Appendix 2. . Characteristics of ALS acquisitions for the different overflights.  

Year 2009 2015 2019 

Acquisition time April, September, October 2009 20th October 2015 November 2019 
Vehicle Helicopter Airplane Airplane 
Sensor model Riegl LMS-280i / LMS6Q140i-60 LMS-Q780 RIEGL 

(12% power) 
LMS-Q780 RIEGL 
(25% power) 

Laser beam divergence (mrad) ≤0.5 mrad/≤3.0 mrad ≤ 0.25 ≤ 0.25 
Average point density (pulses m− 2) 10 10 (25*) 10 (27*) 
Maximum scan angle 15◦ 20◦ 20◦

Average flying altitude (m) 170 800 800 
Mean footprint size (cm) 10 / 40 20 20 
Penetration** 0.009 0.020 0.024  

*Initial pulse density (before thinning). 
**ground last return divided by all last returns; calculated after excluding shots outside ± 15◦ angular range. 
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Appendix 3. . Comparison of the GDI indicator calculated, i.e., using 2009 and 2019 as inputs, and the composite as the sum of GDI 
2009–2015 and 2015–2019 for all plots (75 subplots).

Note: Gaps detected in 2015–2019, also detected in 2009–2015 represented 3.6% of the total gap areas formed between 2009 and 2019. 

Appendix 4. . Visual comparison of the different methodologies used for the detection of mortality from gap dynamics analysis. 
(Benoist, 2009; Brokaw, 1985; Leitold et al., 2018; Senécal et al., 2018)

• Brokaw (1982) – Aperture extending at all levels up to an average height of 2 m above the ground.  
• Benoist (2009) developed an algorithm to detect and delimit gaps. “The threshold of 5 m2 minimum makes it possible to exclude low points that are 

too isolated and that correspond to old gaps that are in the process of aggradation. On the other hand, the 10 m height criterion restores their shape 
well, and it is reasonable to accept a high point in the middle of a hole.”  

• (Senécal et al., 2018). Height reduction areas (HRA) groups of pixels in which a reduction of at minimum 1 m in height and a minimum size of 5 m2 

were observed (six years). Within the HRA, new gap pixels were detected as CHM year1 pixels in the HRA of height 3 m or less, and for year0 
heights above 3 m, while canopy height erosion pixels were detected as CHM year1 pixels of height above 3 m after the height loss.  

• Leitold et al., (2018), threshold >= 4 m2 and height losses >= 3 m. 
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Appendix 5. . Dynamic characteristics per forest type during 2009–2019 (2010–2020) (a) diameter distribution of trees that died; bins of 
10 cm starting at 10 cm dbh. (b) mean value of wood density for surviving, dying and recruited trees (c) demographic rates were 
calculated as instantaneous rates in SUF plots, logged plots (T1 to T3) between 1999 and 2019 and TUF between 2010 and 2020 for 
individuals with DBH>¼10 cm. Circles for medians, vertical bars for 95% highest posterior distribution intervals, and horizontal axis 
dotted for y ¼ 0.
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Appendix 6. . Pseudo change (noise) in canopy height evaluated at one m resolution from two flights (05/10/2015 and 20/10/2015) in 
Paracou. The scan angle was limited to þ/- 20 deg. Pulse density was 10 pulses.m2.

Appendix 7. . Impact of change in leaf density (phenology) on canopy height model occurring over two weeks (05/10/2015 and 20/10/ 
2015, Paracou - French Guiana). 

In the upper left corner: a crop of the 20/10/2015 Canopy Height Model based on mean first return height (CHM_hmean). In the lower-left corner: 
the Canopy Height model based on maximum first return height (CHM_hmax, used in the present study), for the same area, same date exact resolution. 
In the center: raster of change between the two dates. Two crowns (green and red boxes) are highlighted. A significant increase in CHM_hmean is 
perceptible for those crowns. On the right: Pictures (20/10/2015) of those crowns show that they were re-foliating on the second date. CHM_hmax is 
not sensitive to such phenology-related changes in the canopy. In addition, CHM_hmean seems spatially more variable, with significant contrasts often 
associated with gaps.
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Appendix 8. . Sensitivity of gap fraction to unbalanced pulse density between dates

Area in gaps detected using Leitold gap definition (nobs = 321) per 125x125 m cell. Mean difference in gap area is 134 m2. 

Appendix 9. . Quadratic mean diameter (QMD in cm) per Habitat and forest Type. The vertical bars represent the standard error of the 
mean per subplot.
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Brienen, R.J.W., Phillips, O.L., Feldpausch, T.R., Gloor, E., Baker, T.R., Lloyd, J., Lopez- 
Gonzalez, G., Monteagudo-Mendoza, A., Malhi, Y., Lewis, S.L., Vásquez Martinez, R., 
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