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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Segmenting three-dimensional (3D) microscopy images is essential for understanding phe-

nomena like morphogenesis, cell division, cellular growth, and genetic expression patterns.

Recently, deep learning (DL) pipelines have been developed, which claim to provide high

accuracy segmentation of cellular images and are increasingly considered as the state of

the art for image segmentation problems. However, it remains difficult to define their relative

performances as the concurrent diversity and lack of uniform evaluation strategies makes it

difficult to know how their results compare. In this paper, we first made an inventory of the

available DL methods for 3D cell segmentation. We next implemented and quantitatively

compared a number of representative DL pipelines, alongside a highly efficient non-DL

method named MARS. The DL methods were trained on a common dataset of 3D cellular

confocal microscopy images. Their segmentation accuracies were also tested in the pres-

ence of different image artifacts. A specific method for segmentation quality evaluation was

adopted, which isolates segmentation errors due to under- or oversegmentation. This is

complemented with a 3D visualization strategy for interactive exploration of segmentation

quality. Our analysis shows that the DL pipelines have different levels of accuracy. Two of

them, which are end-to-end 3D and were originally designed for cell boundary detection,

show high performance and offer clear advantages in terms of adaptability to new data.

Author summary

In recent years, a number of deep learning (DL) algorithms based on computational neu-

ral networks have been developed, which claim to achieve high accuracy and automatic

segmentation of three-dimensional (3D) microscopy images. Although these algorithms

have received considerable attention in the literature, it is difficult to evaluate their relative

performances, while it remains unclear whether they really perform better than other,

more classical segmentation methods. To clarify these issues, we performed a detailed,

quantitative analysis of a number of representative DL pipelines for cell instance
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segmentation from 3D confocal microscopy image datasets. We developed a protocol for

benchmarking the performances of such DL-based segmentation pipelines using common

training and test datasets, evaluation metrics, and visualizations. Using this protocol, we

evaluated and compared 4 different DL pipelines to identify their strengths and limita-

tions. A high performance non-DL method was also included in the evaluation. We show

that DL pipelines may show significant differences in their performances depending on

their model architecture and pipeline components but overall show excellent adaptability

to unseen data. We also show that our benchmarking protocol could be extended to a

variety of segmentation pipelines and datasets.

Introduction

The use of three-dimensional (3D) quantitative microscopy has become essential for under-

standing morphogenesis at cellular resolution, including cell division and growth as well as the

regulation of gene expression [1]. In this context, image segmentation to identify individual

cells in large datasets is a critical step. Segmentation methods broadly belong to 2 types, namely

“semantic segmentation” in which each pixel within an image is associated with one of the pre-

defined categories of objects present in the image. The other type, which is of interest in this

paper, is “instance segmentation” [2]. This type of method goes one step further by associating

each pixel with an independent object within the image. Segmenting cells from microscopy

images falls within this second type of problem. It involves locating the cell contours and cell

interiors such that each cell within the image may be identified as an independent entity [3].

High accuracy cell instance segmentation is essential to capture significant biological and mor-

phological information such as cell volumes, shapes, growth rates, and lineages [4].

A number of computational approaches have been developed for instance segmentation

(e.g., [1,5–7] such as, for example, the commonly used watershed, graph partitioning, and gra-

dient-based methods. In watershed approaches, seed regions are first detected using criteria

like local intensity minima or user provided markers. Starting from the seed locations, these

techniques group neighboring pixels by imposing similarity measures until all the individual

regions are identified. In graph partitioning, the image is treated as a graph, with the image

pixels as its vertices. Subsequently pixels with similar characteristics are clustered into regions

also called superpixels. Superpixels represent a group of pixels sharing some common charac-

teristics such as pixel intensity. In some graph-based approaches such as [8–10], superpixels

are first estimated by oversegmenting an image followed by graph partitioning to aggregate

these superpixels into efficiently segmented regions of the image. Gradient-based methods use

edge or region descriptors to drive a predefined contour shape (usually rectangles or ellipses)

and progressively fit them to accurate object boundaries, based on local intensity gradients

[11,12].

Common challenges faced by these segmentation methods arise in low-contrast images

containing fuzzy cell boundaries. This might be due to the presence of nearby tissue structures

as well as anisotropy of the microscope that perturb signal quality, poor intensity in deeper cell

layers as well as blur and random intensity gradients arising from varied acquisition protocols

[13,14]. Some errors can also be due to the fact that cell wall membrane markers are not

homogenous at tissue and organ level: In some regions, the cell membrane is very well marked,

resulting in an intense signal, while in the other regions, this may not be the case. These differ-

ent problems lead to segmentation errors such as incorrect cell boundary estimation, single

cell regions mistakenly split into multiple regions (oversegmentation), or multiple cell

instances fusing to produce a condensed region (undersegmentation).
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In recent years, a number of computational approaches based on large neural networks

(commonly known as deep learning or DL) [15] have been developed for image segmentation

[16–18]. The key advantages of DL-based segmentation algorithms include automatic identifi-

cation of image features, high segmentation accuracy, requirement of minimum human inter-

vention (after the training phase), no need for manual parameter tuning during prediction,

and very fast inferential capabilities. These DL algorithms are made of computational units

(“neurons”), which are organized into multiple interconnected layers. For training a network,

one needs to provide input training data (e.g., images) and the corresponding target output

(ground truth). Each network layer transforms the input data from the previous level into a

more abstract feature map representation for the next level. The final output of the network is

compared with the ground truth using a loss (or cost) function. Learning in a neural network

involves repeating this process and automated tuning of the network parameters multiple

times. By passing the full set of training data through the DL network a number of times (also

termed “epochs”), the network estimates the optimal mapping function between the input and

the target or ground truth data. The number of epochs can be in the order of hundreds to

thousands depending on the type of data and the network. The training will run until the train-

ing error is minimized. Thereafter, in a “recognition” phase, the neural network with these

learned parameters can be used to identify patterns in previously unseen data.

In case of application of DL for image segmentation, the training and inference process is

identical as above. The input data comprise raw images (grayscale or RGB), and the ground

truth data are composed of highly precise segmentations of these input images where the

desired regions are labeled.

Instance segmentation using DL is a challenging task especially for 3D data due to large

computational time and memory requirements for extracting individual object instances from

3D data [19,20]. Therefore, the current trend in DL-based segmentation methods is to proceed

in 2 steps. First, deep networks are used to provide high-quality semantic segmentation out-

puts. This involves the extraction of several classes of objects within an image such as cell

boundaries, cell interiors, and background. These DL outputs are then used with traditional

segmentation methods to achieve the final high accuracy and automatic instance segmentation

even in images with noise and poor signal quality [21]. A generic workflow of such a DL-based

instance segmentation process is shown in Fig 1.

In contemporary DL literature, 2 types of architecture for segmentation are commonly

used: the ones based on the UNet/residual UNet network [22,23] and the approaches using the

region proposal networks (RPNs) or Region-based Convolutional Neural Networks (RCNNs)

[24]. We will only briefly present both the general properties of both types of networks. The

UNet [22] has a symmetric DL architecture. One part (called encoder) extracts the image fea-

tures, and the other part (named decoder) combines the features and spatial information to

obtain the semantic segmentation, for example, cell boundaries, cell body, and image back-

ground. In order to obtain the instance segmentation, this is followed by methods such as

watershed or graph partitioning. Examples of UNet-based two-dimensional (2D) and 3D seg-

mentation algorithms include, e.g., [21,25,26].

Besides UNet, the other state-of-the-art DL architecture is a RCNN such as Mask R-CNN

or MRCNN [27]. MRCNN differs from UNet as the former includes modules for object detec-

tion and classification unlike the UNets. MRCNN has been used for high accuracy and auto-

matic segmentation of microscopy images in several works (e.g., [28,29]).

There currently exists a large number of DL pipelines (we have identified and reviewed up

to 35 works in the last 5 years in S4 File), where variants of both the above architectures are

used to address specific challenges in segmentation such as sparse datasets, availability of par-

tial ground truths, temporal information, etc. (see S4 File for a more extensive review).
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However, the diversity of the currently available pipelines and inconsistent use of segmenta-

tion accuracy metrics makes it difficult to characterize and evaluate their relative performance

based on the literature. The presence of such diversity has motivated several benchmarking

studies such as [30,31]. Ulman and colleagues [30] describe a thorough evaluation of 21 cell

tracking pipelines. One of these includes a 3D UNet DL system for segmentation. This study

evaluates the capability of the methods to segment and track correctly different types of data

(optical and fluorescent imaging and single and densely packed cells). LAU : PleasecheckwhethertheeditstothesentenceLeal � Taix�eandcolleagues½31�compare4:::arecorrectandamendifnecessary:eal-Taixé and col-

leagues [31] compare 4 epithelial cell tracking algorithms using 8 time-lapse series of epithelial

cell images. Although both papers highlight the importance of accurate image segmentation

and underline the performance of DL, the characterization of the method errors is rather

focused on the cell tracking part. In this paper, we focus in detail on the segmentation itself,

comparing extensively and quantitatively the capacity of a number of selected DL protocols to

accurately segment 3D images. To do so, we retrained the DL systems on a common bench-

mark 3D dataset and analyzed segmentation characteristics of each pipeline at cellular resolu-

tion. The pipelines used here are based on either UNet or RCNN architectures and were

selected from the literature based on the following criteria. (i) First, as the focus of this work is

on 3D confocal datasets, the pipelines are built for 3D instance segmentation of static images.

Analyses of temporal information or specific architectures for cell or particle tracking are not

included as these are extensively covered in [30,31]. (ii) Next, the pipeline implementations

including pre- and postprocessing methods are available in open-source repositories. (iii) To

ensure that the pipelines are reproducible properly on other machines, the training dataset

used originally by the authors are available publicly. (iv) Last, the DL pipelines are trainable

with new datasets. Based on these criteria, we identified 4 pipelines ([21,24,26,32]), which we

further describe below.

The first pipeline is an adapted version of Plantseg [26], which can be trained using 3D

images composed of voxels. It uses a variant (see Materials and methods section) of 3D UNet

called residual 3D-UNet [23] for the prediction of cell boundaries in 3D, resulting in a seman-

tic segmentation. These are then used in a postprocessing step for estimating the final instance

Fig 1. Generic workflow of a DL-based image segmentation pipeline. The DL network is first trained to produce a

semantic segmentation which corresponds as closely as possible to a given ground truth. The trained network is then

used to segment unseen images. The resulting semantic segmentation is then further processed to obtain the final

instance segmentation. DAU : AbbreviationlistshavebeencompiledforthoseusedthroughoutFigs1; 2; 3; 5; 7; 9; 11; 13; and14:Pleaseverifythatallentriesarecorrect:L, deep learning.

https://doi.org/10.1371/journal.pcbi.1009879.g001
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segmentation using graph partitioning. Examples of graph partitioning include GASP [33] and

Multicut [10].

The second DL pipeline [21] comprises a 3D UNet, which can be trained using 3D confocal

images (i.e., composed of voxels) for prediction of cell boundary, cell interior, and image back-

ground regions (as 3D images). These semantic outputs of the 3D UNet are then used to gener-

ate a seed image for watershed-based postprocessing. Seeds in watershed segmentation

indicate locations within images from where growing of connected regions starts in the image

watershed map. The seed images produced from the UNet outputs in this pipeline are there-

fore used to perform 3D watershed and obtain the final segmentation output.

The third pipeline is adapted from Cellpose [32]. It uses a residual 2D-UNet architecture,

which should be trained using 2D images (composed of pixels). The 2D trained UNet predicts

horizontal (X) and vertical (Y) vector gradients of pixel values, or flows, along with a pixel

probability map (indicating whether pixels are inside or outside of the cell regions) for each

2D image. By following the vector fields, the pixels corresponding to each cell region are clus-

tered around the cell center. This is how 2D gradients in XY, YZ, and ZX planes are estimated.

These 6 gradients are averaged together to find 3D vector gradients. These 3D gradients are

used to estimate the cell regions in 3D.

The fourth DL pipeline is adapted by the authors of this paper from the well-documented

open Mask R-CNN repository [24], and the 3D segmentation concept using this model is

inspired from [34]. For the Mask R-CNN–based segmentation, a hybrid approach is adopted

as shown in Fig 2. The pipeline uses a MRCNN algorithm, which is trained using 2D image

data to predict which pixels belong to cell areas and which do not in each Z slice of a 3D vol-

ume leading to a semantic segmentation. Then, the Z slices containing the identified cell

regions are stacked into a binary 3D seed image. The cell regions in this binary image are

labeled using the connected component approach, where all voxels belonging to a cell are

assigned a unique label. These labeled cell regions are used as seeds for watershed-based pro-

cessing to obtain the final 3D instance segmentation.

A further aspect of investigation in this work is to observe how these DL pipelines compare

to a classical non-DL pipeline in terms of segmentation accuracy. They were therefore com-

pared with a watershed-based segmentation pipeline named MARS [35], which uses automatic

seed detection and watershed segmentation. In the MARS pipeline, the minima of local inten-

sity of the image detected by a h-minima operator is used to initiate seeds in the image which

are then used for 3D watershed segmentation of cells. This pipeline therefore does not involve

any model training component.

As these 5 segmentation pipelines have been developed and tested on different datasets and

have been characterized using different evaluation metrics, it is difficult to directly compare

their performance. For example, in the original papers, the Plantseg and UNet+WS pipelines

were trained and designed for images having membrane stainings and therefore use a UNet-

based boundary detection method. The Cellpose model was originally trained with diverse

types of bio-images such as those with cytoplasmic and nuclear stains and microscopy images

with and without fluorescent membrane markers. The Mask R-CNN adopted in this work was

originally trained using images from cell nuclei.

Therefore, the first step of the benchmarking protocol was to train the 4 DL pipelines on a

common 3D image dataset. We next tested all the 5 segmentation (DL and non-DL) pipelines

on a common 3D test image dataset. This was followed by estimating and comparing their per-

formance based on a common set of metrics. Through this protocol, we aimed to develop an

efficient strategy for quantitative and in-depth comparison of any 3D segmentation pipeline

that currently exists or is under development. Our results show clear differences in
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performance between the different pipelines and highlight the adaptability of the DL methods

to unseen datasets.

Results

A benchmarking protocol for 3D segmentation pipelines

The benchmarking workflow for the segmentation pipelines adapted in this paper is shown in

the schematic diagram of Fig 3. All 4 DL pipelines were trained following the specifications of

respective pipelines (more details in Materials and methods section) as given in their reposito-

ries. For training, we used a common set composed of 124 3D original stacks of confocal

images from Arabidopsis shoot apical meristems (SAMs) and their ground truth segmenta-

tions, which are publicly available, as described in [36]. This is one of the more extensive 3D

confocal sets with ground truth publicly available. The trained networks were used to segment

Fig 2. Displaying all the 3D segmentation pipelines together. The green colored boxes indicate the training process

for the respective pipeline. The blue boxes indicate the predicted, semantic segmentations generated by the trained DL

algorithms, and the orange boxes indicate phases of postprocessing, leading to the final instance segmentation. The

MARS pipeline doesn’t include a training or postprocessing step, but parameter tuning is required. 3D, three-

dimensional.

https://doi.org/10.1371/journal.pcbi.1009879.g002

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009879 April 14, 2022 6 / 33

https://doi.org/10.1371/journal.pcbi.1009879.g002
https://doi.org/10.1371/journal.pcbi.1009879


2 test datasets of floral meristem images (Fig 4A) described in [45] (see Materials and methods

section) and for which ground truths were available as well. Sample results from these pipe-

lines on one test stack (TS1-00h) are shown in Fig 4B.

For MARS, a manual tuning of 3 parameter values is generally required to obtain optimal

segmentation (h-minima and Gaussian smoothing sigma for image and that for seeds; see

Materials and methods section for details on MARS parameters to tune). This can involve

many trials before optimal segmentation is obtained and needs expert supervision. For the

sake of comparison with the DL methods, which were only trained once, we therefore only

used one set of parameters. First, the optimal MARS parameters were found for one 3D image,

and these were then kept constant for the remaining images in the test set.

The other parts of the benchmarking workflow, which is testing and evaluation of the 5 seg-

mentation pipelines through common strategies, metrics, and visualizations, are detailed

below.

Comparing the segmentation pipelines

We next compared the quality of the segmentations produced by the 5 pipelines. For this pur-

pose, we adopted 3 different strategies (see also Materials and methods for details). First, we

analyzed the quality of segmentation on overall stacks, including all cell layers. Next, the confo-

cal stacks were split into different cellular layers (L1, L2, and inner), and the segmentation

quality of the 5 pipelines for each layer was studied. Finally, we evaluated the segmentation

quality on images with commonly occurring (artificially generated) aberrations. In each strat-

egy, several metrics were used for quantitative assessment.

Strategy 1: Evaluating segmentation quality for entire image stacks. To estimate the

segmentation quality of the outputs from the 5 pipelines, we used their segmented results and

the corresponding ground truths of the test datasets. A volume-averaged Jaccard index (VJI)

metric was used to estimate overlap between the predicted segmentations and ground truths.

The VJI used here measures the degree of overlap averaged over the cell volume. In the VJI

metric, the averaging over cell volume is done to avoid biases arising from the cell sizes on the

standard JI. Also, metrics that identify the rates of over- and undersegmentation were applied

(details of this metric is in the Materials and methods section). The rate of oversegmentation is

the % of cells in the ground truth associated with multiple regions in the predicted

Fig 3. Schematic workflow of the benchmarking process. The evaluation of segmentation pipelines begins with the

training of the DL models on a common training dataset (confocal images and ground truth). The training and

postprocessing steps for each pipeline are reproduced in the exact way as defined in the respective papers or their

repositories. Then, the 5 pipelines are tested on a common test set of images. The test dataset (Fig 4) contains both raw

confocal images and their corresponding expert annotated ground truths, and, therefore, it is possible to assess the

segmentation accuracy of the 5 pipelines by comparing segmentation output of each pipeline with the respective

ground truth data. Finally, the relative accuracy of each method is evaluated using multiple strategies. DL, deep

learning.

https://doi.org/10.1371/journal.pcbi.1009879.g003
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segmentation. Conversely, the rate of undersegmentation is the percentage of cases where sev-

eral regions in the ground truth are associated with a single cell in the predicted segmentation.

Another estimate shown on Table 1 is the percentage of missing cells, which refer to the per-

centage of cells from the ground truth that are not in the predicted segmentation.

The results, summarized in Table 1 and Fig 5A–5D, reveal a number of differences between

the pipelines. Sample results are shown in Fig 5D.

Among all the pipelines, Plantseg performs best as measured using the VJI metric values

(Fig 5A), closely followed by MARS and then UNet+Watershed. Cellpose and, in particular,

MRCNN+Watershed perform less well.

Fig 4. (A) The 2 test datasets containing a total of 10 confocal image stacks of 2 different Arabidopsis floral meristems.

(B) A sample test stack (TS1-00H) and its segmentation by 5 segmentation pipelines.

https://doi.org/10.1371/journal.pcbi.1009879.g004

Table 1. MeanAU : PleasecheckandconfirmifTable1ispresentedcorrectly:values (average over the 2 test datasets) of segmentation evaluation metrics.

Algorithms VJI Rate of oversegmentation (%) Rate of undersegmentation (%) Percentage of missing cells (%)

Plantseg 0.819 4.457 6.178 2.051

3D UNet+ WS 0.743 4.066 13.290 1.705

Cellpose 0.694 13.456 10.653 4.727

Mask R-CNN+WS 0.560 14.632 22.995 9.621

MARS 0.815 2.576 12.492 2.759

In MARS, the optimal parameter values are only determined for one image (h-minima = 2 and Gaussian smoothing sigma for image = 0.4).

VJI, volume-averaged Jaccard index.

https://doi.org/10.1371/journal.pcbi.1009879.t001
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With respect to rates of oversegmentation (Fig 5B), The MARS and UNet+Watershed pipe-

lines have lowest rates very closely followed by PlantSeg. The 2 hybrid pipelines Cellpose and

MRCNN+Watershed have higher rates of oversegmentation. The rate of undersegmentation

(Fig 5C) is higher for all the pipelines than the rate of oversegmentation, but Plantseg performs

better than the others. Overall, we can conclude that the errors in the pipelines are mostly due

to undersegmentation.

Strategy 2: Segmentation quality evaluation for different cell layers. Three-dimensional

confocal stacks often show different levels of intensity and contrast in different cell depths. In

particular, in the inner layers, the cell segmentation can be challenging. We therefore tested

the performance of the pipelines for their capacity to segment the different cell layers.

For identifying the layers from the ground truth segmented stacks, we carefully manually

classify the cells in contact with the background into 3 classes: L1, L2, and inner layer. Then,

an automatic procedure was applied to propagate the classes to the remaining cells. L2 cells

were defined as cells in contact with L1 cells but not the background. Inner cells were defined

as cells in contact with L2 cells exclusively (Fig 6A).

The variation of segmentation quality of the different pipelines was studied on the basis of

the VJI values in the 3 cellular layers (Fig 6B).

Plantseg and MARS produce the most accurate segmentations in all the layers out of the 5

pipelines, and their accuracy doesn’t degrade significantly in the outer or inner layers. The VJI

Fig 5. (A) Results of VJI metric from the 5 segmentation pipelines. Note that VJI is computed for each pair of

segmented image/ ground truth image, and so the VJI statistics shown above are computed on the values of VJI of the

10 3D test images for each pipeline. (B) and (C) shows rates of over- and undersegmentation, which is computed using

a segmented stack and corresponding ground truth stack as input. The distributions shown here are estimated over the

results from the 2 test datasets TS1 and TS2. (D) Example segmentation results by 5 pipelines on a test image slice. 3D,

three-dimensional; VJI, volume-averaged Jaccard index.

https://doi.org/10.1371/journal.pcbi.1009879.g005
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index of the UNet+Watershed pipeline is only slightly lower and nearly the same for all the lay-

ers. Cellpose and MRCNN+Watershed perform less well than the others, in all 3 layers, and

MRCNN accuracy drops further in the innermost layer. However, with the exception of Mask

R-CNN, the segmentation of the L2 layer is slightly better than that of the L1. This might be

linked to the weak labeling of the outer membranes (Fig 6C), which is often observed.

It may be noted that this layer-wise analysis protocol is developed to study how the segmen-

tation pipelines perform when going deeper into the tissue, i.e., as the image signal levels get

weaker. This analysis is, therefore, also relevant for other tissue types as well, which involves

imaging at different cell depths.

Strategy 3: Evaluating pipelines on synthetically modified images. Confocal images are

often affected by effects such as noise, shadows, and motion blur, which tend to perturb the

image signal. Especially in the inner layers, due to loss of optical signal and scattering, the

images contain regions of very poor signal and distortions. In order to study the impact of

these variations on the segmentation quality, the effects of noise, blur, and intensity variations

were simulated on the test set of confocal images. The 5 segmentation algorithms were then

Fig 6. (A) Extracting L1, L2, and inner layers from an input segmented meristem image. (B) Estimating segmentation

accuracy (VJI) for different cell layers. All stacks from the test dataset are used for this evaluation. (C) Boundary

Intensities profile plot for outer and inner layer cells. The gray value at x = 0 on the plot on the left is the gray value of

the image at the red point of the line segment drawn on the right image.

https://doi.org/10.1371/journal.pcbi.1009879.g006
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applied to the modified images, and the VJI values and rates of under- or oversegmentations

were estimated to observe and compare their robustness against these conditions.

Effect of image noise. The electronic detector or amplifier of the imaging equipment can

generate noise, which can be modeled using Gaussian statistics [37]. An image to which 2 dif-

ferent Gaussian noise levels corresponding to noise variances of 0.04 and 0.08 are added is

shown in Fig 7A. At higher variance, the noise effect is increased as seen in the peak signal-to-

noise ratio (PAU : PleasenotethatPSNRhasbeendefinedaspeaksignal � to � noiseratiointhesentenceAthighervariance; thenoiseeffectisincreased::::Pleasecheckandcorrectifnecessary:SNR) values.

The 5 pipelines behaved very differently under the impact of image noise as shown in Fig

7B. In particular, UNet+WS, CellPose, and MRCNN are very sensitive to Gaussian noise as

their accuracy drops sharply when Gaussian noise variance is increased. At a noise variance of

0.08, Cellpose shows no detection. For MRCNN, higher noise leads to loss in identified cell

regions, which results in large blob-like regions after watershed-based postprocessing, leading

to higher undersegmentation (Fig 7D). The difference with Plantseg could be due to differ-

ences in the instance segmentation components. Plantseg uses graph partitioning, while UNet

+WS and MRCNN pipelines use 3D watershed, although the seed identification criteria are

Fig 7. (A) A test image after applying Gaussian noise (var 0.04, 0.08). (B) Variation of segmentation accuracy (VJI)

with 3 Gaussian noise variances. (C) Variation in rates of oversegmentation. (D) Variation in rates of

undersegmentation. Note that for noise variance of 0.08, Cellpose is unable to identify cells. (E) Example results from

the 5 pipelines under the impact of image noise (Gaussian noise variance 0.08). PSNR, peak signal-to-noise ratio; VJI,

volume-averaged Jaccard index.

https://doi.org/10.1371/journal.pcbi.1009879.g007
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different for them. MARS is most sensitive when it comes to oversegmentation (Fig 7C), while

PlantSeg is more sensitive in terms of undersegmentation.

Effect of image blur. Blurring is common in images and can, for example, be caused by

lens aberrations or optical diffraction in the imaging setup [38]. It can also be caused by

motion of the objects in the microscope. To simulate blur, the test confocal image is convolved

with a horizontal motion blur kernel (material and methods). A sample image before and after

blurring is shown in Fig 8A.

The 10 test stacks were subjected to the blurring function and were segmented using the 5

pipelines (Fig 8E). VJI values were then computed for each of the results and plotted (Fig 8B).

It is seen that the Plantseg, MARS, and CellPose pipelines are relatively less affected by blur-

ring, whereas this effect produces larger variability in results in the UNet +WS pipeline. The

effects on rates of undersegmentations remain relatively low (Fig 8C). Apart from Plantseg

and MARS, the other pipelines suffer higher rates of undersegmentation (Fig 8D) under the

impacts of blurring.

Image intensity variations. Partially bright regions in microscopy images may be caused

by inhomogeneous illumination sources and shadow effects are mostly caused by presence of

light absorbing objects or obstructions [39,40] or due to a nonhomogenous cell membrane

marker. To emulate the effect of such intensity variations within an image, partial

Fig 8. (A) Effect of blurring on an image. (B) Comparing segmentation accuracies of pipelines under the effect of

image blur. (C) Comparing rates of oversegmentation. (D) Undersegmentations due to image blur. (E) Results from

the 5 pipelines under the impact of image blur.

https://doi.org/10.1371/journal.pcbi.1009879.g008
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overexposure or underexposure regions (Fig 9A) were imposed on the test images, which were

then segmented using the 5 pipelines. The VJI values and rates of over- and undersegmenta-

tions for all the results were computed and are shown in the box plots for all stacks in Fig 9B–

9D. Sample results from all pipelines for overexposure are shown in Fig 10A and for underex-

posure in Fig 10B.

Overexposure had a strong negative impact on the VJI of Plantseg, UNet+Watershed, and

Cellpose. The MARS and Mask R-CNN pipelines were not affected appreciably. Oversegmen-

tation increased significantly in the Plantseg and Cellpose (Fig 9C) more than other pipelines.

Undersegmentation (Fig 9D) was higher in PlantSeg and UNet+WS, while for others, it

remained at similar levels as on original images.

Underexposure was strongly reflected in the VJI results from Plantseg and also on MARS

(Fig 9D). Partial underexposure induced a high degree of oversegmentation in MARS, Plant-

Seg, and CellPose and high rates of undersegmentation in the UNet+WS pipeline. The Mask

R-CNN–based pipeline, although having low overall accuracy, was found to be less sensitive to

underexposure.

In conclusion, overall, for the Plantseg, UNet+Watershed, and Cellpose (or the UNet

based) pipelines, the effect of image intensity variations appears to be much stronger than

image noise or blur effects. Mask R-CNN and, to a lesser extent, MARS, on the other hand,

were relatively stable. MARS out of all the pipelines is found to be the most stable under the

effect of image artifacts, although it leads to increased oversegmentation in partially underex-

posed samples.

Fig 9. Impact of image exposure levels on segmentation quality of 5 pipelines. (A) Examples of partial over- and

underexposure. In (B), the VJI values for over- and underexposure are plotted together with the original VJI values for

unmodified stacks. Similarly in (C) and (D), the rates of over- and undersegmentation are plotted for the impacts of

over- and underexposure alongside those for the unmodified stacks. VJI, volume-averaged Jaccard index.

https://doi.org/10.1371/journal.pcbi.1009879.g009
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Strategy 4: Evaluating pipelines on unseen data types. We tested the performance of our

trained DL pipelines and MARS on data different from confocal images of floral meristems,

for example, on data from other microscopes and tissue types to observe the adaptability of

our methods to new and unseen data (the DL pipelines were originally trained on SAM

images). Images from 2 datasets were used for this and the results from all the pipelines are

presented below.

(a) Ascidian Phallusia mammillata (PM) embryo images. The 5 pipelines were used for

segmenting 3 images from the PM embryo dataset, described in [41]. These were captured

using multi-view Light-sheet (MuVi-SPIM) microscopes from fluorescently labeled cell mem-

branes. Ground truth segmentations for these images were also provided in the dataset.

Three test images and their ground truths were taken from each of the above datasets, and

all 5 pipelines are used to segment this data. Then, the VJI metric was used to estimate the seg-

mentation quality as done with the floral meristem test dataset (Fig 11D).

The DL pipelines Plantseg and UNet+WS provide high accuracy results on completely

unseen data without requirement of retraining (Fig 11D). The MARS algorithm after slight

tuning of the parameters (mainly image smoothing sigma) for this dataset provides the highest

accuracy segmentations. The MRCNN+WS results are similar to what we got previously from

this pipeline on floral meristem data. The Cellpose accuracy however falls from their average

values observed for floral meristem data.

(b) Arabidopsis ovule images. Three-dimensional confocal Images of Arabidopsis thaliana
ovules at various developmental stages were taken from the dataset provided by the authors of

the Plantseg pipeline [26]. Three stacks from this dataset along with their ground truths were

Fig 10. (A) Sample results from the 5 pipelines under the impact of image overexposure. (B) Results from the 5

pipelines under the impact of partial underexposure.

https://doi.org/10.1371/journal.pcbi.1009879.g010
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used for evaluating the 5 pipelines. Structurally, these are quite different from Arabidopsis flo-

ral meristems, and the segmentation results from the 5 pipelines along with the original and

ground truth images are shown in Fig 12A. Results from the evaluation are in Fig 12B. Note

that MARS needed extensive retuning for this dataset (discussed further in the Materials and

methods section).

Three-dimensional visualization of segmentation quality

At present, visualization and exploration of 3D image data are possible by software packages

such as ImageJ, ParaView, or MorphoGraphX [42]. However, only a few tools allow users to

project any extrinsic property over an image and to interact with a 3D image dataset at cellular

resolution. One such platform is Morphonet [43] (see S2 File), which is an open-source and

web-based platform for interactive visualization of 3D morphodynamic datasets. These data-

sets are created by converting image datasets (3D stacks) into corresponding 3D meshes. So

far, Morphonet has been used to project a variety of genetic and morphological information

such as gene expression patterns, cell growth rates, and anisotropy values on plant and animal

tissue images.

Here, we have developed a MophoNet-based method for interactive 3D visualization of seg-

mentation quality measures, by projecting VJI values on 3D meshes created from 3D confocal

images (Fig 13). The 3D meshes were created by the marching cubes algorithm [44] and

uploaded on MorphoNet. The VJI values for the image were computed and uploaded as a

quantitative property of each individual 3D cell of the image for each segmentation pipeline.

The VJI values were then viewed using color maps on the Morphonet browser.

The steps of the Morphonet-based visualization pipeline are provided as open resources in

the SegCompare Gitlab repository (described in S1 File) so that users can upload their own

Fig 11. Slice view of a sample (A) Ascidian embryo image and its (B) ground truth segmentation. (C) Ascidian

embryo image (PM03), ground truth, and segmentations by 5 pipelines. (D) VJI values for segmentation results using

Ascidian PM data and 5 pipelines. PM, Phallusia mammillata; VJI, volume-averaged Jaccard index.

https://doi.org/10.1371/journal.pcbi.1009879.g011
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segmentation results on our datasets from any segmentation method or pipeline and bench-

mark study their accuracy characteristics. The only requirement is that these segmentations

should be 16-bit labeled.tif files and must have their ground truth segmentations for evalua-

tion. With segmented and ground truth.tif stacks, the steps for Morphonet-based segmenta-

tion quality visualization include (see Fig 13A) (a) estimation of cell-by-cell VJI and

converting this information to Morphonet compatible format; (b) mesh calculation from the

ground truth segmented image and converting it to Morphonet compatible.obj format; and,

finall,y (c) logging in to Morphonet, creating a dataset, and uploading the mesh and VJI infor-

mation. All these steps are documented and implemented in an easy to use Python notebook

as described in S1 and S3 Files.

The benefits of the Morphonet-based visualization is that a user can (a) check the VJI value

for each cell by clicking on it; (b) impose a color mapping of the Jaccard index values so that

users can at a glance observe the overall distribution of the VJI values on the cells of the 3D

stack (Fig 13B) as well as locate cell regions where poor Jaccard values are found or concen-

trated; (c) interact with segmented data in 3D, e.g., rotate 360 degrees or zoom into cells or

slice through the segmented data in XYZ directions and inspect segmentation quality in any

inner cell layers; and (d) requires no special software or hardware installation. Also, data

uploaded on Morphonet can be shared with multiple users who can directly access it on the

Morphonet platform.

Examples of viewing segmentation quality on Morphonet is illustrated in Fig 13B where

mesh belonging to a test stack is uploaded on Morphonet and the VJI values for all the seg-

mentation pipelines are projected on it individually to observe the cell-by-cell variation in seg-

mentation quality.

Fig 12. (A) Ovule image and ground truth along with segmentations by 5 pipelines. (B) VJI values for segmentation

results using ovule data and 5 pipelines.

https://doi.org/10.1371/journal.pcbi.1009879.g012
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Sample segmentation accuracy data and 3D meshes in Morphonet compatible format are

provided in our repository: https://figshare.com/projects/3D_segmentation_and_evaluation/

101120.

Sample videos demonstrating various aspects of the 3D visualization process on Morphonet

may also be found under “Videos” in our repository described in S3 File: https://doi.org/10.

6084/m9.figshare.14686872.v1.

Discussion

In this study, we developed a benchmarking procedure for evaluating 3D segmentation pipe-

lines and used it to analyze 4 DL segmentation pipelines and a non-DL one. Initially, it was dif-

ficult to predict the relative performance of the individual pipelines, because they were applied

on diverse datasets and used different evaluation metrics. Most common evaluation strategies

consist of estimating simple numerical metric values, which also vary widely between the

Fig 13. (A) Process to view segmentation quality in 3D on Morphonet.Segmentation quality results (VJI values) for a

test stack (TS2-26h) from 5 pipelines displayed on Morphonet. Users can slice through each 3D stack in XYZ

directions and check the property (here VJI values) for each cell in the interior layers of the tissue structure. For

example, for each pipeline in the above figure, the left image shows the full 3D stack, and the right image shows the

cross section of the same stack after slicing 50% in the Z direction. VJI values are projected as a “property” or color

map on the cells. In this figure, a “jet” color map is used where red represents high, and blue represents low VJI values

as shown in the color bars alongside.3D, three-dimensional; VJI, volume-averaged Jaccard index.

https://doi.org/10.1371/journal.pcbi.1009879.g013
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methods. For example, in the Plantseg original paper [26], the variation of information metric

is used, while other studies are based on the Jaccard index, such as the SAU : PleasedefineSEGinthesentenceForexample; inthePlantsegoriginalpaper:::ifapplicable=appropriate:EG score in [34,31] or

the aggregated Jaccard index metric (AJI) in the original UNet+WS paper [24]. The numerical

results from these different metrics are difficult to compare since they are based on different

concepts and/or use different datasets. We have used here the VJI. Like the SEG metric defined

in [34,35], it is an average Jaccard index of all pairs of compared regions, but takes into account

the cell volume, thus reflecting the error per volume, rather than per cell. Therefore, the VJI is

more adapted to our data, where cell size can vary considerably.

Another problem is that the simple segmentation accuracy estimates do not provide a

detailed view about the types of segmentation errors present in the segmentation results or

how the errors are spatially distributed. Therefore, in addition to the VJI metric, we evaluated

the segmentations by measuring the rates of over- and undersegmentations, which indicates

the strengths and weaknesses of specific segmentation procedures. This spatial distribution of

segmentation quality was further addressed through a layer-wise evaluation in this paper. The

range of metrics presented here provided an in-depth analysis of the type and magnitude of

the errors as well as their spatial distributions produced. Each of the metrics gives its own spe-

cific information, which finally allowed us to define the advantages and shortcomings of each

segmentation pipeline. We have also provided full details and coding implementations of the

metrics used in the benchmarking process so that they can be reused by others.

The MorphoNet-based interactive evaluation is a fast and efficient way to visualize segmen-

tation quality superimposed on 3D representations. It comprises 3 steps—calculation of cell by

cell VJI values for a pair of stacks, creating a 3D mesh, and uploading these on Morphonet

using their Python API (S2 File). All these steps are covered in 2 Python notebooks provided

in the SegCompare Gitlab repository (S1 File). With this visualization, users can navigate

through 3D objects in an image and study the segmentation quality for different 3D sections

by slicing through the image data (converted to 3D meshes). Since the Morphonet visualiza-

tion is browser based, it does not require any software installation or special hardware for 3D

data visualization. This technique may therefore be added as a final step to any segmentation

pipeline, DL or non DL, for a 1-step analysis of the 3D segmentation performance.

We also tried to evaluate how much better the DL algorithms performed compared to the

non-DL algorithms, which is a recurrent question in DL and computer vision research. Results

of PlantSeg, the best performing DL pipeline of those tested here, were matched by those of the

non-DL MARS algorithm. However, without tuning, the MARS accuracy may degrade signifi-

cantly over completely different datasets as observed with the segmentations of ovule images

(see Materials and methods section). By contrast, DL models, especially PlantSeg, once trained,

performed well throughout. With regard to the time for execution, the MARS segmentation

would take much longer than the PlantSeg pipeline (25 to 30 minutes for an individual stack

versus 8 minutes, respectively; see Material and methods section).

The quantitative impact of image artifacts on the accuracies of segmentation pipelines are

not always analyzed in literature. This is why one of our protocol strategies was to estimate the

impact of image artifacts like blur, over-, and underexposure and 3 levels of Gaussian noise on

the VJI values and rates of over- and undersegmentation of the 5 segmentation pipelines. The

size of our test dataset therefore consisted of a total of 60 3D stacks with 10 original and 50 syn-

thetically modified ones. In addition, completely unseen 3D images from plant and animal

datasets were also segmented using our pipelines.

An important question is why the pipelines have different levels of performance. This could

be attributed firstly to the construction of the pipelines. We observed that, although 2D seg-

mentation pipelines may be adapted to perform 3D segmentations (e.g., as done in Cellpose

and MRCNN+WS), the end-to-end direct 3D segmentation pipelines (such as Plantseg and
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UNet+WS pipelines) achieved higher accuracies. This trend is observed in the segmentation

accuracy results of the pipelines for 10 original stacks as well as with the stacks having artifacts.

Another possible reason behind the difference in performance, especially between the 2 end-

to-end 3D pipelines (Plantseg and 3D UNet+WS), could be arising out of the postprocessing

strategies used in them. Plantseg provides 2 semantic output classes (background and bound-

aries), while 3D UNet+WS produces 3 classes (background, boundary, and cell interiors). For

the final instance segmentation, Plantseg relies on graph partitioning, while UNet+WS uses

watershed. It may also be noted that the 2 pipelines Plantseg and UNet+WS are designed spe-

cifically for boundary detection of fluorescently labeled cell boundaries, which matches the

type of data that we have used in our work. Cellpose, on the other hand, is built for segmenting

a wide range of bio-image data types such as cytoplasm, membrane, and cells without fluores-

cent markers. While the UNets of Plantseg and UNet+WS pipeline extracts and operates on

the cell boundary images, the Cellpose pipeline involves prediction of spatial gradient features

and a cell probability map that determines the inside and outside regions of cells. The Mask

R-CNN does not operate on the boundary prediction principle at all but uses object detection

and classification for prediction of segmented regions. Thus, the difference in performance of

the 4 DL algorithms could be attributed to their DL model architectures, the way the full seg-

mentation pipeline is constructed as well as on the type of data they are applied to.

We also observed that responses of DL pipelines are different to training data augmentation

(see S5 File). The performance of the Plantseg pipeline improves on adding images with arti-

facts (over- and underexposed images) in the training set. By contrast, the performance of the

UNet+WS pipeline does not generalize well after using the overexposure augmentation as its

performance degrades on normal images. Its performance, however, improves overall with the

underexposure augmentation. We therefore found that same augmentations may not neces-

sarily yield better results for all DL-based segmentation pipelines. It would also be of interest

to investigate the performance of these DL models if different types of image data (e.g., mem-

brane stained, nuclei stained images, images from other tissue types, etc.) are mixed in the

benchmark training set.

Data and code availability

All the data and coding implementations from this work are available as open resources. The

methods for reproduction of the segmentation pipelines and the segmentation evaluation tech-

niques are documented in the Gitlab repository named SegCompare (https://gitlab.inria.fr/

mosaic/publications/seg_compare) along with relevant resources in Jupyter notebooks. The

3D confocal training and test datasets used in this work are provided in open data repositories.

These are described in detail in S1 and S3 Files.

Materials and methods

Training data

The training data for all the DL algorithms comprise 3D confocal image stacks and their corre-

sponding ground truth segmentations. The structure of a 3D confocal image is shown in Fig 14.

The source of the training data is Arabidopsis thaliana SAM, which is a multicellular tissue

(Fig 15A and 15C) where cells at the surface grow radially outward from the central to the

peripheral zone. These data have been previously used and published in [36]. The SAM 3D

stacks were captured using a time-lapse confocal microscope for every 4 hours for 0 to approx-

imately 80 hours and were passed through a pipeline of image correction steps. The mean size

of the stacks is 150 × 512 × x × 512 pixels (zyx dimensions).
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For each stack, slice misalignments due to vibrations or microscope stage movements were

corrected via translation transformations using the StackReg module of ImageJ. Also, z-slices

with horizontal shifts were replaced with the closest z-slice with no shifts. Imaging errors dur-

ing vertical movement of the plant due to growth were also compensated for by estimating

stretching constants for each stack by comparing rapidly acquired low-z-resolution stacks with

slowly acquired high-z-resolution stacks (S10 Table in SI Appendix of [36]). In addition,

Gaussian and an alternative-sequential filtering was done for noise removal.

The ground truth data for training (Fig 15B) consists of the 3D segmentations of the above

image stacks done by 3D watershed followed by extensive manual corrections on a slice-by-

slice basis. For corrections of segmentation errors, cell boundaries were estimated from the

segmented images superposed on the original images for visual inspection. For errors due to

over- or undersegmentation or missing cells, the noise filter and watershed parameters were

adjusted until satisfactory segmentations were obtained for peripheral as well as central zones

Fig 14. A confocal image is made up by scanning through each point on a 2D plane of an object. The 3D confocal

image is made up of such 2D frames stacked along the Z-axis. Using the 2D Z slices, a full 3D view of the object can be

reconstructed. 2D, two-dimensional; 3D, two-dimensional.

https://doi.org/10.1371/journal.pcbi.1009879.g014

Fig 15. (A) Three-dimensional projection of 2 training images and (B) corresponding ground truth segmentations.

(C) Lateral (XY) and axial slices (XZ and YZ) of a sample confocal training image.

https://doi.org/10.1371/journal.pcbi.1009879.g015
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of the SAM images. In the ground truth images, voxels, which belong to the same cell, have the

same label.

Test dataset

For testing the segmentation algorithms, a dataset of ten 3D confocal image stacks was used

(described in [45]).Test Set 1 (TS1) contains 6 stacks (0-hour, 24-hour, 32-hour, 72-hour,

120-hour, and 132-hour time points) are from one meristem (FM1 in [46]). Time points of

Test Set 2 (TS2; 26 hours, 44 hours, 56 hours, and 69 hours) correspond to FM6 in Refahi and

colleagues. Images of the stacks are shown in Fig 4. These images are from the floral meristem

of Arabidopsis from initiation to stage 4. Corrections for alignment and vertical movements

are described in [46]. Expert ground truth segmentations of these test stacks were also available

to perform numerical comparisons between crops of the segmented results and corresponding

ground truths.

To evaluate the segmentations, crop regions were defined on each test stack and corre-

sponding ground truth image. This is done firstly to avoid low-intensity regions in the raw

images, which often correspond to instances of incorrect segmentations in the ground truth

images. Second, It was observed that some of the hybrid pipelines faced memory issues when

handling very large volume stacks. Therefore, the crops were done such that the volumes of all

raw test stacks could be processed by all pipelines. Homogeneous crops of the 10 raw images

and corresponding ground truth images were therefore created and used for evaluating all the

pipelines for all the experiments described in this work.

Software and libraries used

The software/libraries used in this work include Timagetk for implementing the MARS algo-

rithm (https://mosaic.gitlabpages.inria.fr/timagetk/index.html), Numpy [47], and Matplotlib

[48] for plotting the results. Fiji/ImageJ [49] was used for image visualization. StackReg [46]

was used by the creators of the training and test datasets. Tensorflow [50] and Pytorch were

used for implementing the DL models.

Training and segmentation details for DL pipelines

The 4 DL algorithms were first trained using the common meristem dataset. The details on

how these pipelines could be reproduced are described in the Gitlab repository (S1 File). For

training the DL networks and testing, a CUDA enabled NVIDIA Quadro P5000 GPU was

used with an Intel Xeon 3 GHz processor. Python 3.x is the default programming language for

training/testing all the segmentation pipelines and implementing the evaluation metrics.

Plantseg. The residual 3D UNet as described in [26] was used for training on our data.

The Residual 3D UNet is a variant of the 3D U-Net and comprises a contracting encoder and

an expanding decoder part but uses residual skip connections in each convolutional block in

the U-Net. For final segmentation of our test data, all 3 of the graph partitioning postproces-

sing strategies (GASP, Mutex, and Multicut) were found to provide similar results, so GASP

was used to obtain all the final segmentations from Plantseg that are evaluated in this work

(Fig 16).

The optimal parameters for training the 3D Residual UNet model of the Plantseg pipeline

were found through experimentation, and the best parameter values are reported here. For

training, the Adam optimizer was used with a learning rate of 0.0002. The loss function used

was BCEWithLogitsLoss after experimenting with other loss functions like Dice, BCEDice-

Loss, and BCEWithLogitsLoss. The weight decay was set to 1.0e-05. For data augmentation,

random flip and rotation was used along with standardization (Z-score normalization) of the
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raw image. The number of training epochs required was 500 until the validation loss reduced

no further. The evaluation metric used was BoundaryAdaptedRandError. The time taken per

epoch is around 550 seconds. Note that Plantseg training configuration allows setting of itera-

tions besides epochs, which was varied between 10,000 and 150,000 during the experiments.

UNet+Watershed. The 3D UNet module of the pipeline was trained using the custom

training dataset described above. The 3D UNet predicts 3 classes of output images from an

input 3D confocal stack. These classes are cell centroids, cell membranes, and background

maps (Fig 17B–17D). Dimensions of these 3 output images are the same as that of the input

stack.

Using these 3 predicted image classes a seed image is obtained by first thresholding the cen-

troid maps (0.8 times the max intensity), followed by its morphological opening (circular ker-

nel, size 5 × 5 × 5) and subtracting the membrane and background maps from the resultant

image. An example seed image is shown in Fig 17F, and the corresponding seeded watershed

segmentation output is shown in Fig 17G.

The optimal parameters for the 3D UNet model were found through trials with different

numbers of epochs (400 and 800), variation of the type of loss function used (mean-squared

error and custom loss), and batch size variations of 5 to 20. The optimal number of epochs

were found to be 400, and a batch size of 5 was used. The evaluation metric used was mean

Fig 16. Plantseg workflow. (A) Input image. (B) Boundary prediction. (C) Final segmentation.

https://doi.org/10.1371/journal.pcbi.1009879.g016

Fig 17. Three-dimensional UNet+ WS workflow. (A) An input confocal image (xy slice). (B) Class 0 prediction—

centroids. (C) Class 1 prediction—background. (D) Class 2 outputcell membranes. (E) An input confocal image (xy

slice). (F) Seed image slice. (G) Final segmented slice using watershed on (F).

https://doi.org/10.1371/journal.pcbi.1009879.g017
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intersection over union or MIoU. The custom loss function used during training is called

weighted_binary_class_crossentropy and is a binary cross entropy–based loss with class

weighting (0.3 for each of 3 output classes). The optimizer was Adam, and a learning rate of

0.001 was used along with batch normalization. For data augmentation, flipping and rotation

was used. The UNet watershed pipeline as proposed by the authors does not include any data

normalization function in their training configuration. Batch size is set to the default value of

5. The time taken per epoch is around 750 seconds.

Cellpose. The Cellpose pipeline uses a 2D UNet to predict horizontal (X) and vertical (Y)

flows along with a pixel probability map for each 2D test image. Using the XY intensity gradi-

ents or vector fields, pixels belonging to each object to be segmented can be aggregated around

the centroid region for that object. For the final segmentation in 3D of the test sets, Cellpose

uses the 2D trained model to predict the horizontal and vertical gradients for each of the XY,

XZ, and YZ sections of a 3D volume. These 6 predicted gradients are then averaged pairwise to

obtain the final XYZ vector map in 3D.

The 2DUNet module was trained using 2D slices (512 × 512 pixels) from the custom train-

ing dataset along with their corresponding 2D masks. The tunable parameters of the method

such as flow_threshold, cell probability threshold, and cell diameter were set to the default val-

ues of 0.4, 0.0, and 30 pixels, respectively.

Optimal values of different model parameters used for the Cellpose training included

batch_size = 8, diameter = 30, learning_rate = 0.2, weight_decay = 0.00001, and momen-

tum = 0.9. Rotation and flipping were used as augmentations. For data normalization, the

authors of the pipeline use a custom function that normalizes images so that 0.0 is first percen-

tile and 1.0 is 99th percentile of image intensities. The same function was used by us. The

model used a SGD optimizer and a SigmoidBinaryCrossEntropyLoss loss function and the

training took 2,050 epochs. The learning rate hyperparameter was tuned for this model

between 0.0004 and 0.2 to observe the results. The best results were obtained for a learning

rate of 0.0008. The time taken per epoch is around 600 seconds.

Mask RCNN. Mask R-CNN (also called MRCNN in this paper) uses a backbone network

such as Resnet-50 or Resnet-101 to extract image features followed by generating region pro-

posals of objects (to be segmented) using a RPN. These region proposals are refined and fed to

a fully convolutional classifier to identify object classes. The final output of MRCNN includes

(1) boundary box for each object instance; (2) pixel level mask for each object identified; (3)

class predictions for each object instance; and (4) confidence score of each prediction.

In the MRCNN with watershed pipeline, using a 2D trained Mask R-CNN model, the cell

regions in each Z slice of a 3D volume are predicted (Fig 18C). The predicted Z slices with the

identified cell regions are stacked together to produce a 3D binary seed image, which is then

labeled using a 26-neighbor connected components labeling method. The labeled seed image

is then used for watershed-based postprocessing to obtain the final 3D instance segmentation.

The Mask R-CNN algorithm with a Resnet 101 backbone network was trained using 2D

images along with instance masks for each object (to be segmented) in the image. Using Resnet

50 as a backbone network did not give satisfactory results. Training images (2D slices) from

the custom training dataset were used, and the instance masks were generated from the corre-

sponding ground truth 2D masks (each labeled cell region forms an instance mask) as shown

in Fig 18A. Both the raw image and the set of instance masks for each image are then used for

training the Mask R-CNN network.

The Mask R-CNN model provides a range of hyperparameters to tune. For training the

Mask R-CNN model in this work, the parameters like RPN threshold, RPN anchor scales,

number of anchors per image, number of training ROI’s per image, etc., were varied and tested

through experiments. The optimal values for these were found as follows: RPN threshold = 0.9,
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RPN anchor scales = (8, 16, 32, 64, and 128), number of anchors per image, number of training

ROI’s per image = 300, and detection max instances = 400. An SGD optimizer was used with a

learning rate of 0.001, momentum of 0.9, and weight decay of 0.0001. The loss function used

was Binary cross entropy. Other loss functions are also defined for this model such as rpn_clas-

s_loss (RPN anchor classifier loss), rpn_bbox_loss (RPN bounding box loss), mrcnn_class_loss

(loss for the classifier head), and mrcnn_bbox_loss (Loss for Mask R-CNN bounding

box refinement) values were also monitored during training. The data augmentations used

include random flipping and rotation of the images, and since no normalization function is

defined in the original configuration, we followed the same. The time taken per epoch is

around 600 seconds.

The training loss curves obtained at the end of training each of the models from the 4 DL

pipelines are plotted in Fig 19. These show the optimal number of training epochs required for

the models of the 4 pipelines (while training on normal images). The training time for the DL

models in each pipeline are given in Table 2. The parameters to tune for each pipeline is sum-

marized in Table 3.

MARS. No training is required for MARS, but it can require adjusting of its parameters to

obtain the best segmentation results. These include the h-minima value and Gaussian smooth-

ing sigma for the images (Table 3). We made an estimate of the execution time of the MARS

algorithm on one of our sample test stacks (TS1-132h, volume = 700 × 700pixels × 297 z slices)

and a single run of the algorithm takes 78 seconds on a CPU (measured from the start to finish

of the algorithm execution). The parameters to tune include h-minima (integer values starting

from 1, upper limit depending on image intensities) and gaussian_sigma (fractional float val-

ues varying between 0 and 1) for image smoothing. The initial setting of the parameter values

and expertise of the user influences a lot the number of times these parameters need to be

adjusted. So for a normal user, trial runs with 10 step changes of gaussian sigma and 10 of the

h-minima parameter required a total of around 30 minutes. Additionally, manual supervision

is required for inspecting the quality of segmentation in each slice of the stack, which could be

estimated to take around 1 to 2 minutes after every run of the algorithm. Thus, the overall time

required by MARS for segmenting a large stack like the one used above could reach up to 45

minutes. On the other hand, Plantseg (using a trained model) took 8 minutes for segmenting

Fig 18. MRCNN+Watershed workflow. (A) Creation of instance masks for training MRCNN. (B) Example confocal

slice. (C) Two-dimensional predictions by MRCNN. (D) Binary seed image created from identified cell regions in (C).

(E) Same slice after 3D segmentation using watershed on the binary seed image. 3D, three-dimensional.

https://doi.org/10.1371/journal.pcbi.1009879.g018
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the same stack on a GPU-based computer and did not require any parameter tuning during

this phase.

Requirements of parameter tuning for MARS vary from one dataset to another and may be

necessary for stacks within the same dataset. For example, MARS parameters used to segment

our TS1 and TS2 stacks were hmin = 2 and sigma = 0.4. However, on another dataset (ovule

images; see section Results, Strategy 4: Evaluating pipelines on unseen data types), a lot of tun-

ing was necessary (Fig 20). For this dataset, we had to explore hmin values between 2 and 30

and sigma values in the range 0.2 to 0.8. Overall, more than a 100 combinations of hmin and

sigma parameters had to be tested to identify the best one that yields the highest VJI. The best

accuracy (given in Fig 12B) was obtained for hmin values of 27, 27, and 9, respectively, for the

images ovule 1, 2, and 3 stacks, which is very different from the values used for our TS1 and

TS2 sets.

Evaluation metrics

Volume-averaged Jaccard index. The Jaccard index is a metric that estimates the similar-

ity between 2 regions of labeled images, G and P, in terms of the intersection between them

divided by their union [51]. Let us denote Gi and Pj, these 2 overlapping regions, and their Jac-

card index is defined as

JI Gi; Pj

� �
¼
jGi \ Pjj

jGi [ Pjj
; ð1Þ

where |X| denotes the volume of region X. We also define an asymmetric inclusion index

Fig 19. Loss versus epoch plots for training the models from 4 pipelines.

https://doi.org/10.1371/journal.pcbi.1009879.g019
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metric between 2 regions defined as

I Gi; Pj

� �
¼
jGi \ Pjj

jGij
ð2Þ

Given a set of M labeled regions {Gi} in the ground truth image G, we associate with each

cell region index i a cell region index A(i) = j in the image P containing the N predicted seg-

mentations Pj, using the Jaccard index

AðiÞ ¼ argmax
j2½2;N�

JIðGi; PjÞ ð3Þ

Note that if the cell Gi has no intersection with any cell of P, we set A(i) = 0. Note that index

i varies over [2,M] and j varies over [2,N] as background regions are not included in this esti-

mation and in both the segmented and ground truth images (the background label is set as 1).

Similarly, using the asymmetric index each region Gi of the image G is associated with one

region index B(i) = j in the image P according to

BðiÞ ¼ argmax
j2½1;N�

IðGi; PjÞ ð4Þ

Reciprocally, each region Pj of the image P is associated with one region index B0(j) = i in

the image G:

B0ðjÞ ¼ arg max
i2½1;M�

IðPj; GiÞ ð5Þ

Table 2. Training details for all DL pipelines.

Pipeline Deep model Optimizer Loss function(s) Epochs Training time Augmentations

Plantseg 3D Residual UNet Adam BCE with logits loss 500 76 hours Rotate, flip, elastic deformation

3D UNet+WS 3D UNet Adam Weighted binary class cross entropy 400 83 hours Rotate, flip

Cellpose 2D UNet SGD Sigmoid Binary Cross Entropy 2,050 34 hours Rotate, flip

MRCNN+WS Mask R-CNN SGD Binary cross entropy 200 33 hours Rotate, flip

3D, three-dimensional.

https://doi.org/10.1371/journal.pcbi.1009879.t002

Table 3. Parameters to tune for each segmentation pipeline.

Pipelines Parameters to tune

Plantseg Preprocessing: Interpolation (up to degree 2), Gaussian, or median filter

Postprocessing: CNN predictions threshold, watershed seeds sigma, watershed boundary

sigma, superpixels minimum size (voxels), and cell minimum size (voxels)

3D UNet

+ Watershed

Preprocessing: None

Postprocessing: Morphological opening/erosion kernel sizes for estimating watershed seeds

from UNet outputs

Cellpose Preprocessing: None

Postprocessing: Cell diameter, cell probability threshold, and flow error threshold

MRCNN

+ Watershed

Preprocessing: None

Postprocessing: Morphological opening/erosion kernel sizes for estimating watershed seeds

from MRCNN outputs

MARS h-minima and Gaussian smoothing sigma for image

https://doi.org/10.1371/journal.pcbi.1009879.t003
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We then define an average metric between 2 images P and G, called volume-averaged Jac-

card, which assesses how well the regions of 2 images overlap Index (VJI):

VJI G; Pð Þ ¼

PM
i¼2
jGijJIðGi; PAðiÞÞ
PM

i¼2
jGij

; ð6Þ

where Gi and Pj represent regions in, respectively, images G and P corresponding to either

ground truth or predicted labeled cells. In this equation, it is assumed that JI(Gi, P0) = 0 for

any i. Background regions are not included in this estimation, and in both the segmented and

ground truth images, the background label is set as 1 (index i starts at 2 in (6)).

Rates of over- and undersegmentation to evaluate the quality of 3D segmentation meth-

ods. The VJI is a measure that quantifies the degree of overlap between 2 segmentations,

although it does not indicate whether the cell segmentation errors are due to over- or under-

segmentation. In order to detect these different types of errors, we use the asymmetric index

(2) to automatically determine a region-to-region correspondence map [52].

Using the previous inclusion index metrics, a correspondence map (Fig 21) is obtained by

(1) making region-to-region association from the segmentation G to segmentation P then (2)

repeating the procedure in the opposite direction, i.e., from image P to image G before (3)

building the resulting reciprocal associations between sets of regions.

Fig 20. (A) Original ovule image. (B) Impact of using hmin = 2 and sigma value = 0.8 for MARS. (C) Result of MARS

on the same image after tuning parameters.

https://doi.org/10.1371/journal.pcbi.1009879.g020

Fig 21. Segmentation quality metric [52] applied to outputs from 5 segmentation pipelines and types of errors

displayed as a color map (on a common Z slice). The green cell regions represent regions of complete overlap between

ground truth and predicted segmentations (i.e., regions of fully correct segmentation). Red regions represent over and

blue regions represent undersegmentation errors. White regions are regions where cells were mistaken for

background. The benefit of this metric is that it helps to estimate the rate of over- and undersegmentations as a

volumetric statistics and as spatial distributions.

https://doi.org/10.1371/journal.pcbi.1009879.g021
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The 2 first steps consist of computing 2 values B(i) and B0(j) for each region index i of the

first image and each region index j of the second image using (4) and (5), respectively. Using

the previous computed indexes, set of pair of associated regions index between image P and G

can be defined by

A ¼ fði; jÞjBðiÞ ¼ j or B0ðjÞ ¼ iÞg ð7Þ

Let us define the 2 subsets A ðiÞ ¼ fjjði; jÞ 2 Ag and A0ðjÞ ¼ fijði; jÞ 2 Ag corresponding

to the region indexes j associated with a given region index i and the region indexes i associ-

ated with a region index j, respectively. We then consider the different cases of resulting recip-

rocal mapping:

• one-to-one (exact match between Gi and Pj) if A ðiÞ ¼ fjg and A0ðjÞ ¼ fig;

• one-to-many (oversegmentation of Gi) if
jAðiÞj > 1 and 8j 2 AðiÞ; A0ðjÞ ¼ fig or A0ðjÞ ¼ ;;

• many-to-one (undersegmentation of Gi) if
jA0ðjÞj > 1 and 8i 2 A0ðjÞ; AðiÞ ¼ fjg or AðiÞ ¼ ;; and

• many-to-many otherwise.

It has to be noted that the correspondence involving the image background is treated separately,

i.e., without considering a reciprocal association: The regions of segmentation G that maximize

their inclusion with the background of the image P are associated and vice versa. From the resulting

reciprocal mapping, a global rate of over- and undersegmentation can be calculated by counting

the number of cells of the over- or undercorrespondence regions in the image P. Because of regions

where tissues are not segmented in the ground truth segmentations, the predicted cells associated

with the reference background are not counted in the final rate of over- and undersegmentation.

Simulation of image artifacts

The effects of noise, blur, and intensity variations are simulated on the test set of 10 confocal

images to evaluate their impact on the segmentation quality of the pipelines. The procedure

for simulation of these artifacts are described below.

Image noise. The Gaussian noise was added to the images. The noise variable z is repre-

sented as the probability density function (PDF) P(z) and given by

P zð Þ ¼
1

s
ffiffiffiffiffiffi
2p
p e

� ðz� mÞ2

2s2 ; ð8Þ

where μ is the mean, and σ is the standard deviation (or the square of the variance). Gaussian

noise was generated with mean = 0.0 and 2 different values of noise variance ([0.04, 0.08]) and

added to an image.

Image blur. To simulate motion blur, the test confocal image i(x,y) is convolved with a

horizontal motion blur kernel w(dx, dy) of size 4 × 4 to get the final blurred image b(x,y).The

convolution in the spatial domain is defined by Eq 9 below:

bðx; yÞ ¼ w � iðx; yÞ ¼
Pa

dx¼� a

Pb
dy¼� bwðdx; dyÞ iðxþ dx; yþ dyÞ ð9Þ

The kernel used for simulating the image blur is a 9 × 9 horizontal motion blur kernel as

shown in Fig 22 below.

Image intensity variations. Partially bright regions in microscopy images may be caused

by inhomogeneous illumination sources and shadow effects are mostly caused by presence of
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Fig 22. Kernel used for simulating the blur effect on confocal images.

https://doi.org/10.1371/journal.pcbi.1009879.g022

Fig 23. Modification of image intensity (inside selected area within the yellow box). (A) Image intensity transition

under partial overexposure. (B) Image intensity variations due to imposition of underexposure.

https://doi.org/10.1371/journal.pcbi.1009879.g023
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light absorbing objects or obstructions [39,40,53,54]. To emulate the effect of intensity varia-

tions within an image, partial overexposure (Fig 23A) and random shadow regions (Fig 23B)

are imposed (individually) on the test images. In order to impose the partial overexposure

effect, for each Z slice of a given 3D test stack, a brightness mask is created, which is a 2D array

having the same size as the x, y dimensions of the 3D stack. This 2D brightness mask array is

filled with gray integer values of 255 for the left half of the mask array (Fig 23A). This bright-

ness mask is then numerically added to each Z slice array with 30% transparency (using

OpenCV function cv2.addweighted) to obtain the partially brightened image array as shown

in Fig 23A.

For creating the randomly shadowed or underexposed regions, a shadow mask is created

with random dark geometrical patch areas for each 2D Z slice of a 3D test stack. The dark

patches are created by reducing image pixel intensities within the patch areas by a factor of

30% of the original intensity values. Fig 23A and 23B shows the intensity profiles within the

yellow boundary boxes impacted due to the over- and underexposure effects, respectively.

Within the overexposed regions, image intensities are higher than original values and vice

versa for underexposed regions.
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directional DSLM for confocal detection without striping artifacts. bioRxiv. 2020. https://doi.org/10.1364/

BOE.390916 PMID: 32637245

40. Cheng P, Kriete A. Image Contrast in Confocal Light Microscopy 1990.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009879 April 14, 2022 32 / 33

https://doi.org/10.1109/CVPR.2017.39
https://doi.org/10.1109/CVPR.2017.39
https://doi.org/10.1101/324186
https://doi.org/10.1109/ISBI.2019.8759242
https://doi.org/10.1109/ISBI.2019.8759242
https://doi.org/10.1038/s41592-018-0261-2
https://doi.org/10.1038/s41592-018-0261-2
http://www.ncbi.nlm.nih.gov/pubmed/30559429
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1186/s12859-018-2375-z
https://doi.org/10.1186/s12859-018-2375-z
http://www.ncbi.nlm.nih.gov/pubmed/30285608
https://doi.org/10.7554/eLife.57613
http://www.ncbi.nlm.nih.gov/pubmed/32723478
https://doi.org/10.1101/2020.04.14.041020
https://doi.org/10.1155/2020/8351725
https://doi.org/10.1038/nmeth.4473
https://doi.org/10.1038/nmeth.4473
http://www.ncbi.nlm.nih.gov/pubmed/29083403
https://doi.org/10.1109/TPAMI.2018.2838670
http://www.ncbi.nlm.nih.gov/pubmed/29994298
https://doi.org/10.1038/s41592-020-01018-x
http://www.ncbi.nlm.nih.gov/pubmed/33318659
https://doi.org/10.1016/j.ijcard.2019.07.016
http://www.ncbi.nlm.nih.gov/pubmed/31375334
https://doi.org/10.1371/journal.pcbi.1008193
https://doi.org/10.1371/journal.pcbi.1008193
http://www.ncbi.nlm.nih.gov/pubmed/32925919
https://doi.org/10.1038/nmeth.1472
https://doi.org/10.1038/nmeth.1472
http://www.ncbi.nlm.nih.gov/pubmed/20543845
https://doi.org/10.1073/pnas.1616768113
https://doi.org/10.1073/pnas.1616768113
http://www.ncbi.nlm.nih.gov/pubmed/27930326
https://doi.org/10.1038/srep20640
http://www.ncbi.nlm.nih.gov/pubmed/26884148
https://doi.org/10.1364/BOE.390916
https://doi.org/10.1364/BOE.390916
http://www.ncbi.nlm.nih.gov/pubmed/32637245
https://doi.org/10.1371/journal.pcbi.1009879
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53. Müllenbroich MC, Silvestri L, Di Giovanna AP, Mazzamuto G, Costantini I, Sacconi L, et al. High-Fidelity

Imaging in Brain-Wide Structural Studies Using Light-Sheet Microscopy. eNeuro. 2018; 5. https://doi.

org/10.1523/ENEURO.0124-18.2018 PMID: 30627630

54. Mayer J, Robert-Moreno A, Sharpe J, Swoger J. Attenuation artifacts in light sheet fluorescence micros-

copy corrected by OPTiSPIM. Light Sci Appl. 2018; 7:70. https://doi.org/10.1038/s41377-018-0068-z

PMID: 30302241

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009879 April 14, 2022 33 / 33

https://doi.org/10.1126/science.aar5663
http://www.ncbi.nlm.nih.gov/pubmed/32646972
https://doi.org/10.7554/eLife.05864
https://doi.org/10.7554/eLife.05864
http://www.ncbi.nlm.nih.gov/pubmed/25946108
https://doi.org/10.1038/s41467-019-10668-1
https://doi.org/10.1038/s41467-019-10668-1
http://www.ncbi.nlm.nih.gov/pubmed/31249294
https://doi.org/10.1021/jm100060b
http://www.ncbi.nlm.nih.gov/pubmed/20662534
https://doi.org/10.1016/j.devcel.2021.01.019
http://www.ncbi.nlm.nih.gov/pubmed/33621494
https://doi.org/10.1109/83.650848
http://www.ncbi.nlm.nih.gov/pubmed/18267377
https://doi.org/10.1038/s41586-020-2649-2
http://www.ncbi.nlm.nih.gov/pubmed/32939066
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2019
http://www.ncbi.nlm.nih.gov/pubmed/22743772
https://doi.org/10.1186/s12880-015-0068-x
http://www.ncbi.nlm.nih.gov/pubmed/26263899
https://doi.org/10.1523/ENEURO.0124-18.2018
https://doi.org/10.1523/ENEURO.0124-18.2018
http://www.ncbi.nlm.nih.gov/pubmed/30627630
https://doi.org/10.1038/s41377-018-0068-z
http://www.ncbi.nlm.nih.gov/pubmed/30302241
https://doi.org/10.1371/journal.pcbi.1009879

