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Abstract

Implementation of genomic tools is desirable to increase the efficiency of apple breeding. Recently, the multi-environment apple
reference population (apple REFPOP) proved useful for rediscovering loci, estimating genomic predictive ability, and studying genotype
by environment interactions (G × E). So far, only two phenological traits were investigated using the apple REFPOP, although the
population may be valuable when dissecting genetic architecture and reporting predictive abilities for additional key traits in apple
breeding. Here we show contrasting genetic architecture and genomic predictive abilities for 30 quantitative traits across up to six
European locations using the apple REFPOP. A total of 59 stable and 277 location-specific associations were found using GWAS, 69.2%
of which are novel when compared with 41 reviewed publications. Average genomic predictive abilities of 0.18–0.88 were estimated
using main-effect univariate, main-effect multivariate, multi-environment univariate, and multi-environment multivariate models.
The G × E accounted for up to 24% of the phenotypic variability. This most comprehensive genomic study in apple in terms of trait-
environment combinations provided knowledge of trait biology and prediction models that can be readily applied for marker-assisted
or genomic selection, thus facilitating increased breeding efficiency.

Introduction
Apple (Malus × domestica Borkh.) is the third most pro-
duced fruit crop worldwide [1]. Since its domestication
in the Tian Shan mountains of Central Asia, the culti-
vated apple developed into a separated near-panmictic
species [2]. Over the centuries, thousands of apple cul-
tivars have been propagated and conserved thanks to
grafting [3]. Extensive relatedness among cultivars with
a strong influence of a few founders through the history
of apple breeding has been reported despite their high
genetic diversity [4–6]. Only a fraction of the existing
cultivars are grown commercialy [3] and they require an
intensive use of pesticides for crop protection. To diver-
sify apple production, it is desirable to produce new cul-
tivars for sustainable intensive agriculture and adapted
to future climates, while remaining attractive to con-
sumers.

Apple breeding is labor- and time-intensive, but
selection efficiency can be improved by integrating
DNA-informed techniques into the breeding process
[7]. Marker-assisted selection allows breeders to predict
the value of a target trait based on its association
with a genetic marker. The method leads to removal of
inferior seedlings without phenotyping, thus increasing
selection intensity and/or reducing the labor costs when
decreasing the number of individuals passing to the
next selection step [7]. Quantitative trait locus (QTL)
mapping has been traditionally used to investigate the
genetic basis of variation in traits such as pathogen
resistance, phenology, and some fruit quality traits [8–11].
To bridge the gap between the discovery of marker-trait
associations and their application in breeding, protocols
that transfer the knowledge obtained by QTL analyses
into DNA tests were established [12, 13]. However,
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marker-assisted selection in apple remains restricted
to a limited number of traits associated with single
genes or a handful of large-effect QTL, such as pathogen
resistance and fruit firmness, acidity, or color [14]. DNA-
informed selection is rarely deployed in apple when
breeding for quantitative traits with complex genetic
architecture, though this task became feasible with the
recent technological developments in apple genomics.

In the genomics era, advancements in genotyping
and sequencing technologies led to a broad range of
new tools for genetic analyses. In the case of apple,
several reference genomes have been produced [15–
19], single nucleotide polymorphism (SNP) genotyping
arrays of different densities such as 20 K or 480 K
SNPs have been developed [20, 21], and genotyping-
by-sequencing methods have been adopted [22, 23].
Genome-wide association study (GWAS) emerged as a
method for exploring the genetic basis of quantitative
traits [24]. GWAS in apple has been used to identify
associations between markers and various traits such
as fruit quality and phenology traits [22, 23, 25–29].
The associations found with GWAS can be translated
into DNA tests for marker-assisted selection. Besides
GWAS, genomic selection was developed to exploit the
effects of genome-wide variation at loci of both large
and small effects on quantitative traits using a single
model [30] and is sometimes called marker-assisted
selection on a genome-wide scale [31]. For genomic
selection, prediction models are first trained with
phenotypic and genomic data of a training population.
In a second step, the models predict the performance
of breeding material based on the genomic data alone.
These genomic estimated breeding values are then used
to make selections among the breeding material, thus
increasing the breeding efficiency and genetic gain.
Several studies have assessed genomic predictive ability
for apple quantitative traits related to fruit quality and
phenology [22, 23, 29, 32–36]. Genomic selection can
double genetic gain, as demonstrated by yield traits in
dairy cattle [37], but the accuracy of genomic prediction
for yield traits in apple has not been studied. Analyses of
genomic datasets beyond 100 K SNPs have been limited
to flowering and harvest time (GWAS and genomic
prediction) [26, 36], fruit firmness and skin color (GWAS)
[28, 38]. Marker density, trait architecture, and heritability
have been shown to differentially affect prediction
performance in simulated data and for apple [34, 36, 39]
and their impact on genomic analyses should therefore
be further empirically tested. Moreover, GWAS for the
same traits measured at different locations, the effect of
genotype by environment interaction (G × E) on genomic
predictive ability, and predictions with multivariate
genomic prediction models have not been evaluated yet
in apple.

Plants are known for their strong phenotypic response
to environmental factors, a phenomenon regularly
tested in plant breeding using multi-environment trials.
In general, when statistical models are applied to

measurements from multi-environment trials, the effect
of environment on individuals remains constant at
single locations, but the G × E leads to changes in the
ranking of genotypes across locations. With an increasing
proportion of G × E effect relative to genotypic effect,
both heritability of average effect across environments
and response to selection decrease [40]. A noticeable
effect of contrasting European environments and G × E
on two apple phenology traits – floral emergence and
harvest date – has been reported, which demands testing
the multi-environment modelling approaches in apple
[36]. A location-specific GWAS may be used to identify
loci with stable effects across environments and loci
specific to individual locations [41]. Multi-environment
prediction models can account for G × E by explicitly
modeling interactions between all available markers
and environments [42]. These models can outperform
more simple modelling approaches that ignore G × E [42–
44]. Additionally, taking advantage of information that
traits provide about one another, a multivariate (also
called multi-trait) genomic prediction can be applied.
This method may be useful in case the assessment of one
trait remains costly, but another correlated trait with less
expensive measurement is available or can be assessed
more easily [45]. The multivariate prediction can also
be extended to a multi-environment approach when
treating measurements from different environments as
distinct traits [46].

A population of 269 diverse apple accessions from
across the globe and 265 progeny from 27 parental
combinations originating in recent European breeding
programs constituted our apple reference population
(apple REFPOP) [36]. The apple REFPOP had a high-density
genomic dataset of 303 K SNPs and was deemed suitable
for the application of genomics-assisted breeding [36].
Combined with extensive phenotypic information, the
apple REFPOP provided the groundwork for marker-
assisted and genomic selection across contrasting Euro-
pean environments. Hence, 30 traits related to productiv-
ity, tree vigor, phenology, and fruit quality were measured
in the apple REFPOP during up to three years and at up to
six locations with various climatic conditions of Europe
(Belgium, France, Italy, Poland, Spain, and Switzerland).
GWAS was performed to dissect the genetic architecture
of the studied traits, identify associated loci stable
across locations and location-specific loci, and to observe
signs of selection on loci of large effect. Integrating
genetic diversity of the cultivated apple accessions and
progeny with phenotypic data measured in multiple
environments, the goal was to estimate predictive ability
and patterns of G × E for key traits in apple breeding.
Compared to previous genomic prediction studies
carried out for a smaller number of genotypes and/or
environments, this study aimed to obtain improved
predictive ability for productivity, tree vigor, phenology,
and fruit quality traits using main-effect univariate,
main-effect multivariate, multi-environment univariate,
and multi-environment multivariate genomic prediction
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models. Finally, a critical analysis of our results provided
recommendations for future implementation of genomic
prediction tools in apple breeding.

Results
Phenotypic data analysis
The accession and progeny groups of the apple REFPOP
were evaluated for 30 quantitative traits at up to six loca-
tions. The measurements for ten traits were collected at
one location, while the remaining 20 traits were available
from at least two locations (three traits were measured in
two locations, three traits in four locations, eleven traits
in five locations and three traits in six locations, Figure 1,
Supplementary Table 1). Most traits [25] were assessed
during three seasons while five traits were measured
during two seasons. The traits showed unimodal as well
as multimodal distributions (Supplementary Figure 1).
Differences of various extent between the accession and
progeny groups were observed (Supplementary Figure 2).
Removing environmental effects from the phenotypic
data, best linear unbiased prediction of random effects of
genotypes, hereafter called clonal values, were produced
across all locations and separately for each location.
As expected, high phenotypic clonal values correlations
and genomic breeding values correlations (>0.7) between
traits were observed within trait categories, namely the
phenology, productivity, fruit size, outer fruit, inner fruit,
and vigor category (Figure 2a). A few moderate positive
phenotypic clonal values correlations (0.3–0.7) were
found between trait categories such as harvest date and
fruit firmness (0.51), yellow color and russet cover (0.55),
soluble solids content and russet cover (0.36), or between
yield (weight and number of fruits) and vigor trait
category (0.36–0.51, Figure 2a). High average phenotypic
clonal values correlations were observed between the
environments (combinations of location and year) for
harvest date (0.82 [0.73, 0.95]) or red over color (0.80 [0.62,
0.92]) whereas low average phenotypic clonal values
correlations (<0.3) were present between environments
for flowering intensity (0.18 [−0.49, 0.68]) and trunk
increment (0.16 [−0.31, 0.55], Supplementary Table 2,
Supplementary Figure 3). A shift of the progeny group
compared to the accession group towards smaller,
more numerous and less russeted fruits was observed
(Figure 2b).

Genome-wide association studies
Across-location GWAS for 20 traits measured at more
than one location (Figure 1, Supplementary Table 1)
and location-specific GWAS for all 30 traits were
used to explore the genetic basis of the assessed
traits. The quantile-quantile plots showed that the
observed and expected distributions of p-values cor-
responded well and no apparent inflation of p-values
was found (Supplementary Figure 4 and 5). Across-
location GWAS revealed 59 significant (−log10(p) >

6.74) marker-trait associations in 18 traits (Figure 3a,

Figure 1. Locations and the respective number of phenotyping seasons
for each trait. Locations of the measurements are labeled as: BEL –
Belgium, CHE – Switzerland, ESP – Spain, FRA – France, ITA – Italy, POL –
Poland. Traits measured at a single location are labeled with an asterisk.

Supplementary Table 3). No significant associations
were observed for trunk diameter and russet cover in the
across-location GWAS. In the location-specific GWAS, 309
significant marker-trait associations for all 30 traits were
discovered (Figure 3b, Supplementary Table 3). Of these
309 marker-trait associations, 32 associations for twelve
traits were shared between the location-specific GWAS
and the across-location GWAS (Supplementary Table 3).
The coefficient of determination (R2) of significant
associations was the largest for red over color (0.71),
green color (0.55) and harvest date (0.42, Figure 3c,
Supplementary Table 3).

Significant associations with different traits co-
localized at identical positions or occurred very close
in some genomic regions (distance between marker posi-
tions below 100 kb, Figure 3c, Supplementary Table 3).
In the across-location GWAS, a marker significantly
associated with harvest date on chromosome 3 (posi-
tion 30 681 581 bp) was located next to two markers
associated with fruit firmness (positions 30 587 378
and 30 590 166 bp). The same marker on the position
30 681 581 bp was also associated with harvest date,
ground color, overall russet frequency and soluble
solids content measured at several different locations
(location-specific GWAS). Similarly, the association with
harvest date on chromosome 16 (position 9 023 861 bp)
was closely located to a marker associated with fruit
firmness (position 8 985 888 bp) in the across-location
GWAS. The traits related to bitter pit analyzed in the
across-location GWAS, i.e. bitter pit frequency and grade,
showed significant associations on chromosome 16,
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Figure 2. Exploratory phenotypic data analysis of the studied quantitative apple traits. a Pairwise correlations between traits with the phenotypic
clonal values and genomic breeding values correlations in the lower and upper triangular part, respectively. Phenotypic clonal values correlation was
assessed as Pearson correlation between pairs of global clonal values (across-location clonal values with the addition of location-specific clonal values
for traits measured at a single location), the genomic breeding values correlation as Pearson correlation between pairs of genomic breeding values
estimated from a G-BLUP model. Trait categories are outlined along the vertical axis. Traits measured at a single location are labeled with an asterisk.
b Principal component analysis biplot based on global clonal values.

position 7 681 416 bp. Several associations with traits
measuring fruit skin russet in the across-location GWAS
co-localized on chromosome 12 (position 23 013 281 bp,
russet frequency on cheek and in the eye) and 17 (posi-
tion 27 249 890 bp, overall russet frequency and russet
frequency at stalk). A marker at position 18 679 105 bp
on chromosome 1 was associated with both single
fruit weight from the across-location GWAS and fruit
diameter from Switzerland (found with the location-
specific GWAS). The association with marker at position

2 005 502 bp on chromosome 8 was shared between
fruit diameter and fruit volume from Switzerland and
single fruit weight from Belgium. On chromosome 11,
fruit diameter, fruit volume and single fruit weight
from Switzerland, as well as single fruit weight from
Belgium, shared the association at position 18 521 895 bp.
Additionally, position 3 622 193 bp on chromosome 11
was shared between the associations of fruit length
and single fruit weight from Switzerland. For red over
color and green color, the association with a marker
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Figure 3. Significant marker-trait associations found by GWAS. a Distribution of the significant associations and corresponding p-values from
across-location GWAS over the 17 apple chromosomes. b Distribution of the significant associations and corresponding p-values from
location-specific GWAS over the 17 apple chromosomes. Locations are labeled as BEL (Belgium), CHE (Switzerland), ESP (Spain), FRA (France) and ITA
(Italy). a-b Size of the symbols indicate the −log10(p). The x-axis shows chromosome numbers. c Physical positions (in bp) of the significant
associations on chromosomes with their respective coefficients of determination (R2) from the across-location GWAS complemented with the
location-specific GWAS for traits measured at a single location. Size of the symbols indicate the R2. The x-axis shows chromosome numbers.
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Figure 4. Comparison of the significant marker-trait associations with previously published associations. a Venn diagram comparing the unique
associations, which were either previously published (former), reported in the across-location GWAS (present) or the location-specific GWAS (present
per location). Color intensity and the values reflect the number of associations per diagram area. b Scatterplot of unique associations comparing
published associations (former) with the merged across-location and location-specific GWAS (present). The traits were assembled into trait groups
based on similarity between the approaches to the trait measurement. Symbol size reflects the number of markers used in the studies. In case more
than one publication reported an association in the same chromosome segment, only the report with the largest number of markers is shown (see
Supplementary Table 4 for the complete list of previously published associations). a-b Positions of associations were assigned to three chromosome
segments: top, center and bottom. Only the unique combinations of trait groups with segments and type of study (former or present) are shown.

on chromosome 9 (position 33 799 120 bp) occurred in
across-location and four location-specific GWAS, while a
close marker (position 33 801 013 bp, less than 2 kb away)
was associated in the two other location-specific GWAS.
Additional significant marker-trait associations occurred
in the same genomic regions among the location-specific
GWAS and between the across-location and location-
specific GWAS (Supplementary Table 3).

Previous reports on QTL mapping and GWAS in apple
were extensively reviewed and 41 publications reporting
on traits measured similarly to our own were found and
taken for comparison (Supplementary Table 4). In the lit-
erature, in the across-location GWAS and in the location-
specific GWAS, 166, 52 and 172 unique combinations
of chromosome segments with traits were discovered,
respectively (Figure 4a). Out of all segment-trait com-
binations across our GWAS, 30.8% overlapped with the
previously published results of QTL mapping or GWAS.
All previously published segment-trait combinations for
the trait groups bitter pit and trunk were also detected
in our study, whereas no overlap between the former
and present associations was found for ground color and
sugar trait groups (Figure 4b, Supplementary Figure 6).

Allele frequency dynamics over generations
Eleven major significant marker-trait associations
(R2>0.1) were identified in the global GWAS results
(across-location GWAS with the addition of location-
specific GWAS for traits measured at a single location
only, Supplementary Table 3). Boxplots of the across-
location clonal values against the dosage of the reference
allele (0, 1, 2) for the eleven associations showed
mostly additive effects of the alleles on phenotypes

(Supplementary Figure 7). Among these major associ-
ations, changes in the frequency of alleles with an
increasing effect on trait phenotypes were quantified
in 30 ancestral accessions (five ancestor generations of
the progeny group, Supplementary Table 5) and all 265
progenies included in the apple REFPOP (Figure 5a). Com-
pared to the ancestral accessions, the frequency of the
allele with an increasing effect on phenotype (Figure 5c)
was higher in the progeny for the alleles associated with
later harvest date and increased flowering intensity,
titratable acidity, fruit firmness and trunk increment
(Figure 5a). For the marker associated with green color
and red over color, the allele frequencies were equivalent
for ancestors and progeny, which reflected the minor
allele frequency of nearly 0.5 for both traits (Figure 5b,d).

On a closer look at the allele frequencies across the
accession and progeny groups for the markers closely
associated with harvest date and fruit firmness on chro-
mosome 3 (Figure 5b), the allele associated with later
harvest date and firmer fruits was fixed in all progeny,
while the allele with a decreasing effect on the phenotype
was present with a frequency below 0.1 in the whole
apple REFPOP (Figure 5a-d).

The allele associated with larger trunk increment on
chromosome 1 was found in progeny known to segre-
gate for Rvi6, and it was present in only two accessions
(‘Prima’ and X6398) that are also known to carry the
apple scab resistance gene Rvi6, which is located about
1.8 Mb from the SNP associated with trunk increment
(Figure 5b-c).

Squared Pearson’s correlations in a window of ∼3000
markers surrounding each of the major significant
marker-trait associations showed that markers in linkage
disequilibrium extended over larger distances around

https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac028#supplementary-data
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Figure 5. Allele frequency dynamics of the major significant marker-trait associations. a-d The associations were chosen based on the coefficient of
determination (R2>0.1) from the global GWAS. a For each association, frequency of the allele with increasing effect on trait phenotypes in the apple
REFPOP is shown. For the progeny group (progeny) and its five ancestor generations (ancestors), the allele frequencies are shown as points connected
with a line. Out of all known ancestors, the allele frequency was estimated for 30 accessions included in the apple REFPOP. Colors of the points and
lines correspond to chromosome locations of the associated SNPs. b Allelic combinations carried by the apple REFPOP genotypes, sorted according to
geographic origin of accessions and affiliation of progeny to parental combinations (the x-axis was labeled according to Supplementary Table 1 and 2
in Jung et al. [36]). c Global clonal values of traits and their standard error for each allelic combination, centered to mean 0 and scaled to standard
deviation of 1. d Frequency of the minor allele in the whole apple REFPOP. b-d The legend and y-axis are shared between plots. In d, the color of an
allele corresponds to the color of the homozygous allelic combination of the same allele in b and c.

some marker-trait associations (Supplementary Figure 8).
When visually compared with other loci, the associations
with harvest date and fruit firmness on chromosome 3 as
well as red over color and green color on chromosome 9
were found in genomic regions of the highest linkage dis-
equilibrium between markers (Supplementary Figure 8).
The markers associated with trunk increment and Rvi6
also showed signs of linkage disequilibrium among them
(Supplementary Figure 8).

The remaining associations (R2≤0.1) reported by the
global GWAS showed various trends in allele frequencies
across generations such as increased frequency of alleles
associated with increased weight of fruits in the progeny
(Supplementary Figure 9). The individual parental com-
binations of the progeny group were often fixed for single
alleles of the remaining associations (R2≤0.1) from the
global GWAS (Supplementary Figure 10).

Allele frequencies equivalent to those observed for the
whole progeny group were also found for the mean allele
frequency for 10-times repeated resampling of 30 geno-
types from the progeny group (Supplementary Figure 11).

Genomic prediction
The best predictive ability across all eight models
compared in this study was found for the traits har-
vest date, green color and red over color (Figure 6,
Supplementary Table 6). The lowest predictive ability
was found for traits related to bitter pit and russet as
well as yellow color. Additionally, the predictive ability
for flowering intensity and trunk increment with the
multi-environment models remained strongly below
the average predictive abilities per trait (rt) of the
corresponding main-effect models (i.e. genomic-BLUP

(G-BLUP), random forest (RF), BayesCπ and reproducing
kernel Hilbert spaces regression (RKHS)).

Similar performance of five main-effect models
was observed (Figure 6a). The rt estimated for the
baseline model G-BLUP varied between 0.28 and 0.78
(Supplementary Table 6). When the predictive ability of
the G-BLUP model was averaged over all traits (r), the
obtained r was equal to 0.50. RF showed an rt higher
than G-BLUP for 9 out of 30 traits and an r of 0.49.
BayesCπ , RKHS and the main-effect multivariate model
with an unstructured covariance matrix of the random
effect (MTM.UN) showed an r of 0.50, 0.51 and 0.50 and
exceeded rt of G-BLUP in one, twelve and ten traits,
respectively. Among the main-effect univariate genomic
prediction models, the rt ranged between 0.18 for russet
cover and 0.88 for red over color, both extreme values
observed with RF (Supplementary Table 6).

When compared with G-BLUP, the main-effect multi-
variate model MTM.UN showed an improved predictive
ability for several traits when they were modelled in com-
bination with a correlated trait (genomic breeding val-
ues correlation larger than 0.3, Figure 6a, Supplementary
Table 6). The inclusion of floral emergence as correlated
trait improved rt of full flowering from 0.43 to 0.46 and
from 0.43 to 0.47 for end of flowering. Similar response
was observed for a combination of weight of fruits with
flowering intensity that improved rt of flowering inten-
sity from 0.58 to 0.59. Fitting the model using fruit length
showed an increased rt of single fruit weight (difference
in rt of 0.01) and using single fruit weight led to an
increase in rt for fruit diameter, fruit length, maximum
fruit size and fruit volume (difference in rt of 0.01, 0.03,
0.02 and 0.03, respectively). Using soluble solids content
resulted in an increase of rt for russet cover (difference

https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac028#supplementary-data
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Figure 6. Genomic predictive ability in apple quantitative traits using eight genomic prediction models and two cross-validation scenarios. a
Predictive ability of four main-effect univariate models, i.e. random forest (RF), BayesCπ , Bayesian reproducing kernel Hilbert spaces regression (RKHS)
and genomic-BLUP (G-BLUP), and one main-effect multivariate model with an unstructured covariance matrix of the random effect (MTM.UN). The
models were applied with a five-fold cross-validation where 20% of the genotypes were masked in each of the five runs. The MTM.UN was used in case
a trait showed genomic breeding values correlation larger than 0.3 with at least one other trait. b Predictive ability of two multi-environment
univariate models, i.e. across-environment G-BLUP (G-BLUP.E) and marker by environment interaction G-BLUP (G-BLUP.E.G × E), and the
multi-environment multivariate factor-analytic model (MTM.FA). The models were applied under two five-fold cross-validation scenarios CV1 and
CV2. The CV1 was applied for all traits using G-BLUP.E and G-BLUP.E.G × E and for traits measured in at least three environments using MTM.FA. The
CV2 was applied for traits measured in Switzerland and in at least a one other location. a-b Predictive ability was estimated as a Pearson correlation
coefficient between the observed and the predicted values of genotypes whose phenotypes were masked in a five-fold cross-validation. For the
multi-environment models, the correlation coefficients were estimated for each environment separately. In the box plot, the bottom and top line of
the boxes indicate the 25th percentile and 75th percentile quartiles (the interquartile range), the center line indicates the median (50th percentile).
The whiskers extend from the bottom and top line up to 1.5-times the interquartile range. The points beyond the 1.5-times the interquartile range
from the bottom and top line are labeled as dots.
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in rt of 0.01), while using russet frequency at cheek led
to an improved rt of russet frequency at stalk (difference
in predictive ability of 0.01). Predictive abilities for all
possible combinations of correlated traits can be found
in Supplementary Table 7.

When comparing two multi-environment univari-
ate models – across-environment G-BLUP (G-BLUP.E)
and marker by environment interaction G-BLUP (G-
BLUP.E.G × E) – and the multi-environment multivariate
factor-analytic model (MTM.FA), the prediction perfor-
mance of G-BLUP.E, G-BLUP.E.G × E and MTM.FA was
generally lower under the first cross-validation scenario
(CV1) than under the second cross-validation scenario
(CV2, Figure 6b, Supplementary Table 6). For all traits,
the G-BLUP.E.CV1, G-BLUP.E.G × E.CV1 and MTM.FA.CV1
showed lower rt than the main-effect G-BLUP, the r
being equal to 0.40, 0.40 and 0.36, respectively. The G-
BLUP.E.G × E.CV1 performed better than G-BLUP.E.CV1
for 14 out of 30 traits. The G-BLUP.E.CV2 and G-
BLUP.E.G × E.CV2 outperformed G-BLUP for 13 out of
20 traits. The G-BLUP.E.CV2 and G-BLUP.E.G × E.CV2
both showed r equal to 0.57. The increase in rt from G-
BLUP to G-BLUP.E.CV2 (0.35) as well as from G-BLUP to
G-BLUP.E.G × E.CV2 (0.36) was the most pronounced for
russet cover. The performance of G-BLUP.E.CV2 and
G-BLUP.E.G × E.CV2 remained below the level of G-BLUP
predictions for productivity traits (flowering intensity,
weight and number of fruits), ground color, soluble
solids content, fruit firmness and trunk increment. The
G-BLUP.E.G × E.CV2 performed better than G-BLUP.E.CV2
for 8 out of 20 traits. The r of MTM.FA.CV2 was equal to
0.52 and therefore similar to G-BLUP, however, the model
outperformed G-BLUP for nine out of 20 predicted traits
(Supplementary Table 6). The MTM.FA showed higher
predictive ability than both G-BLUP.E and G-BLUP.E.G × E
for two traits under CV1 and five traits under CV2
(Supplementary Table 6).

Synthesis of phenotypic and genomic analyses
The across-environment clonal mean heritability was
generally very high in the evaluated traits, the value
being close to one for harvest date and red over
color and not lower than 0.80 for all the other traits
with the exception of full flowering (0.74), end of
flowering (0.79) and water core grade (0.79, Figure 7,
Supplementary Table 6). The genomic heritability, which
is the proportion of phenotypic variance explained by
the markers, was larger than 0.80 for harvest date, floral
emergence, green color and red over color, the value
was not lower than 0.40 for all the other traits with the
exception of bitter bit frequency (0.33) and grade (0.39,
Figure 7, Supplementary Table 6).

The effects of genotype and significantly associated
markers together explained a substantial part of the phe-
notypic variance of traits, the largest sums of these geno-
typic effects were observed for harvest date (82.8%) and
red over color (74.6%, Figure 7, Supplementary Table 6).
Altogether, the sum of the genotypic effects explained a

Figure 7. Synthesis of phenotypic and genomic analyses.
Across-environment clonal mean heritability, genomic heritability,
average predictive ability (rt) for the main-effect G-BLUP and the
proportion of phenotypic variance explained by the effect of each
significantly associated marker (SNP 1–8), genotype (G), environment (E)
and genotype by environment interaction (G × E). The significantly
associated markers corresponded to results of the global GWAS. SNPs
associated with each trait were sorted according to the proportion of
phenotypic variance they explained, i.e. SNP 1 represented the
association explaining the most variance within a trait. Proportions of
phenotypic variance components were used to estimate clusters of
traits outlined along the vertical axis. Within each cluster, the traits
were sorted according to rt.

very low proportion of the total variance for floral emer-
gence (13.1%), flowering intensity (11.4%), trunk diame-
ter (10.9%) and trunk increment (8.7%). The major pro-
portion of the phenotypic variance was explained by the
effect of environment for floral emergence (73.9%) and
trunk diameter (66.3%). The lowest effect of environment
was found for traits measured at only one location over
two or three years such as fruit diameter or water core
frequency, both showing an effect of environment (i.e.
year) below 1%. The effect of G × E was the most pro-
nounced for productivity traits, i.e. flowering intensity
(23.7%), weight of fruits (20.8%) and number of fruits
(21.6%). The proportion of the G × E effect was the low-
est for harvest date (4.7%), floral emergence (5.2%), red
over color (5.9%) and trunk diameter (4.2%) among the
traits measured at more than one location and for end
of flowering (5.7%), fruit volume (5.9%) and green color
(3.9%) among the traits measured at one location. A high
proportion of the phenotypic variance remained unex-
plained by the model parameters for flowering intensity

https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac028#supplementary-data
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https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac028#supplementary-data
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(47.5%), bitter pit grade (53.4%) and trunk increment
(55.1%).

Three clusters of traits were determined from the hier-
archical clustering of the table of traits by proportion
of phenotypic variance explained by different sources
(Figure 7, Supplementary Figure 12). A strong genotypic
effect and a comparably low effect of environment and
G × E was observed for 13 traits assigned to the cluster
one. Most of the phenotypic variance was explained by
the effect of environment in floral emergence and trunk
diameter, which were grouped in cluster two. Finally, 15
traits with a pronounced effect of environment and/or
G × E were grouped in cluster three.

Discussion
Both study aims were successfully achieved. Dissection
of the genetic architecture of 30 key traits in apple
breeding and identification of associated loci stable
across locations and location-specific loci using GWAS
provided 336 stable and location-specific marker-trait
associations discovered across all traits under study.
Of these loci, 69.2% were novel when compared with
previously published associations. Additionally, signs of
selection were found for associations of large effect. The
multi-environment and multi-trait experimental design
of the apple REFPOP allowed to estimate patterns of
G × E for the studied traits and assess their predictive
ability. Our results showed that G × E accounted for
up to 24% of the phenotypic variability and genomic
predictive abilities of up to 0.88 were observed. Based on
the outputs of this research, recommendations for future
implementation of the prediction tools in apple breeding
were derived.

Discovered loci overlap between association
studies and traits
Our GWAS enlightened the architecture of analyzed
traits as well as the identification of numerous marker-
trait associations stable across, and specific to, the
locations of the apple REFPOP. The particular design
of the experiment, including the diversity of the plant
material used (accessions and small progeny groups),
multiple locations, and multiple years of evaluation,
are likely to have resulted in about two thirds of the
discovered associations being novel when compared with
the loci published in studies spanning more than two
decades. Our study design also allowed us to replicate the
identification of many previously known loci associated
with the studied traits.

The association of one locus with two or more seem-
ingly independent traits (i.e. caused by pleiotropy) and
linkage disequilibrium between loci associated with dif-
ferent traits are frequent for complex traits [47]. The
GWAS performed in this study showed several marker-
trait associations at identical or close positions for dif-
ferent traits. The interdependency between harvest date

and fruit firmness, which can be also observed empir-
ically for early cultivars that soften more, may be an
example of pleiotropy or linkage disequilibrium between
loci. Harvest date and fruit firmness are known to be
regulated by ethylene production [48] and associated
with loci present on chromosomes 3 (NAC18.1), 10 (Md-
ACO1, Md-PG1), 15 (Md-ACS1) and 16 [22, 49–52].

In this work, closely located (distance <100 kb) asso-
ciations with both harvest date and fruit firmness were
found on chromosome 3. Migicovsky et al. [22] reported
an overlap between associations with harvest time and
fruit firmness on chromosome 3 falling within the coding
region of NAC18.1. The authors hypothesized that the
lack of associations on other chromosomes was likely
due to low SNP density around the causal loci (the study
used a GBS-derived 8 K SNP dataset for 689 genotypes).
The larger number of associations reported here might
be a result of the high SNP density (303 K SNPs) deployed
in GWAS, however, not all previously reported loci were
re-discovered.

The SNPs associated with harvest date and fruit firm-
ness on chromosome 10 were further apart (∼6 Mb). For
harvest date, one of the associations on chromosome 10
was stable across locations and several associations were
location specific. However, the association on chromo-
some 10 with fruit firmness was found for the Italian
location only. It has been shown that chromosome 10
contains more than one QTL controlling fruit firmness
[49–51], but stable across-location association with fruit
firmness on chromosome 10 was missing in our study.
One of the known loci on chromosome 10, the Md-PG1
gene, is responsible for the loss of fruit firmness after
storage [51, 53]. In apple REFPOP, fruit firmness was
measured within one week after the harvest date and
this very short storage period might have contributed
to the less pronounced effect of the locus Md-PG1 in
our GWAS.

Two associations with harvest date measured in Italy
but no association with fruit firmness were found on
chromosome 15. Although a marker for Md-ACS1 related
to ethylene production was previously mapped on chro-
mosome 15 [50], and QTL for fruit firmness was dis-
covered on the same chromosome [49], these markers
did not co-locate, but rather, mapped at the opposite
extremes of chromosome 15 [49, 50]. Likewise, the con-
nection between harvest date and fruit firmness on chro-
mosome 15 could not be confirmed here.

Our GWAS showed associations with harvest date and
fruit firmness on chromosome 16, which were located
38 kb apart. In the past, loci associated with harvest date
and fruit firmness have been reported in the same region
on chromosome 16 [26, 49]. The role of this locus in the
regulation of harvest date and fruit firmness remains
unknown and requires further research.

In practice, ripeness of fruit (harvest date) is decided
based on ground color and starch content. The GWAS
results showed that the association on chromosome 3
was not only found for harvest date and nearby markers

https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac028#supplementary-data
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associated with fruit firmness, but also corresponded to
associations with ground color and soluble solids con-
tent. This might be explained by the fact that these
traits are used to define ripeness and thus harvest date.
Further, the association of the NAC18.1 locus on chromo-
some 3 with overall russet frequency would support the
known enhanced expression of NAC transcription factors
in russet skin [54].

Co-localizations between associations found for dif-
ferent measures of bitter pit on chromosome 16, russet
on chromosomes 12 and 17, fruit size on chromosomes
1, 8 and 11, and skin color on chromosome 9 are likely
the result of relatedness among trait measurements. The
measures that are easiest to score can be used in future
to phenotype these traits.

Signs of selection in marker-trait associations of
large effect
The design of apple REFPOP allowed for the discovery
of major marker-trait associations and for the analysis
of changes in allele frequency between 30 ancestral
accessions and 265 progeny included in the apple
REFPOP. Although the progeny group did not undergo
phenotypic selection before the establishment of the
apple REFPOP, the parents of the progeny were a matter
of choice within the European breeding programs. This
allowed us to assess the impact of the past pheno-
typic selection on the studied germplasm. Comparing
ancestors with the progeny, higher frequencies of the
alleles associated with later harvest date and increased
flowering intensity, titratable acidity, fruit firmness and
trunk increment were found for the progeny. Of these
traits, harvest date and fruit firmness are correlated,
probably due to pleiotropy or linkage disequilibrium of
causal loci, as it was shown in this and previous studies
[22]. Consequently, the consistently higher frequency of
alleles contributing to later harvest and firmer apples
in the progeny is because the softening of harvested
apples is undesirable and likely selected against [55].
Signs of selection for increased firmness were also
recently found in USDA germplasm collection [5]. Our
study also showed fixation of the late-harvest and high-
firmness alleles on chromosome 3 in the whole progeny
group, which suggests a loss of genetic diversity in the
modern breeding material at this locus. For flowering
intensity, a trait positively correlated with apple yield
(i.e. weight and number of fruits, Figure 2a), a new
locus was discovered on chromosome 14. The increased
frequency of the allele contributing to higher flowering
intensity in the progeny, its presence in all parental
genotypes, and fixation in some parental combinations
may be the result of breeding for high yield. The
major locus found for acidity on chromosome 16 was
consistent with the Ma locus frequently detected in
various germplasm [8, 11]. The total number of the
high-acidity alleles for Ma and Ma3, which is another
regularly detected acidity locus, was shown to be
higher in parents of a European breeding program

(Better3fruit, Belgium) than in parents used in the
US breeding programs [11, 56]. The desired acidity
level might depend on local climate of the breeding
program and market preferences [56]. The increase in
frequency of the allele contributing to higher acidity in
the progeny may indicate a current preference towards
more acidic apples in European breeding, but further
investigation is needed to clarify the trend. The last
locus of large effect showing allele frequency dynamics
between generations was found for trunk increment.
The increased frequency of allele associated with an
increase in trunk increment may have occurred in the
progeny due to its potential impact on productivity
suggested by moderate positive phenotypic clonal values
correlations between tree vigor (trunk diameter and
increment) and yield-related traits. Additionally, the
marker associated with trunk increment was 1.8 Mb
apart from a SNP marker associated with Rvi6 gene
responsible for resistance against apple scab [10]. These
two markers (AX-115183752 for trunk increment and AX-
115182989 (also called Rvi6_42M10SP6_R193) for apple
scab) showed a correlation of 0.15 and occurred within
a region of increased linkage disequilibrium between
markers (Supplementary Figure 8). All accessions were
homozygous for the reference allele of AX-115183752
associated with decreased trunk increment (Figure 7c)
except for ‘Prima’ and X6398, which were heterozygous.
The scab-resistant accessions ‘Prima’ and X6398 (which
is a second-generation offspring of ‘Prima’ [57]) but also
‘Priscilla-NL’ (known to be heterozygous for Rvi6 [58]),
were also heterozygous for AX-115182989. All other
accessions were homozygous for the reference allele
not associated with Rvi6. The allele on chromosome 1
associated with increased trunk increment may have
been co-selected with the Rvi6 locus responsible for
resistance against apple scab.

Signs of intense selection for red skin were recently
detected in the USDA germplasm collection when com-
pared with progenitor species of the cultivated apple [5].
Our results show that the associations with red over
color and green color, which phenotypically mirrored red
over color and was associated with the same marker, did
not show changes in allele frequency between ances-
tors and progeny included in the apple REFPOP. Some
parental combinations showed almost exclusively the
allele increasing red skin color, other parental combi-
nations exhibited a lack of the allele. This uneven dis-
tribution of the alleles in the progeny group pointed to
different directions of selection for fruit skin color in the
European breeding programs (Figure 5b).

Performance of the main-effect univariate
genomic prediction models
Main-effect univariate genomic prediction models were
applied to the global clonal values. The observed small
differences between genomic predictive abilities of
various models (Figure 6a) were in accordance with
previous model comparisons where distinctions among

https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac028#supplementary-data
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models were negligible [39, 59]. The extremes in pre-
dictive ability between traits were found with random
forest, which allowed for the overall highest predictive
ability among all compared models for red over color.
The explanation for the striking performance of random
forest for red over color might be found in the results
of our GWAS. This trait of oligogenic architecture was
associated with a few small-effect loci and one locus
of large effect explaining 61% of the red over color
phenotypic variance measured in the apple REFPOP.
High correlations between many markers, i.e. linkage
disequilibrium, were found in the vicinity of the large-
effect locus (Supplementary Figure 8). Random forest
is known to assign higher importance to correlated
predictor variables (based on the amount of accu-
racy decrease when a variable – here marker – is
excluded during the decision tree construction) [60],
which may have contributed to the particularly high
predictive ability found for red over color with random
forest.

The predictive ability for red over color reached ∼0.4
in several former prediction studies [22, 23, 29, 34] and
was approximately doubled in our work, which demon-
strated the potential of the current study design for
accurate genomic predictions. For harvest date, the cur-
rently reported predictive ability of 0.78 was only slightly
higher than the accuracy of 0.75 obtained with the initial
apple REFPOP dataset measured during one year [36], but
these accuracies showed a considerable improvement
over other accuracies of approximately 0.5–0.6 reported
elsewhere [22, 23, 29]. As shown before [36], these results
underline the suitability of apple REFPOP design for the
application of genomic prediction.

Opposite to harvest date and red over color, the
predictive ability of yellow color and russet cover was
low, although the genotypic effects explained 45% and
47% of the phenotypic variance, respectively. The across-
environment clonal-mean heritability of russet cover
was high (0.97), while the heritability for yellow color
was slightly lower (0.81, Figure 7). Yellow color showed
a moderate phenotypic clonal values correlation of 0.55
with russet cover, suggesting that the phenotyping device
might have classified some russet skin as yellow color.
Symptoms of powdery mildew could have been misin-
terpreted as russet skin. The decreased performance of
genomic prediction models might stem from inaccurate
phenotyping methods, insufficient SNP density in the
associated regions, or other factors, all of which were
outside the scope of this work.

All main-effect univariate genomic prediction models
as well as other genomic prediction models compared
in this study depended on predictions of clonal values
obtained during the phenotypic data analysis. Further
extension of the models should consider if adding a term
to account for the permanent non-genetic effect of the
tree over years into the mixed-effects models (Equation
1) improves accuracy of the clonal values predictions and
so increases the genomic predictive ability.

Role of genotype by environment interactions in
multi-environment univariate genomic
prediction
The multi-environment univariate genomic prediction
models either assumed that effects of markers were
the same across environments (across-environment G-
BLUP, called here G-BLUP.E) or additionally estimated
marker effects separately for each environment and thus
considered the G × E (marker by environment interaction
G-BLUP, called here G-BLUP.E.G × E) [42]. The average
accuracy of the G-BLUP.E.G × E model across traits was
only slightly higher than the accuracy of the G-BLUP.E.
In contrast, the G-BLUP.E.G × E model had substantially
greater predictive ability than the G-BLUP.E model when
applied in wheat [42]. In the latter study, a productivity
trait was measured under simulated conditions of mega-
environments and the effect of G × E explained up to
∼60% of the phenotypic variance [42]. Our work only
focused on European environments and the largest
proportion of phenotypic variance assigned to G × E
was 24% for a productivity trait (flowering intensity).
Furthermore, the average proportion of G × E across traits
was approximately 12%, which may explain the mostly
negligible differences between the G-BLUP.E and G-
BLUP.E.G × E models. Our results were in line with the low
interaction of additive genetic effects with location of up
to ∼6% obtained for apple fruit quality traits measured
at two locations in New Zealand [33], the generally
stable genetic effects found for apple fruit quality traits
assessed across the commercial production region of the
State of Washington [61], and the limited G × E reported
for fruit maturity timing in sweet cherry across conti-
nents [62]. For approximately half of the tested traits, the
G-BLUP.E.G × E did not outperform G-BLUP.E. For these
traits, the G-BLUP.E ignoring G × E may be sufficient to
account for the environmental effects across European
sites because it is computationally simpler and therefore
less demanding in terms of computational resources.
Traits such as flowering intensity, soluble solids content,
trunk increment or traits related to fruit size and russet
showed an improved performance under G-BLUP.E.G × E
when compared to G-BLUP.E. For traits where the
predictive ability was greater for the G-BLUP.E.G × E
model compared to the G-BLUP.E model, the G × E should
be considered in marker effects estimated separately
for each environment when making predictions across
environments. The highest improvement of predictive
ability with G-BLUP.E.G × E when compared to G-BLUP.E
was found for flowering intensity, the difference between
the models amounting to 0.07 (Figure 6b). This result
might be explained by the highest contribution of G × E to
the phenotypic variance of flowering intensity among all
traits (Figure 7). A comparably high contribution of G × E
was also found for weight of fruits and number of fruits,
though no improvement with G-BLUP.E.G × E model was
observed for these traits. When comparing the relative
contributions of variance components to the phenotypic
variance of flowering intensity, weight of fruits and
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number of fruits, the proportions of G × E were similar
in the three compared traits, but the effects of genotype
and environment explained a higher proportion of the
variance for weight of fruits and number of fruits than
for flowering intensity. This may have contributed to the
surprisingly lower accuracy of the G-BLUP.E.G × E model
when compared with G-BLUP.E for weight of fruits and
number of fruits, but additional investigations may be
needed to clarify this result in the future.

The G-BLUP.E.G × E model assumes positive correla-
tions between environments and is therefore mostly
suitable for the joint analysis of correlated environments
[42, 63]. As shown by Lopez-Cruz et al. [42] and in our
study, this assumption of G-BLUP.E.G × E resulted in the
best model performance for traits showing high positive
correlations of the adjusted phenotypic values of each
genotype between environments (here harvest date and
red over color) and the worst performance for traits
exhibiting low correlations of the adjusted phenotypic
values of each genotype between environments (here
flowering intensity and trunk increment, Figure 6b,
Supplementary Table 2, Supplementary Figure 3). For
flowering intensity and trunk increment, multivariate
prediction of the environments or prediction with a
different G × E model not assuming positive correlations
between environments might be more appropriate than
the currently applied approach [42, 64].

Multivariate models as a useful element in the
genomic prediction toolbox
Multivariate (also called multi-trait) models were shown
to improve predictive ability for traits that are costly
to phenotype when a correlated trait less expensive to
phenotype was available [45]. In our study, when the
predictive ability of the main-effect multivariate model
MTM.UN was compared with the baseline model G-BLUP,
several combinations of related and unrelated traits
led to increased accuracy. For the related traits with a
high genomic breeding values correlation (Figure 2a),
prediction of traits measured at one location were
often improved when a related trait measured across
different locations was included. This was the case for
the combination of floral emergence with full flowering
and end of flowering and for single fruit weight combined
with fruit diameter, fruit length, maximum fruit size
and fruit volume. Inclusion of soluble solids content
in MTM.UN resulted in increased predictive ability for
russet cover, although the traits showed only a moderate
genomic breeding values correlation and no obvious
explanation for this result could be found. Our study
supports the potential of multivariate models to borrow
information that correlated traits provide about one
another and identified trait combinations that can be
successful under the multivariate setup.

In place of the correlated traits, environments of a
single trait can be implemented in a multivariate model
[46]. Compared to the multi-environment univariate
genomic prediction models G-BLUP.E and G-BLUP.E.G × E,

the multi-environment multivariate genomic prediction
model (MTM.FA) showed the potential to perform equally
well for six (CV1) and three traits (CV2) and was able to
outperform both models for two (CV1) and five traits
(CV2). Except for the noticeable increase in predictive
ability for trunk increment under CV2 that could not be
explained by our analyses, the performance of MTM.FA
was similar to G-BLUP.E and G-BLUP.E.G × E, which
establishes the multivariate model as a useful tool for
multi-environment genomic prediction in apple.

Two approaches to genomic prediction addressed
with cross-validation scenarios
The cross-validation scenarios CV1 and CV2 were applied
with multi-environment genomic prediction models to
test two genomic prediction approaches typically faced
in breeding. The CV1 imitated evaluation of breeding
material that was yet untested in field trials. The CV2
was implemented to simulate incomplete field trials
where breeding material was evaluated in some but
not all target environments. More specifically, the CV2
investigated a situation where the breeding material has
been evaluated at one location (the breeding site, in this
case Switzerland) and the material’s potential over other
European sites was predicted without its assessment in
a multi-environment trial, which may increase selection
efficiency at latter stages of evaluation. As CV2 provided
more phenotypic information to the models than CV1, a
higher genomic predictive ability was found under CV2
when compared with CV1, which was anticipated [33,
42]. The CV2 was tested by calibrating the model with
Swiss observations only. The application of CV2 could
be extended to other apple REFPOP locations to provide
useful information for the breeding programs located at
these sites. The choice of cross-validation scenario did
not affect the general ranking of the average genomic
predictive abilities estimated for the evaluated traits.

Implications for apple breeding
Phenotypic variance decomposition into genetic, envi-
ronmental, G × E and residual effects was compared with
the results of GWAS and genomic prediction as well as
heritability estimates. The comprehensive comparison
indicated three classes of traits with contrasting genetic
architecture and prediction performance. Characteristics
of these trait classes and proposals for their efficient
prediction strategies are described in the following para-
graphs.

The first class included harvest date and red over
color that showed a few loci of large effect and some
additional loci of low effect, the highest predictive abil-
ities, and the highest across-environment clonal-mean
heritability among all traits. Both traits showed a very
high proportion of the genotypic effect explaining ∼75%
of the phenotypic variance. For harvest date and red
over color, the marker with the largest effect explained
52% and 59% of the phenotypic variance and all marker
effects in genomic prediction captured together 88% and
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85% of the phenotypic variance (i.e. genomic heritability
of 0.88 and 0.85), respectively. Selection for these traits
exhibiting a strong genetic effect of one locus could
be done using marker-assisted selection, although only
a part of the variance would be explained by a single
marker. Better results can be achieved using genomic
prediction, as this was able to explain a substantially
larger amount of the phenotypic variance. Other traits
such as fruit firmness, titratable acidity, end of flowering
or traits related to fruit size and water core were grouped
in the same cluster as harvest date and red over color
(Figure 7). These traits showed a strong genotypic effect
and a comparably low effect of environment and G × E,
suggesting that selection for the traits would be efficient
when performed using main-effect genomic prediction
models rather than multi-environment prediction.

The second class of traits was represented by flo-
ral emergence and trunk diameter displaying a high
proportion of the environmental effect (∼70%) and a
similar ratio of variance explained by genotypic effects
compared to variance explained by G × E effects (∼2.5).
The genomic predictive ability did not considerably devi-
ate from the average accuracy over all traits. Several
marker associations with these traits were identified
using location-specific GWAS. However, in the across-
location GWAS, only one association explaining a very
small part of phenotypic variance (floral emergence) or
no association (trunk diameter) were discovered. Conse-
quently, such traits predominantly driven by the effect
of environment can be successfully selected based on
genomic prediction, but the lack of associations stable
across environments limits the applicability of marker-
assisted selection to this class of traits.

In the third class, the productivity traits (flowering
intensity, weight of fruits and number of fruits) showed
the largest proportion of variance explained by G × E
(∼20%), with similar amounts of variance explained by
genotypic effects for weight of fruits and number of
fruits, but half as much variance explained by genotypic
effects for flowering intensity (Figure 7). As a conse-
quence, only flowering intensity showed higher predic-
tive ability with G-BLUP.E.G × E than G-BLUP.E model. As
shown above, the G × E should be considered when mak-
ing predictions across environments for traits respond-
ing positively to the G-BLUP.E.G × E model, but G-BLUP.E
may be sufficient for other traits to account for the
environmental effects. To our knowledge, this is the first
report of genomic prediction for apple yield components
and our results can aid the establishment of produc-
tivity predictions in apple breeding. Other traits falling
within the same cluster as the productivity traits, namely
full flowering, ground color, yellow color, soluble solids
content, trunk increment, and traits related to bitter pit
and russet, showed a pronounced effect of environment
and/or G × E (Figure 7). For the majority of these and
other traits in our study, the effect of G × E was estimated
based on environments that represented combinations
of locations and years. However, for the part of traits

measured at one location, the combinations of locations
and years were effectively equal to years only. Although
measurements from additional locations would improve
estimation of the effect of G × E in traits with unavail-
able multi-location data, our results were generally able
to support that multi-environment genomic prediction
models can be efficient when applying genomic selection
to various traits in apple. Decomposition of the effects of
environment and G × E into parts associated with loca-
tions, years and their interaction could indicate whether
defining breeding zones would be useful for apple, but it
was out of the scope of this study.

The decision to apply either marker-assisted or
genomic selection can be based on genetic architec-
ture of traits of interest and resources available in
a breeding program. For breeding of yet genetically
unexplored traits, variance decomposition of historical
phenotypic data prior to genomic analyses may help
describe trait architecture, assign traits to one of the
three classes described in the previous paragraphs,
and finally determine the most appropriate method of
genomics-assisted breeding. From all traits explored in
this study, the marker-trait associations with large and
stable effects across environments found for harvest
date, flowering intensity, green color, red over color,
titratable acidity, fruit firmness and trunk increment
could be implemented into DNA tests for marker-assisted
selection. These tests would allow for a reduction of labor
costs in a breeding program when removing inferior
seedlings without phenotyping [7]. Although generally
requiring more statistical competences than marker-
assisted selection, genomic selection can make use
of both large- and small-effect associations between
markers and traits when accommodating thousands of
marker effects in a single genomic prediction model. For
all studied traits, our results showed that marker effects
estimated in genomic prediction were able to capture
a larger proportion of the phenotypic variance than
individual markers associated with the traits. Therefore,
genomic selection should become the preferred method
of genomics-assisted breeding for all quantitative traits
explored in this study to ultimately increase their
breeding efficiency and genetic gain.

Conclusion
This study laid the groundwork for marker-assisted and
genomic selection across European environments for
30 quantitative apple traits. The apple REFPOP experi-
mental design facilitated identification of a multitude
of novel and known marker-trait associations. Our
multi-environment trial provided accurate genomics-
estimated breeding values for apple genotypes under
various environmental conditions. Limited G × E detected
in this work suggested consistent performance of
genotypes across different European environments for
most studied traits. Utilizing our dataset, genomic
selection of traits related to yield may lead to higher
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productivity and increased genetic gain in the future
[37]. The genomic prediction models developed here
can be readily used for selecting germplasm in breeding
programs, thus providing breeders with tools increasing
selection efficiency. Application of our study design to
other horticultural crops such as peach [65] can promote
broader use of genomics-assisted breeding in the future.

Methods
Plant material
Plant material in this study was comprised of the apple
REFPOP, which was designed and established by the
collaborators of the FruitBreedomics project [66] as
described by Jung et al. [36]. The apple REFPOP consisted
of 534 genotypes from two groups of diploid germplasm.
The accession group consisted of 269 accessions of
European and non-European origin representing the
diversity in cultivated apple. The progeny group of 265
genotypes stemmed from 27 parental combinations
produced in the current European breeding programs.
In 2016, the apple REFPOP was planted in six locations
representing several biogeographical regions in Europe,
in (i) Rillaar, Belgium, (ii) Angers, France, (iii) Laimburg,
Italy, (iv) Skierniewice, Poland, (v) Lleida, Spain and (vi)
Wädenswil, Switzerland (one location per country). Every
genotype was replicated at least twice per location.
All plants included in this study were treated with
agricultural practice common to each location. Calcium
spraying was avoided due to its influence on bitter pit.
Flowers were not thinned, but the fruits were hand-
thinned after the June fruit drop and up to two apples
per fruit cluster were retained.

Genotyping
The plant material was accompanied by a high-density
genome-wide SNP marker dataset, which was produced
as reported by Jung et al. [36]. Briefly, SNPs from two
overlapping SNP arrays of different resolution, (i) the
Illumina Infinium® 20 K SNP genotyping array [20] and (ii)
the Affymetrix Axiom® Apple 480 K SNP genotyping array
[21], were curated and then joined applying imputation
with Beagle 4.0 [67] using the recently inferred pedigrees
[4]. Non-polymorphic markers were removed to obtain
a set of 303 148 biallelic SNPs. Positions of SNPs were
based on the apple reference genome obtained from the
doubled haploid GDDH13 (v1.1) [16].

Phenotyping
Thirty phenotypic traits related to phenology, produc-
tivity, fruit size, outer fruit, inner fruit, and vigor were
evaluated at up to six locations of the apple REFPOP
during up to three seasons (2018–2020). Trunk diame-
ter was measured in 2017 in some locations, enabling
for a trunk increment calculation for 2018. The traits
were recorded as described in the Supplementary Meth-
ods, the measurements being performed either visu-
ally or using automatic devices (sorting machine Greefa

iQS4 v.1.0, the instrument Pimprenelle (Setop, France)).
Two phenology traits measured in 2018, i.e. floral emer-
gence and harvest date, were previously analyzed by Jung
et al. [36].

Phenotypic data analyses
Spatial heterogeneity was modeled separately for each
trait and environment (combined factor of location and
year) using the spatial analysis of field trials with splines
(SpATS) to correct for the replicate effects and differences
due to soil characteristics [68]. Phenotypic values of traits
adjusted for spatial heterogeneity within each environ-
ment were estimated at the level of trees (adjusted phe-
notypic values of each tree) and genotypes (adjusted
phenotypic values of each genotype) as described before
[36].

Further analyses were performed to estimate trait her-
itability and remove the effects of location and year
from the collected phenotypes. The general statistical
model for the following phenotypic data analyses fitted
via restricted maximum likelihood (R package lme4 [69])
was:

y = Xβ + Zb + ε (Equation 1)

where y was a vector of the response variable, X the
design matrix for the fixed effects, β the vector of fixed
effects, Z the design matrix for the random effects, b
the vector of random effects and ε the vector of random
errors. The b was a q × 1 vector assuming b ∼ N

(
0, �

)

where � was a variance–covariance matrix of the ran-
dom effects. The assumptions for the N×1 vector of ran-

dom errors were ε ∼ N
(
0, Iσ 2

ε

)
with N × N identity matrix

I and the variance σ 2
ε , the N being the number of trees.

To assess the reliability of environment-specific data,
a random-effects model was first fitted separately for
each trait and environment to estimate an environment-
specific clonal mean heritability. Applying the Equation
1, the response y was a vector of the adjusted phenotypic
values of each tree. On the place of X, a vector of ones
was used to model the intercept β. The design matrix
Z reflected that the genotype was the grouping factor
defining the random effects. The environment-specific
clonal mean heritability was calculated from the vari-
ance components of the random-effects model as:

H2 = σ 2
g

σ 2
p

(Equation 2)

where the phenotypic variance σ 2
p = σ 2

g + σ 2
ε /nr was

obtained from the genotypic variance σ 2
g , error variance

σ 2
ε and the mean number of genotype replications nr.

The environment-specific clonal mean heritability was
used to eliminate location-year-trait combinations with
a heritability value below 0.1.

For the remaining location-year combinations, a
single-trait mixed-effects model following the Equation
1 was fitted to the vector of the adjusted phenotypic

https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac028#supplementary-data
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values of each tree as response (y) to estimate the across-
environment clonal mean heritability. The effects of
environments, i.e. combination of location and years,
were used as fixed effects and the effects of genotypes
and genotype by environment interactions as random
effects. Estimated variances of the model components
were used to evaluate the across-environment clonal
mean heritability calculated using the Equation 2 with
the phenotypic variance estimated as:

σ 2
p = σ 2

g + σ 2
ge

ne
+ σ 2

ε

nenr
(Equation 3)

where σ 2
ge was the genotype by environment interac-

tion variance and ne represented the number of envi-
ronments. As the minimum number of genotype repli-
cates at each location was only two, the variation among
genotype replicates that stemmed from differences inde-
pendent of the environmental influence may not be
accurately captured. This may contribute to uncertainty
in the estimation of phenotypic variance components.
The mixed-effects model (Equation 1) did not account
for the permanent non-genetic effect of the tree over
years, which could lead to inflated values of clonal-mean
heritability.

To predict across-location clonal values (and location-
specific clonal values when only single location data was
available), an additional mixed-effects model following
the Equation 1 was fitted to the adjusted phenotypic
values of each tree (y) using the effects of location, year
and their interaction as fixed effects and the effects
of genotypes as random effects. Due to the skewness
of their distributions, y-values of the traits weight of
fruits, number of fruits and trunk diameter were log-
transformed. BLUPs (b̂) extracted from the model were
further denoted as across-location clonal values. To
estimate the location-specific clonal values, a model
according to the Equation 1 was fitted with a subset of
the adjusted phenotypic values of each tree from single
locations (y) using the effects of years as fixed effects and
the effects of genotypes as random effects. The across-
location clonal values with the addition of location-
specific clonal values for traits measured at a single
location were further denoted as the global clonal values.
It should be noted that due to the different estimation
of the two elements of global clonal values (the use of
fixed effects of location, year and their interaction to
estimate the across-location clonal values versus the
fixed effect of year used to estimate the location-specific
clonal values), the elements of the global clonal values
are not strictly comparable.

The global clonal values were used to assess pheno-
typic clonal values correlation as the Pearson correlation
between pairs of traits. The correlation between pairs of
environments within traits was calculated as the Pear-
son correlation between the adjusted phenotypic val-
ues of each genotype within environments. To estimate
the principal component analysis biplot [70], the global

clonal values were scaled and centered and their missing
values for each trait were replaced with the mean of
the global clonal values of the same trait. A multivariate
normal distribution was assumed for the ellipses in the
biplot.

Genome-wide association studies
As one of the currently most powerful procedures
for identification of loci associated with complex
traits in terms of computational speed and statistical
power [71, 72], the Bayesian-information and linkage-
disequilibrium iteratively nested keyway (BLINK) [72] was
chosen to perform the GWAS. BLINK applies two fixed
effect models and one filtering process for the choice of
associated markers that are not in linkage disequilibrium
with each other as covariates. The process is repeated
until all markers are tested and the choice of associated
markers is optimized using Bayesian information criteria
[72]. BLINK implemented in the R package GAPIT 3.0 [73]
was applied using an n × m matrix for a population of
size n = 534 genotypes (i.e. accessions and progeny)
with m = 303 148 markers, with across-location clonal
values (across-location GWAS) or location-specific clonal
values (location-specific GWAS) as the response. BLINK
was used with two principal components and the minor
allele frequency threshold was set to 0.05. Marker-
trait associations were identified as significant for p-
values falling below a Bonferroni-corrected significance
threshold α∗ = α/m with α = 0.05 (−log10(p) > 6.74).
The proportion of phenotypic variance explained by
each significantly associated SNP was assessed with a
coefficient of determination (R2). The R2 was estimated
from a linear regression model, which was fitted with
a vector of SNP marker values (coded as 1, 2, 3) as
predictor and either the across-location clonal values or
location-specific clonal values as response. GWAS based
on the across-location clonal values with the addition of
location-specific clonal values, in cases where traits were
measured at a single location only, was further denoted
as the global GWAS. The position of the last SNP on a
chromosome was used to estimate chromosome length,
which was used to divide each chromosome into three
equal segments, i.e. top, center and bottom. The marker-
trait associations were assigned to these chromosome
segments based on their positions to allow for a
subsequent comparison with published associations.

Previous reports on QTL mapping and GWAS in apple
were reviewed to perform an extensive comparison with
our GWAS results (Supplementary Table 4). Published
results for traits measured similarly to the traits studied
in the present work were considered, with the traits
being assembled into trait groups: harvest time (harvest
date and similar), flowering time (floral emergence, full
flowering, end of flowering and similar), productivity
(flowering intensity, weight of fruits, number of fruits and
similar), fruit size (single fruit weight, fruit diameter, fruit
length, maximum fruit size, fruit volume and similar),
ground color (ground color, yellow color and similar),

https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac028#supplementary-data
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over color (red over color, green color and similar), bitter
pit (bitter pit frequency, bitter pit grade and similar),
russet (russet cover, russet frequency overall, at stalk,
on cheek and in the eye and similar), acidity (titratable
acidity and similar), sugar (soluble solids content and
similar), firmness (fruit firmness and similar), water
core (water core frequency, water core grade and
similar) and trunk (trunk diameter, trunk increment
and similar). The positions of published associations
within respective chromosomes were visually assigned
to the three chromosome segments, i.e. top, center
and bottom. The total number of markers used was
recorded (Supplementary Table 4). Where the number of
overlapping markers between the maternal and paternal
linkage maps was not provided in a publication, the
marker numbers for both maps were summed.

In the global GWAS results, the allele frequency was
studied over generations. The ancestors of genotypes
were identified making use of the apple pedigrees of
Muranty et al. [4]. For all significant marker-trait asso-
ciations from the global GWAS, frequency of the allele
associated with increased phenotypic value was esti-
mated for the progeny group and for its five ancestor
generations. For comparison with the allele frequency
in the progeny group, allele frequency was estimated
separately for the 30 accessions of the progeny group that
were included in the apple REFPOP. Additionally, mean
allele frequencies and standard errors were estimated for
10-times repeated resampling of 30 genotypes from the
progeny group.

For major significant marker-trait associations with
R2 > 0.1 reported in the global GWAS, linkage disequilib-
rium was estimated as squared Pearson’s correlations in
a window of 3000 markers surrounding each of the asso-
ciations. A smaller window size was used for associations
located towards the end of a chromosome.

A mixed-effects model was used for every trait to esti-
mate proportions of phenotypic variance explained by
the model components as described in Jung et al. [36]. The
mixed-effects model following the Equation 1 was fitted
to the vector of the adjusted phenotypic values of each
tree as response (y) using the effects of environments
as fixed effects and the random effects of each SNP
significantly associated with the trait (a factor of the
respective SNP values), the remaining random effects of
genotypes and genotype by environment interactions. In
cases where traits with no marker-trait associations were
found in the global GWAS, the additional random effects
of significantly associated SNPs were omitted from the
model. The proportion of phenotypic variance associated
with the fixed effect of environment was estimated as the
variance of the vector of values predicted from the model
fit when all random effects were set to zero. The propor-
tions of phenotypic variance explained by the random
effects of significantly associated SNPs and genotypes
were summed to obtain the genotypic variance. The SNPs
significantly associated with traits and the genotypes
were treated as random effects to approximate genotypic

variance that was explained by the SNPs (phenotypic
variance associated with the random effects of SNPs) and
that remained unexplained by the SNPs (phenotypic vari-
ance associated with the random effects of genotypes).
Due to the low number of levels of the random effect
terms of SNPs, uncertainty in the estimation of their
variance may have been introduced.

A centered and scaled table (mean 0, standard devia-
tion of 1) of trait by proportion of phenotype variances
explained by different sources (genotypic, environmen-
tal, genotype by environment interaction, and residual
effects) was constructed and hierarchical clustering fol-
lowing Ward [74] was applied to the distance matrix of
this table. The number of clusters was estimated from a
dendrogram, which was cut where the distance between
splits was the largest.

Genomic prediction
Main-effect genomic prediction

Four univariate and one multivariate main-effect genomic
prediction models were used to evaluate predictive
ability for 30 phenotypic traits. These models differed
in the way of estimating the marker effects. For all
models, the n × m matrix for a population of size n = 534
genotypes with m = 303 148 markers was centered by
subtracting the column means from their corresponding
columns, then scaled by dividing the columns by their
standard deviations, and further denoted as the additive
genomic matrix M. The models were fitted with the
global clonal values predicted during the phenotypic
data analysis.

The first univariate model examined was regression
with random forest (RF) [75], which is a non-parametric
model that may be able to capture non-additive effects
in addition to additive effects. For RF, the response y was
defined as a n × 1 vector of the global clonal values and
the columns of the matrix M were used as predictors. The
number of decision trees in the RF was set to 500 and the
number of variables randomly sampled as candidates at
each split was (rounded down) mtry = m/3.

For the remaining three univariate and one multivari-
ate main-effect genomic prediction models, the general
random effects model was defined as:

y = 1μ + u + ε (Equation 4)

where y was a response vector of the global clonal values,
μ was an intercept, u was a term used to specify random
effects and ε was a vector of residuals.

The second univariate model BayesCπ is a parametric
model, which estimates prior probability π that a genetic
marker has zero effect [76]. Following the Equation 4, the
response y was a n × 1 vector of the global clonal values
for one trait, the term u = ∑m

k=1 zkak with zk being an
n × 1 vector of the number of copies of one allele at the
marker k and ak being the additive effect of the marker
k. The prior for ak depended on the variance σ 2

ak
and the

prior probability π that a marker k had zero effect, the

https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac028#supplementary-data
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priors of all marker effects having a common variance
σ 2

ak
= σ 2

a . The π parameter was treated as an unknown
with uniform [0, 1] prior. The random vector of residual
effects followed a normal distribution ε ∼ N(0, Iσ 2

ε ) with
n × n identity matrix I and the variance σ 2

ε .
The third examined univariate model, the semi-

parametric Bayesian reproducing kernel Hilbert spaces
regression (RKHS), is able to capture additive as well as
non-additive effects and was implemented here using
a multi-kernel approach [77]. The multi-kernel RKHS
model was fitted according to the Equation 4 with the
response y being a n×1 vector of the global clonal values
for one trait, and L = 3 n-dimensional vectors of the
random effects u. The vectors u = ∑L

l=1 ul followed a
distribution u ∼ N(0, Klσ

2
ul), with Kl being the reproducing

kernel evaluated at the lth value of the bandwidth
parameter h = {h1, . . . , hL} = {0.1, 0.5, 2.5} and the
variance σ 2

ul. For each random effect, the kernel matrix
K = {K(xi, xi′)} was an n×n matrix K(xi, xi′) = exp{−h×Dii′ },
where D =

{
Dii′ =

∑m
k=1 (xik−xi′k)2

m

}
was the average

squared-Euclidean distance matrix between genotypes,
and xik the element on line i (genotype i) and column k
(kth marker) of the matrix M. The residual effect assumed
ε ∼ N(0, Iσ 2

ε ).
The fourth univariate model genomic-BLUP (G-BLUP)

was fitted using a semi-parametric RKHS algorithm. To
facilitate efficient incorporation of a large number of
markers, the additive genomic relationship matrix tradi-
tionally used for genomic prediction was replaced in G-
BLUP by a genomic relationship matrix [78]. The genomic
relationship matrix G was computed as G = MM′/m and
used to fit the G-BLUP model following the Equation 4.
The response y was a n × 1 vector of the global clonal
values for one trait. The n-dimensional vector of random
effects followed u ∼ N(0, Gσ 2

u ) with variance σ 2
u and the

model residuals assuming ε ∼ N(0, Iσ 2
ε ).

The fifth model applied was a multivariate model with
an unstructured covariance matrix of the random effect
(here abbreviated as MTM.UN). The model was fitted for
chosen pairs of traits using the Bayesian multivariate
Gaussian model environment MTM (http://quantgen.gi
thub.io/MTM/vignette.html). The MTM.UN followed the
Equation 4 with the response vector y, which was a vector
of the global clonal values for t traits with the length
n · t and t = 2 being the number of traits used in the
model. The vector of random effects with dimension
n · t followed u ∼ N(0, U ⊗ G) where U was an unstruc-
tured (within-genotype) covariance matrix of the random
effects with dimension t × t. Model residuals assumed
ε ∼ N(0, R ⊗ I) with R being a t × t (within-genotype)
unstructured covariance matrix of the residual effect. To
choose the pairs of traits for MTM.UN, the G-BLUP model
was applied as described above using all genotypes to
estimate genomic breeding values (estimated posterior
means of random effects excluding the residuals), which
were then used to obtain pairwise genomic breeding
values correlations between traits. The pairs with the

genomic breeding values correlations larger than 0.3
were retained for the MTM.UN analysis. In case a trait
was included in more than one pair of traits, the result
for the pair with the highest average predictive ability for
this trait was reported.

With all models, a five-fold cross-validation repeated
five times was performed, generating 25 estimates of pre-
dictive ability. The folds were chosen randomly without
replacement to mask phenotypes of 20% of the geno-
types in each run. Predictive ability was estimated as
a Pearson correlation coefficient between phenotypes
of the masked genotypes (global clonal values) and the
predicted values for the same genotypes (genomic breed-
ing values, i.e. the average predictions from all individ-
ual regression trees for RF and the estimated posterior
means of random effects excluding the residuals for
BayesCπ , RKHS, G-BLUP and MTM.UN).

BayesCπ , RKHS, G-BLUP and MTM.UN were applied
with 12 000 iterations of the Gibbs sampler, a thinning
of 5, and a burn-in of 2000 discarded samples. The RF
model was implemented in the R package ranger [79],
the models BayesCπ , RKHS and G-BLUP in the R package
BGLR80 and the MTM.UN model in the R package MTM
(http://quantgen.github.io/MTM/vignette.html).

Multi-environment genomic prediction

To explore the effects of genotypes, environments and
their interaction in genomic prediction, the predictive
ability for 30 traits was estimated using an across-
environment and a marker by environment interaction
univariate genomic prediction algorithms that assumed
constant or changing random marker effects across
environments, respectively. The random effects model
for the examined univariate multi-environment models
that were reported by Lopez-Cruz et al. [42] was:

y = 1μ + u + ε (Equation 5)

where the response y was a vector of the adjusted phe-
notypic values of each genotype of length n × r (with r
equal to the number of environments, the environments
being represented as the combined factor of location
and year), μ was the vector with an intercept for each
environment, u represented the vector of random effects
of length n × r and ε was a vector of residuals. Of the
two univariate models, the across-environment G-BLUP
model (G-BLUP.E) assumed that marker effects were con-
stant across environments with u ∼ N(0, G0σ 2

u ) where
G0 = J ⊗ G, the J being an r × r matrix of ones. The
model residuals assumed ε ∼ N(0, Iσ 2

ε ). Additionally to
the constant effects of markers across environments as
assumed in the previous model, the marker by environ-
ment interaction G-BLUP model (G-BLUP.E.G × E) allowed
the marker effects to change across environments. The
random effects were defined as u = u0 + u1 where u0 ∼
N(0, G0σ 2

u0) represented the random effects common to

http://quantgen.github.io/MTM/vignette.html
http://quantgen.github.io/MTM/vignette.html
http://quantgen.github.io/MTM/vignette.html


Jung et al. | 19

all environments and u1 ∼ N(0, G1) the random devia-
tions of the effects for specific environments with:

G1 =
⎡
⎣

σ 2
u1G 0 0
0 σ 2

u2G 0
0 0 σ 2

u3G

⎤
⎦

assuming r = 3 here for easier notation. The model
residuals assumed ε ∼ N(0, Iσ 2

ε ).
To test multivariate multi-environment genomic pre-

diction for the traits under study, a multivariate multi-
environment factor-analytic model (here abbreviated as
MTM.FA) was fitted to the genomic and phenotypic data
using the Bayesian multivariate Gaussian model envi-
ronment MTM (http://quantgen.github.io/MTM/vignette.
html). The traits measured at only one location dur-
ing two seasons (full flowering, end of flowering, fruit
volume, water core frequency and water core grade)
were not modeled using MTM.FA because the analy-
sis required at least three environments. Following the
Equation 5, the vector of random effects assumed u ∼
N(0, C ⊗ G) where C was an r × r genetic-by-environment
covariance matrix. For the factor analysis, the C = BB′+�

where B was a matrix of loadings (regressions of the
original random effects into common factors) and �

was a diagonal matrix whose entries gave the variances
of environment-specific factors. The loadings were esti-
mated for all environments and the variance of the Gaus-
sian prior assigned to the unknown loadings was set to
100. The model residuals assumed ε ∼ N(0, R ⊗ I) with R
being an r × r (within-genotype) unstructured covariance
matrix of the residual effect and I the n-dimensional
identity matrix.

The folds of a five-fold cross-validation were chosen
randomly without replacement. The cross-validation
was repeated under two scenarios. In the first cross-
validation scenario (CV1), the phenotypes of 20% of
the genotypes were masked across all environments.
For the second cross-validation scenario (CV2), the
phenotypes of 20% of the genotypes were masked across
all environments except for three Swiss environments,
i.e. phenotypes of all genotypes from the environments
“CHE.2018”, “CHE.2019” and “CHE.2020” were used for
model training. Ten traits were measured in only one
location and therefore excluded from CV2 (i.e. full
flowering, end of flowering, fruit diameter, fruit length,
maximum fruit size, fruit volume, yellow color, green
color, water core frequency and water core grade).
Predictive ability was estimated as a Pearson correlation
coefficient between the phenotypes of the masked
genotypes (adjusted phenotypic values of each genotype
in each environment) and the predicted values for these
genotypes in each environment (estimated posterior
means of random effects excluding the residuals). The
correlations were estimated for each predicted environ-
ment separately. The models following the Equation 5
did not account for the permanent non-genetic effect of
the tree over years.

All three multi-environment genomic prediction mod-
els were applied with 12 000 iterations of the Gibbs sam-
pler, a thinning of 5 and a burn-in of 2000 discarded
samples. The models G-BLUP.E and G-BLUP.E.G × E were
implemented in the R package BGLR [80], the model
MTM.FA in the R package MTM (http://quantgen.githu
b.io/MTM/vignette.html).

Genomic heritability
The BayesCπ model was applied for each trait as
described before but trained with a full set of the global
clonal values as response. The genomic heritability
h2 = Vg/(Vg + Ve) was estimated as the proportion of
phenotypic variance explained by the markers, where Vg

and Ve represented the amount of phenotypic variance
explained and unexplained by the markers, respectively
[81, 82]. The genomic heritability was calculated from
the marker effects saved in each iteration of the Gibbs
sampler and averaged over iterations to obtain the mean
genomic heritability per trait.
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