
HAL Id: hal-03662381
https://hal.inrae.fr/hal-03662381v1

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Are narrow-ranging species doomed to extinction?
Projected dramatic decline in future climate suitability

of two highly threatened species
Nicolas Dubos, Frederique Montfort, Clovis Grinand, Marie Nourtier, Gregory

Deso, Jean-Michel Probst, Julie Hanta Razafimanahaka, Raphali Rodlis
Andriantsimanarilafy, Eddie Fanantenana Rakotondrasoa, Pierre

Razafindraibe, et al.

To cite this version:
Nicolas Dubos, Frederique Montfort, Clovis Grinand, Marie Nourtier, Gregory Deso, et al.. Are
narrow-ranging species doomed to extinction? Projected dramatic decline in future climate suitability
of two highly threatened species. Perspectives in Ecology and Conservation, 2022, 20 (1), pp.18-28.
�10.1016/j.pecon.2021.10.002�. �hal-03662381�

https://hal.inrae.fr/hal-03662381v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Are narrow-ranging species doomed to extinction? Projected dramatic decline in future climate 1 

suitability of two highly threatened species 2 

 3 

Running title: Narrow-ranging species and climate change 4 

 5 

Nicolas Dubos1, 2, Frederique Montfort3, Clovis Grinand3, Marie Nourtier3, Gregory Deso4, Jean-Michel 6 

Probst5, Julie Hanta Razafimanahaka6, Raphali Rodlis Andriantsimanarilafy6, Eddie Fanantenana 7 

Rakotondrasoa6, Pierre Razafindraibe6, Richard Jenkins6,7 and Angelica Crottini8 8 

 9 

 10 

1 Centre d’Ecologie et des Sciences de la Conservation (CESCO UMR 7204), Sorbonne Université, MNHN, 11 
55 rue Buffon, 75005 Paris, France. 12 

2 INRAE (UMR TETIS), Maison de la télédétection, 500 rue Jean-François Breton 34093 Montpellier Cedex 13 
5, France. 14 

3 N’Lab, Nitidæ, Maison de la télédétection, 500 rue Jean-François Breton 34093 Montpellier Cedex 5 15 

4 Association Herpétologique de Provence Alpes Méditerranée, Maison des Associations, 384 route de 16 
Caderousse, F-84100 Orange, France. 17 

5 Association Nature and Patrimoine, 1 rue des amarantes résidence Valeriane 2, Bat C appartement 15. 18 
97490 Sainte Clotilde, Île de La Réunion, France. 19 

6 Madagasikara Voakajy, B.P. 5181, Antananarivo (101), Madagascar. 20 

7 Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, Marlowe 21 
Building, University of Kent, Canterbury, CT2 7NR ; Current address: IUCN Global Species Programme, 22 
219c Huntingdon Road, Cambridge, CB3 0DL, UK. 23 

8 CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus 24 

Agrário de Vairão, Rua Padre Armando Quintas, No 7, 4485-661 Vairão, Portugal. 25 

  26 

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S2530064421000894
Manuscript_23bb58ad248209108072b50f5128ee43

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S2530064421000894
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S2530064421000894


Abstract 27 

Narrow-ranging species are usually omitted from Species distribution models (SDMs) due to statistical 28 

constraints, while they are predicted to be particularly vulnerable to climate change. The recently available 29 

high-resolution environmental predictors, along with recently developed methods enable to increase the 30 

eligibility of narrow-ranging species for SDMs, provided their distribution is well known. We fill a gap of 31 

knowledge on the effect of predicted climate change on narrow-ranging species. We modelled the 32 

distribution of the golden mantella frog Mantella aurantiaca and the Manapany day gecko Phelsuma 33 

inexpectata, for which the distribution of their occurrence records is well documented. Our modelling 34 

scheme included a range of processes susceptible to address statistical issues related to narrow-ranging 35 

species. We predict an alarming decline in climate suitability in the whole current distribution area of both 36 

species by 2070, potentially leading to a complete extinction in most scenarios. We identified the areas with 37 

the best climate suitability in the future, but these remain largely suboptimal regarding species climatic niche. 38 

The high level of habitat fragmentation suggests that both species likely need to be at least partly 39 

translocated. Climate change may not only drive range contractions or distribution shifts in narrow-ranging 40 

species, but may lead to the complete extirpation of suitable environments across their entire region. This 41 

study suggests that the level of threats of narrow-ranging species already identified as threatened may be 42 

underestimated, especially in heterogeneous tropical areas. We stress the need to develop sampling 43 

campaigns and implement proactive actions for narrow-ranging species in the tropics. 44 

 45 
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Introduction 48 

Climate change is predicted to become the main driver of biodiversity loss it in the next decades (Bellard et 49 

al., 2012). Species Distribution Models (SDMs) are probably the most common approach used to predict the 50 

impact of future climate change on species. They are used to predict current and future environmental 51 

suitability, and provide guidelines for the identification of priority areas for protection (Leroy et al., 2014), 52 

habitat restoration and species (re)introduction/translocations (e.g., Bellis et al., 2020; Draper et al., 2019; 53 

Butt et al., 2020; Westwood et al., 2020). Habitat restoration and translocations are two ecological 54 

engineering techniques enabling the restoration of depleted populations. Translocation programs will become 55 

increasingly needed in the face of climate change, especially for species with small distribution ranges 56 

(Thomas, 2011). In this regard, SDMs help identifying suitable receptor sites that meet the species’ habitat 57 

requirements while accounting for climate suitability (Bellis et al., 2020). In highly degraded environments a 58 

combination of habitat restoration and translocation may be needed to avoid species extinctions. This may be 59 

the case in highly fragmented tropical systems, where the number of narrow-ranging species is higher and 60 

where climate change effects are expected to be stronger (Tewksbury et al., 2008). 61 

The impact of future climate change is largely understudied in endangered narrow-ranging species. This is 62 

mainly due to the difficulty to model their current distribution and project their future because of low sample 63 

sizes and subsequent little spatial replicates when fitted on climate data (Botts et al., 2013; Platts et al., 2014; 64 

Breiner et al., 2015; Galante et al., 2018). Both these factors lead to statistical constraints that withdraw these 65 

species from eligibility for SDMs. However, the omission of narrow-ranging species in SDMs may be 66 

problematic in terms of conservation planning, because the area encompassing their distribution may be 67 

downplayed (Platts et al., 2014). Although narrow-ranging species are known to be more vulnerable to 68 

climate change (Pearson et al., 2014), few studies have provided quantitative assessment of climate change 69 

impacts on these (but see Alamgir et al., 2015; Zhang et al., 2020). 70 

The recent availability of high-resolution climatic data (e.g., Fick & Hijmans, 2017; Karger et al., 2017), 71 

along with high-resolution land cover data (e.g., Vieilledent et al., 2018) is offering new opportunities for 72 

modelling the distribution of these species (Lannuzel et al., 2021)⁠. However, despite a probable increase in 73 



statistical power, there is still the possibility for SDMs to produce misleading results due to spatial sampling 74 

bias (Phillips et al., 2009). The effect of sample bias may be particularly strong in rare (or poorly known) 75 

species with small sample sizes, because models are more influenced by each occurrence data that is used 76 

(Pearson et al., 2007). A number of techniques were recently developed for data-poor species. For instance, 77 

jackknife procedures (i.e. leave-one-out; Pearson et al. 2007)⁠  improves model assessments and Ensemble of 78 

Small Models (ESMs) enable to deal with model complexity while keeping sufficient explanatory power 79 

(Breiner et al. 2015)⁠. Other techniques are dedicated to sampling bias correction, often implying the filtering 80 

of occurrence or environmental data (Gábor et al., 2019) or non-random pseudo-absence selection (Phillips 81 

et al., 2009). However, data filtering can become problematic for species with low sample sizes (Vollering et 82 

al., 2019), especially when species distribution is highly localised (Inman et al., 2021) and is not 83 

recommended in absence of evidence of bias in occurrence data (Gábor et al., 2019). Similarly, non-random 84 

pseudo-absence selection is not always effective (Dubos et al., 2021) and tends to make predictions worse in 85 

narrow-niche species (Inman et al., 2021). However, the restriction of the background area (where pseudo-86 

absences are generated), i.e. background thickening, can be advantageous for sample bias correction when 87 

data is scarce without discarding presence records (Acevedo et al. 2012; Vollering et al. 2019)⁠. On the other 88 

hand, the reliability of an SDM is more driven by the quality of the data than the implementation of models 89 

(Araùjo et al., 2019). Therefore, the best option for narrow-ranging SDMs may be to (1) use all the available 90 

methodological tools to deal with statistical issues, and (2) select species for which the distribution is well 91 

known. 92 

Given the predicted magnitude of climate change, along with the narrow thermal tolerance of tropical species 93 

(Tewksbury et al., 2008), we may not only expect a reduction or a geographical shift in suitable conditions 94 

for narrow-ranging species, but the extirpation of suitable conditions across the entirety of their distribution 95 

range. Here we fill a gap of knowledge regarding the impact of future climate change on narrow-ranging 96 

species using two species for which the distribution is particularly well documented. These were the 97 

Manapany day gecko Phelsuma inexpectata, classified as Critically Endangered  (IUCN & MNHN, 2010) 98 

and the golden mantella frog Mantella aurantiaca formerly classified as Critically Endangered (Vences & 99 



Raxworthy, 2008), now classified as Endangered after the inclusion of one locality record which increased its 100 

extent of occurrence (IUCN SSC Amphibian Specialist Group 2020)⁠. Both species are in continued decline 101 

(Probst & Turpin, 1997; Crottini et al., 2019), live in highly fragmented areas (respectively in Reunion Island 102 

and central Madagascar) and are in urgent need for conservation actions. Given the important, long-term 103 

efforts invested to document their distribution, we assume that the geographic information for these species 104 

is nearly comprehensive and unbiased. We tested whether climate change will ‘only’ drive range 105 

reductions/shifts, or lead to a total extirpation of their suitable areas. We eventually identify the most suitable 106 

candidate areas for habitat restoration and translocation across their respective regions. 107 

 108 

Methods 109 

Occurrence data 110 

Phelsuma inexpectata – The Manapany day gecko is endemic to the south of Reunion Island. We retrieved 111 

31 occurrence data from literature (Bour et al., 1995). Since then, the surroundings of the known distribution 112 

range of the species were regularly visited (an 11 km-long coastal band; Fig. 1). Two localities corresponding 113 

to introduced populations were identified west of the current range, which we added to the data (Deso, 2001; 114 

Porcel et al., 2021). Recent sampling campaigns enabled to find additional occupied habitats (Dubos 2010) 115 

but did not add any occurrence point after aggregation at the resolution of the environmental variables (30 116 

arc seconds). Therefore, we assume that the sample occurrence of the species is nearly comprehensive. The 117 

total number of 30 sec. occupied pixels resulted in 15 presence points. 118 

Mantella aurantiaca – The golden mantella frog is distributed in central-Eastern Madagascar (region of 119 

Moramanga; Fig. 1). We obtained 131 occurrence data from Piludu et al. (2015). Those included compiled 120 

published data from surveys conducted between 2001 and 2007 (Bora et al., 2008; Randrianavelona et al., 121 

2010) and new locations from additional surveys conducted between 2008 and 2013. More recent surveys 122 

conducted between 2014 and 2019 enabled to add 39 occurrences. The region has been extensively surveyed 123 



and it is very likely that most occupied habitats were identified. After aggregation to match the resolution of 124 

environmental data, sample size resulted in 101 occurrence points. 125 

Fig. 1 Study area and species, with occurrence points. 126 

Climate data 127 

We used the 19 bioclimatic variables for 30 arc sec (approximately 900m) resolution of the current climate 128 

data and of the 2070 projections from CHELSA (Karger et al., 2017; Fig. S1, S2). We decided to include all 129 

the 19 variables because both temperature and precipitation are related to the species’ biology, including 130 

those related to indices of variability (e.g., cyclones drive mortality in Phelsuma and heavy rains drive 131 

reproduction in Mantella; Vinson, 1975; Randrianavelona et al., 2010). We used three Global Circulation 132 

Models (GCMs; i.e., BCC-CSM1-1, MIROC5 and HadGEM2-AO) and two greenhouse gas emission 133 

scenarios (the most optimistic RCP26 and the most pessimistic RCP85; Fig. S3, S4). We also ran sets of 134 

models using the WorldClim Global Climate Data (Fick & Hijmans, 2017), with the same GCMs and 135 

scenarios to account for potential effect of the baseline data in our predictions. 136 

 137 

Distribution modelling 138 



We modelled and projected species distributions with the biomod2 R package (Thuiller et al. 2009), using 10 139 

modelling techniques: generalised linear model (GLM), generalised additive model (GAM), classification 140 

tree analysis (CTA), artificial neural network (ANN), surface range envelop (SRE, as known as BIOCLIM), 141 

flexible discriminant analysis (FDA) and random forest (RF), Multiple Adaptive Regression Splines (MARS), 142 

Generalised Boosting Model (GBM) and Maximum Entropy (MaxEnt). For machine learning modelling 143 

techniques, hyperparameters were set to their default values implemented in biomod2 (see 144 

https://www.rdocumentation.org/packages/biomod2/versions/3.5.1/topics/BIOMOD_ModelingOptions). We 145 

generated five different sets of randomly-selected pseudo-absences (random generation is recommended for 146 

rare and specialised species; Inman et al., 2021). We selected one variable per group of inter-correlated 147 

variables to avoid collinearity (Pearson’s r > 0.7) and assessed the relative importance of each variable kept 148 

with 10 permutations per model replicate (total = 500). The variables included in the final models were those 149 

with a relative importance > 0.2 across at least 50% of model runs (these varied with the baseline climate and 150 

the background extent; Table 1). We show the fitted predicted values for each individual model, and a mean 151 

smoothed response curve. We predicted species distributions with an ensemble of small models approach 152 

(ESM; Breiner et al., 2015)⁠. We ran sets of bivariate models, i.e. including all pairwise combinations of the 153 

selected variables, and produced an ensemble model with the mean predictions across all models weighted 154 

by their respective AUC (see below). This method is advocated for rare species and enables to reduce model 155 

complexity without reducing the explanatory power. We set three runs of cross validation (except for the 156 

jackknife procedure; see below). We ran a first set of models (1), hereafter referred to as ‘Base’ setting, with 157 

1000 pseudo-absences selected from a background covering the entire respective island of each species (i.e. 158 

all island cells). We ran a second set (2) where the 1000 pseudo-absences were down-weighted to equal 159 

presence data (setting prevalence to 0.5) referred to as ‘equal total weight’ (ETW; Liu et al. 2019)⁠. We 160 

reperformed the first two model sets but with a background covering the southern part of Reunion Island and 161 

the eastern forested part of Madagascar (see ‘Land use data’ section), without, and with pseudo-absence 162 

down-weighting, respectively referred to as (3) ‘Restricted background’ and (4) ‘ETW-Restricted 163 

background’. Eventually, we ran a (5) Base model set with the Worldclim baseline climate instead of Chelsa, 164 



referred to as ‘Worldclim baseline’. For both species we present five ensemble models of current distribution 165 

(of varying background, prevalence and baseline climate), and 30 ensemble models of projected future 166 

distribution (of varying background, prevalence, baseline climate, GCM and RCP). We did not account for 167 

species dispersal ability, because the purpose was not to predict potential shifts, but to assess how suitable 168 

will be the climate in the future in order to identify candidate sites for restoration and translocation. 169 

 170 

Model evaluations – Ideally, performance evaluations are based on block-cross validation to limit spatial 171 

autocorrelation at large scales. In our case, species distributions are highly localised and the use of spatial 172 

splits would result in strong unbalances between blocks. We therefore used a random partitioning for M. 173 

aurantiaca and a jackknife for P. inexpectata. The jackknife procedure is appropriate for small sample sizes 174 

(Pearson et al., 2007; Galante et al., 2018). This approach consists in running n iterations corresponding to 175 

the number of occurrence data, removing one occurrence for each run of calibration. Models are evaluated 176 

with the withheld occurrence. We did not used it for M. aurantiaca given that the number of occurrence data 177 

was sufficient for a standard procedure, and used an 80% calibration subset (random partitioning). We 178 

assessed model performance using the Area Under the Operative Curve (AUC), the True Skill Statistics (TSS) 179 

and the Boyce index (the latter was not computed for the jackknife procedure, because this index is based on 180 

Spearman’s coefficients and cannot be estimated on the basis of a single location). Poorly performing models 181 

could result from calibration subsets falling into different conditions than evaluation subsets. For ensemble 182 

models (mean predictions), we excluded models for which the AUC was below 0.9 and for which the Boyce 183 

index was below 0.5 (Gillard et al., 2017)⁠.  184 

We performed a multivariate environmental similarity surfaces analysis (MESS) to determine whether 185 

models are well informed for projections on novel (future) data. We eventually quantified the uncertainty 186 

related to model input parameters (modelling technique, pseudo-absence distribution, number of pseudo-187 

absences generated, pseudo-absence down-weighting, GCMs, RCPs and baseline climate data) by computing 188 

the standard deviation of the suitability scores between model predictions. 189 



 190 

Land use data 191 

We accounted for the habitat requirements of our model species by applying a filter to the projected climate 192 

suitability based on land use and land cover data (e.g., Gillard et al., 2017). This enabled to minimise model 193 

complexity while remaining biologically realistic and relevant for conservation applications. 194 

Reunion Island – We used very high-resolution land cover categories (Urban, agricultural, natural, water) at 195 

1.5m resolution (resampled at 15m for computing purposes) derived from remote sensing (Dupuy and 196 

Gaetano, 2019; Fig. S5). Since P. inexpectata can be found in both urbanised and natural areas and avoids 197 

agricultural areas (Probst & Turpin, 1997), we excluded the latter land use type only. This is relevant also for 198 

conservation applications because habitat restoration is more difficult to implement in agricultural areas. 199 

Madagascar – Mantella aurantiaca is exclusively found in swampy forested areas (Randrianavelona et al., 200 

2010). We filtered our suitability maps to include only cells corresponding to rainforests. We obtained forest 201 

cover data for two periods (1990 and 2017) from a study that combined global tree cover loss data with 202 

historical national forest (resolution 30m; Vieilledent et al., 2018; Fig. S6). We used forest cover of the year 203 

1990 for current distribution models because it corresponds approximately to the period of the oldest 204 

occurrence data (some areas were deforested since then). For future projections, we used the latest forest 205 

cover data available, i.e. 2017. 206 

 207 

Results 208 

Variable selection and model performance 209 

Three to four variables were selected in every cases (no change between prevalence settings; see details in 210 

Table 1; Fig. S7, S8). The current distribution of both species was well predicted (across five model sets: P. 211 

inexpectata: mean AUC = 0.96, mean TSS = 0.91; M. aurantiaca: mean Boyce = 0.82, mean AUC = 0.97, 212 

mean TSS = 0.94; Fig. S9, S10). We excluded 5076 poorly performing models out of 18750 for P. 213 



inexpectata, and 343 out of 4140 for M. aurantiaca. The median suitability score at the presence points for P. 214 

inexpectata was 836 (911 when removing the two introduced populations) and 783 for M. aurantiaca. 215 

Models consistently identified the current distribution range between all runs for both species, as shown by 216 

the uncertainty map (SD intermodel suitability scores at the presence points of 168 for P. inexpectata and 113 217 

for M. aurantiaca; Fig. S11, S12). 218 

Table 1. Selected variables for two narrow-ranging species in Reunion Island and Madagascar. Variables 219 

were obtained from CHELSA (Karger et al., 2017) and Worldclim (Fick & Hijmans, 2017), and selected on 220 

the basis of 10 permutations per modelling technique and pseudo-absence set (total = 500). 221 

Species Model set Selected variables 

Phelsuma 
inexpectata Base Bio1, Bio15, Bio18 

 

Restricted 

background Bio1, Bio15, Bio18 

 

Worldclim 

baseline Bio1, Bio3, Bio14, Bio16 
   
Mantella 
aurantiaca Base Bio1, Bio3, Bio4, Bio5 

 

Restricted 

background Bio1, Bio18, Bio19 

 

Worldclim 

baseline 

Bio10, Bio11, Bio14, 

Bio16 
 222 

Future climate suitability 223 

All scenarios indicated an important decrease in climate suitability in the entirety of the current range of both 224 

species by 2070 (Fig. 2–7). On average across scenarios and GCMs, suitability scores decreased by 59% for 225 

P. inexpectata (Fig. 8) and 73% for M. aurantiaca at the presence points (Fig. 9). For M. aurantiaca, only 226 

one scenario out of 30 showed high suitability values within the current range (i.e. the MIROC5 GCB, 227 

RCP85, Chelsa baseline, restricted background). 228 

In Reunion Island, predictions were the most variable between GCMs, but most ensemble models predicted a 229 

low climate suitability across the island. The highest suitability was found for the MIROC5 GCM, 230 

distributed along a band at higher altitudes (Fig. 2b). However, the MESS analyses indicated novel 231 



conditions in the most suitable areas, suggesting model extrapolations in these areas for this GCM (Fig. S13). 232 

According to the response curves (Fig. S14) and the predicted decrease in summer precipitations (Fig. S3c-d), 233 

climate suitability may have been overestimated. 234 

In Madagascar, predictions varied the most with the background extent. Apart from the restricted background 235 

sets, none of the ensemble models identified any suitable area in the future. Nevertheless, we consistently 236 

identified a thin forest band in central Madagascar, south the current distribution, as the most suitable area 237 

across GCMs and scenarios (Fig. 3b). Models identified clear climatic windows, with no issue related to 238 

model extrapolation (Fig. S15, S16). 239 

Fig. 2 Current (a) and projected future (b) environmental suitability for Phelsuma inexpectata using Chelsa 240 

as baseline climate data, no prevalence setting and the whole island as a background. Predictions were 241 

filtered the remove agricultural areas. X and Y axes represent the coordinates (WGS84). Black points 242 

represent the occurrence data. Future projections (2070) were estimated from three Global Circulation 243 

models (GCM) and two RCP scenarios. Left panels represent the most optimistic scenario (RCP26) and right 244 

panels represent the most pessimistic scenario (RCP85). Models produced similar results when setting 245 

prevalence to 0.5 (Equal total weights). 246 



Fig. 3 Current (a) and projected future (b) environmental suitability for Phelsuma inexpectata using Chelsa 247 

as baseline climate data, no prevalence setting and restricted background. Predictions were filtered the 248 

remove agricultural areas. X and Y axes represent the coordinates (WGS84). Black points represent the 249 

occurrence data. Future projections (2070) were estimated from three Global Circulation models (GCM) and 250 

two RCP scenarios. Left panels represent the most optimistic scenario (RCP26) and right panels represent the 251 

most pessimistic scenario (RCP85). Models produced similar results when setting prevalence to 0.5 (Equal 252 

total weights). 253 

254 

 Fig. 4 Current (a) and projected future (b) environmental suitability for Phelsuma inexpectata using 255 

Worldclim as baseline climate data. Predictions were filtered the remove agricultural areas. X and Y axes 256 

represent the coordinates (WGS84). Black points represent the occurrence data. Future projections (2070) 257 

were estimated from three Global Circulation models (GCM) and two RCP scenarios. Left panels represent 258 

the most optimistic scenario (RCP26) and right panels represent the most pessimistic scenario (RCP85). 259 



Fig. 5 Current (a) and projected future (b) environmental suitability for Mantella aurantiaca using the Chelsa 260 

baseline climate, no prevalence setting and the whole island as a background. Predictions were filtered to 261 

include only forested areas. X and Y axes represent the coordinates (WGS84). Black points represent the 262 

occurrence data. Future projections (2070) were estimated from three Global Circulation models (GCM) and 263 

two RCP scenarios. Top panels represent the most optimistic scenario (RCP26) and bottom panels represent 264 

the most pessimistic scenario (RCP85). Models produced similar results when setting prevalence to 0.5 265 

(Equal total weights). 266 



Fig. 6 Current (a) and projected future (b) environmental suitability for Mantella aurantiaca using the Chelsa 267 

baseline climate, no prevalence setting and a restricted background. The background was filtered to include 268 

only the western rainforest corridor. X and Y axes represent the coordinates (WGS84). Black points represent 269 

the occurrence data. Future projections (2070) were estimated from three Global Circulation models (GCM) 270 

and two RCP scenarios. Top panels represent the most optimistic scenario (RCP26) and bottom panels 271 

represent the most pessimistic scenario (RCP85). Models produced similar results when setting prevalence to 272 

0.5 (Equal total weights). 273 



274 

  275 

Fig. 7 Current (a) and projected future (b) environmental suitability for Mantella aurantiaca using the 276 

Worldclim baseline climate. Predictions were filtered to include only forested areas. X and Y axes represent 277 

the coordinates (WGS84). Black points represent the occurrence data. Future projections (2070) were 278 

estimated from three Global Circulation models (GCM) and two RCP scenarios. Top panels represent the 279 

most optimistic scenario (RCP26) and bottom panels represent the most pessimistic scenario (RCP85). 280 



 281 

Fig. 8 Variation in climate suitability scores at the occurrence points of Phelsuma inexpectata under current 282 

climate and 2070 climate. We show the variability in model predictions related to the climate scenario (RCP 283 

2.6 versus RCP 8.5), the Global circulation model (3 GCMs), the background extent (wide versus restricted), 284 

prevalence setting (no setting versus Equal Total Weights, ETW) and baseline climate (Chelsa versus 285 

Worldclim). Each boxplot is composed of the first decile, the lower hinge, the median, the upper hinge and 286 

the nineth decile.  287 



 288 

 289 

Fig. 9 Variation in climate suitability scores at the occurrence points of Mantella aurantiaca under current 290 

climate and 2070 climate. We show the variability in model predictions related to the climate scenario (RCP 291 

2.6 versus RCP 8.5), the Global circulation model (3 GCMs), the background extent (wide versus restricted), 292 

prevalence setting (no setting versus Equal Total Weights, ETW) and baseline climate (Chelsa versus 293 

Worldclim). Each boxplot is composed of the first decile, the lower hinge, the median, the upper hinge and 294 

the nineth decile. 295 

 296 

Discussion 297 

Dramatic and widespread decline in climate suitability 298 

We predict a strong decline of climate suitability in the whole current distribution area of both species by 299 

2070. The subsequent high extinction risk in these species is not surprising, since small occupied areas are 300 

known to be good predictors of vulnerability to climate change (Pearson et al., 2014), but forecasting models 301 



were lacking and we contribute to fill this gap. We also predict that few or no zone will be suitable in the 302 

future across the entirety of their respective regions if those species are not given the opportunity to adapt. 303 

Depending on the Global Circulation model and the scenario, future projections still identified areas with 304 

suboptimal climatic conditions. In Reunion Island, the higher suitability found at ca. 20km west from the 305 

current distribution was presumably driven by an increase in precipitation. Phelsuma inexpectata is mostly 306 

present where precipitation is the lowest (< 500mm during the wet season, Fig., S10). The identified area 307 

coincides with the region with the driest conditions in Reunion Island in the future, according to these GCMs 308 

(Fig. S1). In all model sets, the MIROC5 GCM showed a higher—but suboptimal—climate suitability 309 

around the southern coast of the island, with the highest suitability along a band following the upper lands. 310 

This prediction is likely driven by the increase in overall temperature, along with reduced precipitation. The 311 

species lives under the hottest and driest conditions of the island, which fits the thermal requirements of the 312 

species for reproduction in captivity (28°C; McKeown, 1993). However, we believe this GCM is 313 

questionable because (1) the reduction in precipitation does not reflect the possible global increase in cyclone 314 

risk, and (2) the MESS analysis and response curves suggest an overestimation of the suitability scores. Note 315 

that this scenario (i.e. RCP 8.5)—which was the least pessimistic for P. inexpectata—is of interest to explore 316 

the widest range of possibilities in the future, but is considered unlikely (Hausfather & Peters, 2020). 317 

In Madagascar, the current distribution is mainly explained by both winter (i.e. the dry season) and summer 318 

(i.e., the wet season) conditions with a short interval of suitability (Fig. S15). An important decline in climate 319 

suitability may therefore be driven by small changes in either winter or summer conditions. During winter, 320 

individuals migrate up the hills to shelter under dead woods and leaves and presumably enter a state of torpor 321 

or hibernation (Randrianavelona et al., 2010; Edmonds et al., 2020). The narrow climatic window may 322 

represent optimal conditions that minimise the risk of desiccation during this period of low activity. The 323 

species is also dependent on summer conditions, with a narrow window of suitable temperature and 324 

precipitations. This is highly consistent with a field study which recorded a surface temperature of 20-23°C 325 

at the occupied sites (Edwards et al., 2019)⁠ and an experimental design which found a decrease in activity 326 

when temperature deviates from 21.5°C (Edwards, 2019) ⁠with warm and rainy conditions (Fig. S12). 327 



Summer corresponds to the period of reproduction, where females lay eggs under dead leaves on slopes, 328 

which are likely washed down into temporary pond during heavy rain episodes. This may explain the 329 

dependence with summer high precipitation and temperatures. This combination of climatic conditions is 330 

unlikely to be met in the future, except for the MIROC5 GCM under the RCP85 scenario (but this scenario is 331 

unlikely, Hausfather & Peters, 2020). However, we consistently identified potential suboptimal areas in the 332 

central-south of the eastern forest corridor and in one small area in the north east (corresponding to the top of 333 

mountains). For both species P. inexpectata and M. aurantiaca, the high level of habitat fragmentation 334 

associated to agricultural areas may limit potential distribution shifts, which calls the need for human 335 

intervention. 336 

 337 

Sources of uncertainty 338 

The largest source of uncertainty was related to the GCM for P. inexpectata, and to the background extend 339 

for M. aurantiaca. We followed a protocol that attempted to mitigate most sources of uncertainty, 340 

corresponding to the acceptable standards defined in Araújo et al. (2019). The long term, extensive and 341 

repeated efforts dedicated to species sampling enabled to define the current distributions of both species with 342 

high accuracy. Uncertainty map showed a high level of agreement between model replicates (i.e. modelling 343 

techniques, cross-validation runs and pseudo-absence runs; Fig. S17, S18).  344 

In absence of information regarding the dispersal capacity of both species, we used two background 345 

corresponding to past dispersal hypotheses. The background covering the whole respective islands seems the 346 

most appropriate when assuming that only the sea could represent a dispersal barrier and that species could 347 

have dispersed throughout the whole island with regard to past climate and forest cover (Crottini et al. 2019)⁠, 348 

as assumed in Fieldsend et al. (2021). This might be the case for both species, especially P. inexpectata since 349 

the island is smaller and mostly occupied by a closely related species (P. borbonica; Dubos et al. 2021a)⁠. The 350 

restricted background corresponds to a hypothesis where M. aurantiaca dispersal is limited by current forest 351 



cover, and where P. inexpectata is limited to the driest part of Reunion Island. This procedure enabled to 352 

encompass the widest range of possibilities with respect to two extreme hypotheses. 353 

We included the 19 bioclimatic variables for the selection process, which is not recommended in most cases. 354 

However, we reduced the number of variables by removing the intercorrelated ones, and then selected the 355 

most biologically meaningful variables. We used the finest resolution available for climate data (i.e. 30 arc 356 

sec) which seems sufficient to discriminate suitable to unsuitable areas at the scale of Reunion Island and 357 

Madagascar. The inclusion of high-resolution land use variables enabled to improve the realism of both 358 

distributions and provides specific guidelines for conservation applications. In addition, we found a causal 359 

interpretation for the selected variables, which supports the biological significance of our models (Fourcade 360 

et al. 2018; Dubos et al. 2021b)⁠. An important limitation is that we did not use scenarios of future land use. 361 

This may lead to an overestimation of the available habitat in Madagascar, since the country is under 362 

important rates of deforestation (Veilledent et al., 2018). In Reunion Island, most of the natural habitats is 363 

incorporated in private properties or public gardens and in steep zones with limited access for agricultural 364 

practices. We believe that the apparent stability in agricultural areas would maintain the applicability of our 365 

results in the future. The inclusion of a range of different greenhouse-gas emission scenarios and GCMs 366 

showed an important uncertainty in the future suitability for P. inexpectata. However, this uncertainty is 367 

mostly related to one GCM (i.e. MIROC5), which we assume to be doubtful. The remaining ones 368 

consistently identified the most suitable area by 2070. Uncertainty related to model design was mitigated by 369 

the limitation of model complexity (with the ESM approach and the post-filtering technique), the removal of 370 

collinearity and the testing of a range of input parameters (number of pseudo-absences sets and coss-371 

validation subsets). Model performance was assessed with random partitions for M. aurantiaca, while spatial 372 

partitions are recommended. However, we argued that this methods is not appropriate for highly localised 373 

species due to strong imbalance between spatial blocks. We used multiple evaluation metrics, including 374 

discrimination (AUC and TSS) and reliability (i.e. calibration; Boyce index) metrics, all showing a high 375 

performance overall. We did not account for species dispersal ability, because the purpose was not to predict 376 

potential shifts, but to assess how suitable will be the climate in the future in order to identify candidate sites 377 



for restoration and translocation. Both species have low dispersal ability and their habitat is highly 378 

fragmented. Therefore, the potential for distributional shifts may be strongly limited and future projections 379 

must not be interpreted as the future distributions of our study species. An important limitation may be the 380 

absence of empirical knowledge on species thermal tolerances or other features of their climatic niche, 381 

adaptability and plasticity, which prevents us from determining whether our future projections 382 

underestimated the environmental suitability. Similarly, the extent of the species’ fundamental niche is 383 

unknown, and differs from the realised niche as a result of competition, habitat loss and environmental 384 

history, which may particularly important in endemic narrow-ranging species. 385 

 386 

A glimmer of hope 387 

Despite the predicted low suitability in climate conditions, it is possible that species persist under changing 388 

conditions through adaptation or plasticity (Chevin et al., 2010; Hoffmann & Sgró, 2011). This hypothesis is 389 

supported by the persistence of two introduced populations of P. inexpectata away from their current range in 390 

suboptimal environments (Fig. 2). Their persistence may result either from physiological or behavioural 391 

adaptation while benefiting from a combination of urban island effect and access to microclimate refuges in 392 

anthropogenic structures, as it is the case for Phelsuma grandis in Florida (Fieldsend et al., under review). It 393 

is also frequent that the current distribution of a given species represents only a fragment of its climatic niche 394 

(e.g., Guisan et al., 2014). For instance, experimental design on M. aurantiaca showed no expression of a 395 

thermal stress during periods of extreme heat (Edmonds et al., 2015). Therefore, predictions of climate 396 

suitability may underestimate the bounds of our model species niches. Further studies are needed to better 397 

characterise their climatic niche, and explore potential adaptive and plastic responses to changing conditions 398 

in these species and, more generally, in other threatened narrow-ranging species. Meanwhile, we encourage 399 

practitioners to implement conservation measures to grant those species a chance to adapt and persist. 400 

Nevertheless, the rate of climate change is generally faster than that of animal adaptive responses (Radchuk 401 

et al., 2019), which stresses the need for urgent actions. In the tropics, extinction risks may be greatly 402 



reduced with the development of land conservation programs provided climate change is mitigated by inter-403 

governmental actions (Hannah et al., 2020). 404 

 405 

Conservation application 406 

In Reunion Island, we identified two potential areas suitable for habitat restoration of Phelsuma inexpectata 407 

around the south-western coast and along a mid-altitude band. Despite climate conditions are predicted to be 408 

suboptimal, we believe these might represent the best options to ensure the long-term persistence of the 409 

species. Habitat restoration should be focussed on natural habitats invaded by non-native plants and in 410 

urbanised areas. Habitat restoration will consist in promoting the spread of native species (Pandanus utilis, 411 

Latania lontaroides, Scaevola taccada and Psiadia retusa) for which the species depends on (Bour, 1995). 412 

Finally, natural colonisation of newly suitable environments will be likely impossible for the species due to 413 

its poor dispersal ability and the high level of habitat fragmentation. We therefore encourage the design of 414 

translocation programs in management schemes. 415 

In Madagascar, the area with the highest future climate suitability is located at the south of the current 416 

distribution, along the eastern rainforest corridor between the current distribution area and the north-west of 417 

the Vatovavy-Fitovinany region. The forest cover within the distribution range of M. aurantiaca has 418 

experienced a continued decline, regardless of the conservation status of the inhabited area (Piludu et al., 419 

2015; Vieilledent et al., 2018). We recommend to reinforce the level of protection and to improve 420 

governance and management of the Mangabe (Moramanga region) and the Marolambo (Vatovavy-421 

Fitovinany region) reserves. This can be achieved by promoting the development of alternative economic 422 

solutions through the development of valuable and sustainable activities that mitigate the rate of conversion 423 

of natural areas, the long-term management of soil fertility, and by considering the development of 424 

ecotourism.  This species was included into a program that enabled to develop amphibian husbandry 425 

capacities in Madagascar, and that succeeded to establish captive bred colonies for this species 426 

(Rakotonanahary et al. 2017). Efforts of captive husbandry should be maintained (and possibly expanded to 427 



other species)  and we encourage the design of translocation programs accounting for both local habitat 428 

characteristics and future climate suitability. Further study of biotic interaction between M. aurantiaca and 429 

other amphibians is needed to assess the consequences of its introduction. 430 

 431 

Are all endangered narrow-ranging species doomed to extinction? 432 

Narrow-ranging species usually live under very specific environmental conditions and are the most 433 

vulnerable to climate change (Botts et al., 2013). Not only they are more prone to face distribution shifts and 434 

range contractions, but they might also disappear due to the strong alteration of their climatic envelope 435 

throughout their entire region. This may be the case for most narrow-ranging species with a specialised niche 436 

in regions with heterogeneous climates and high levels of endemism such as Madagascar but also Central 437 

America, South East Asia, tropical islands and more generally in tropical rainforests and mountains (Kier et 438 

al., 2009). In such regions, small shifts in climatic conditions may induce important changes in local 439 

environmental suitability for endemic—often specialised—species (e.g., Raxworthy et al., 2008). The risk is 440 

greater in tropical regions where species live closer to the upper bound of their thermal tolerance (Tewksbury 441 

et al., 2008; Şekercioĝlu et al., 2012; Dubos et al., 2019). Species that are already under threats are at the 442 

greatest risk because of a large array of synergistic effects (Şekercioĝlu et al., 2012). This might be the case 443 

for our two model species, which are threatened by habitat destruction and invasive species (Dubos, 2013; 444 

Piludu et al., 2015). Among the few Critically Endangered species for which the impact of climate has been 445 

investigated, most predict severe reductions in the climate suitability  (e.g., Alamgir et al., 2015; Zhang et al., 446 

2020), with the suitable range of the giant salamander Andrias davidianus predicted to decrease by more than 447 

two thirds by 2050 (Zhang et al., 2020). This species has faced a number of threats and climate change may 448 

be leading to imminent extinction despite a larger distribution range. Despite recent efforts developed for the 449 

monitoring of rare species in the tropics (e.g., Dubos et al., 2020), there is still an important lack of species 450 

occurrence data in these regions (Feeley & Silman, 2011). With the newly available high-resolution climate 451 

and land use data, the spectre of eligible species for SDMs has enlarged. We urge filling this data void by 452 

starting to assess the effect of climate change for narrow-ranging species at broader taxonomic scales, 453 



promote field investigations, assess species thermal requirements, and develop proactive conservation 454 

actions. 455 
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