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A B S T R A C T   

Diadromous species are particularly vulnerable to climate change because they utilize both marine and fresh-
water habitat to complete their life cycles. Dispersal plays an important role in restraining the distribution of 
plant and animal species, and is a key mechanism to allow diadromous species to adapt to changes in habitat 
suitability, but it is often not included in species distribution models that explore population trends under climate 
scenarios. The objective of this study was to develop a model to estimate potential shifts in diadromous pop-
ulations in the Atlantic area of Europe under two climate change scenarios and multiple global climate models. 
To address the question of range-shift responses, a hybrid approach for diadromous species distribution (HyDiaD) 
was developed that incorporated two components: i) statistical static models of habitat suitability describing the 
influence of environmental factors on species occurrence, and ii) biological processes relevant for the distribution 
of the species, such as population demography and dispersal dynamics. Hybrid models were developed using a 
novel approach that incorporated both population and between-catchment dispersal dynamics specific to each 
species. Occupancy data for diadromous species in a subset of Atlantic Area catchments were first validated by 
regional experts, and boosted regression trees were applied to estimate habitat suitability within each catchment 
based on historical physical and climatic environmental predictors from the continental and marine domains. 
Habitat suitability was then used in a population dynamics model that incorporated between-catchment dispersal 
and local population growth. Results for different-sized catchments were compared using time series of spawner 
density and saturation rate, which estimated how much of the available habitat was being utilized. Many of the 
species-specific values used in HyDiaD were estimated through a survey of diadromous species experts, and 
group consensus was reached by calculating weighted averages. The HyDiaD model was applied to two shad 
species (Alosa alosa and A. fallax) to explore population trends projected annually from 1951 to 2100. Projected 
trends indicated that under XXIst century climate scenarios, habitat suitability is expected to increase for 
A. fallax, but decrease for A. alosa. Projected trends also indicated an increase in the rate of annual variability for 
A. alosa, particularly in the southern part of its range. Future studies can utilize the HyDiaD model to explore 
distribution trends for other diadromous species under climate change scenarios.   

1. Introduction 

Diadromous species that migrate between marine and freshwater 
habitats (McDowall 1988) are especially vulnerable to climate change 

due to their complex life cycle. Diadromous species experience the ef-
fects of changes in climate conditions in both domains and across 
different life stages (Robinson et al., 2011; Hare et al., 2016; Lin et al., 
2017), potentially through a latitudinal range shift in species 
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distributions (Perry et al., 2005; Dambach and Rödder, 2011). It is 
challenging to develop a better understanding and accurate estimation 
of the potential effect of climate changes on diadromous species because 
they utilize both freshwater and marine habitat. Correlative Species 
Distribution Models (C-SDMs), which are based on the generalized re-
lationships between observed presences/absences and abiotic environ-
mental parameters (Guisan and Zimmermann, 2000), have been 
implemented for a large number of species to address the possible effect 
of climate change. However, C-SDMs do not take into account biological 
factors that are considered important for estimating species distribu-
tions, such as population dynamics and dispersal capacity (Guisan and 
Thuiller, 2005; Elith et al., 2010; Fordham et al., 2013; Melo-Merino 
et al., 2020). On the other end of the spectrum, mechanistic species 
distribution models (M-SDMs) explicitly account for these dynamics by 
incorporating how both abiotic and biological processes constrain the 
distribution and abundance of a species (Kearney and Porter, 2009; 
Singer et al., 2016). However, M-SDMs require greater computer pro-
cessing power and more detailed datasets to parameterize (Fordham 
et al., 2018), and so have generally only been calibrated for well-studied 
or commercially exploited species for which physiological or ecological 
constraints are known(Kearney and Porter, 2009; Cheung et al., 2010; 
Rougier et al., 2014; Lotze et al., 2019). Developing M-SDMs for 
data-poor diadromous species on a large spatial scale is problematic 
because large number of parameters to estimate with insufficient data 
can trigger high uncertainty. 

A hybrid species distribution model (H-SDM) approach could be 
classified as intermediate between correlative and mechanistic species 
distribution models in terms of both model complexity (i.e. number of 
parameters) and data requirements (Singer et al., 2016). H-SDMs 
include two components: i) the correlation of species observations with 
abiotic environmental conditions, and ii) biological processes relevant 
for the distribution of the species, such as population demography, 
predator-prey interactions, and dispersal dynamics (Dormann et al., 
2012; Singer et al., 2018). Different studies have shown that incorpo-
rating both of these components has led to an improvement in the es-
timates of species distributions and potential range shifts compared to 
only including abiotic environmental conditions (Latimer et al., 2006; 
Dormann et al., 2012; Fordham et al., 2013; Singer et al., 2018). These 
hybrid models first determine the presences or absences of a species 
taking into account environmental conditions, then biological factors, 
thereby incorporating spatially-explicit processes that act on both a 
coarser and finer spatial scale (Boulangeat et al., 2012). 

Regarding biological factors, dispersal is a key mechanism driving 
the range-shift response of aquatic organisms to climate change by 
increasing population resilience through metapopulation or source-sink 
dynamics (Harrison, 1991; Hanski, 1998). Individuals within a popu-
lation may return to spawn in the location where they originated 
(homing), or they may disperse to a non-natal catchment to participate 
in reproduction (straying; Quinn (1993)). Methodological and data 
limitations have resulted in many previous niche-based modeling 
studies that assumed no dispersal or unlimited dispersal (Guisan and 
Thuiller, 2005; Lassalle et al., 2008b; Franklin, 2010; Holloway and 
Miller, 2017), but these two hypotheses overestimated either the range 
loss or the species’ dispersal abilities (Jaeschke et al., 2013). These 
hypotheses are simple decision rules on whether a newly suitable 
environment is reachable or not. At the population scale, straying and 
source/sink dynamics may provide a mechanism for recovery after poor 
year-class recruitment or may be a way for diadromous species to face 
environmental changes such as habitat fragmentation and loss 
(Schtickzelle and Quinn, 2007). However, this possible “rescue effect” (i. 
e. emigrants from surrounding populations reduce the local extinction 
occurrence (Gotelli, 1991)) of strayers moving from source to sink 
populations may only persist when overall productivity is relatively 
high, as suggested from simulated populations of Atlantic salmon (Salmo 
salar) (Bowlby and Gibson, 2019). Another factor that may interact with 
dispersal in shaping species response to environmental changes is the 

Allee effect (Stephens and Sutherland, 1999). This concept is defined as 
a positive relationship between population density and the per capita 
growth rate of a population. Previous studies have suggested that this 
effect can prevent recovery of marine fish populations at low abun-
dances (Rougier et al., 2012; Hutchings, 2014; Kuparinen et al., 2014; 
Perälä and Kuparinen, 2017), and climate change is anticipated to 
strengthen these effects (Berec, 2019; Winter et al., 2020). 

The primary objective of this study was to develop an original H- 
SDM framework for diadromous species that incorporated dispersal and 
population dynamics coupled with a habitat suitability module based on 
environmental predictor variables from both marine and freshwater 
habitats. This new modeling framework, named HyDiaD for “Hybrid 
approach for Diadromous species Distribution”, could be utilized for 
various diadromous species despite differences in distributions and life- 
history types. These models were intended to improve upon the existing 
C-SDMs developed for European diadromous species by Lassalle et al. 
(2008b) and Lassalle and Rochard (2009), which assumed unlimited 
dispersal (i.e. all newly predicted suitable habitats were reachable) and 
only included environmental predictor variables from the freshwater 
habitat. HyDiaD was developed using the steps in the H-SDM modeling 
framework outlined in Singer et al. (2018) for species with common 
life-history strategies in continuous terrestrial environments. As rec-
ommended by the previous authors, knowledge gaps were identified, 
and an expert elicitation procedure was designed to provide 
group-based estimates of missing parameters for Western European 
diadromous species. The dispersal process in HyDiaD was developed 
taking into account spatial units (i.e. here catchments compared to grid 
cells) that were varying sizes and distances apart within a spatial matrix 
that included both the freshwater and oceanic domains. The secondary 
objective was to apply HyDiaD to the two Western European shads, the 
allis shad Alosa alosa and the twaite shad A. fallax, to project species 
distribution trends under multiple XXIst climate models. 

2. Material and methods 

HyDiaD was developed to simulate shifts in habitat suitability 
related to changes in environmental predictors, dispersal processes, and 
population dynamics that were specific to each species (Fig. 1). HyDiaD 
was developed using the steps in the H-SDM modeling framework out-
lined in Singer et al. (2018) for species with common life-history stra-
tegies in continuous terrestrial environments. The first step is the habitat 
modeling by correlating species occurrences with abiotic conditions 
(Section 2.2). The second step consists in inserting population dynamics 
processes, accounting for both demography and dispersal, with a strong 
emphasis put on reducing knowledge gaps (Section 2.3). The advantages 
of a hybrid approach was assessed by comparing outputs from the 
habitat model alone (first step of the HyDiaD framework) with outputs 
when biological processes were included in the HyDiaD framework 
(second step fo the HyDiaD framework). Nonetheless, the application of 
the Singer et al. (2018) generic method to diadromous species required 
several methodological developments that are fully presented below, 
including i) the use of a connectivity matrix to estimate distance be-
tween pairs of catchments based on shortest aquatic path, ii) the esti-
mation of population dynamics parameters and dispersal kernel through 
an expert knowledge survey, iii) the estimation of among-catchment 
dispersal dynamics, iv) the calculation of spawner abundance based 
on catchment size and species-specific spawner density rather than 
probability of occupancy, and vii) the use of multiple Global Climate 
models (GCMs) and Representative Concentration Pathway (RCP) sce-
narios to project spawner abundance. The source code was provided at 
https://doi.org/10.5281/zenodo.5973788. 

2.1. Species of interest – focus on dispersal, metapopulations and Allee 
effect 

The two shad species share similar life-history strategies and ranges 
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in the North-Eastern Atlantic (Wilson and Veneranta, 2019). The historic 
range of these species on the Atlantic coast extended from Norway to 
Morocco, though A. fallax has been reported as far north as Iceland 
(ICES, 2015). Both species are anadromous and migrate into freshwater 
to spawn in the spring (McDowall, 1988). Shad populations, especially 
those of A. alosa, have declined severely across Europe over the past 
century (Aprahamian et al., 2003; Baglinière et al., 2003; Nachón et al., 
2016) due to a multitude of impacts along their migration routes acting 
at all life stages (Costa-Dias et al., 2009; Limburg and Waldman, 2009). 
While these shad species have the ability to travel long distances (Martin 
et al., 2015), both species generally exhibit homing (i.e. the return of 
fish to their natal river (Aprahamian et al., 2003; Jolly et al., 2012; 
Martin et al., 2015; Davies et al., 2020)), though short-distance dispersal 
likely occurs between neighboring rivers with similar environmental 
conditions (Aprahamian et al., 2003; Jolly et al., 2012; Martin et al., 
2015). These localized exchanges might result in metapopulation dy-
namics with some rivers acting as “sources” and other as “sinks” (Ran-
don et al., 2017). Interestingly, Rougier et al. (2012) demonstrated for 
Allis shad a likely demographic Allee effect (depensation in fish stock 
productivity when the abundance of spawners is low) for the reference 
population in the core of its distribution range. These complex dynam-
ical processes possibly at play for the two shad species are crucial to 
consider when simulating species spatial responses to climate change. 

2.2. Correlative species distribution model (C-SDM) 

C-SDM were built and run to relate both the physical characteristics 
and environmental predictor variables of river catchments to the 
recorded presences and absences of each species within the equivalent 
time period. C-SDM were then used for projecting habitat suitability 
(between 0 = not suitable to 1 = perfectly suitable) annually for each 
catchment from 1951 to 2100 for three GCMs and two RCP scenarios 
(4.5 and 8.5). 

2.2.1. Presence/absence data 
For both shad species, presence/absence data to calibrate the C-SDM 

were available from the EuroDiad 4.0 database (https://data.inrae.fr 
/dataset.xhtml?persistentId=doi:10.15454/IVVAIC; Barber-O’Malley 
et al. (2022)). This database stores information about the 

presence/absence and functionality (i.e., reproductive capacity) of 
diadromous species populations in selected catchments in Europe, the 
Middle East, and North Africa from 1750 to present time (Béguer et al., 
2007; Lassalle et al., 2008b; Lassalle and Rochard, 2009). EuroDiad 4.0 
stores data for 350 catchments and three time periods, though the pre-
cision of information varies and not every species has information for 
each time period. This database underwent two validation processes by 
local experts from various organizations involved in fisheries sciences 
and environmental management. The 292 catchments with pre-
sence/absence data available represented all of the large (> 50,000 km2, 
N = 37) and medium-sized (>10,000 km2, N = 48) catchments present 
in Europe, the Middle East, and North Africa, as well as 207 small-sized 
catchments (<10,000 km2) that were specifically chosen to prevent any 
geographical bias in the database (Lassalle and Rochard, 2009). How-
ever, this represents only a proportion of the small-size catchments that 
exist within the study area. For shads, calibration was performed using 
all catchments with available presence/absence data for each species 
(N = 254 and 243 for A. alosa and A. fallax, respectively). This included 
37 large, 47 medium and 159 small-sized catchments for A. fallax and 37 
large, 48 medium, and 169 small-sized catchments for A. alosa. Projec-
tion of future distributions was focused on the same catchments for both 
species (N = 135) located in the Atlantic Area corresponding to their 
core distribution range and potential northern territories where the 
species distribution may shift under warming conditions. 

2.2.2. Environmental predictor variables 
Environmental variables used in C-SDMs were chosen to balance 

data availability with the potential to affect diadromous species distri-
bution across Multiple species (Bradie and Leung, 2017). As these spe-
cies utilize both freshwater and marine habitats, both continental and 
marine environmental variables were used for the first time to predict 
species distributions (Table 1). Continental variables included elevation 
at the headwater, length of the main watercourse, surface area of the 
drainage basin, and precipitation (see Lassalle et al. (2008) for their 
ecological meaning). The first three variables were provided for each 
catchment by EuroDiad 4.0. Precipitation was calculated as an annual 
value across the surface area of each catchment. These values represent 
the physical aspect of each catchment, and taken together can represent 
the range of hydrologic conditions that diadromous species experience 

Fig. 1. Conceptual diagram of the HyDiaD model starting with the modeling of habitat suitability followed by the insertion of population dynamical processes. At 
each time step t and for each catchment i, the two separate outputs are converted into number of fish and compared. The lowest value is retained as an estimation of 
the number of fish surviving maturity at time t for catchment i (Ni,t) (see Eq. (3)). 
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(Pont et al., 2005; Lassalle and Rochard, 2009). Marine variables at the 
outlet included surface salinity, sea surface temperature (SST), and 
mixed layer depth. While salinity and temperature are known to have 
direct physiological effects on anadromous fish, the mixed layer depth 
relates to the euphotic zone and biological production that might be of 
relevance for pelagic species (Bruge et al., 2016; Erauskin-Extramiana 
et al., 2019). Marine variables were calculated for each catchment using 
a buffer (of 0.5◦ side) around the outlet of the river to take into account 
the dilution of the river plume. 

Observed atmospheric data came from the Climate Research Unit 
time-series dataset (CRU T.S. 4.03; crudata.uea.ac.uk) (Mitchell and 
Jones, 2005), which includes monthly climate observations measured at 
meteorological stations throughout Europe and interpolated between 
stations with a resolution of 0.5ᵒ (~ 62 km) from 1901 to 2018. 
Observed data for the marine variables came from the CHORE_AS 
(CMCC Historical Ocean Reanalysis) dataset, which is a reanalysis per-
formed by the CMCC (Centro Euro-Mediterraneosui Cambiamenti Cli-
matici; http://c-glors.cmcc.it/) (Yang et al., 2017) reconstructing ocean 
variables from 1900 to 2010 at a resolution of 0.5◦ degree (Table 1). 

When using climate projections it is important to include the pro-
jections from multiple Global Climate Models (GCMs) in order to ac-
count for possible discrepancies between model estimates (Harris et al., 
2014), in the kind of strategy commonly known as the use of ensembles. 
For marine environmental variables, we have used data from three 
different Global Climate Models (GCMs) that are detailed in Table 2 with 
trends presented in Fig. 2 for RCP scenario 8.5 and in Appendix C 
Figure C1 for RCP scenario 4.5. For atmospheric variables we have used 
data from three models from the EURO–CORDEX project (http://www. 
euro-cordex.net/), where several GCMs have been dynamically down-
scaled to achieve better spatial resolution and better representation of 
local atmospheric processes – these three Regional Climate Models 
(RCMS) (Table 3; Fig. 2, Appendix C Figure C1) and use the same GCMs 
as the ones used as marine data source to achieve minimally consistent 
grids. Climate projections were provided from 1951 to 2100, and as a 
suggested best practice ecological studies by Harris et al. (2014), two 

emissions scenarios were used for each GCM (RCP 4.5 and RCP 8.5, 
Table 4) and RCP to encompass a range of uncertainty in the projected 
increase in global mean temperature and to compare mitigated vs un-
mitigated responses. A correction procedure based in a quantile-quantile 
correction was also applied to each climate model to correct errors 
intrinsic to the model between a historical projection of modeled data 
from 1950 to 2005 and the observed data (the CHORE_AS reanalysis for 
marine variables and the ERA5 reanalysis for atmospheric variables) 
(Kotlarski et al., 2014; Casanueva et al., 2016). In this way of correcting 
data, it is assumed that there should be similar distributions of values 
between observed data, which represented reality, and the historical 
modeled projections, and any necessary corrections to ensure this sim-
ilarity is propagated forward to the projections from 2006 to 2100. 

2.2.3. Algorithm choice for habitat suitability models 
Boosted regression trees (BRTs) were chosen to produce quantitative 

measures of habitat suitability because they can handle different types of 
predictor variables and missing values (De’ath, 2007). BRTs combine 
multiple, simple decision trees to optimize a model’s predictive per-
formance (Elith et al., 2008). Boosting involves growing a large group of 
trees in sequence and combining the averaged predictions (De’ath, 
2007). The predictive error of this method is improved and 
over-learning is reduced using stochastic gradient boosting, which uses 
least squares regression trees and subsamples the training data to 
include randomness (Friedman, 2001; De’ath, 2007). Due to the limited 
data set, subsampling was accomplished through a cross-validation 
method with smaller datasets (De’ath, 2007). Subsets were formed 
using prevalence stratification to prevent overinflating the influence of 
absence data (Elith et al., 2008). Boosted regression trees were run in R 
language (R v. 4.0.3; R Core Team (2020)) using the “gbm” package 
(Greenwell et al., 2020). 

2.2.4. Model calibration procedure 
As the model used presence/absence data, a Bernoulli classification 

for binomial data was used. Three metaparameters of the BRTs were 
adjusted for each species in order to optimize the predictive perfor-
mance: bag fraction, the number of folds, and the learning rate (Table 5). 
The first two metaparameters relate to the cross-validation process in-
ternal to the model-building procedure. Model metaparameters were 
optimized for each species separately, and were adjusted so that the 
models converged and more than 1000 trees were produced, as sug-
gested by Elith et al. (2008). The bag fraction determines the proportion 
of training versus testing data within each subset. This value was set at 
0.7 to follow the convention of 70% of the data used for training and 
30% for testing (Elith et al., 2008). The number of folds determines the 
number of random subsets to use for cross-validation. Here the common 
value of 10 was used. The learning rate determines the contribution of 
each tree to the model, and was optimized at 0.005 for both species. A 
smaller value for learning rate can reduce potential overfitting, but a 
larger value results in more trees which can improve the estimate of 
prediction error (De’ath, 2007; Elith et al., 2008). One additional 
parameter is tree complexity, which determines the number of splits in 
each tree. For both species, tree complexity was set to 1, meaning that 
only main effects were taken into account (Table 5). 

After optimized metaparameters were determined, a test was run to 
see if the BRT model for each species could be simplified by dropping 
environmental predictor variables (Elith et al., 2010; Segurado et al., 
2015). This is done by running a series of species-specific Jackknife tests 
that exclude each predictor variable sequentially, except for the two 
variables with the highest relative influence (Elith et al., 2011). A var-
iable was dropped from the model if this test resulted in a decrease in the 
predictive deviance. 

2.2.5. Tests of model accuracy 
Several indices were then used to test model accuracy in reproducing 

the historic distribution for each species using the optimized 

Table 1 
Marine and continental environmental predictor variables used in the calibra-
tion of the correlative species distribution models for shads and the observed 
data sources used for describing the past.  

Category Environmental 
predictor 

Source Time 
Range 

Type 

Marine Sea surface 
temperature 

CHORE-AS 1901–2010 Re- 
analysis  

Surface salinity CHORE-AS 1901–2010 Re- 
analysis  

Mixed layer depth CHORE-AS 1901–2010 Re- 
analysis 

Continental Precipitation CRU 1901–2018 Observed 
Catchment Surface area of the 

catchment 
EuroDiad 
4.0    

Length of the main 
watercourse 

EuroDiad 
4.0    

Altitude at the source EuroDiad 
4.0    

Table 2 
Global Climate Models used in this study.  

Model Center Country Reference 

cnrm-cm5 Center national de recherches 
meterologiques (CNRM) 

France (Voldoire et al., 
2013) 

CSIRO–Mk3–6–0 Commonwealth Scientific 
and Industrial Research 
Organisation (CSIRO) 

Australia (Phipps et al., 
2011, 2012) 

NorESM1-ME Norwegian Climate Center Norway (Bentsen et al., 
2013; Iversen 
et al., 2013)  
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metaparameters (Table 5). For threshold-dependent indices, including 
sensitivity, specificity, and TSS, fitted values from the boosted regres-
sion trees (or the estimates of habitat suitability comprised between 
0 and 1) had to be converted to presence/absence values for evaluation. 
The threshold value used to define presence (above the threshold) versus 
absence (below the threshold) was estimated using the “evaluate” 
function in the package “dismo” (Hijmans et al., 2021). A confusion 
matrix of true and false presences and absences was used to calculate 
sensitivity, specificity, and the True Skill Statistic (TSS) for each species 
(Allouche et al., 2006). The TSS index measures the accuracy of each 

Fig. 2. Trends in projected marine and 
atmospheric variables from 1951 to 
2100 under RCP 8.5. Marine variables 
(sea surface temperature, salinity, and 
mixed layer depth) are projected from 
three GCMs (yellow = CNRM-CM5, 
purple = CSIRO-Mk3–6–0, and 
blue = NorESM1-ME). Precipitation is 
projected from RCM RCA4 with driving 
models of yellow = CNRM-CM5, 
purple = CSIRO-Mk3–6–0, and 
blue = NorESM1-ME. (For interpreta-
tion of the references to colour in this 
figure legend, the reader is referred to 
the web version of this article.)   

Table 3 
Regional Climate Models (RCMs) used in this study.  

RCM 
Name 

Center Resolution Driving Model Reference 

RCA4 Swedish 
Meteorological and 
Hydrological 
Institute 

0.44◦ CNRM-CM5 (Jacob et al., 
2014;  
Kotlarski 
et al., 2014) 

RCA4 Swedish 
Meteorological and 
Hydrological 
Institute 

0.44◦ CSIRO–Mk3–6–0 (Jacob et al., 
2014;  
Kotlarski 
et al., 2014) 

RCA4 Swedish 
Meteorological and 
Hydrological 
Institute 

0.44◦ NorESM1-M (Jacob et al., 
2014;  
Kotlarski 
et al., 2014)  

Table 4 
RCP scenarios used in this study. Global mean temperature listed is for 2100 
relative to 1900. European land temperature is for 2071–2100 compared to 
1971–2000.  

RCP C02 Equivalent 
Concentration 

Projected 
increase in 
global mean 
temperature* 

Predicted increase 
in mean European 
land temperatureǂ 

Climate 
policy 

4.5 650 ppm 1.0–2.6 ◦C 1.4–4.3 ◦C Mitigation in 
all countries 

8.5 1350 ppm 2.6–4.8 ◦C 2.7–6.2 ◦C No 
mitigation  

* Harris et al. (2014). 
ǂ Jacob et al. (2014). 

Table 5 
Optimized metaparameters for each shad species used for model projections 
with boosted regression trees.  

Species Family # 
Trees 

Tree 
Complexity 

Learning 
Rate 

Bag 
Fraction 

# 
folds 

A. alosa Bernoulli 3250 1 0.005 0.7 10 
A. fallax Bernoulli 2500 1 0.005 0.7 10  
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calibrated model by comparing the model accuracy to how well the 
model performs by chance. This index can range from − 1 to +1, with a 
value above 0 indicating that the model is performing better than 
random and a value of +1 indicating perfect accuracy. 
Threshold-dependent metrics can be interpreted according to the clas-
sification of Landis et al. (1977) (Table 7). 

A threshold-independent measure of model accuracy was also esti-
mated for both species. This was the AUC, which estimates the area 
under the receiver operating characteristic (ROC) curve. This method 
calculates the sensitivity and specificity for every possible threshold 
value between 0 and 1. The ROC curve plots sensitivity against the 
probability of incorrectly classifying a presence, or 1-sensitivity (Field-
ing and Bell, 1997) . Using the “gbm” package in R (Greenwell et al., 
2020), the AUC score was calculated for each subset of data used for 
cross-validation (k = 10). The standard error of the AUC was also 
calculated for these subsets. An AUC value of 0.5 or lower indicates a 
classification no better than random, while a value of 1 indicates all 
modeled predictions were correctly classified (Swets, 1988). 

2.3. Population dynamics and dispersal 

The second component to the HyDiaD model built was coupled with 
the C-SDM by applying ad-hoc population and dispersal dynamics to 
estimate the number of fish produced in a given catchment i at time t. 
Population dynamics included an estimate of population growth rate (r) 
and an Allee effect (λ) (Table 8). Within the HyDiaD model, the Allee 
parameter was related to the number of spawners that participated in 
reproduction within a given catchment. A high value for the Allee 

parameter reduced the proportion of spawners that participated in 
reproduction, making it difficult for populations to persist at a low 
abundance. This also affects the settlement of a population in a novel 
catchment, as a minimum number of spawners need to be present in a 
given year for reproduction to exceed the limitation imposed by the 
Allee effect. This parameter interacted with the population growth rate 
in that a high value for the latter could reduce the effect of the former. 
Dispersal dynamics included an estimate of the probability of emigration 
(γ), an additional mortality rate associated with emigration (Mdisp), and a 
measure that incorporated both the long and short-distance dispersal 
capabilities of a species (α and β used to estimate a dispersal kernel). 

2.3.1. Simulating different age classes 
Within the HyDiaD model, both the habitat suitability and estimate 

of spawner abundance are calculated on an annual time step. The model 
was developed to simulate a temporal lag between the production of a 
cohort of fish in a given year and when those fish enter the spawning 
population and contribute to future production. This time lag can be 
defined based on the life history parameters of the species using the 
average age at maturation (ma). In addition, while the spawning popu-
lation within a given year is not explicitly age-structured, the model is 
capable of utilizing multiple spawner age classes to estimate Ni,t in a 
given time step using a parameter for the number of cohorts (nc). When 
nc is set to 1, there is no age structuring in the estimation of Ni,t for the 
current time step, and only a single year contributes to the current 
production. A value of nc for i > 1 simulates a population with multiple 
cohorts that contribute equally to production in the current year. The 
term nc is used to define the set (S) of ages Sk at which fish contribute to 
spawning and production in year t such that: 

S = {Sk}
nc
k=1 (1) 

When both a temporal lag and age structure are simulated in the 
model, ma defines the average of all items in set S, and nc defines the 
spread around that number as follows: 

Sk =
⌊

ma + k −
nc

2

⌋
(2) 

Of the set S, s1 is the minimum generation time, and will always be ≥
1 year. The item Snc will be the maximum generation time, and will 
always be ≤ 2 ∗ ma 

2.3.2. Initial habitat suitability 
Calibration of C-SDMs was performed using observed historical data 

to estimate “initial” habitat suitability within each catchment i (HSIi, 
t = 0) representing conditions at the beginning of the model run, which 
was then used to calculate initial spawner abundance (Ni,t = 0) as follows: 

Ni,t=0 = HSIi,t=0 ∗ Dmax ∗ Ai (3)  

where Dmax was a species-specific estimate of the maximum density of 
spawners in ideal conditions and Ai was the surface area of catchment i. 
It was assumed that these initial values represented a system in equi-
librium (Hanski, 1994; Singer et al., 2018). Initial habitat suitability was 
estimated for each catchment using observed data for environmental 
predictors (CRU and CHORE-AS) averaged from 1901 to 1911 and 
presence/absence data (EuroDiad 4.0) from the period 1851–1950. This 
time period was chosen to represent species distributions right before 
what is called the “Great Acceleration” in human activities during the 
Anthropocene (Steffen et al., 2015), but was also a compromise with 
environmental data availability. This initial value of habitat suitability, 
along with population and dispersal dynamics described in the next 
section, were used for a burn-in period of 50 years, i.e. outputs were 
discarded. After the burn-in period, annual predictions of habitat suit-
ability from 1951 to 2100 were estimated using modeled projections of 
the same environmental predictor variables averaged across multiple 
GCMs and RCP scenarios (as described below). 

Table 6 
Indices of predictive accuracy used to evaluate boosted regression trees. n in-
dicates the total number of presences and absences in the dataset.  

Index Formula Description 

True 
Presence 

a Number of observed presences 
correctly modeled as present 

False 
Presence 

b Number of observed absences 
incorrectly predicted as present 

False 
Absence 

c Number of observed presences 
incorrectly predicted as absent 

True 
Absence 

d Number of observed absences 
correctly modeled as absent 

Prediction 
Error 

1 −
a + d

n 
Rate of incorrectly classified 
modeled values 

Sensitivity a
a + c 

Proportion of correct 
classifications of presence 
(omission errors) 

Specificity d
d + b 

Proportion of correct 
classification of absence 
(commission errors) 

TSS* Sensitivity + Specificity − 1 True Skill Statistic: Accuracy of 
modeled data to what could have 
occurred by chance 

AUCǂ Area under the receiver 
operating curve (ROC) 

Threshold-independent measure 
of accuracy  

* Allouche et al. (2006). 
ǂ Fielding and Bell (1997). 

Table 7 
Ranking value and interpretation according to 
Landis et al. (1977) for threshold-dependent 
metrics.  

TSS value Interpretation 

< 0 no agreement 
0 to 0.2 slight 
0.2 to 0.4 fair 
0.4 to 0.6 moderate 
0.6 to 0.8 substantial 
0.8 to 1 perfect  
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2.3.3. Population dynamics and dispersal process 
Spawner abundance in time t (Bi,t) was estimated as the sum of 

spawners N returning to their origin catchment (i) on the left side of Eq. 
(4) and spawners dispersing into catchment i from surrounding catch-
ments on the right side of the same equation: 

Bi,t =

⎛

⎜
⎜
⎝

[

S
∑Ni,t− S

nc
∗ (1 − γ)

]

+
∑

j∕=i∈Ω

⎡

⎢
⎢
⎣S

∑ Nj,t− S
nc

∗ γ ∗ e− αdβ
j− i

∑
l∕=j∈Ωe− αdβ

j− l

∗ e− Mdispdj− i

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠

∗ e− h2

(4)  

where γ is the probability of emigration, Mdisp is the mortality rate for 
emigrants during dispersal, and h2 is an anthropogenic source of mor-
tality (e.g. from a fishery). These three parameters are species-specific, 
but are considered as a constant across all catchments and through 
time. Mdisp is an additional mortality coefficient that is only applied to 
emigrants entering a surrounding catchment different from their natal 
catchment. This mortality rate is applied according to the distance be-
tween natal and destination catchments (di,j). 

An extended negative exponential kernel function (De Cáceres and 
Brotons, 2012) was used to determine the number of spawners arriving 
in catchment i from each catchment j in the set of possible catchments Ω. 

This kernel function (e− αdβ
j− l ) is calculated using the distance between 

catchments i and j(dj− i), and incorporates both long and short-distance 
dispersal through the scale parameter α and the shape parameter β 
(Chapman et al., 2007). Distance between each pair of catchments was 
calculated as the shortest path following the coastline between the 
outlets of each catchment. This corresponded to the sum of the shortest 
paths from the departure catchment outlet to the coastline, from the 
destination catchment outlet to the coastline, and between the two 
corresponding points on the coastline. However, the distance between a 

catchment and itself was fixed to 0 regardless of the position of the outlet 
in relation to the coast line. 

The central calculation in HyDiaD is the number of fish that survive 
to maturity in catchment i at time t (Ni,t). It was estimated by taking the 
minimum of the two values coming from the two model components, i.e. 
the habitat suitability model on one side and the ecological dynamics on 
the other side using the following equation: 

Ni,t = min
[
HSIi,t ∗Dmax ∗Ai ∗ e− h1 ,Bi,t ∗ r

]
, (5)  

where HSIi,t is the habitat suitability index for catchment i at time t, Dmax 
is the maximum density of fish per km2 for a given species, Ai is the 
surface area of catchment i, h1 is a measure of anthropogenic effects 
related to habitat degradation, Bi,t combines spawners that return to 
their origin catchment and spawners that disperse into catchment i from 
surrounding catchments as defined in Eq. (4), and r is a constant growth 
rate applied to all catchments. Defining Ni,t as the minimum of the two 
separate components in this equation simulates a hockey-stick recruit-
ment curve (Barrowman and Myers, 2000). The population grows at a 
rate r until it reaches a limit set by the habitat suitability at time t that is 
specific for that species (Dmax) and catchment (Ai). 

Eq. (3) was then modified to include an Allee effect as follows: 

Ni,t = min
[

HSIi,t ∗Dmax ∗Ai ∗ e− h1 ,Bi,t ∗
Bi,t

2

Bi,t
2 + (λ ∗ Dmax ∗ Ai) 2 ∗ r

]

(6) 

In this equation, B2
i,t/(B2

i,t +(λ ∗Dmax ∗Ai)
2) indicates the proportion of 

spawners that are participating in reproduction. This means that 50% of 
spawners participate when Bi,t = λ ∗ Dmax ∗ Ai. 

2.3.4. Collecting model parameters for shads and modeling postulates 
The HyDiaD model was parameterized for the two shad species using 

parameter values listed in Table 8 and run on a yearly time step from 
1951 to 2100. The framework was developed to include two types of 

Table 8 
Parameters in the population dynamics component of the HyDiaD model with values for A. alosa and A. fallax. Weighted estimates for some expert knowledge survey 
parameters (indicated in italics) were calculated on a log scale. For these logged parameters, the three values listed indicate the weighted mean, lower standard error 
(SE), and upper SE, respectively. For parameters that were not logged, the SE is indicated following “±”.  

Parameter Description Unit Range Source A. alosa A. fallax 

Dmax Maximum density of fish in ideal conditions fish km− 2 [0, 
+∞] 

Expert knowledge survey 7.107, 4, 10 4.068, 2, 8 

γ Probability of emigration – [0, 1] Expert knowledge survey 0.163 ± 0.11 0.131 ± 0.10 
Mdisp Mortality rate for emigrants during dispersal km− 1 [0, 

+∞] 
Expert knowledge survey 0.54 ± 0.33 0.58 ± 0.35 

α Scale parameter for the dispersal kernel (negative exponential) km− 1 [0, 
+∞] 

Calibrated using results from expert 
knowledge survey 

0.444 0.547 

β Shape parameter for the dispersal kernel (negative exponential) – [0, 
+∞] 

Calibrated using results from expert 
knowledge survey 

0.417 0.418 

r Population growth rate – [0, 
+∞] 

Expert knowledge survey; ( 
Whitehead, 1985; Quignard and 
Douchement, 1991) 

2.13 3.05 

λ Parameter for the Allee effect – [0, 1] Expert knowledge survey 0.093, 0.03, 
0.3 

0.442, 0.02, 1 

ma Average age of maturity year [0, 
+∞] 

(ICES, 2015) 5 5 

nc Defines the number of cohorts to include in spawner production 
in the current time step t 

– [0, 
+∞] 

(Kottelat and Freyhof, 2007) 3 3 

Ai Surface area of catchment i km2 [0, 
+∞] 

EuroDiad 4.0   

dj-i Distance between catchments j and i km  EuroDiad 4.0   
HSIi,t Habitat suitability index of catchment i in time t – [0,1] BRT model output   
Ni,t Number of fish that survive to maturity in catchment i in time t individual [0, 

+∞] 
Hybrid model output   

Bi,t Total of spawners that return to catchment i as their origin 
catchment and spawners that disperse to catchment i from all 
surrounding catchments 

individual [0, 
+∞] 

Hybrid model output   

h1 Anthropogenic effects related to habitat degradation  [0, 
+∞] 

NA 0 0 

h2 Anthropogenic effects related to direct mortality  [0, 
+∞] 

NA 0 0  
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anthropogenic influences (h1 and h2). Current information related to 
habitat accessibility is available for larger European rivers (https:// 
www.eea.europa.eu/; Lassalle et al. (2010)); however, historical data 
was needed for the calibration of the C-SDM and this was not available 
for many of the catchments included. Though the authors considered 
several proxies for anthropogenic influences, such as human population 
density (Lassalle et al., 2010) and Gross Domestic Product. Nevertheless, 
it was difficult to find historical data that covered the spatial extent of 
the European Atlantic area, but also had a fine enough resolution to 
estimate differences on a catchment-to-catchment scale. A coarse spatial 
resolution would not allow the C-SDM to differentiate between condi-
tions that result in a presence versus an absence, meaning the model 
would not be able to “learn” the relationship between anthropogenic 
influences and occupancy (Elith et al., 2008). Thus, it was not possible to 
include anthropogenic influences as parameters h1 and h2 within the 
scope of the current study for shads. While no local anthropogenic 
pressures (i.e. h1 and h2 set to 0) were included for shads, general 
anthropogenic pressures such as climate-induced changes were included 
in the form of abiotic environmental predictor variables as described 
above. This implied that spawner abundance estimates in HyDiaD rep-
resented a “maximum potential”. So, by using HyDiaD to make simu-
lations, the postulate was made that the underlying assumptions of the 
model remained all suitable for the actual and future system. 

Species-specific parameter values for the population and dispersal 
dynamics in the HyDiaD model, as well as an estimate of maximum 
density of spawners in ideal conditions needed to convert HSI into 
spawner abundance, were estimated using the primary literature or 
through the solicitation of knowledge from diadromous species experts 
(Table 8). The latter was accomplished using a 10-question, iterative 
online expert knowledge survey that was specifically developed to es-
timate values for population demographics using a Delphi process, 
which is used to address scientific questions with high levels of uncer-
tainty that are difficult to empirically measure (Elmer et al., 2010). 
While this questioning technique has been used in a variety of ways, the 
basic components include soliciting expert knowledge using a stan-
dardized questionnaire through several rounds of survey to estimate a 
group answer (Elmer et al., 2010). The expert knowledge survey in the 
current study was performed in two rounds (See Appendix A for more 
details). For the first round, each participant was provided the same 
written questions and was asked to complete the survey individually 
(See Appendix A). Group results were calculated and presented to par-
ticipants during a workshop, and then a second round was completed 
using one-on-one interviews via video conferencing. This allowed par-
ticipants to consider their answers in a group context, the authors to 
receive feedback on the process, and a more in-depth discussion to 
ensure that questions were being interpreted in the same way by all 
participants. The survey combined expert knowledge regarding species 
populations in multiple countries in order to estimate parameter values 
that represented this large spatial scale. As part of the expert knowledge 
survey, participants were asked to provide an estimate of their level of 
confidence in their response to use as a weighted measure. For each 
survey question, the group average and variance was calculated using 
weighted individual responses, as described in Appendix A. The final 
group averages calculated for use in the hybrid models used responses 
and confidence levels from this second round of the expert knowledge 
survey with a confidence level for each question and species 
combination. 

2.4. Sensitivity analysis on HyDiaD parameters 

A global sensitivity analysis was conducted to determine which pa-
rameters had the largest effect on the estimate of total spawner abun-
dance summed across all catchments and years (

∑
Ni,t) for each shad 

species in order to explore the relative influence of habitat suitability 
and population and dispersal dynamics. This analysis used the package 
“sensitivity” in R (Iooss et al., 2021), and utilized the Morris’s 

Elementary Effects (EE) screening method with a One At a Time (OAT) 
approach (Morris, 1991). This screening method utilizes a design that 
consists of multiple individual trajectories that move through the 
parameter space varying one factor (Xi) k times (equal to the number of 
parameters) along a grid with size Δi while keeping all the other factors 
fixed (Campolongo et al., 2007). Each trajectory results in one calcula-
tion of the Elementary Effect for the ith parameter, as shown in the 
following equation (Morris, 1991): 

EEi =
Y(X1,…, Xi− 1, Xi + Δi, Xi+1 ,…, Xk) − Y

(
X1,…,Xp

)

Δi
(7) 

In order to account for interactions, multiple trajectories (r) were 
performed, each starting from a randomly sampled point. The set of EE 
from r trajectories are averaged to get an estimate of total-order sensi-
tivity. In order to prevent EEi with opposite signs from cancelling each 
other, an average (μ∗

i ) was estimated using the absolute values of EEi as 
suggested by Campolongo et al. (2007). In order to explore interactions 
and non-linear effects, the standard deviation (σi) of EEi was also 
calculated. Plotting the results for μ∗

i against σi indicated which factors 
had negligible effects (both have low values), linear and additive effects 
(μ∗

i is high but σi is low), and nonlinear effects or interactions (both have 
high values). 

The sensitivity analyses for the two shad species involved varying the 
seven parameters estimated from the expert knowledge survey 
(Table 8). The range of possible values for each parameter was deter-
mined by the upper and lower standard errors calculated for each shad 
species from the expert knowledge survey. For each parameter, this 
possible range of values is sampled evenly by defining a value for p 
(generally 4, 6, or 8), which corresponds to a percentile (25th, 17th, and 
12.5th, respectively) of the uniform distribution for each parameter 
(Morris, 1991; Campolongo et al., 2007; Franczyk, 2019). For both shad 
species, p was defined as 6 and a total of 20 trajectories (r) were used in 
the design to calculate (μ∗

i ). 

2.5. Saturation rate to compare results among catchments and species and 
to evaluate the added value of a hybrid approach 

The output of the HyDiaD model is spawner abundance, but the 
primary intention of developing this modeling framework is to investi-
gate variability in climate-induced spatial and temporal trends for 
multiple diadromous species within the same range of catchments. In 
addition to the habitat suitability (between 0 and 1) and spawner den-
sity (number of spawners per km2), an index was developed to facilitate 
comparisons across different-sized catchments and among different 
species, termed the saturation rate (SR). This is calculated for each 
catchment i at time t as follows: 

SRi,t =
Ni,t

HSIi,t ∗ Dmax ∗ Ai
(8) 

This index has a value between 0 and 1, and is limited by the HSI of a 
particular catchment in time t. A value close to 1 indicates that the 
abundance of the population is close to its maximum as defined by the 
habitat suitability. A value close to 0 indicates that the population 
abundance is much smaller than it could be. Therefore, the saturation 
rate informs on the interest to run a hybrid model compared to a strictly 
correlative approach. A low SR value indicates the high contribution of 
dispersal and demography in the population dynamics and thus the 
added value of considering a more complex approach when modeling a 
species distribution. 

The HyDiaD model was run for each shad species from 1951 to 2100, 
and Ni,t was calculated annually for all catchments in the Atlantic Area. 
Annual spawner abundance was used to calculate annual saturation 
rate. Results were presented as heat plots that were created in the 
package “ComplexHeatmap” in R (Gu et al., 2016) to compare trends 
through time in saturation rate, spawner density, and habitat suitability 
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among catchments. Individual catchments were included in heat plots as 
rows, and individual years as columns. Catchments were ordered by 
country in the plots, then arranged north to south within a region ac-
cording to latitude. The annual spawner abundance averaged from 1951 
to 1980 was also calculated in order to make general comparisons 
among individual catchments. For each species, heat plots were created 
by separately modeling the three GCMs, then averaging the results for 
each of the two RCP scenarios. 

2.6. HyDiaD evaluation based on the saturation ratio metric 

To further demonstrate the advantage of increasing the model 
complexity with a population dynamics and dispersal module, and to 
validate HyDiaD estimations with observations, two analyses were 
performed. First, the distribution of decadal SR values was inspected 
across all the catchments included in the HyDiaD physical environment. 
For a given year between 2041 and 2050, and a specific catchment, SR 
values were averaged across the three GCMs under the most pessimistic 
scenario RCP 8.5. Then, the decadal means from 2041 to 2050 were 
calculated and plotted together as a histogram. The skewness and spread 
of the distribution were examined to assess the relative contribution of 
the population dynamics and dispersal module compared to a strictly 
correlative approach. Secondly, observed abundances stored in Euro-
Diad 4.0 for the most recent period (i.e. 2010 - present times) were 
compared to the saturation ratios calculated on the maximum abun-
dances (i.e. with an HSI of 1; SRHSI=1) across the period 2010–2019. 
Abundances in EuroDiad are categorical with: (i) Absent (1) - the species 
was never recorded in the basin or was extirpated; Rare (2) - occasional 
vagrants were recorded in the basin; Common (3) - functional pop-
ulations were present in the basin; and Abundant (4) - functional pop-
ulations were present and numerically dominant in the freshwater 
community (Barber-O’Malley et al., 2022). For a given year between 
2010 and 2019, and a specific catchment, SRHSI=1 values were averaged 
across the three GCMs under the most pessimistic scenario RCP 8.5. 
Then, the decadal means from 2010 to 2019 were calculated for each 
catchment in the HyDiaD physical environment and categorized into 
four groups with one group for SRHSI=1 equal to 0 and the three others 
being defined as equal range classes (with 1/3 and 2/3 as limits). A 
confusion matrix with these two categorical variables was built and the 
results analysed following the matrix diagonal that represents the re-
cords that are in agreement. Considering that HyDiaD is run without any 
anthropogenic impacts, estimates should be in the same categories or 
the ones above the observations of current abundances (i.e. on the di-
agonal or in the matrix lower half). 

3. Results 

3.1. C-GCM calibration and validation for shads 

Tests related to habitat model simplification as part of the calibration 
process did not result in a decrease in predictive deviance for either shad 
species (Figure B2 in Appendix B), so all seven environmental predictor 
variables (Table 1) were used in the BRT model for predictions of habitat 
suitability. Prediction error was low for both shad species, but was lower 
for A. alosa than A. fallax (Table 9). The confusion matrix for A. alosa 
indicated roughly the same number of false presences and false ab-
sences, while A. fallax estimated a higher number of false presences than 
false absences (Table B1). Predictive accuracy was high for both species 
and all indices used (Table 9). Threshold-dependent indices were be-
tween 0.7–0.9, corresponding to “substantial” or “perfect” on the scale 
proposed by Landis et al. (1977) (Table 7). The threshold-independent 
AUC was above 0.8, indicating that model accuracy was better than 
random (Table 9; Figures B3 and B4). 

The marine and continental environmental predictor variables with 
the highest relative influence differed slightly between the two shad 
species. For A. alosa, the top environmental predictors were mixed layer 

depth, precipitation, and altitude (Fig. 3). The top environmental pre-
dictors for A. fallax included precipitation, sea surface temperature, and 
altitude (Fig. 4). Several of these predictor variables had steep response 
curves, meaning that a small change in the predictor variable could 
result in a relatively large change in habitat suitability. 

The estimate of habitat suitability was generally lower and displayed 
more annual variability for A. alosa than for A. fallax (Figs. 5 and 6). 
Response curves for A. alosa indicated a total relative contribution of 
31.5% for annual continental precipitation and annual sea surface 
temperature. These two variables had a unimodal distribution with a 
decrease in habitat suitability for catchments with values at the two 
extremes of the range of possible values (Figs. 3 and 5). While response 
curves for A. fallax indicated a similar decrease in habitat suitability at 
the lower range of precipitation and sea surface temperature, with a 
total relative contribution of 41.5%, this species did not see a decrease in 
estimated habitat suitability as the predictor variables increased to their 
upper range (Figs. 4 and 6). In addition, A. alosa had a bimodal response 
curve for annual mixed layer depth, while A. fallax generally saw a 
decrease in habitat suitability as mixed layer depth increased. Taken 
together, this indicates that in general A. alosa had fewer instances 
where the value of certain predictor variables could result in a high 
estimate of habitat suitability. 

3.2. Expert knowledge survey results 

In total, 12 participants responded for A. alosa and 14 for A. fallax 
from five Atlantic Area countries (Figure A1). Not all the participants 
provided answers to each of the 10 questions, though all questions had 
at least seven responses that were used when calculating the weighted 
mean and variance (Table 8). Results for both shad species indicated 
relatively high agreement between participants for five of the seven 
questions used to estimate model parameters, as seen when considering 
the standard error values (Figures A2-A4). The two questions focused on 
emigration, addressing the proportion of the population that emigrates 
and the survival rate for these emigrants had the highest variability 
between individual responses (Figure A5). Of these two questions, the 
one estimating emigrant survival rate had the largest standard error. 
Weighted estimates derived from this expert knowledge survey were 
presented in Table 8. 

3.3. Projections of climate change impacts on shad distribution using 
HyDiaD 

General spatial and temporal trends in projections differed among 
catchments and between shad species. Four types of temporal trends 
were seen when results were averaged across the three GCMs, including 
populations that 1) started with a spawner density (number of spawners 
per km2) that was very low or zero and maintained that density through 
time (ex: Fig. 5, Vefsna, Norway), 2) started at a low spawner density 
and increased through time (ex: Fig. 5, Elbe, Germany), 3) started at a 
medium to high spawner density and decreased (usually to zero) 

Table 9 
Measures of predictive accuracy of BRT models for the two shad species. CV AUC 
score was calculated using the subsets used for cross-validation. SE refers to 
standard error of these subsets. Prevalence is the proportion of presences in the 
observed data. Formulas for indices are given in Table 6.  

Index A. alosa A. fallax 

Prevalence 0.221 0.537 
Threshold 0.37 0.49 
CV AUC score 0.831 0.812 
CV AUC SE 0.025 0.027 
Prediction Error 0.075 0.116 
Sensitivity (Omission) 0.821 0.938 
Specificity (Commission) 0.954 0.821 
TSS 0.776 0.760  
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through time (ex: Fig. 5, Adour, France), and 4) maintained a medium to 
high spawner density through time (ex: Figs. 5 and 6, Meuse, France). 
Using the dispersal parameters estimated through the expert knowledge 
survey, there were no instances where the population declined to near 
local extinction and then later increased again. For both species, in-
stances where populations declined to zero (or “collapsed”) corre-
sponded to catchments with higher annual variability in HSI that often 
spanned the range of possible values. This is in contrast to populations 
that maintained a consistent spawner density through time, which had a 
relatively narrow range (i.e. 0.4 to 0.8) of annual HSI values projected 
from 1951 to 2100. 

Large differences in averaged projected trends for habitat suitability 
and spawner density existed between the two shad species for the two 
RCP scenarios (Figs. 5 and 6). A. alosa generally demonstrated a more 
variable and consistently lower value for habitat suitability across all 
catchments (Fig. 5). While several individual catchments (from North to 
South, Weser, Ems, Meuse, Escaut, Seine, Loire, Charente, Dordogne, 
Garonne, Minho, and Mondego) had relatively high spawner density 
through time, the majority of catchments were consistently at the lower 
range of possible values. This is in contrast to A. fallax, which 

demonstrated a spawner density at the higher range across the majority 
of catchments (Fig. 6). This trend was reflected in the projected HSI for 
A. fallax, which was high for most catchments except for several located 
in Spain, Portugal, and Morocco (e.g. Odiel, Tinto, Piedras, Sado, Mira, 
Loukkos, and Sebou). For this species, HSI was seen to increase through 
time for many catchments, especially in the northern extend of its range 
(above approximately 48◦N). This temporal trend was less common for 
A. alosa, which often displayed high annual variability in HSI within a 
catchment. For A. alosa, some catchments did display an increase in HSI 
through time. However, the opposite was also true and several catch-
ments saw a decrease in HSI through time. In addition, latitudinal trends 
in HSI were less clear for A. alosa than for A. fallax. 

While spawner density and habitat suitability were both dramati-
cally different between the two shad species as detailed above, trends in 
saturation rate were similar. For both species, the saturation rate was 
generally at one extreme or the other, representing either zero (a pop-
ulation crash) or 1 (the available habitat in that catchment is being fully 
utilized). However, some individual catchments did demonstrate annual 
variability in saturation rate (ex: Blavet in France and Guadiana in 
Spain, which both varied between 0 and 1 for A. alosa), which was seen 

Fig. 3. Response curves for A. alosa for the seven environmental predictor variables selected by the calibration procedure (MLD: mixed layer depth, Altitude: altitude 
at the source; SST: sea surface temperature, SA: surface area of the catchment, Length: length of the main watercourse). Each panel shows the effect of one predictor 
variable on the fitted function after accounting for the average effects of all six of the other predictor variables. Variables are ordered by the value of their relative 
influence, as indicated by the percentage on the x-axis label, with the highest value shown in the top left panel. 
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more for A. alosa than A. fallax. It is important to keep in mind that 
saturation rate does not reflect the size of the population, but rather how 
the available habitat, though scarce, was being used by the population. 
A high saturation rate close to 1 could occur regardless of the value of 
habitat suitability. For both species, many catchments started with a 
high saturation rate that quickly decreased over a short period of time, 
as was demonstrated in Figs. 5 and 6 where the color rapidly shifted 
from yellow to dark blue. This trend could occur when the population 
started at a large abundance and rapidly collapsed, or when the habitat 
suitability and spawner density were relatively low in a catchment, but 
the population was still as large as it could be given the value of habitat 
suitability. When the value of habitat suitability was low, it limited the 
population growth. As could be seen for both species, once a population 
collapsed (saturation rate and density of 0), it did not later recover, as 
would be indicated by an increase in spawner density and saturation 
rate. These population collapses were much more prevalent for A. alosa 
(37%) than for A. fallax (10%) when considering the results from the 
three GCMs averaged together for RCP 8.5 (Figs. 5 and 6). The saturation 
ratio can also be defined as the comparison of the spawner abundances 
estimated by HyDiaD and the habitat model (C-SDM) alone. So, domi-
nance of values close to 1 in the heat plots indicated no lag between 
changes in HSI values and the response of the population. 

Model projections were similar between RCP 4.5 and RCP 8.5 for 
saturation rate, spawner density, and habitat suitability for both shad 
species (Figs. 5, 6, C2, and C3). The largest difference between the two 
scenarios related to the scale of change, which was seen in the temporal 
trends for habitat suitability. The amount of change that occurred be-
tween the earlier and later time series was more pronounced, as ex-
pected, for climate scenario RCP 8.5 than RCP 4.5. A good example of 
these differences can be seen for A. alosa in the Severn in England in 
Figs. 5 and C2. For RCP scenarios, HSI and spawner density are in the 
mid to high end of their range. Starting at roughly 2070, however, the 
values for both HSI and spawner density increase to consistently be 
higher for RCP 8.5 than RCP 4.5. However, when considering trends 
across all catchments, the difference in projected habitat suitability 
between the two RCP scenarios was negligible. 

3.4. Sensitivity of total spawner abundance to model parameters 

Results from the global sensitivity analysis were similar for the two 
shad species (Fig. 7). The parameters related to dispersal (i.e. mortality 
of emigrants (Mdisp), the probability of emigration (γ), and the shape (β) 
and scale (α) parameters for the dispersal kernel; Table 8) had negligible 
effects on the total spawner abundance summed across all years and 

Fig. 4. Response curves for A. fallax for the seven environmental predictor variables selected by the calibration procedure (MLD: mixed layer depth, Altitude: 
altitude at the source; SST: sea surface temperature, SA: surface area of the catchment, Length: length of the main watercourse). Each panel shows the effect of one 
predictor variable on the fitted function after accounting for the average effects of all six of the other predictor variables. Variables are ordered by the value of their 
relative influence, as indicated by the percentage on the x-axis label, with the highest value shown in the top left panel. 
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catchments as indicated by the low values of both σ and μ for all of these 
factors. The parameters related to population dynamics (i.e. population 
growth rate (r), the Allee effect (λ), and the maximum density of 
spawners per unit area (Dmax)) demonstrated a nonlinear effect or 
interaction because of a high value for both σ and μ. 

3.5. Model evaluation based on the saturation ratio metric 

For allis shad, the shape of the saturation ratio distribution is 
bimodal at the extremes while a unique mode around 1 was depicted for 
twaite shad (Fig. 8). Regarding the confusion matrix between observed 

Fig. 5. Projections of saturation rate, spawner density and habitat suitability (HSI) averaged across three global climate models (GCMs) for A. alosa for different 
European catchments under climate scenario RCP 8.5 from 1951 to 2100. For heat plots, dark blue indicates smaller value and yellow indicates higher value. 
However, note difference in scale (indicated in legend) for the three heat plot panels. Fourth panel shows spawner abundance averaged for each catchment from 1951 
to 1980 to provide a reference for a time horizon before populations started to change with climate change. Catchments are organized by country (indicated on left) 
and arranged within a country from north (top) to south. Individual catchment names are indicated on the right. See Appendix C for RCP4.5 results. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 6. Projections of saturation rate, spawner density and habitat suitability (HSI) averaged across three global climate models (GCMs) for A. fallax for different 
European catchments under climate scenario RCP 8.5 from 1951 to 2100. For heat plots, dark blue indicates smaller value and yellow indicates higher value. 
However, note difference in scale (indicated in legend) for the three heat plot panels. Fourth panel shows spawner abundance averaged for each catchment from 1951 
to 1980 to provide a reference for a time horizon before populations started to change with climate change. Catchments are organized by country (indicated on left) 
and arranged within a country from north (top) to south. Individual catchment names are indicated on the right. See Appendix C for RCP4.5 results. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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abundance and SRHSI=1, the error rate was 13 and 5.5% for allis and 
twaite shad respectively when considering as estimation errors only 
records above the diagonal. Errors in the upper half of the matrix indi-
cated observed abundances that overpassed the saturation ratios 
calculated on the species maximum abundances without any anthro-
pogenic pressures (Table 10). 

4. Discussion 

4.1. Development of the HyDiaD model 

4.1.1. Novel approaches for the study of spatial dynamics in diadromous 
species 

In this paper, we demonstrate for the first time how a hybrid model 
offers an alternative way to estimate spatial dynamics, thereby inte-
grating how diadromous species move through a spatial matrix of 

Fig. 7. Effect of model parameters on the estimate of total spawner abundance of shads summed across all catchments and years (
∑

Ni,t). Results of global sensitivity 
analysis for A. alosa (left panel) and A. fallax (right panel). Parameters tested were r (population growth rate), λ (parameter for the Allee effect), Dmax (maximum 
density of fish in ideal conditions), y (probability of emigration), α (scale parameter for the dispersal kernel), β (shape parameter for the dispersal kernel), and FSurv 
(survival rate for emigrants during dispersal). Points are plotted with the average (μ∗) on the x-axis and the standard deviation (σ) of the elementary effects on the y- 
axis, which are calculated from trajectories that move through the parameter space varying one factor (Xi) k times (equal to the number of parameters). Twenty 
trajectories were performed to calculate the effect of each of the seven model parameters on the sum of spawner abundance. 

Fig. 8. Distribution of the saturation ratios considering the three GCMs under RCP 8.5 for the period 2041–2050. The left and right panels were for A. alosa and 
A. fallax respectively. 

Table 10 
Confusion matrix illustrating the agreement between observed and predicted 
abundance classes. In columns were given the observed abundance classes from 
EuroDiad 4.0 over the most recent period “2010-present times” and in rows the 
saturation ratio classes calculated with HyDiaD considering no anthropogenic 
pressures and a maximum habitat suitability (i.e. HSI = 1 in the SR denominator) 
over the period 2010–2019.    

Absent Rare Common Abundant 

A. alosa SR = 0 12 1 5   
[0; 0.333] 38 10 9 1  
[0.333; 0.667] 14 9 8   
[0.667; 1] 6   1 

A. fallax SR = 0 6     
[0; 0.333] 1 1 3   
[0.333; 0.667] 18 5 2 3  
[0.667; 1] 25 18 24 4  

B. Barber-O’Malley et al.                                                                                                                                                                                                                     



Ecological Modelling 470 (2022) 109997

15

catchments connected by the oceanic domain. As far we know, previous 
attempts at integrating multiple habitats are restricted to SDMs, so- 
called multi-state SDM (Frans et al., 2018), and this is the first time a 
multi-state habitat model has been coupled with population dynamics 
and dispersal processes in fish species. While the HyDiaD model was 
developed following the steps laid out by Singer et al. (2018) for hybrid 
species distribution models, several novel approaches were developed to 
address difficulties related to knowledge gaps and the fact that dispersal 
for diadromous species was measured between catchments that were 
different sizes and distances apart rather than through a continuous 
landscape, meaning it could not be estimated using the grid-cell 
approach often used for terrestrial species (De Cáceres and Brotons, 
2012; Visintin et al., 2020). Even if this model is difficult to calibrate 
since it simulates a potential rather than an observable abundance, the 
confusion matrix between observed abundances provided by the Euro-
Diad database and classes of simulated saturation ratios with HSI=1 
showed a limited number of discrepancies (Table 10), leading to a quite 
good confidence in the model. 

For data-poor species, the availability of species-specific data related 
to biological processes can be a major knowledge gap, and expert 
knowledge elicitation has been suggested as a possible solution (Gallien 
et al., 2010; Singer et al., 2018). The current study successfully used this 
approach on two aspects: i) to parameterize the HyDiaD model for two 
shad species (Section 2.3.4.), and ii) to fill data gaps related to both 
historical presences/absences and physical characteristics of catchments 
(Section 2.2.1). Lastly, given that marine predictor variables have been 
neglected in previous studies on diadromous species range-shift re-
sponses, the abiotic niche for the two shad species was estimated using a 
suite of environmental predictor variables that covered the entire spe-
cies life cycle. The inclusion of marine and freshwater predictors led to 
high predictive accuracy when estimating habitat suitability for both 
species. 

4.1.2. Applying HyDiaD to other species and geographic regions 
The HyDiaD model could be applied to other anadromous species or 

modified to fit other life-history approaches such as catadromy, i.e. 
species that reproduce at sea and grow in rivers. For data-rich species, 
occupancy information and population and dispersal parameters could 
likely be found in the scientific literature, so the most time consuming 
process would likely be the downscaling of GCMs to the appropriate 
regional scale in order to obtain simulated data for environmental pre-
dictor variables. Another potential time-consuming process is the 
calculation of the distance matrix, which would require a longer 
computation time if a larger number of catchments were added. 
Increasing the number of catchments included in the calibration of the 
C-SDM will provide a better representation of the range of possible 
conditions that a species experiences and improve the estimation of 
habitat suitability. 

The current study provides an approach for filling in knowledge gaps 
for data-poor diadromous species in which parameters for population 
and dispersal dynamics may not be readily available in the primary 
literature for the spatial scale used in the HyDiaD model. The use of 
iterative expert knowledge elicitation could be an alternative source of 
information in those cases. The results of the expert knowledge survey, 
in addition to the equations and R script for calculating the weighted 
group mean (Appendix A), could be used to apply the HyDiaD model to 
other diadromous species and geographic regions. However, the 
ecological processes behind the parameters being estimated are complex 
and the spatial scale covered by the model was large, thus extensive 
feedback was necessary to develop the wording of the questions used in 
the expert knowledge survey. To address this, the survey consisted of 
multiple rounds with a workshop in between to make sure that the 
survey questions were interpreted correctly by the respondents. After 
presenting the preliminary group results and discussing the survey 
questions in both the workshop and one-on-one interviews, many par-
ticipants changed their initial answer to particular questions based on a 

better understanding of what the authors intended to estimate. To 
further address this, future applications of this expert knowledge survey 
may benefit from two rounds of one-on-one interviews rather than an 
initial questionnaire followed by individual interviews. 

While this kind of approach might be necessary in poor data situa-
tions, it has to be recognized that there are several potential pitfalls to 
consider when using this type of expert survey process. For example, 
there is the concern that subjectivity and speculation in the answers 
provided by experts may lead to biased results. In addition, it is 
important to consider the ecological paradigm implicit in estimating 
parameters as the HyDiaD model was developed to apply the same 
values for population and dispersal parameters across all populations, 
and catchment-scale differences were related to environmental condi-
tions. In the current study, these biases were addressed by using a group 
of experts studying shads across a large spatial scale, multiple steps to 
the survey, and a weighting scheme for the results that allowed partic-
ipants to rate the level of confidence they had in their answers for each 
species and question combination (Scolozzi and Geneletti, 2012), which 
allowed for a more precise weighting scheme in the calculation of group 
averages. Although there is evidence for rapid adaptive evolution of 
species in response to climate change (Lavergne et al., 2010), the hybrid 
model used in this study did not account for the adaptive potential of 
species, phenotypic plasticity, and ecological processes such as compe-
tition, positive interactions, and trophic relationship which can affect 
rates of species range shifts (Lavergne et al., 2010). 

For data-poor species, finding historical presence/absence informa-
tion can be difficult and time-consuming. In the current study, historical 
presence/absence information was available for the two shad species 
because of an existing database (https://data.inrae.fr/dataset.xhtml?per 
sistentId=doi:10.15454/IVVAIC; Barber-O’Malley et al. (2022)). This 
database required enormous effort from a large group of students and 
project partners to create and validate, but this work will allow the 
HyDiaD model to be applied to other diadromous species both within the 
same area used in the current study as well as other areas in Europe. 
While many diadromous species historically supported a freshwater 
commercial fishery that should be a matter of public record, the tem-
poral resolution of these data may be coarse. In addition, for species that 
are similar in appearance, it may be difficult to distinguish based on 
historical records whether one or both species were present, and making 
inferences based on the historic species range can reduce the fine-scale 
resolution of the occupancy data used to calibrate the C-SDM (e.g. 
Doadrio et al., 1991, 2011). 

4.2. Using HyDiaD to estimate future projections of shad distributions 

4.2.1. Habitat suitability 
The trends seen in the estimate of habitat suitability and shifts in 

distribution for both shad species in the current study are similar to what 
was estimated by Lassalle et al. (2008b) and Lassalle and Rochard 
(2009) using C-SDMs, suggesting that habitat suitability may play a 
larger role than population dynamics and dispersal in the distribution of 
these two species. This point was also suggested by the dominance of 
saturation ratios close to 1 in the distributions across catchments indi-
cating that variations in habitat suitability were quickly followed by 
changes in population abundances in relation with the relatively high 
specific population growth rates. In contrast to these previous two 
C-SDM studies, surface area only accounted for roughly 9% of the 
relative influence for both shad species in the current study, and pre-
cipitation (17.5% for A. alosa and 21.8% for A. fallax) and altitude at the 
source (16.9% for A. alosa and 18.1% for A. fallax), which together can 
act as a proxy for river flow (Lassalle and Rochard 2009; Pont et al., 
2005), had a large influence. Mixed layer depth, which was not included 
in the previous studies, was also influential in the current study (21.6% 
for A. alosa and 11.5 for A. fallax), with a higher habitat suitability when 
mixed layer depth was lower. Studies on the Moroccan coast have sug-
gested that shallow mixed layer depth corresponds to high cold-water 
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upwelling activity (Bessa et al., 2019), which could also lead to lower 
temperatures (Nykjær and Van Camp, 1994) and higher productivity 
and food availability in this region (Lassalle et al., 2008a). 

Similar to the previous two studies, general distribution trends in the 
current study indicated that A. fallax is expected to increase in abun-
dance and A. alosa is expected to decrease in abundance under XXIst 

century climate change scenarios. The current model estimated rela-
tively high values of habitat suitability for A. fallax across its range. The 
lowest and most variable estimates for habitat suitability and spawner 
density for A. fallax were seen in catchments in southern Spain, southern 
Portugal, and northern Morocco. For A. alosa, the two previous studies 
predicted drastic declines in suitable habitat within the southern range 
of the species. In the current study, habitat suitability for A. alosa was 
consistently lower across catchments and more variable through the 
entire modeled timeframe (1951–2100), especially for basins in Spain, 
Portugal, and Morocco. For this species, some of the response curves 
used to estimate fitted values from the boosted regression trees were 
relatively steep for several of the environmental predictor variables, and 
this can result in a higher estimate of habitat suitability when there is 
only a relatively small change in the value of that variable. To address 
this, future applications of HyDiaD could include process-based habitat 
suitability model under the ecological niche theory framework (Citores 
et al., 2020), and to downplay the influence of these steep slopes on 
estimates of habitat suitability. 

4.2.2. Dispersal 
Dispersal parameters (probability of emigration and mortality rate 

for emigrants during dispersal) estimated from the expert knowledge 
survey indicated that long-distance dispersal events were rare for both 
shad species. This was supported in the literature by genetic and 
microchemistry studies that indicated shads displayed a high rate of 
natal homing (Alexandrino et al., 2006; ICES, 2015; Martin et al., 2015). 
High homing rates may decrease the ability of shads to adapt to 
climate-induced changes in habitat suitability by preventing pop-
ulations from shifting their distribution take advantage of previously 
unoccupied habitat that becomes suitable. 

However, despite the indication of natal homing, there is also evi-
dence that suggests some dispersal of A. alosa between catchments that 
were as far apart as 2000 km (Randon et al., 2017), meaning that, while 
rare, long-distance dispersal does occur. Previous studies have indicated 
a lack of fine-scale genetic structure among nearby A. alosa populations 
(Alexandrino et al., 2006; Jolly et al., 2012; Martin et al., 2015), which 
may be the result of the small number of individuals that disperse longer 
distances. It is unlikely that many individuals disperse across very long 
distances, though, as genetic and morphological differences have been 
observed between populations in France and those in Portugal (Alex-
andrino et al., 2006; Lassalle et al., 2008a). 

Previous studies have indicated that A. fallax has a higher level of 
genetic structure (ICES, 2015) and a greater rate of natal homing 
(Alexandrino et al., 2006; Jolly et al., 2012), which may limit its ability 
to colonize newly suitable habitats. Jolly et al. (2012) found that 
neighboring populations in the UK (Severn and Wye) displayed no ge-
netic differentiation, while the Severn was genetically distinct from 
several populations located at a farther distance (Tywi, Usk, and Irish 
catchments). Davies et al. (2020) found that 33 out of 34 A. fallax tagged 
in 2018 from the Severn returned to this catchment in 2019. However, in 
tagging studies capture location may not represent natal origin (Nachón 
et al., 2020), and there may still be long distance dispersal between 
major estuaries (Davies et al., 2020). 

For shads, not all river catchments in the European Atlantic area 
listed in the CCM River and Catchment Database (data.europa.eu) were 
included in the model projections. Many small and medium-sized 
catchments were not incorporated into the dispersal matrix because 
simulations only used catchments included in EuroDiad 4.0. In HyDiaD, 
smaller catchments would not produce a large number of dispersers 
because this value was based on an estimate of productivity directly 

related to surface area, and dispersal mortality applied using the dis-
tance between a pair of catchments. Out of the 18,769 pairwise distances 
in the dispersal matrix, only a small proportion (0.06% for A. alosa and 
0.03% for A. fallax; Appendix D) were less than the maximum emigra-
tion distances estimated in the expert knowledge survey. So, while the 
dispersal kernel allowed a small proportion of emigrants to move past 
this maximum distance, these spawners did not survive to reach a 
further catchment. If the dispersal matrix included more catchments that 
were each a shorter distance away, it is possible that the resulting in-
crease in the number and survival of dispersing spawners could allow 
surrounding catchments to be “rescued” from the Allee effect due to an 
annual influx of dispersing fish (Kanarek et al., 2015). Recent studies 
have suggested that small catchments could be more important for the 
resilience of diadromous species than previously thought (Melo-Merino 
et al., 2020; Copp et al., 2021), and so future applications of the HyDiaD 
model would benefit from the inclusion of more small catchments in 
future projections. 

4.2.3. Disentangling habitat suitability and population and dispersal 
dynamics 

It is difficult to disentangle the effects of habitat suitability on the 
estimates of spawner abundance from those of population and dispersal 
dynamics within a given catchment. Within the HyDiaD model, the Allee 
effect was imposed by reducing the number of spawners that were 
participating in reproduction within a given catchment. Potential de-
mographic rescue from the Allee effect due to immigration was limited 
for both shad species because of interactions between dispersal capa-
bilities, habitat suitability and annual stochasticity, population growth, 
a low proportion of spawners participating in reproduction, and the 
focus on medium and large-sized catchments included in the distance 
matrix. For both species, dispersal from a given population was low, and 
was generally restricted to nearby catchments. When environmental 
conditions were limiting, the number of spawners in a catchment were 
reduced to the point where recovery was not possible because the 
population could not surpass the threshold set by the Allee effect. If 
habitat suitability was low for several years within a short time period, 
spawner density decreased and was often unable to recover regardless of 
an increase in habitat suitability in later years. The combination of high 
habitat suitability, relatively high population growth rate, and low Allee 
effect allowed most A. fallax populations to persist. In contrast, many 
A. alosa populations experienced consistently low habitat suitability, 
and this led to low estimates of spawner density and many catchments 
with population crashes. This is demonstrated in the A. alosa population 
crashes early in the time series in catchments with very high annual 
variability in habitat suitability along the northern coast of Spain 
(Cantabrian coast). These rivers are generally short and steep with high 
water flow (Doadrio et al. (2011); Dr. David José Nachón García, per-
sonal communication), and while these catchments had spawners pre-
sent at the start of the model simulation, indicating that the model was 
correctly simulating the presence/absence data used for calibration, 
these populations quickly dropped below the threshold imposed by the 
Allee effect and were unable to recover. Surrounding populations in 
Spain, Portugal, and France, either because of a low spawners abun-
dance or too long of a long distance, were unable to produce enough 
dispersers for the Cantabrian populations to recover. This specific dy-
namics simulated in several catchments reinforce the need in new ap-
proaches that do not limit the interpretation to single-habitat suitability. 
This conclusion might become more apparent when considering species 
with a slower turnover rate as highlighted in the present study (Fig. 8) by 
the lower peak at SR =1 for allis shad than twaite shad (the former 
having a lower population growth rate than the latter). For such a group 
of species, regional dynamics driven by specific ecological and physical 
features will turn more frequent in the species range as not masked by 
the population ability in quickly recovering from unsuitable conditions, 
leading to question the underlying mechanisms. 
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4.3. Conclusion 

The HyDiaD model was developed to estimate the distribution of 
diadromous species under climate scenarios, and was successfully 
applied to two shad species in the Atlantic Area of Europe. Estimated 
trends indicated that under XXIst century climate scenarios, habitat 
suitability for A. fallax is expected to increase, which would likely lead 
to an increase in abundance except possibly in the southernmost 
catchments of this species’ current range in Morocco, Portugal, and 
Spain. Model estimates indicated that habitat suitability for A. alosa is 
expected to decrease, as well as display higher rates of annual vari-
ability, particularly in southern catchments. As anthropogenic factors 
were not modeled for the two shad species, these results may be exac-
erbated by problems with river connectivity or water pollution. Future 
studies can apply the HyDiaD model to other diadromous species, 
including data-poor ones, using species-specific estimates of population 
dynamics and dispersal parameters. 
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Arregui, I., Murua, H., Chust, G., 2019. Large-scale distribution of tuna species in a 
warming ocean. Glob. Change Biol. 25, 2043–2060. https://doi.org/10.1111/ 
gcb.14630. 

Fielding, A.H., Bell, J.F., 1997. A review of methods for the assessment of predictor error 
in conservation presence/absence models. Environ. Conserv. 24, 38–49. https://doi. 
org/10.1017/S0376892997000088. 

Fordham, D.A., Bertelsmeier, C., Brook, B.W., Early, R., Neto, D., Brown, S.C., Ollier, S., 
Araújo, M.B., 2018. How complex should models be? Comparing correlative and 
mechanistic range dynamics models. Glob. Change Biol. 24, 1357–1370. https://doi. 
org/10.1111/gcb.13935. 

Fordham, D.A., Mellin, C., Russell, B.D., Akckaya, R.H., Bradshaw, C.J.A., Aiello- 
Lammens, M.E., Caley, J.M., Connell, S.D., Mayfield, S., Sheperd, S.A., Brook, B.W., 
2013. Population dynamics can be more important than physiological limits for 
determining range shifts under climate change. Glob. Change Biol. 19, 3224–3237. 
https://doi.org/10.1111/gcb.12289. 

Franczyk, A., 2019. Using the Morris sensitivity analysis method to assess the importance 
of input variables on time-reversal imaging of seismic sources. Acta Geophys. 67, 
1525–1533. https://doi.org/10.1007/s11600-019-00356-5. 

Franklin, J., 2010. Moving beyond static species distribution models in support of 
conservation biogeography. Divers. Distrib. 16, 321–330. https://doi.org/10.1111/ 
j.1472-4642.2010.00641.x. 
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