Pepsin activity as a function of pH and digestion time under static in vitro conditions
Lea Salelles, Juliane Floury, Steven Le Feunteun

To cite this version:
Lea Salelles, Juliane Floury, Steven Le Feunteun. Pepsin activity as a function of pH and digestion time under static in vitro conditions. 7th International Conference on Food Digestion, May 2022, Cork, Ireland. , 2022. hal-03662664

HAL Id: hal-03662664
https://hal.inrae.fr/hal-03662664
Submitted on 9 May 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License
Background

The activity of pepsin, the gastric protease, is generally considered to be negligible for pH ≥ 4, based on the results obtained with a few purified globular proteins. The present study aimed at studying the activity of porcine pepsin on egg white proteins and casein micelle micro-aggregates over a broad range of pH (from 1 to 7) for short (3 min) and long (2 h) digestion times.

Materials & Methods

Two series of static *in vitro* gastric digestions (INFOGEST protocol) were conducted with porcine pepsin at different pH with both caseins and egg white proteins. The first series was used to assess the initial reaction rate of hydrolysis (after 3 min) using the OPA method. The second series was used to monitor the kinetics of protein hydrolysis for 2 h of digestion with a high temporal resolution using the pH-STAT method and converting the results in degree of hydrolysis (DH) thanks to OPA analyses of the end samples.

Key Results

After 3 min: The pH activity profile of pepsin strongly depends on the substrate and can be substantial for pH ≥ 4.

After 2 h: The extent of casein hydrolysis was constant in a remarkably broad range of pH: from 1 to 5!

During the course of digestion: Pepsin hydrolysis profiles can be accurately modelled by a simple power law (with a scaling factor, α, and a shape parameter, β, that seems largely pH independent and characteristic of the substrate).

\[\text{DH} \% = \alpha \times \text{time} \beta \]

Table 1: \(R^2 \) and estimated parameters (α, β) of the power law model on various foods.

<table>
<thead>
<tr>
<th>Food</th>
<th>pH</th>
<th>α</th>
<th>β</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg white proteins</td>
<td>2</td>
<td>1.72</td>
<td></td>
<td>>0.99</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.15</td>
<td>0.41</td>
<td>>0.99</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.80</td>
<td></td>
<td>>0.99</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.42</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>Caseins</td>
<td>2</td>
<td>2.23</td>
<td></td>
<td>>0.99</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.78</td>
<td></td>
<td>>0.99</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.88</td>
<td>0.23</td>
<td>>0.99</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.55</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.18</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>Native whey proteins</td>
<td>3</td>
<td>0.91</td>
<td>0.30</td>
<td>>0.99</td>
</tr>
<tr>
<td>Gelled whey proteins</td>
<td>3</td>
<td>0.37</td>
<td>0.57</td>
<td>>0.99</td>
</tr>
<tr>
<td>Wheat based cake</td>
<td>3</td>
<td>0.38</td>
<td>0.45</td>
<td>>0.99</td>
</tr>
<tr>
<td>Pea based cake</td>
<td>3</td>
<td>0.53</td>
<td>0.39</td>
<td>>0.99</td>
</tr>
<tr>
<td>Gluten gel(^2)</td>
<td>3</td>
<td>0.09</td>
<td>0.64</td>
<td>>0.99</td>
</tr>
<tr>
<td>Pea protein gel(^1)</td>
<td>3</td>
<td>0.37</td>
<td>0.48</td>
<td>>0.99</td>
</tr>
</tbody>
</table>

\(^1 \) Mat et al., *Food Chemistry*, 2020, 311

\(^2 \) Unpublished data of ours

Main Conclusions

- Pepsin activity under weakly acidic conditions (pH ≥ 4) should not always be neglected, in particular, for milk caseins.
- Pepsin instantaneous activity seems to evolve proportionally to the power of time during static *in vitro* gastric digestion.
- For complementary information: Salelles L., Floury J. & Le Feunteun S. (2021) *Food Funct.*, 12, 12468