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Abstract

The regulation of agricultural pests by their natural enemies is a key step in the agroecological
transition. The level of biocontrol seems, however, to highly depend on the agronomic and
ecological context. It is thus important to identify the conditions under which this ecosystem
service is efficient as well as the magnitude of its effects. An actual reduction of pesticide use
depends on a change in farmers decisions, calling for the consideration of economic dimensions.
We develop a dynamic agroecological-economic model representing land-use and agricultural
intensity decisions as well as the dynamics of a crop pest and a natural enemy. Biocontrol
is assessed considering both private benefits (increase in farmers’ profit) and public benefits
(reduction of pesticide use) with respect to a situation without a natural enemy. We provide a
theoretical assessment of the magnitude of biocontrol over a wide range of agronomic contexts
(spatially explicit maps of agricultural production potential, with heterogeneous distribution
and a control of spatial fragmentation) and ecological contexts, described through various
parameter values of a reaction-diffusion model. The contexts in which biocontrol plays a
significant role are identified, and the role of key parameters discussed. Our open-access
model offers a tool to investigate alternative specifications.

Keywords: Biocontrol; Agroecology; Spatial diffusion model; Feedback loop; Pest; Natural
enemy

The intensification of agricultural practices and the simplification of agricultural land-
scapes have resulted in biodiversity loss in agroecosystems (Benton et al., 2002, 2003) and
the reduction of the ecosystem service of natural pest control (Bianchi et al., 2006). In the
meanwhile, pest populations have been managed through the use of pesticides, resulting in
increased pollution and a social demand to reduce their use. Agroecological approaches, such
as a reduction of intensity in croplands and an increased diversity of agricultural landscapes
with inclusion of non-crop habitats are presented as a way to foster conservation biocontrol
to protect crops (Bianchi et al., 2006). The response of natural enemy populations to land-
scape diversity is not consistent, however, and does not necessarily result in pest control or
reduced damage to crops (Begg et al., 2017; Karp et al., 2018; Shields et al., 2019), limiting
the adoption of conservation biocontrol as a pest control strategy.

Is conservation biocontrol an efficient strategy to manage pest? How to assess its potential
to protect crops and achieve an actual reduction of pesticide use in different contexts? A
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larger population of natural enemy may not result in the effective biocontrol of a pest, as
the actual ecosystem service will depend on the population of predators, but also on their
ability to colonise cropland and to regulate the pest population (Bianchi et al., 2006; Begg
et al., 2017). Private and social benefits of biocontrol will also depend on the changes in crop-
protection behaviour and the associated reduction in pesticide use, meaning that the issue
is not only agroecologic but also economic, with a need to account for farmers’ decisions.
Management strategies based on conservation biocontrol are more likely to be adopted if they
result in effective crop protection and are profitable. Whereas the literature has focused on
the identification of the ecological drivers of biocontrol (Perović et al., 2018), few studies
consider the actual economic benefit of biocontrol (Shields et al., 2019).

In this paper, we aim at estimating the magnitude of the effect of biocontrol as well as
determining some elements of the contexts in which biocontrol could contribute significantly
to the management of crop pests. For this purpose, we develop a dynamic agroecological-
economic model representing land-use and agricultural intensity decisions as well as the eco-
logical dynamics of a crop pest and a natural enemy. Annual farmers’ decisions are driven
by profit maximization, accounting for local pest pressure, resulting in a dynamic landscape.
Comparing a situation with and without a natural enemy, the biocontrol ecosystem service is
assessed at the landscape level through (time-average) profit variation to account for private
benefits, and pesticide use reduction to account for social benefits.

One aspect common to most models of interacting species is that the results strongly
depend on the parameters, whether these parameters are related to the landscape (Bolker
et al., 2003; Roques and Chekroun, 2010) or to biotic interactions (Roques and Chekroun,
2011). As a result, the question of the efficiency of biocontrol requires testing a large number
of sets of admissible parameters, and the answer will not be unique but rather give ranges of
variation and trends. We thus consider a range of agronomic contexts, described as spatially
explicit maps of agricultural production potential, with heterogeneous distribution and spatial
configuration, as well as a range of ecological contexts, described through various parameter
values of a reaction-diffusion model.

Several research articles studied the drivers of biocontrol, either in terms of landscape
composition and the spatial distribution of non-crop habitats (Bianchi et al., 2006), or by
considering crop-protection practices (e.g., interactions between pest management in organic
and conventional farming systems within a landscape-scale model of parasitöıd-host interac-
tions Bianchi et al. (2013)). These landscape drivers interact with ecological drivers such as
dispersal abilities or the degree of specialisation of the natural enemy (Bianchi et al., 2006),
creating environmental filters that can influence natural enemy communities and the level
of biocontrol through the selection of traits (Perović et al., 2018). These interactions can
occur at the local (field and field-edges) and global (landscape) scales (Begg et al., 2017).
Few studies, however, address the trade-off with production or the economic valuation of the
biocontrol ecosystem service (Karp et al., 2018), suggesting that research should focus on
the link between landscape composition and reduced damage, increased yield, and improved
profit. The economic value of biocontrol can be assessed at the individual level, estimating
the private costs and benefits for a farmer, at a landscape level, accounting for the costs and
benefits of a group of farmers whose outcome depends on the interactions among individual
decisions influencing (mobile) pest and natural enemy, or at the global level, accounting for
the social costs and benefits of crop protection (Naranjo et al., 2015).

Our modelling approach makes it possible to provide an economic value of the biocontrol
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service at all these scales. Modelling farmers’ decisions and their economic and ecological
drivers, we can analyse the complex interactions within agroecological-economic systems, ac-
counting for ecological feedback on farmers land use and agricultural intensity decisions. Our
model is relatively simple, still, and focuses on stylised patterns, mainly representing eco-
logical traits (Perović et al., 2018), allowing us to illuminate core dynamic interactions and
identify key drivers (Müller et al., 2014; Sun et al., 2016). It offers results that complete
approaches based on data and statistical analysis to assess pest and natural enemy abun-
dance, predating rates and crop damages as a function of landscape composition (Karp et al.,
2018). Other spatially explicit mechanistic simulation models have been designed to study
biocontrol in agricultural landscapes but, following the landscape ecology approach (Wiens
et al., 1993), the landscape was generally a given of the agroecological models, thereby ne-
glecting endogenous landscape dynamics based on individual farmers decisions accounting
for economic aspects and ecological feedback loops (Bianchi et al., 2013). As emphasised
by Poggi et al. (2018), an important challenge is to develop feedback models that incor-
porate spatio-temporal interactions between landscape, ecological processes and stakeholder
decisions. Despite their importance, such models, which have proved useful for studying con-
servation policies (Malawska and Topping, 2018), the evolution of resistance to pesticides
(Stratonovitch et al., 2014) and ecosystem services provision (Drechsler, 2020), are still rare.

1. Materials and Methods

1.1. Model overview

We propose a global spatio-temporal model including the simulation of the soil quality
map, the integrated simulation of pest and natural enemy dynamics and of agricultural land-
use decisions. It accounts for feedback loops between ecological and economic compartments.
The stochastic soil quality map model allows the generation of a large number of scenarios,
with precise control of average quality and spatial auto-correlation (or, on the contrary, of
fragmentation). The ecological part of the model describes the dynamics of a population of
crop pest and of their natural enemy, which depend on land uses and pesticide application.
The economic part of the model describes farmers’ land use and production decisions, i.e.,
(i) how they allocate land to crop production, or leave it as a non-crop habitat (NCH), e.g.,
grassland, meadow, or set aside; (ii) how they optimise the use of fertilisers on crops; and
(iii) how they define the degree of pest control through pesticide use. These decisions depend
on agronomic conditions (encompassed in a local soil quality index), economic conditions
(including production price for agricultural outputs, as well as inputs and production costs),
and ecological conditions resulting from the presence of pest and their natural enemy. The
model computes various indicators to assess the local (at the field level) and regional (at
the landscape level) agronomic, economic and environmental performances, at each time.
In particular, it makes it possible to provide a theoretical assessment of the magnitude of
biocontrol.

1.2. Agronomic context: a stochastic soil quality map model

The model represents an agricultural landscape composed of different plots that each
can be used either as a cropland or as a NCH. This landscape is represented on a lattice Ω
of dimension n × n, which makes it possible to apply the model to raster data. Each cell
x = (i, j) ∈ [1 : n]2 represents one hectare, and is characterised by a single quality parameter
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Q(x), which represents the potential yield of the plot if used as a cropland, i.e., the maximal
yield that could be reached when there is no limiting factor (e.g., with maximal fertilisation)
and in the absence of pest damages. This quality parameter takes value in a range that may
depend on the studied region and related crop type. We consider the values Qmin = 0 an
Qmax = 12 (tons per hectare), which correspond to realistic minimal and maximal yields for
cereal crops in temperate regions (Martinet, 2013). Soil quality can be more or less correlated
across space. A given agronomic context can thus be described by a distribution of soil quality
within the range [Qmin;Qmax] along with a parameter describing the spatial auto-correlation.

To analyse contrasted cases, we generate random virtual maps based on random soil
quality distributions (truncated normal distributions characterised by different mean and
variance values) and spatial auto-correlation levels. Each generated map corresponds to a
virtual agricultural region of more or less good quality, more or less heterogeneous, and with
more of less spatial auto-correlation. This allows us to study a diversity of agronomic contexts,
and the effect of landscape configuration on the performance of agroecological systems. More
precisely, to build a quality map Q(x) defined on the lattice Ω, we proceed in two steps.

Step 1: Generation of the values in Q. We begin by drawing n2 values in a truncated
normal distribution, within [Qmin;Qmax]. This distribution has two parameters. The first
parameter is the mode of the distribution (the mean value of the Gaussian before truncation)
q. Higher values correspond here to regions with a higher agricultural potential. The second
parameter is the standard deviation sq. Higher values of this parameter mean more variable
soil qualities. This generates a vector Q∗ of n2 values in [Qmin;Qmax] with no a priori on the
spatial distribution of these values.

Step 2: Spatial arrangement of the quality map Q(x). In a second step, we use a stochastic
model to build spatial arrangements of these quality distributions. Our approach is an exten-
sion of the neutral landscape generator MULTILAND (Roques, 2015) intended to theoretical
studies on the effect of landscape structure in applied sciences (see also Gaucherel et al., 2014,
for a review on landscape modelling approaches). We consider that the lattice Ω is equipped
with a 4-neighbourhood system with periodic conditions. In other terms, the domain is con-
sidered wrapped on a torus. We denote by Vx the set containing the four neighbours (i+1, j),
(i − 1, j), (i, j + 1) and (i, j − 1) of x = (i, j). Given any spatial arrangement Q of the n2

values in Q∗, we define the statistic

S(Q) =
C

4

∑
x∈Ω, y∈Vx

|Q(x)−Q(y)|, (1)

for a given positive constant C (C = 10 in our simulations). The statistic S(Q) is directly
linked to the soil quality fragmentation. Large values of S(Q) indicate that neighbours tend to
be different (higher fragmentation), while low values indicate that neighbours tend to resemble
each other (low fragmentation). The landscape model is based on the Gibbs measure P ,
defined over all the possible arrangements of the values in Q∗:

P (X = Q) =
1

Z
ef S(Q) with the partition function Z =

∑
Q̃ with values in Q∗

ef S(Q̃). (2)

When f increases, the proposed landscape model favours higher values of S(Q), i.e., higher
fragmentation: given two arrangements Q1 and Q2 of the values in Q∗, with S(Q1) > S(Q2),
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Figure 1: Soil quality maps simulated with varying values of the fragmentation and variability
parameters.

the relative probability P (X = Q1)/P (X = Q2) = exp[f(S(Q1)− S(Q2))] becomes larger as
the parameter f is increased. Hence, f ∈ R directly controls the topology of the landscape
patterns. We refer to it as the fragmentation parameter. Typically, negative values of f lead
to aggregated maps and positive values lead to fragmented quality maps. We give several
examples of quality maps generated with this model in Fig. 1.

1.3. Ecological compartment: a lattice dynamical system with spatial diffusion

We use a lattice dynamical system to describe the intra-annual spatio-temporal dynamics
of a pest together with their natural enemy over the landscape Ω, i.e., the finite grid of
dimension n× n. Lattice dynamical systems are the discrete-space counterparts of reaction-
diffusion models, which are themselves among the most popular models to describe the spatio-
temporal dynamics of interacting species in heterogeneous environments (e.g. Shigesada and
Kawasaki, 1997; Turchin, 1998; Murray, 2002; Cantrell and Cosner, 2003; Roques, 2013, for
reference textbooks). Here, we do not need to describe the spatial dynamics of the species
within each cell of the map which would be unnecessarily time-consuming for our purpose,
hence the use of a discrete-space model adapted to the lattice Ω.

We denote by τ the time since the beginning of the simulation. The (continous) time τ is
expressed in years. We also define a discrete year index t ∈ N by t = ⌊τ⌋ (⌊·⌋ being the floor
function).

We denote by Pτ (x) the pest density at time τ and in the cell x and by Nτ (x) the density
of natural enemy. The lattice dynamical system governing the species dynamics and their
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interactions is
P ′
τ (x) = DPD[Pτ (x)] +gP (τ,x, Pτ (x)) −αPτ (x)Nτ (x) −φτ (x)Pτ (x),

N ′
τ (x) = DND[Nτ (x)]︸ ︷︷ ︸

dispersal

+ gN (x, Nτ (x))︸ ︷︷ ︸
growth

+αPτ (x)Nτ (x)︸ ︷︷ ︸
interactions

−φτ (x)Nτ (x)︸ ︷︷ ︸
pesticide

. (3)

Here, the sign (′) denotes the derivative with respect to time. We now detail the components
of these equations.
Dispersal. We describe the movements of the individuals with a discrete Laplace operator
(discrete-space counterpart of the standard Laplace diffusion), corresponding to uncorrelated
random walk movements of the individuals over the lattice Ω. For x = (i, j) and any function
U(x) = U(i, j) defined over the lattice Ω,

D[U(i, j)] =
U(i+ 1, j) + U(i− 1, j) + U(i, j + 1) + U(i, j − 1)− 4U(i, j)

δ2x
, (4)

with δx = L/n, L the width of the study site fixed here at L = 1 (without loss of generality,
up to a scaling in the space variable). The diffusion coefficients DP and DN respectively
measure the mobility of the pest and of its natural enemy. We assume periodic conditions
at the boundary of the lattice, meaning that the study site is embedded in a larger periodic
landscape with the same species dynamics over each period cell.
Growth. The functions gP and gN describe the growth (or decline) of the pest and natural
enemy populations, in the absence of interactions between these two species and of pesticide
treatments. Regarding the pest dynamics, we assume that the growth is zero during the first
half of the year, corresponding to the months following the harvest, which occurs at each
discrete time t ∈ N.

During the second half of the year, we assume a standard logistic growth, with parameters
which depend on the land use and on the quality parameter at the current position x:

gP (τ,x, Pτ (x)) =

{
0 if τ ∈ [t, t+ 1/2)

RP,τ (x)Pτ (x)
(
1− Pτ (x)

Q(x)

)
if τ ∈ [t+ 1/2, t+ 1)

(5)

The intrinsic growth rate RP,τ (x) takes a positive value (RP,τ (x) = rP > 0) over cultivated
cells and is nil (RP,τ (x) = 0) over NCH. It therefore depends on the current land use in
the cell x at time τ . On cultivated cells, and during the second half of the year, we make
the assumption that the maximum number of pests that can be reached in a cell x before
saturation is proportional to the potential yield Q(x). This makes sense as the potential yield
Q(x) was precisely defined as the maximal yield that could be reached in the absence of pest
(and without other limiting factors). Up to a scaling factor, meaning here that we change the
unit in which the pest population is measured, the carrying capacity for the pest is simply
Q(x).

Regarding the natural enemy dynamics, we assume that the natural enemy do not repro-
duce on crops. Their dynamics are thus driven by death only, with a rate 1/γ, γ being the
natural enemy life expectancy. On NCH, we assume a logistic growth with intrinsic growth
rate rN > 0. Up to a renormalization (the population of natural enemy is expressed in pro-
portion of the carrying capacity), the carrying capacity is fixed at 1. Overall, we thus assume
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the following form for the function gN :

gN (x, Nτ (x)) =

{
−Nτ (x)/γ on crops,
rNNτ (x) (1−Nτ (x)) on NCH.

(6)

Interactions. We assume standard Lotka-Volterra interactions between the pest population
and its natural enemy, which means that the pest death rate increases linearly with the density
of natural enemy, and conversely the growth rate of the natural enemy increases linearly with
the pest population density. For simplicity, we assume a ‘one-to-one’ relationship i.e., the
population of natural enemy is increased by one unit when one unit of pest population is
consumed, with a same interaction factor α summarising predation efficiency.

Pesticide effects. We assume that pesticide treatments increase the death rate of both species
in the same way. Again, this is a simplifying assumption: it is known that the natural enemies
are often sensitive to pesticides (Potter and Held, 2002), but the impact on the death rate
may not be identical for the two species. The term φτ (x) takes the value 0 in the absence of
treatment (NCH and non-treated crops). On treated crops, we assume a baseline mortality
rate φτ (x) = ρ > 0 on slightly treated crops, which is doubled in highly treated crops:
φτ (x) = 2 ρ.

A fundamental issue is to determine as realistic as possible values for the parameters DP ,
DN , rP , rN , γ, ρ and α. Of course, they depend on the considered species and pesticide. In
Supplementary Material SI 1, we determine reasonable orders of magnitude, with simplified
models where each mechanism is considered independently. The corresponding values are
summarised in Table 1.

1.4. Economic decision model

The economic part of the model is a dynamic Multi-Agent Model (cellular automaton) in
discrete time. It determines, for each time period [t, t + 1), local land use and agricultural
practices according to an optimisation pattern.

Each cell of the lattice can be allocated either to a representative crop or to NCH. These
two uses generate different returns, reduced by set up costs when applicable. We consider
asymmetric land-use change costs C, with a higher cost to set up a NCH with ecological
benefits (sewing and management costs) than to overturn it (tillage and herbicide use), i.e.,
CC→NCH > CNCH→C > 0.

All economic values are expressed per hectare (ha), to avoid scale effects. We thus im-
plicitly assume constant return to scale on all fixed production factors (labor, capital, etc.)
other than land. There are decreasing returns to scale on land, due to the heterogeneous soil
quality (Martinet, 2013)

Farmers rationality, anticipations, and decisions. We assume that the decisions in each cell
mimics a rational farmer maximising profit. To represent the fact that crop protection through
the use of pesticide is more a discrete decision regarding the frequency of treatments than a
decision on a treatment quantity over a continuous range, we consider three possible levels
of treatment: no treatment at all, an average-treatment level, and a high-treatment level. In
terms of calibration, we inspire our parameter values from the Treatment Frequency Index
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(TFI) for main field crops en France (AGRESTE, 2019), considering a moderate level of
treatment at 3 unit-dose per ha and per year, and a high level at 6 unit-dose per ha and per
year. As a consequence of this modelling choice, at the beginning of the period (representing
a cultivation year), the farmer has four options corresponding to land-use and crop protection
combinations, i.e., NCH, untreated cropland, moderately-treated cropland, and highly-treated
cropland. For each of these options, optimal fertiliser application can be determined and an
anticipated profit computed (see the details below). Then, the farmer selects the optimal use
of the plot by choosing the profit-maximising option. The model thus determines the land
use and pesticide application for all plots (or equivalently, cells), offering a starting point for
the modelling of the ecological annual dynamics.

Such a local decision pattern relies on an anticipation of local pest population and asso-
ciated damages under the four potential land-use and pest-control options. This anticipated
local pest population is denoted by P̃t+1(x). This is the population accounted for in profit
maximisation and land-use decisions. The local population will depend on the ecological dy-
namics of pest and natural enemy populations in the landscape, and thus not only on local
decisions. Anticipating this population in practice would be a very difficult task for two rea-
sons. First, it would require to know in advance the exact composition and structure of the
landscape, which would result from the separate choices of all farmers. Second, it would re-
quire to have perfect knowledge of ecological populations’ size across the whole landscape and
of ecological spatial dynamics. To avoid heroic assumptions on farmers’ ability to foresee these
dynamics, we assume that the farmer accounts only for local pest growth given initial pest
population in the field, without accounting for future predation and diffusion. This means
that biocontrol has an ex post effect, through past predation and a lower pest population,
but is not accounted for ex ante. This assumption also implies that the anticipation does not
depend on other farmers’ decisions, allowing us to abstract from game-strategic considerations
arising from simultaneous decisions among interacting agents (Costello et al., 2017). Overall,
this means that P̃t+1(x) is the solution at time t+ 1 of the simplified model:

P̃ ′
τ (x) = gP (τ,x, P̃τ (x)) with initial condition P̃t(x) = Pt(x).

Return on cropland. The return on cropland depends on local yield Yt(x), crop price p,
input costs for fertilisers (λϕ) and pesticides (λφ), fixed costs ν and potential conversion costs
CNCH→C if the plot was used as a NCH at the previous time period. We assume that the
representative crop price is constant across time, but global market effects could be included,
for example by modelling price fluctuation with a dynamic system of auto-correlated prices
with exogenous random shocks, and assuming that farmers have rational anticipations, as in
(Barraquand and Martinet, 2011).

Cropland profit thus reads

πC
t (x) = p Yt(x)− λϕϕt(x)− λφφt(x)− ν − 1NCH→CCNCH→C (7)

Crop yield and pest damages. Croplands have a yield Yt(x) which is heterogeneous across
space, depending on the local soil quality Q(x), but also on the use of fertilisers ϕt(x) and on
damages L from pests (yield loss) depending on local pest population Pt+1(x) at the harvest
time t+1 (end of the economic year [t, t+1)). As the pest population is mobile, these damages
depend both on local decisions (pesticide use) but also on land uses and pesticide use across
the whole landscape, as well as on the presence of a natural enemy.
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To model agricultural production, we consider a yield function of the ‘Mitscherlich-Baule’
type (Llewelyn and Featherstone, 1997; Kastens et al., 2003; Frank et al., 1990) augmented
of pest damages:

Yt(x) = Q(x)
(
1− c1e

−c2ϕt(x)
)
(1− L (x, Pt+1(x))) . (8)

The parameter c1 represents the share of potential yield linked to fertilisation, and the pa-
rameter c2 determines the marginal effect of fertilisation on yield. These two parameters are
exogenous and depend on the crop-type. Farmers determine the optimal level of fertiliser to
be applied in any treatment option by maximising profit with respect to the decision vari-
able ϕ given anticipated pest populations P̃t+1(x). Given the equations for yield and profit,
standard conditions leads to the optimal value

ϕt(x) =
−1

c2
ln

 λϕ

pc1c2Q(x)
(
1− L(x, P̃t+1(x))

)
 . (9)

The term L(x, Pt+1(x)) corresponds to the production loss due to pest damage, which
we assume to depend on the local pest population at the end of the period, i.e., at the
harvest time. Other assumptions could have been considered as well, depending on the type
of pest, for instance the production loss may depend on the cumulated number of pests during
the cultivation period. Several damage functions have been proposed in the literature. For
example, Mitchell (2001) uses the functional form aP

1+bP , in which the parameters a and b
are related to the virulence of the pest. The limit of this type of damage function is that it
does take the link between the production level and the carrying capacity of the pest in the
plot into account, and how this link affects the damage level. Assuming that the carrying
capacity of the pest is proportional to the production level, and that this carrying capacity
is reached when damages are maximal (full crop destruction), we assume here that damages
are proportional to the density of the pest, i.e.,

L(x, Pt+1(x)) = Pt+1(x)/Q(x),

where we recall that the carrying capacity of the pest is proportional to the production level,
and that this carrying capacity is reached when damages are maximal (full crop destruction),
leading to L(x, Pt+1(x)) = 1 when Pt+1(x) = Q(x). With this representation of damages,
pest virulence is directly linked to the pest growth rate over the cultural period. Note that the
level of pesticide use does not appear explicitly in the expression, but affects yield indirectly
through the local pest density reduction, and thus reduces losses.

Return on NCH. NCH generate a return sNCH (e.g., an agroenvironmental subsidy), so that
the profit for this land use is

πNCH
t (x) = sNCH − 1C→NCHCC→NCH (10)

where 1C→NCH is equal to 1 if the plot was a cropland at time t− 1, and 0 otherwise. This
return does not depend on soil quality, nor on the pest population.
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1.5. Parameter values and simulation plan

Our simulations aim at assessing the performance of different agricultural landscapes, and
the way it is influenced by biocontrol. For this purpose, we consider different contexts. The
agronomic context is described by three parameters: the mean soil quality, its variation, and
the fragmentation index. The ecological context is described by six parameters: the pest
diffusion coefficient, the natural enemy diffusion coefficient, the pest growth rate, the natural
enemy growth rate, the natural enemy life expectancy in a crop, and the predation rate.
The economic context only varies with respect to the efficiency of pesticide, i.e., the induced
mortality rate. We explain how the model can be used with varying economic contexts in the
discussion.

We detail in Table 1 the full list of parameters of the whole agronomic-ecological-economic
model.

We considered a relatively large number of reasonable contexts: 27 agronomic contexts
× 48 ecological contexts × 3 levels of pesticide-induced mortality rate. This led to 3 888
contexts.

Though the ecological and economic compartments are deterministic, the overall model
is stochastic due to the soil quality map part. For each set of parameter values (q, sq, f) we
generated 8 quality maps Q. For each map, we simulate the economically-driven landscape
in the absence of pest, and what happens when the pest is introduced. The idea is to assess
the resilience of the landscape to the pest invasion, given the population of natural enemy
in the landscape. For each simulation, we initialised the ecological model by assuming that
the density of natural enemy was 1 (i.e., equal to the carrying capacity) in the NCH. In an
attempt to reduce the effect of this initial choice, we let the system evolve without pest during
3 years. Then, the pest was introduced at the end of the third year, at a density 0.2Q(x)
(20% of the carrying capacity) and the model was simulated over T = 10 additional years.

Altogether, as we generated 8 repetitions for each of the 27 agronomic contexts and sim-
ulated the ecological-economic model for each set of parameters, we ran 31 104 simulations,
a quarter of which corresponds to the absence of natural enemy (when the predation rate is
zero).

1.6. Performance indicators

To assess the performance of the agricultural landscape in the different scenarios, we define
the mean profit (denoted by π) and the mean TFI (denoted by TFI) for pesticide use, both
expressed per ha and per year. These two quantities represent two important outcomes for
society, the value of agricultural production and the level of chemical pollution by pesticides.
They are defined as mean values over space and time. Spatial average makes it possible to
account for the dual effect of NCH, that reduce the cultivated area but contribute to crop
protection by supporting biocontrol. Temporal average smooths temporal fluctuations. The
indicators are computed from the introduction of the pest in the landscape to the simulation
horizon, corresponding to T years (T = 10 in our simulations).

π =
1

T

T∑
t=1

1

n2

∑
x∈Ω

πt(x) and TFI =
1

T

T∑
t=1

1

n2

∑
x∈Ω

TFIt(x), (11)

where πt(x) and TFIt(x) depend on the land use. In particular TFIt(x) = 0 in NCH and
non-treated crops, TFIt(x) = 3 units in moderately-treated crops, and TFIt(x) = 6 units in
highly-treated crops.
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Notation Description Values Unit Source

q
Mode of the soil qual-
ity distrib.

Qmax × {0.3, 0.5, 0.7} ton · ha−1

sq
Std. dev. of the soil
quality distrib.

Qmax × {0.05, 0.1, 0.3} ton · ha−1

f
Fragmentation pa-
rameter

{−1, 0, 1} dimensionless

DP Pest diffusion coeff. 1
n2 × {0.1, 1} km2 · year−1 Supplementary

Material SI 1

DN
Natural enemy diffu-
sion coeff.

1
n2 × {0.1, 1} km2 · year−1 Supplementary

Material SI 1

rP Pest growth rate {ln(4), ln(102), ln(104)} year−1 Supplementary
Material SI 1

rN
Natural enemy
growth rate

ln(2) year−1 Supplementary
Material SI 1

γ
Life expectancy of N
in a crop

1/2 year

Supplementary
Material SI 1
and Lövei and
Sunderland
(1996)

α
P − N interaction
term

{0, 1/3, 5/6, 4/3}
N−1 · year−1

or
P−1 · year−1

Supplementary
Material SI 1

ρ
baseline pesticide-
induced mortality
rate

{ln(4), ln(102), ln(104)} year−1 Supplementary
Material SI 1

CC→NCH NCH set up cost 219.4
Euros · ha−1 ·
year−1

Miao et al.
(2013)

CNCH→C Cropland set up cost 27.4
Euros · ha−1 ·
year−1

Miao et al.
(2013)

sNCH return on NCH 300
Euros.ha−1 ·
year−1

value inspired
from MAEC
subsidies

c1

share of potential
yield depending on
fertilisation

0.38 none
Monod et al.
(2002)

c2
marginal effect of fer-
tilisation on yield

0.015 ha · kg−1 Monod et al.
(2002)

p
agricultural output
price

150 Euros · ton−1

value inspired
from Agreste
data for main
field crops

λϕ fertiliser cost 1.62 Euros · kg−1

computed from
AGRESTE
data for a mix
(N,K,P)=(3,1,1)

λφ pesticide cost 33 Euros · IFT−1 Butault et al.
(2010)

ν cropland fix costs 110
Euros · ha−1 ·
year−1

computed from
AGRESTE
data (seeds,
insurances,
fuel).

Table 1: Summary of the main notations and parameter values
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For scenarios with no predation (α = 0, or equivalently N = 0), which correspond to
an absence of biocontrol, we denote these quantities by π0 and TFI0. They are used as a
benchmark to assess the effect of biocontrol.

Given these mean profit and TFI, for each simulation scenario, we are able to compute two
indicators related to biocontrol. Our first indicator measures the profit gain in the presence
of biocontrol compared to the absence of biocontrol:

∆π = π − π0. (12)

Our second indicator measures the reduction in TFI in the presence of biocontrol compared
to the absence of biocontrol:

∆TFI = TFI0 − TFI. (13)

These two indicators represent the social benefits of the biological ecosystem services, com-
posed of an economic gain on agricultural production and a reduced pollution due to pesticide
savings. Note that they are defined such that positive values correspond to a benefit.

2. Results

Global effects of biocontrol. We depict in Fig. 2 the distributions of the profit gain ∆π and
of the reduction in TFI, ∆TFI, compared to the absence of biocontrol. The mean profit
gain is 5.7 euros/ha (corresponding to 1.3% of mean profit) and the 95% interquantile range
(−0.1, 43.6). The mean reduction in TFI is 1.2 · 10−2 units (corresponding to 0.7% of mean
TFI) and the 95% interquantile range for reduction in TFI (−0.4, 0.3). The average effect of
biocontrol is thus relatively low when parameters are chosen at random within the ranges we
explored.

These distributions are computed over the whole simulated dataset. Of course, they can
change if we consider a subset of parameters, or if we assume that some parameter values occur
with a higher probability. Nevertheless, they give a first global picture of the potential effect of
biocontrol. It is then important to identify the ranges of parameters for which biocontrol has
an important effect, i.e., the agroecological contexts in which biocontrol would be significant.

Trade-off analysis. We present in Fig. 3 the bivariate distribution of the profit gain and
reduction in TFI, again computed over the whole set of parameters.

First, in 6% of the simulations, biocontrol has a significant effect on profit gain (in the
following sense: |∆π| is larger than 5% of the mean profit) and in 25% of the simulations, it has
a significant effect on TFI reduction (|∆TFI| is larger than 5% of the mean TFI). Altogether
it has a significant effect on at least one of the two dimensions in 26% of the simulations.
On the other hand, in 74% of the simulations, biocontrol has no significant effect, neither on
profit nor pesticide use reduction.

For simulations in which the effect is significant, we observe two main trends, with a
part of the distribution (upper diagonal) corresponding to a simultaneous positive effect of
biocontrol on the profit gain and on the reduction in TFI. In this part of the distribution, we
note a strong positive correlation between ∆π and ∆TFI (Pearson linear correlation coefficient
0.83). Another part of the distribution (lower diagonal, Pearson correlation coefficient −0.45)
corresponds to a positive effect of biocontrol on profit gain, but a negative effect on the
reduction of TFI (pesticide use is increased with respect to the scenario without biocontrol
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in this case). Still, among the simulations where we observed a significant effect, two-third
of the distribution (66%) lies in the positive quadrant with a positive effect of biocontrol on
both dimensions.

We looked for typical parameters that lead to

1. a significant win-win biocontrol, with both large private gains (profits) and large public
gains (pesticide use reduction). In that respect, we computed the modal parameter
values (most frequent parameter value) corresponding to the top-right region in Fig. 3,
corresponding to the 10% highest profit gain (∆π > 15) and 10% highest reduction in
TFI (100 ×∆TFI > 15). In this window, we obtained the following modal values, for
respectively (q, sq, f,DP , DN , rP , α, ρ) :

(0.3Qmax, 0.3Qmax, 1, 1/n
2, 0.1/n2, ln(4), 4/3, ln(4)).

This corresponds to areas of relatively low agricultural potential, a highly fragmented
and variable landscape, and a poorly efficient pesticide. From an ecological point of
view, biocontrol seems to be favoured by a pest that grows relatively slowly and is
highly mobile, but a predator relatively less mobile with a high predation rate.

2. a negative or not significant effect of biocontrol. The modal parameter values that lead
to these situations (lower 10%): (∆π < 0 and 100×∆TFI < −3) are

(0.3Qmax, 0.1Qmax,−1, 0.1/n2, 0.1/n2, ln(102), 5/6, ln(4)).

This corresponds to a context with species that do not move a lot in a non-fragmented
landscape.

3. a paradoxical effect of biocontrol, with private gains (increased profit) but public costs
(increased pesticide use). Here, we looked for the modal parameter values that lead to a
significant increase of profit gain (10% highest profit gain, i.e., ∆π > 15) but a negative
decrease in TFI (lower 10%, i.e., 100 × ∆TFI < −3). We obtained the modal values:
(q, sq, f,DP , DN , rP , α, ρ) = (0.5Qmax, 0.3Qmax, 0, 1/n

2, 1/n2, ln(102), 4/3, ln(4)). This
corresponds to highly variable agricultural landscapes, with mobile pest and predators,
a high predation rate and a poorly efficient pesticide.

Some trends can be inferred from these parameter values: the win-win situations are charac-
terised by different ecological parameters (higher pest diffusion, lower pest growth rate and
higher effect of predation) and a higher fragmentation compared to the case where the effect
of biocontrol is not significant. The lower diagonal (case 3.) is rather characterised by the
agronomic variables: a paradoxical effect of biocontrol tends to arise with a highly variable soil
quality contexts. To get a better understanding of the interplay between these parameters,
we conduct some statistical analysis.

Effect of agronomic, ecological and economic parameters on the efficiency of biocontrol. We
denote by Θ the vector of parameters (q, sq, f,DP , DN , rP , α, ρ). For each ecological, agro-
nomic and economic parameter θi, we define the marginal means associated with the value
θi = y:

∆πi(y) = meanΘ s.t. θi=y(∆π(θ)) and ∆TFIi(y) = meanΘ s.t. θi=y(∆TFI(θ)). (14)
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We plotted in Fig. 4 the variations of these quantities when y is increased: the lines connect
the points (∆πi(y) − ∆πi(ymin),∆TFIi(y) − ∆TFIi(ymin)) when y varies within the range
associated with the parameter θi. The arrow points toward the direction of variation when
y is increased. We thus get a simple summary of the marginal effect of each parameter on
biocontrol. Note that a higher effect of biocontrol on a given outcome does not necessarily
mean that this outcome will take on higher values when the parameter is increased. For
instance, increasing a parameter may decrease the profit gain independently of biocontrol,
but it can in parallel increase the effect of biocontrol.

Based on this Fig. 4, we deduce the following impact of the variables on the expected
effect of biocontrol:

• Regarding the agronomic variables: increasing the soil quality reduces ∆π and ∆TFI;
more variable quality maps lead to increased ∆π but lower ∆TFI; more fragmented
quality maps lead to higher values of ∆π and ∆TFI.

• Regarding the ecological variables: larger pest diffusion leads to increased ∆π and ∆TFI;
larger natural enemy diffusion leads to decreased ∆π and ∆TFI; larger pest growth leads
to lower ∆TFI but the effect on ∆π is not clear. A larger interaction factor α (higher
predation efficiency) leads to increased ∆π, but the effect on ∆TFI is less clear.

• Regarding the effect of the pesticide: increasing the pesticide-induced mortality rate
leads to decreased ∆π and increased ∆TFI.

The effect of biological control is stronger in landscapes with a lower agronomic potential.
The reason may be that in these landscapes NCH are more frequent as crop profit is lower.
There are thus more natural enemy in the landscape when soil quality is low, everything else
being equal. The interpretation of the effect of the soil quality variability (which was already
observed in the trade-off analysis above) can be due to the fact that in more heterogeneous
landscapes, there are more plots of lower agronomic quality, which are likely to be used as
NCH, favouring the natural enemy. In more fragmented landscapes, the pest tends to spend
more times in NCH, which increases the effect of predation. This effect is even increased
when the pest diffusion is high. Conversely, when the diffusion of the natural enemy is higher,
though it may have an easier access to the pest, it is also subject to detrimental effects due
to the absence of resource during a part of the year and to the effect the pesticide.

When the pest growth rate is increased, even if the initial population is lower in the
presence of the natural enemy, the farmer will often anticipated large pest pressure at the
end of the period and use pesticide anyway, limiting the effect of biological control on the
reduction of TFI. The effect of predation efficiency on biocontrol is less obvious than might
have been expected. Although it leads to higher profits, thanks to reduced damages to crops,
it has a limited effect on ∆TFI, meaning that it does not lead to a change in crop protection
behaviour.

The effect of the parameter ρ (pesticide-induced mortality) on profit gain can be explained
as follows. The more effective the pesticide is, the more farmers would favour its use, resulting
in situations with low pest pressure and a high profit. The effect of biocontrol on profit is
thus lower than in a situation with a less effective pesticide, in which it is used less and
biocontrol has a more important role in pest regulation and crop protection. There is more
room, however, to reduce pesticide use in a situation of a widely used efficient pesticide,
predation being a substitute to the pesticide at the margin.
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(a) ∆π (b) 100×∆TFI

Figure 2: Marginal distributions of the profit gain and the reduction in TFI, compared to an
absence of biocontrol.

Figure 3: Bivariate distribution profit gain vs reduction in TFI, compared to an absence of
biocontrol.

In general, when the effect of biocontrol on profit gain or reduction in TFI increases, this
may either be due to a direct effect of the variable considered on the effectiveness of predation
or to indirect effects caused by interactions with other variables and farmer’s decisions.

Linear regression model with interactions. The trends in Fig. 4 correspond to the mean
effect of each parameter, averaged over all other parameters. Due to interactions between
parameters, these trends may not always reflect the real effect of the parameter, depending
on the current context (i.e. the other parameter values). We checked the robustness of the
above analysis with a linear regression model with two-way interactions (stepwiselm Matlab®

function, Statistics and Machine Learning toolbox; uses the p-value for an F-test of the change
in the sum of squared error to add or remove terms in the model):

∆π = β0 +
∑

i=1,...,8

βi θi +
∑

i,j=1,...,8

βi,j θi θj + ε, (15)
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Figure 4: Marginal effects of the parameters. The arrows depict the variation in the biocontrol-induced
profit gain and reduction in TFI, when a given parameter is increased, compared to when this parameter takes
its lowest value. When an arrow points in the positive (resp. negative) direction, it means that the effect of
biocontrol is stronger (resp. lower) when the parameter is increased.

and similarly

100∆TFI = γ0 +
∑

i=1,...,8

γi θi +
∑

i,j=1,...,8

γi,j θi θj + ε. (16)

Once fitted, the model (15) explains about one half of the variations in ∆π, i.e., of the vari-
ations in the effect of biocontrol on profit (R2 = 0.48). Regarding the TFI, the model (16)
explains one third of the variations in ∆TFI (R2 = 0.34). The parameter values βi, βij , γi,
γij are available as in Supplementary Material SI 2, Tables S2.1 and S2.2. The signs of βi
and γi inform us about the role of each parameter on the effect of biocontrol. These signs
are mostly consistent with the findings in Fig. 4, with some exceptions. In particular, this
approach shows that the effect of the pesticide-induced mortality is complex and results from
multiple interactions with other parameters. Its direct effect seems to increase the profit
gain due to biocontrol, but it has negative interactions with all the other parameters (last
line in Table S2.1, Supplementary Material SI 2), which results in the overall negative effect
observed in Fig. 4. It means that having an efficient pesticide tends to hampers the beneficial
effect of the other parameters on profit, which may be caused by a lower pest pressure and a
higher mortality of the natural enemy. Among these interactions, we observe a strong nega-
tive interaction coefficient between pesticide-induced mortality rate and predation efficiency
(α): increasing α decreases the effect of ρ on profit gain and vice versa. Regarding ∆TFI,
conversely, the interaction coefficients are mostly positive, resulting in an overall positive ef-
fect of pesticide-induced mortality on ∆TFI, although the intrinsic effect is negative (γi < 0,
see the last line in Table S2.2, Supplementary Material SI 2). The antagonistic effect of soil
quality variability that was observed above (positive effect on profit gain and negative effect
on ∆TFI) is not observed through the linear coefficients βi, γi which are both positive. This
global paradoxical trend seems to be caused by a highly negative interaction coefficient with
the pest growth rate parameter: the decrease in predation effect observed when the pest has
a high growth rate is reinforced in a landscape with strong variability, which leads to greater
use of pesticides.
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3. Discussion

In this paper, we developed a model that represents agricultural land-use and crop pro-
tection decisions, as well as the ecological dynamics of pests and their natural enemy. Our
modelling approach provides a tool to assess biocontrol in a controlled framework, which offers
several features.

First, by modelling the economic decisions of land use and pest control, we are able
to assess effective biocontrol, i.e., the extra profit farmers derive from biocontrol and the
social benefits corresponding to the reduction of pesticide-use thanks to biocontrol. The
ecosystem service of biocontrol is not only dependent on ecological conditions, but also of
the economic behaviour of farmers who will turn a potential service into actual benefits, by
reducing pesticide use. On the contrary, there may be no service of biocontrol in spite of
an ecological function of pest predation if farmers use a lot of pesticide anyway, without
accounting for the current pest pressure. As advocated in Poggi et al. (2018), obtaining
such results is of course only possible with feedback models with spatio-temporal interactions
between landscape, ecological processes and stakeholder decisions, as we developed in this
study.

Second, there has been many attempts to quantify biocontrol from field data, but the
results are often context dependent and difficult to explain and generalise. A modelling ap-
proach can study biocontrol on a large range of contexts, providing insights on the agronomic
and ecological conditions that are more likely to lead to efficient biocontrol. Our modelling
exercise suggests that there are very few situations where biocontrol induces a profit loss and a
majority of win-win situations (in two thirds of our simulations with a significant effect), with
often a positive correlation between profit gain and reduction in TFI. The use of biocontrol
is therefore low risk for profit loss, and the situations that increase the efficiency of biocon-
trol over one dimension also tend to increase its effect on the other dimension. Nevertheless,
we observed a very limited effect in many of the agroecological conditions we studied. For
some conditions, however, biocontrol has a significant positive effect on private profit and/or
reduction of pesticide use. Some rare situations can also lead to greater use of pesticides,
particularly in environments with high soil quality and significant variability.

Some parameters seem to have a stronger effect on the magnitude of biocontrol. The effect
of biocontrol seems to be more limited in areas with higher agricultural potential, or when the
pest has a high growth rate. Other parameters seem to favour biocontrol. First, landscape
fragmentation, which was already known in landscape ecology to increase the efficiency of
predation (Roques and Chekroun, 2010; Ryall and Fahrig, 2006), or a more mobile pest. In
both cases, the pest will more likely encounter natural enemies in non-crop habitats. Inter-
estingly, there are many examples of species for which dispersal capacity is traded off against
reproduction (‘D-R’ trade-off) (Hanski et al., 2006; Bonte and Bafort, 2018). Our study in-
dicates that biocontrol is more efficient for pest species with a ‘D’ strategy. Scarab beetles
are an example of pests with a relatively low reproduction rate, whose predators include ants,
staphylinids and carabids (Jackson and Klein, 2006).

These results offer prospects for empirical research. They emphasise the need for the joint
analysis of parameters driving biocontrol in empirical studies. In particular, our simulations
reveal some cross-effects that could be assessed in the field. For example, there seems to be a
negative cross-effect between the efficiency of pesticide to regulate the pest and the efficiency
of predation (increasing α decreases the effect of ρ on profit gain and vice versa). This effect
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comes in particular from the hypothesis of a non-specific pesticide, increasing the mortality
rate of the two species in the same way. Although the mortality rate may of course be different
for the two species, the predators involved in biocontrol are often very sensitive to pesticides
(Potter and Held, 2002). More subtle interactions may also emerge, e.g. between soil quality
variability and pest growth rate, with a negative cross-effect on pesticide reduction. Variability
in itself (conversely to fragmentation, see Fig. 1 to observe the difference between these two
descriptors of the soil quality map) is known to be beneficial to pest population growth in the
absence of predation (Berestycki et al., 2005), which may explain this effect.

Of course, the determination of the ’true’ effect of biocontrol should rely on an array of
approaches, not just one. In this respect, bringing our approach in the game appears very
useful. We point out that, beyond the results discussed above, we have developed a generic
tool which can be exploited under other conditions which are not necessarily those of this
study. The Matlab codes used to generate the analyses conducted here are available and fully
commented https://doi.org/10.17605/OSF.IO/Z2QCX.

These results, related to the effect of the agronomic context (land-use variability and
fragmentation) on biocontrol, provide an indication on the changes that could be made in
agrocosystem to increase biocontrol. In terms of future work, we see two interesting exten-
sions for the economic part of the model. First, the model can be used to study how to
influence land-use and pest control decisions through public policies. Incentives (pesticide
taxation, non-crop habitat subsidies, or a price-bonus for pesticide-free production) can be
used to modify the economic context and lead to dynamic landscapes with a higher level
of biocontrol and less pesticide use. Second, the model could be used to study the role of
farmers’ agroecological knowledge on biocontrol. In the present version, farmers take their
decisions according to the local pest density only. One could examine if accounting for the
predator density (at local or at the landscape level), i.e., relying on agroecological knowledge,
would improve the benefits from biocontrol.

Data availability.. All of the Matlab codes that led to the results in this paper are available
in the Open Science Framework repository: https://doi.org/10.17605/OSF.IO/Z2QCX.
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