HAL
open science

Real-time imaging of enzymatic degradation of pretreated maize internodes reveals different cell types have different profiles

Amandine Leroy, M.F. Devaux, Mathieu Fanuel, Hugo Chauvet, Sylvie
Durand, Camille Alvarado, Anouck Habrant, Christophe Sandt, Hélène
Rogniaux, Gabriel Paës, et al.

To cite this version:

Amandine Leroy, M.F. Devaux, Mathieu Fanuel, Hugo Chauvet, Sylvie Durand, et al.. Real-time imaging of enzymatic degradation of pretreated maize internodes reveals different cell types have different profiles. Bioresource Technology, 2022, 353, pp.1-10. 10.1016/j.biortech.2022.127140 . hal03664146

HAL Id: hal-03664146
https://hal.inrae.fr/hal-03664146
Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Real-time imaging of enzymatic degradation of pretreated maize internodes reveals different cell types have different profiles

Amandine Leroy ${ }^{1,5}$, Marie-Françoise Devaux ${ }^{1}$, Mathieu Fanuel ${ }^{1,2}$, Hugo Chauvet ${ }^{3}$, Sylvie Durand ${ }^{1}$, Camille Alvarado ${ }^{1}$, Anouck Habrant ${ }^{5}$, Christophe Sandt ${ }^{4}$, Hélène Rogniaux ${ }^{1,2}$, Gabriel Paës ${ }^{5}$, Fabienne Guillon ${ }^{1 *}$
${ }^{1}$ INRAE, UR 1268 BIA, 44316 Nantes, France
${ }^{2}$ INRAE, BIBS Facility, 44316 Nantes, France
${ }^{3}$ DISCO beamline, SOLEIL Synchrotron, BP48, l'Orme des Merisiers, 91192 Gif-surYvette CEDEX, France
${ }^{4}$ SMIS beamline, SOLEIL Synchrotron, BP48, l'Orme des Merisiers, 91192 Gif-surYvette CEDEX, France
${ }^{5}$ Université de Reims Champagne Ardenne, INRAE, FARE, UMR A614, 51100 Reims, France
* Corresponding author

Abstract

This work presents a dynamic view of the enzymatic degradation of maize cell walls, and sheds new light on the recalcitrance of hot water pretreated maize stem internodes. Infra-red microspectrometry, mass spectrometry, fluorescence recovery after photobleaching and fluorescence imaging were combined to investigate enzymatic hydrolysis at the cell scale. Depending on their polymer composition and organisation, cell types exhibits different extent and rate of enzymatic degradation. Enzymes act sequentially from the cell walls rich in accessible cellulose to the most recalcitrant cells. This phenomenon can be linked to the heterogeneous distribution of enzymes in the

liquid medium and the adsorption/desorption mechanisms that differ with the type of cell.

Keywords

Lignocellulose, Hot water pretreatment, Microspectrometry, Fluorescence, FTIR microspectroscopy.

1. Introduction

In recent decades, to reduce our dependence on fossil carbon resources, the world has been moving towards a sustainable economy based on the use of renewable resources, including lignocellulosic biomass (Chundawat et al., 2011; Wang et al., 2021). Among possible ways of transforming this biomass, enzymatic bioconversion is an appropriate strategy for the production of numerous biomolecules to be used in the chemistry and energy sectors (Bichot et al., 2018).

Interest in the use of agricultural residues as lignocellulosic resources is currently high (Vo et al., 2020). Maize is the main cereal grown in the world with an annual production of around 1,100 million tonnes and accounted for more than 38% of world cereal production in 2019 (FAOSTAT). Maize stems are among the most abundant crop residues produced every year. They are rich in cellulose (average 40.9\%) (Bichot et al., 2018; Leroy et al., 2021), which makes them attractive for biorefineries (Arnaud et al., 2020; Leroy et al., 2021; Wang et al., 2021).

However, like other lignocellulosic biomass, the value of maize stems is limited by their intrinsic recalcitrance, which prevents efficient enzymatic degradation of cell wall polymers. Recalcitrance results from the combination of many multi-scale factors conferred by the close association of the cell wall constituents (cellulose, hemicelluloses and lignin) (Chundawat et al., 2011). At macroscopic scale, maize stems are made up of many cell types, differing mainly in the composition and physico-chemical properties of
their cell walls. (Barros-Rios et al., 2012; Berger et al., 2021; Devaux et al., 2018; El Hage et al., 2018). At the microscopic scale, the relative amount cell wall polymers and their chemical structure (degree of substitution of polysaccharides, lignin condensation, cellulose crystallinity) contribute to biomass recalcitrance. They influence the organisation and properties of the cell wall, which in turn, determine enzyme access to their substrates (Zhao et al., 2012; Zoghlami \& Paës, 2019).

In order to reduce lignocellulose recalcitrance, pretreatments, such as hot water pretreatment (HWP), are carried out upstream of enzymatic hydrolysis. Previous research has shown that HWP changes the composition of the cell wall with notably a loss of hemicelluloses but also alters the structure of residual polymers through condensation of lignin and an increase in the proportion of crystalline cellulose (Fan et al., 2016; Leroy et al., 2021). At the molecular level, these changes have been shown to alter the porosity of cell walls and thus to promote enzymatic hydrolysis (Leroy et al., 2021). However, bioconversion is generally not complete, suggesting cell wall material is still recalcitrant to enzymatic hydrolysis after HWP (Leroy et al., 2021; Li et al., 2014).

In most studies, the effect of enzymatic pretreatment/hydrolysis on the properties of lignocellulose was studied using whole biomass in powder form. However, as mentioned above, the maize stem is composed of different types of cells with different compositions and properties, which may react differently to pretreatments, resulting in different sensitivity to enzymatic degradation (Arnaud et al., 2020; Barros-Rios et al., 2012; Devaux et al., 2018; Ding et al., 2012; Donohoe et al., 2011; El Hage et al., 2018; Nagle et al., 2020) and explaining the partial conversion of polysaccharides into monosaccharides (Leroy et al., 2021). Examining the enzymatic degradation profile of
individual cell types in relation to the composition and properties of their cell wall could thus help identify the parameters involved in cell wall recalcitrance.

In addition to accounting for the heterogeneity of maize stem composition, the kinetics of the enzymatic reaction could also shed new light on the recalcitrance phenomenon (Chabbert et al., 2017; Devaux et al., 2018; Donaldson \& Vaidya, 2017; Luterbacher et al., 2015). Devaux et al. (2018) showed that the type of cells in maize stem sections can be also differentiated based on the enzymatic degradation kinetics of their cell wall.

In this study, an experiment combining the kinetic aspect of the degradation and cell specificity was conducted. Maize stem internodes underwent hot water pretreatment (HWP). Changes in composition caused by the pretreatment as well as the kinetics of cell wall degradation of two cell types were monitored using synchrotron FTIR microspectroscopy and mass spectrometry imaging (MALDI-TOF). The location / adsorption of the enzymes as well as their mobility depending on the cell type were also monitored using the DISCO synchrotron beamline and florescence recovery after bleaching (FRAP) analyses, respectively. The result was a dynamic view of both the substrate and enzyme dynamics.

2. Material and methods

2.1 Plant material

The maize genotype F7025 was cultivated in INRAE experimental plots in Mauguio (South of France) under irrigated conditions and harvested at the silage stage. Internodes under the main ear were isolated, dried and cut into $2-\mathrm{cm}$ fragments. The soluble components were removed from the fragment via 8 -hour ethanol extraction followed by a 48 -hour water extraction to recover the cell wall residue fragments.

2.1.1 Hot water pretreatment

Hot water pretreatment (HWP) was performed on half (i.e. 1-cm) fragments of cell wall residues in mineralization bombs equipped with Teflon cups (Parr, USA). Each half-fragment was pretreated with a volume of deionized water corresponding to a ratio of $1: 30(\mathrm{v} / \mathrm{w})$ in an oil bath at $180{ }^{\circ} \mathrm{C}$ for 40 min (Herbaut et al., 2018a). The fragments were cooled in ice then washed with a 50:50 ($\mathrm{v}: \mathrm{v}$) ethanol: deionized water to remove the soluble components. HWP parameters were chosen based on the results of previous experiments to preserve the tissues organisation for microscopy imaging (Herbaut et al., 2018a; Leroy et al., 2021).

2.1.2 Sample preparation

All the fragments were embedded in polyethylene glycol and 20, 40 and $80 \mu \mathrm{~m}$ thickness sections were cut using a rotary Microm HM 360 Automated Microtome (Thermo Scientific, USA) for Fourier transform infrared (FTIR) microspectroscopy, deep UV fluorescence/ fluorescence recovery after photobleaching (FRAP) analysis, and matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) imaging, respectively. Successive washes with deionized water were performed to remove polyethylene glycol from the sections.

2.1.3 FASGA staining

FASGA staining was used on $80-\mu$ m-thin maize stem sections according to the method described previously by (El Hage et al., 2018). Images of the stained sections were acquired using fluorescence macroscope (AZ100 Multizoom microscope, Nikon, Japan).

2.2 Enzyme preparation

The commercial cellulase product Celluclast 1.5, derived from Trichoderma reesei (Novozymes A/S, Bagsværd, Denmark), was used for cell wall enzymatic degradation. The commercial cellulase has a cellulase activity, xylanase activity and
protein loading of 77 FPU. mL^{-1}, $507 \mathrm{IU} . \mathrm{mL}^{-1}$ and $50.7 \mathrm{mg} \cdot \mathrm{mL}^{-1}$, respectively. The enzyme preparation was desalted on a PD10 column (GE Healthcare Bio-Sciences AB, Uppsala, Sweden). After desalting, the preparation has a cellulase activity of 21.9 FPU. mL^{-1}. It was applied on cross-sections at a dilution of 40 FPU. g^{-1} of biomass corresponding to a loading of $80 \mathrm{FPU} . \mathrm{g}^{-1}$ of glucan.

2.3 Synchrotron infrared imaging using a microfluidic device

2.3.1 Acquisition parameters and system settings

MID-infrared spectra were acquired on the SMIS beamline of the SOLEIL synchrotron using an FTIR microspectrophotometer coupled to the synchrotron source (Thermo Nicolet 5700 spectrometer combined with a Continuum XL microscope Thermo Fisher Scientific, WI, USA) with the same acquisition parameters as described by (Devaux et al., 2018). Enzymatic degradation was performed on $20-\mu \mathrm{m}$ cross sections using a microfluidic device as described by (Devaux et al., 2018). The whole cell volume was $\sim 4 \mu$ l. The enzyme solution was then delivered at a constant flow rate of $2 \mu \mathrm{~L} \cdot \mathrm{~min}^{-1}$. The reaction was performed at $50^{\circ} \mathrm{C}$ for approximately one hour. Spectra were acquired at 5-min intervals for selected points on parenchyma cell walls near the rind and in the pith. Enzymatic degradation of raw and pretreated samples were repeated 3 times.

2.3.2 Spectra analysis

The FTIR spectra were pretreated using homemade functions written in MATLAB (2020a) (Devaux et al., 2018). All the spectra were smoothed using a moving window of size 3 . The region between $1,580-910 \mathrm{~cm}^{-1}$ was selected to compare the chemical composition of different types of cells. The baselines were corrected using linear segments with 3 points at $910,1,190$, and $1,580 \mathrm{~cm}^{-1}$. Spectra at $\mathrm{T}=0$ were normalized so that the area under the spectrum was equal to 1 . The changes in
polysaccharide composition of the cell wall during degradation were studied in the fingerprint region between $1,180-950 \mathrm{~cm}^{-1}$. For a given point, time-lapse spectra were normalized as follows: the maximum absorbance of the spectrum acquired at $\mathrm{T}=0$ was taken as normalization factor. All the time-lapse spectra acquired at this point were divided by this maximum absorbance (Devaux et al., 2018). The change in the sum of absorbance after normalization was used to compare the results of the different experiments.

2.4 Synchrotron deep- ultraviolet fluorescence imaging

2.4.1 Acquisition parameters

Synchrotron fluorescence imaging was performed on the DISCO beamline of the SOLEIL synchrotron using the Telemos microscope as described by (Devaux et al., 2018). The excitation wavelength was set to 275 nm . A dichroic mirror at 300 nm (Omega Optical Inc., USA) and two emission bandpass filters were used for multispectral image acquisition: a 327-353 nm filter (Semrock, Rochester, USA) to locate enzymes without labelling, thanks to the autofluorescence of tryptophan and tyrosine amino acids; and a 420-480 nm filter (Semrock, Rochester, USA) to image cell walls using the autofluorescence of phenolic compounds. The samples were observed with a $10 \times$ (NA 0.2) Ultrafluar Zeiss objective (Carl Zeiss GmbH, Germany), which provides fields of view of $1,116 \times 1,116 \mu \mathrm{~m}^{2}$ with pixel sizes of $1.092 \mu \mathrm{~m}$. The acquisition time was set at 30 s and 6 s for the emission filters $327-353$ and 420-480 nm , respectively.

A $0.5 \times 0.5 \mathrm{~cm}$ square section (thickness $40 \mu \mathrm{~m}$) was placed on a quartz slide (Circular-Qtz 25.0 ref. R525000, Esco optics, NJ 07438, USA) fitted with a $1 \times 1 \mathrm{~cm}$ spacer (thickness 0.25 mm) (ref AB0576 Gene Frame R, Thermo Scientific, France). Enzyme solution $(30 \mu \mathrm{~L})$, with the same quantity of buffer used for the controls, was
added on the cross-section, and the system was then sealed with a second quartz slide. During the hydrolysis reaction, the sample was maintained at a temperature of $50^{\circ} \mathrm{C}$ using a heating chamber. Acquisitions were made at 4 -min intervals during the 92 min of hydrolysis. Three experiments were performed on raw and pretreated sections using enzyme and 2 experiments using buffer. Each section allowed the degradation of the rind and pith parenchyma to be monitored in the same experiment.

2.4.2 Image analysis

All the fluorescence images were pre-processed as described by (Vidot et al., 2019). The enzyme and the cell wall fluorescence images were combined for viewing to obtain RGB images, with the enzyme image set to the red and green channels and the cell wall image set to the blue channel. Movies were made of the images acquired over time to monitor cell wall degradation, and the distribution of the enzyme during enzymatic degradation. The fluorescence intensities were measured to quantify the relative amount of enzymes found on cell walls and in cell lumen of both the rind and pith parenchyma. For each pretreatment condition (raw and HWP sections) and cell type, 3 segments of cell wall and 3 regions corresponding to the cell lumens were manually selected. For each pretreatment condition and cell type, the average fluorescence intensities on the cell wall and in the lumen were determined over time throughout the experiment, i.e. 9 measurements (3 segments $\times 3$ experiments). The fluorescence profiles as well as the analysis of variance were carried out using homemade MATLAB (2020a) functions (Devaux et al., 2018).

2.5 Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging

2.5.1 Preparation and in-situ enzymatic hydrolysis of sections

Sections (thickness $80 \mu \mathrm{~m}$) were deposited on indium tin oxide glass slides (Bruker, Germany ref. 8237001) covered with adhesive carbon tape (Agar Scientific,
ref. AGG3939B). A solution was prepared of Celluclast ${ }^{\circledR}$ filtered through an Amicon Ultra Centrifugal filter MWCO 10 kDa (UFC501008) and with a cellulase activity of 26.6 FPU. mL^{-1}. The enzyme solution was deposited by nebulisation using a homemade robot (Veličković et al., 2014). The slides were then incubated at $50^{\circ} \mathrm{C}$ for different periods: $0 \mathrm{~min}, 30 \mathrm{~min}, 90 \mathrm{~min}$ and 24 hours. For each condition, hydrolysis was performed in duplicate.

2.5.2 Mass spectrometry matrix and internal standard deposition

A DMA/DHB matrix ($100 \mathrm{mg} . \mathrm{mL}^{-1} \mathrm{DHB}$ in 50:50 deionized water/acetonitrile, 2% DMA) was prepared as described by (Ropartz et al., 2011). To compensate for tissue heterogeneity, an internal standard, pentaacetyl-chitopentaose (Megazyme, Ireland) at $20 \mu \mathrm{~g} . \mathrm{mL}^{-1}$, was added to the matrix solution. A thin layer of the mixture (85 $\mathrm{nL} . \mathrm{mm}^{-2}$) was nebulised using an in-house-designed robot (Veličković et al., 2014).

2.5.3 Acquisition and processing of mass spectrometry images

Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry (MALDI MS) analyses were acquired with a rapifleX MALDI Tissuetyper MALDI-TOF mass spectrometer (Bruker, Bremen, Germany) with the same acquisition parameters as described by (Arnaud et al., 2020). Acquired MS images were processed with FlexImaging 5.0 software. Individual spectra were normalized to the area of the pentaacetyl-chitopentaose peak to account for tissue heterogeneity and to improve the view of the distribution of the released oligosaccharides. The images were coloured according to the "flexImaging" colour scale, ranging from black (lowest intensity) to white (highest intensity). The intensity scale was set using the same intensity values for all the images in order to compare the abundance of the species.

2.6 Fluorescence Recovery After Photobleaching

2.6.1 Sample preparation

Square sections (diameter $0.5 \times 0.5 \mathrm{~cm}$, thickness $40 \mu \mathrm{~m}$) were incubated overnight at room temperature in 0.01 mM of Dextran-rhodamine 40 kDa (DR40) (Sigma-Aldrich, ref. 42874). The hydrodynamic radii of DR40 and the cellulase enzymes in the Celluclast cocktail were determined using the same method as described by (Herbaut et al., 2018b). Sections were then mounted in the probe solutions between the slide and cover slip and sealed with polish for microscopy analysis.

2.6.2 Acquisition and analysis parameters

Fluorescence Recovery After Photobleaching (FRAP) analyses were performed with a Leica TCS SP8 confocal microscope (Leica Microsystems, Germany) using a $63 \times$ oil-immersion objective (NA 1.4) and the same set-up and acquisition parameters as described by (Herbaut et al., 2018b; Paës et al., 2017). The parameters of the four acquisition phases were adapted for a total recovery measurement of approximatively 10 min as follows: 1-Pre-bleaching: 10 scans every 0.051 s with the 552 nm laser line set to a power of 2% of the maximum laser power; 2-Bleaching: 20 scans every 0.051 s with both 488 nm and 552 nm laser lines at 100% of power; 3- Post-bleaching: 200 scans, separated by 0.051 s , with the 552 nm laser line set to 2%, then 300 scans separated by 2 s , with the 552 nm laser line set to 2%. The diffusion coefficient of DR40 was identified using the method described by (Herbaut et al., 2018b).

3. Results and discussion

3.1 Variability of chemical composition according to the type of cell and the effect of the hot water treatment

FASGA staining was used to reveal the difference in the chemical composition of tissues in the raw and pretreated samples. FASGA staining makes it possible to distinguish highly lignified tissues, coloured red, and low-lignified and cellulose-rich tissues, coloured blue (El Hage et al., 2018; El Hage et al., 2021).

The majority of the tissues constituting the raw samples stained red, showing that these tissues were lignified, as already reported for the same genotype (El Hage et al., 2018) (Fig. 1 A). However, some regions, clearly visible in the enlargements, stained blue, including the parenchyma under the rind (RP). The staining of these cell types by Alcian Blue suggests that lignification of the cell walls was changed. After HWP, the proportion of cell walls stained red was lower (Fig. 1B). Indeed, the pith parenchyma between the vascular bundles (PP), stained red on the native sections, but appeared blue in some areas after pretreatment. The PP parts that were still red after HWP were denoted PP1. The PP parts that coloured blue after HWP were denoted PP2. These observations suggest that HWP causes some changes in the chemical composition or in the distribution of the cell wall polymers according to different cell types.

Two parenchyma, RP and PP, were chosen, and examined the differences in composition between the two cell types and the changes induced by pretreatment in more detail using FTIR microspectroscopy.

Comparing the average FTIR spectra of the two parenchyma in the raw sample revealed differences in their chemical composition (Fig. 1C). The band at $1,510 \mathrm{~cm}^{-1}$, characteristic of the aromatic $\mathrm{C}=\mathrm{C}$ stretch of lignin (Gierlinger et al., 2008), showed higher PP absorbance than RP. Both RP and PP spectra exhibited strong absorption bands for polysaccharides between 1,200 and $950 \mathrm{~cm}^{-1}$ with a broad carbohydrate band at $1,035-1,051 \mathrm{~cm}^{-1}$ and partly resolved bands at $1,160,1,110,1,000-995 \mathrm{~cm}^{-1}$ (Gorzsás et al., 2011; Robert et al., 2005). This pattern in the spectral sugar fingerprint region indicated a mixture of hemicellulosic sugars, which in maize, are mainly glucoarabinoxylans (GAX), and cellulosic polysaccharides in varying proportions depending on the type of cell. In the region between 1,180 and $920 \mathrm{~cm}^{-1}$, in contrast to PP, RP showed a stretch towards $1,030 \mathrm{~cm}^{-1}$, corresponding to the $\mathrm{C}-\mathrm{O}$ stretching signal
of β-(1-4) glucans (Robert et al., 2005). Interestingly, a substantial difference was visible on the band at $1,250 \mathrm{~cm}^{-1}$, characteristic of the $\mathrm{C}-\mathrm{O}$ stretch of phenolics and asymmetric C-C-O stretching of non-conjugated polysaccharide esters (Vermerris et al., 2002), with cell walls showing higher PP absorbance than RP.

After HWP, two bands at 1,053 and $1,034 \mathrm{~cm}^{-1}$, characteristic of cellulose, were clearly distinguishable in both parenchyma (Fig. 1D) (Leroy et al., 2021). Like in the raw parenchyma, at $1,250 \mathrm{~cm}^{-1}$ the absorbance of PPs was higher than of RP. Two groups were distinguishable within PP (PP1 and PP2). In both PP groups, the proportion of cellulose increased, and absorbances at $1,510 \mathrm{~cm}^{-1}$ were close. A significant decrease in the band at $1,250 \mathrm{~cm}^{-1}$ was only observed in PP2.

These results revealed the contrasted chemical composition of the two raw parenchyma. RP was rich in cellulose while PP was rich in lignin and in acetylated GAX. The lignocellulosic biomass of maize is characterised by the presence of hydroxycinnamic acids, mainly p-coumaric acid, ester-linked to the syringyl units of the lignin, and ferulic acid, the latter acting as crosslinker between GAXs and between GAX and lignin (Scheller \& Ulvskov, 2010). It can therefore assume that the higher absorbance of PP observed at $1,250 \mathrm{~cm}^{-1}$ is mainly due to the presence of hydroxycinnamic acids and acetyl groups, linked by ester bonds to cell wall polymers. The differences in cell wall composition of the two parenchyma revealed by FTIR support the results of FASGA staining and are in agreement with previous FTIR analyses of the same cell types of another maize stem genotype (Devaux et al., 2018).

In both RP and PP parenchyma, HWP induced relative cellulose enrichment as a result of the loss of hemicelluloses (Batista et al., 2019; Leroy et al., 2021; Zeng et al., 2012). Absorbance at $1,250 \mathrm{~cm}^{-1}$ decreased after HWP in RP and PP2, suggesting removal of hydroxycinnamic acids and acetyl groups. Indeed during HWP, the
hydronium ions and organic acids produced by auto-ionization of water and the release of organic acids (acetic acid) and uronic acids, trigger hydrolysis of hydroxycinnamic acid linkages and of the GAX backbone (Fan et al., 2016).

To sum up FASGA and FTIR analysis of the chemical composition of the samples highlighted the contrasted chemical composition of RP and PP cell types. In general, HWP led to relative enrichment of cellulose in the two parenchyma through the loss of GAX.

3.2 Variability of the effect of pretreatment on enzymatic degradation

3.2.1 Monitoring variations in the chemical composition of tissues during enzymatic hydrolysis

Microfluidic FTIR microspectroscopy was used to monitor cell wall degradation in real time and to examine the influence of the pretreatment. The degradation kinetics was evaluated by monitoring the sum of absorbance of the sugar fingerprint spectral region between 1,180 and $920 \mathrm{~cm}^{-1}$ using the sum of absorbances at all wavenumbers and is shown for all experiments (Fig. 2).

Contrasted variations in the sum of the absorbance between RP and PP in the raw samples during hydrolysis were observed (Fig. 2A). Progressive and almost complete degradation of RP was observed after 1 hour of enzymatic degradation whereas only a slight decrease was observed in the PP.

In the pretreated samples, different behaviours were observed in the pith parenchyma (Fig. 2B, PP1 and PP2)). Two groups could be distinguished by their kinetics. The first group, PP1, showed similar degradation profiles to those measured in the raw PP with almost no change over time. In contrast, the second group of spectra, PP2, showed a progressive decrease in absorbance in the sugar fingerprint region. Like with raw RP, a progressive decrease in the absorbance in the sugar fingerprint region
was measured in pretreated RP (Fig. 2B). However, this decrease seemed to occur in three stages: a slow decrease between 0 and 15 min , a rapid decrease between 15 and 35 min , and a plateau after 35 min . The enzymatic degradation of the RP after pretreatment was faster and almost complete after 35 min .

As expected, rind and pith parenchyma showed contrasting enzymatic degradation consistent with the degradation profiles observed in other maize genotypes (Devaux et al., 2018; Jung \& Casler, 2006; Lam et al., 2013). These profiles can be linked to their different chemical compositions. Indeed, the cell walls of RP were weakly lignified and easily degraded. The cell walls of PP cells, which were richer in lignin and ester bonds, remained almost intact during enzymatic hydrolysis. This difference in enzymatic degradation between the two cell types suggests that high concentrations of lignin and hydroxycinnamic acids in the cell wall affect the enzyme accessibility to the cellulose, as supported by over works (dos Santos et al., 2019; Grabber et al., 1998; Lam et al., 2003; Siqueira et al., 2011; Yoo et al., 2020; Zoghlami \& Paës, 2019).

In the present study, the pretreatment increased the degradation capacity of RP and of some PP cell walls. The increase in the speed and efficiency of RP hydrolysis could be linked to the loss of hemicelluloses and associated ester linked hydroxycinnamic acids, which could facilitate access to cellulose by enzymes. Like lignin, hemicelluloses act as a protective barrier around cellulose due to their crosslinking with each other and with lignin via diferulic bridges, and their interaction with cellulose via hydrogen bonds (Meng \& Ragauskas, 2014; Simmons et al., 2016). In the present study, HWP reduced the recalcitrance of PP but not homogeneously, and PP2 was more degraded than PP1. This contrasted degradation could be linked to a difference in the relative proportions of cellulose/lignin/ester bonds.

3.2.2 Tracking cellulose degradation products during the enzymatic hydrolysis

MALDI-MS imaging analyses were performed to monitor the degradation of cellulose in space according to the cell types, and to the pretreatment, through the mass detection of its degradation products, cello-oligosaccharides with a degree of polymerization (DP) of 2 to 4 (COS2 to COS4) and glucose, and their variations during enzymatic hydrolysis (Fig. 3).

During the degradation of the raw cell walls, COS were only detected in the RP; no COS were detected in the PP (Fig. 3A). After 30 min of hydrolysis, a high intensity COS4 signal was detected in the RP, showing that COS4 was the main product released at the beginning of cell wall hydrolysis (Fig. 3B). The signals observed for COS2 and COS3 were lower. A significant loss (80%) in the signal intensity of COS4 was measured after 90 min of hydrolysis, whereas the intensity of COS2 more than doubled $(+126 \%)$ (Fig. 3C). These results suggest that between 30 and 90 min , COSs were converted to lower mass products. After $24 \mathrm{~h}, \operatorname{COS} 4$ and $\operatorname{COS} 3$ signals were lower than the control intensities at 0 min and only a weak $\operatorname{COS} 2$ signal was measured, showing that most of the degradation occurs rapidly and suggesting that the majority of higher DP oligosaccharides were converted into lower molecular weight products over time. It was not possible to measure the glucose unit in the raw sections due to the presence of an undefined peak with a mass close to that of the expected glucose (m / z 203.2, $[\mathrm{M}+\mathrm{Na}]^{+}$ionic species).

In contrast to the raw samples, the location of COSs between the different cell types in the pretreated samples was more diffuse (Fig. 3D). Indeed, COSs were detected in the RP and also in the PP. Looking more specifically at changes in the location of $\operatorname{COS} 2$ during hydrolysis, it was noted that at $30 \mathrm{~min}, \operatorname{COS} 2$ was mainly located in RP, while at 90 min , it was located in PP near the centre of the internode. After 24 h, COS2
was only observed in the PP closest to RP. When looking at the COSs released on the course of the enzymatic reaction, at the beginning of the reaction, no COS4 signal and only a low intensity COS3 signal were detected (Fig. 3F). The main oligosaccharide released after 30 min of hydrolysis was COS2. A progressive rise in COS3 and COS2 intensities occurred over the period of hydrolysis with maximum intensity reached after 90 min . The marked drop in the intensity of COS3 after 24 hours suggests its conversion into lower DP between 90 minutes and 24 hours of hydrolysis (Fig. 3E). In contrast to the raw sections, a high abundance of COS2 and glucose was measured after 24 hours.

The presence of COS2 as the main reaction product in the HWP section compared to COS4 in the raw sections, suggests that the pretreatment favours the action/synergy of the cellulolytic enzymes present in the enzyme cocktail, promoting the formation of COSs with small DPs.

Tracking the distribution and relative abundance of COSs during hydrolysis supports the previous observations. Indeed, in raw samples, COSs were only detected in RP, showing that cellulose-rich and low-lignified tissues were degraded, confirming previous FTIR analyses and in agreement with research on other genotypes (Arnaud et al., 2020; Devaux et al., 2018). The production and distribution of COSs in the pretreated section show that the hydrolysis was more complete than that of the raw samples. However, in the pith region the efficiency of HWP was not consistent across the section and appeared to vary with distance from the rind region. As the matter of fact, the pretreatment appears more effective in the region that is in direct contact with water. Furthermore, the difference in COSs distribution during the reaction across the regions of the section suggests variations in degradation kinetics over time depending
on the type of cell concerned, which could be related to cell wall composition and hence to the efficiency of the HWP.

3.3 Location and mobility of the enzymes according to cell type

3.3.1 Monitoring enzyme distribution during hydrolysis

One of the hypotheses to explain the different degradation profiles of the two types of parenchyma cells is the heterogeneous distribution of enzymes. To test this hypothesis, the distribution of the enzymes during enzymatic hydrolysis using their autofluorescence properties under deep UV excitation was monitored (Fig. 4).

At the beginning of the reaction, raw and HWP sections showed contrasted location/intensity of enzyme fluorescence: no enzyme signal was detected in the raw RP (Fig. 4A), whereas a strong signal was observed in the pretreated RP (Fig. 4B). Enzyme fluorescence decreased over time in both cases. The differences between raw and pretreated RP were analysed more precisely by quantifying variations in enzyme fluorescence on the cell walls (Fig. 4C). At the start of hydrolysis, the fluorescence intensity on the walls of pretreated cells was higher than that measured on the walls of raw cells. Next, an increase in the intensity of enzyme fluorescence was observed until a maximum was reached in the raw samples at 19 min and in the pretreated samples at 12 min. This was followed by a slow decrease in the raw sample and a more rapid decrease in the pretreated sample until the end of the reaction. The enzyme fluorescence intensity measured at the centre of the cell lumens showed opposite variations to those measured on the cell walls (Fig. 4D): a slight decrease in enzyme fluorescence intensity was measured in RP lumens up to 16 min , followed by an increase.

These variations in enzyme fluorescence intensity suggest adsorption/desorption of the enzymes on the cell walls. Enzyme adsorption would explain the decrease in enzyme fluorescence in the lumens, and conversely, an increase in the cell walls. After
degradation of the cell wall polymers, enzymes would be released in the lumen, explaining the increase in the fluorescence signal. The difference in enzyme intensity and in the time at which maximum intensity was reached on the cell walls in raw and pretreated sections showed that pretreatment promoted a rapid adsorption of enzymes, thereby accelerating hydrolysis of the cell walls. The slow decrease in enzymes on raw RP cell walls indicated that enzyme desorption was incomplete and that some enzymes were retained in the cell walls: this could be linked to non-specific adsorption on cell wall components (dos Santos et al., 2019; Yang \& Pan, 2016), to a reduction in the enzyme degradation capacity caused by more recalcitrant structures, or to inactivation of the enzymes following prolonged exposure to UV.

In contrast to RP, no enzyme fluorescence was detected in the PP cell wall in either the raw (Fig. 5A) or pretreated (Fig. 5B) sections, regardless of the duration of hydrolysis. These observations were supported by the measurement of the enzyme fluorescence intensity in the cell walls (Fig. 5C) and lumens (Fig. 5D): no variation in the raw PP was detected during the reaction, whereas a progressive decrease in the enzyme fluorescence intensity was measured on the cell walls and in the lumens in the pretreated PP. Interestingly, within a small target area in the pretreated PP, weak enzyme fluorescence was detected on the cell wall of one cell (Fig. 5B). By measuring the variation in enzyme fluorescence intensity on this cell wall and within its lumen, profiles close to those of the fluorescence variation of the enzymes in RP cells were observed (see supplementary material).

The absence of fluorescence on the entire raw PP suggest that the enzymes were not adsorbed on the cell walls. As the interaction of enzymes with substrates is a necessary step for hydrolysis, the non-adsorption of the enzymes likely explains the absence of degradation detected by FTIR or MALDI-MS. Like previous observations,
the location of the enzymes also highlighted the heterogeneity of the PP after pretreatment. PP1, whose degradation was similar to that of the raw PP, showed no adsorption of enzymes on the cell walls. Unfortunately, in the regions selected for UV imaging PP2 with the exception of one cell was not present.

Even though no change in signal intensity or in enzyme adsorption over time was observed in almost all pretreated PP, a decrease in enzyme fluorescence intensity was measured in the lumens (Fig. 5D). These decreases in enzymes fluorescence intensities could thus be linked to a lower concentration of enzymes in the PP medium and suggest that the enzymes were distributed differently throughout the section depending on the cell types and on pretreatment.

To investigate this hypothesis and to visualise the impact of pretreatment and cell type on the distribution of enzymes in the medium at the beginning and the end of the reaction, an analysis of the variance of fluctuations in the intensity of enzyme fluorescence measured in the lumen was performed (Fig. 6). Fig. 6 shows the distribution of the average intensities measured between 0 and 15 min or between 80 min and the end of the hydrolysis in each experiment.

During the first 15 minutes of the reaction, the spread of data indicates that both pretreatment and the type of cell had an effect on the distribution of the enzymes in the medium. In contrast, after 80 min (when reactions were considered as stabilised in raw and pretreated parenchyma), only pretreatment (high F-value) had an effect on enzyme distribution.

These results confirmed previous hypothesis that, at the beginning of the reaction, the enzymes contained in the medium were concentrated in the easily deconstructed tissues, the RP and in particular in the pretreated tissues. This movement of the enzymes towards RP could explain the decrease in fluorescence intensity of the
enzymes in the lumens of the PP cells at the beginning of the reaction (Fig. 5D). After degradation of the RP, towards the end of the hydrolysis, the enzymes that were desorbed from the RP cell walls would be redistributed homogeneously throughout the medium. Redistribution of the enzymes would explain the increase in enzyme intensity in the lumens of the RP (Fig. 4D) as well as the slight increase observed in the PP (Fig. 5D). In parallel, the effect of pretreatment on the distribution of enzymes at the end of the reaction (Fig. 6) also suggests that HWP allows the adsorption of the enzymes on other areas of the PP or on cell types not observed in the present study.

The change in the location of the enzymes over time revealed not only the adsorption/desorption of the enzymes at the level of the cell walls, but also the capacity of the enzymes to migrate towards easily deconstructed cell types.

3.3.2 Estimation of cell wall accessibility through the diffusion of fluorescent probe

In order to understand the impact of HWP and cell type on the adsorption of enzymes by the cell wall, fluorescence recovery after photobleaching (FRAP) analyses were performed. For this purpose, the DR40 was selected based on intrinsic properties as being a neutral probe (no specific affinity for the components of the cell wall) and as having a hydrodynamic radius (3.8 nm) in the same range as cellulases (around 3.4 nm) (Bubner et al., 2012). DR40 has already been used to investigate the accessibility and steric hindrance of cell walls through the analysis of its diffusion (Herbaut et al., 2018b; Paës et al., 2017).

When the two raw parenchyma were compared, the diffusion coefficient of RP was significantly higher than that of PP. This shows that the probe diffused more easily in RP than in the PP. Following pretreatment, diffusion of DR40 did not change in RP. Two groups of PP, differing in their DR40 diffusion coefficient, were identified after
pretreatment. One of these groups was PP1, which behaved similarly to raw PP, while the second, PP2, had a higher diffusion coefficient than raw PP.

The difference in DR40 diffusion measured for PP and RP can be attributed to differences in cell wall composition. Compositional analyses (FASGA and FTIR) showed that PP was richer in lignin and ester bonds than RP. Both strongly limit access to cellulose by influencing cell wall porosity (Chundawat et al., 2011; Leroy et al., 2021; Li et al., 2018), which accounts for over 90% of the accessibility of hydrolytic enzymes inside the cell wall (Wang et al., 2012). The presence of a lower steric hindrance environment in the RP, with fewer lignin and ester bonds, is hypothesised to favour the diffusion, adsorption and subsequent hydrolysis by the enzyme, in agreement with the adsorption and degradation capacity of this type of cell observed by fluorescence and MALDI-MS/FTIR, respectively, and in agreement with the results of other studies (Devaux et al., 2018; Ding et al., 2012). Similarly, the changes that occurred in pretreated PP2 compared to pretreated PP1 and native PP, with the decrease in ester bonds and hemicellulose content (Fig. 1E), are hypothesised to favour diffusion of the probe. The changes would also explain the preferential location of enzymes and the degradation of the cell wall observed by FTIR. These results confirmed the fact that, in pretreated samples, the decrease in ester bonds and hemicellulose content, in the absence of any change in lignin content, increase the accessibility and degradation of pretreated cell walls.

4. Conclusion

The multimodal approaches makes it possible to relate variations in chemical composition (FTIR analyses) to accessibility of cell wall polymers to enzymes (FRAP), and location/adsorption of the enzymes (enzyme fluorescence), which provide keys to understand the different patterns of cell wall degradation according to cell type and
pretreatment. This multimodal approach could be advantageously applied to other biomass/pretreatment couples to further investigate recalcitrance. Regarding enzymes, it could help to further understand the synergetic actions between hydrolases and oxidative enzymes such as lytic polysaccharide monooxygenases, for which action mode is still partly unknown.

E-supplementary data for this work can be found in e-version of this paper online.

Acknowledgments

A. Leroy's PhD was funded by Région Grand-Est and Grand Reims.

References

1. Arnaud, B., Durand, S., Fanuel, M., Guillon, F., Méchin, V., Rogniaux, H., 2020. Imaging Study by Mass Spectrometry of the Spatial Variation of Cellulose and Hemicellulose Structures in Corn Stalks. J. Agric. Food Chem., 68(13), 4042-4050.
2. Barros-Rios, J., Santiago, R., Malvar, R.A., Jung, H.-J.G., 2012. Chemical composition and cell wall polysaccharide degradability of pith and rind tissues from mature maize internodes. Anim. Feed Sci. Technol., 172(3), 226-236.
3. Batista, G., Souza, R.B.A., Pratto, B., dos Santos-Rocha, M.S.R., Cruz, A.J.G., 2019. Effect of severity factor on the hydrothermal pretreatment of sugarcane straw. Bioresour. Technol., 275, 321-327.
4. Berger, M., Devaux, M.-F., Legland, D., Barron, C., Delord, B., Guillon, F., 2021. Darkfield and Fluorescence Macrovision of a Series of Large Images to Assess Anatomical and Chemical Tissue Variability in Whole Cross-Sections of Maize Stems. Front. Plant Sci., 12(3031).
5. Bichot, A., Delgenès, J.-P., Méchin, V., Carrère, H., Bernet, N., García-Bernet, D., 2018. Understanding biomass recalcitrance in grasses for their efficient utilization as biorefinery feedstock. Rev. Environ. Sci. Biotechnol., 17(4), 707-748.
6. Bubner, P., Dohr, J., Plank, H., Mayrhofer, C., Nidetzky, B., 2012. Cellulases dig deep: in situ observation of the mesoscopic structural dynamics of enzymatic cellulose degradation. J. Biol. Chem., 287(4), 2759-2765.
7. Chabbert, B., Habrant, A., Herbaut, M., Foulon, L., Aguié-Béghin, V., Garajova, S., Grisel, S., Bennati-Granier, C., Gimbert-Herpoël, I., Jamme, F., Réfrégiers, M., Sandt, C., Berrin, J.-G., Paës, G., 2017. Action of lytic polysaccharide monooxygenase on plant tissue is governed by cellular type. Sci. Rep., 7(1), 17792.
8. Chundawat, S., Donohoe, B., Sousa, L., Elder, T., Agarwal, U., Lu, F., Ralph, J., Himmel, M., Balan, V., Dale, B., 2011. Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energy Environ. Sci., 4, 973-984.
9. Devaux, M.F., Jamme, F., Andre, W., Bouchet, B., Alvarado, C., Durand, S., Robert, P., Saulnier, L., Bonnin, E., Guillon, F., 2018. Synchrotron Time-Lapse Imaging of Lignocellulosic Biomass Hydrolysis: Tracking Enzyme Localization by Protein Autofluorescence and Biochemical Modification of Cell Walls by Microfluidic Infrared Microspectroscopy. Front Plant Sci, 9, 200.
10. Ding, S.-Y., Liu, Y.-S., Zeng, Y., Himmel, M.E., Baker, J.O., Bayer, E.A., 2012. How Does Plant Cell Wall Nanoscale Architecture Correlate with Enzymatic Digestibility? Science, 338(6110), 1055-1060.
11. Donaldson, L., Vaidya, A., 2017. Visualising recalcitrance by colocalisation of cellulase, lignin and cellulose in pretreated pine biomass using fluorescence microscopy. Sci. Rep., 7, 44386.
12. Donohoe, B.S., Vinzant, T.B., Elander, R.T., Pallapolu, V.R., Lee, Y.Y., Garlock, R.J., Balan, V., Dale, B.E., Kim, Y., Mosier, N.S., Ladisch, M.R., Falls, M., Holtzapple, M.T., Sierra-Ramirez, R., Shi, J., Ebrik, M.A., Redmond, T., Yang, B., Wyman, C.E.,

Hames, B., Thomas, S., Warner, R.E., 2011. Surface and ultrastructural characterization of raw and pretreated switchgrass. Bioresour. Technol., 102(24), 11097-11104.
13. dos Santos, A.C., Ximenes, E., Kim, Y., Ladisch, M.R. 2019. Lignin-Enzyme Interactions in the Hydrolysis of Lignocellulosic Biomass. Trends Biotechnol., 37(5), 518-531.
14. El Hage, F., Legland, D., Borrega, N., Jacquemot, M.P., Griveau, Y., Coursol, S., Mechin, V., Reymond, M., 2018. Tissue Lignification, Cell Wall p-Coumaroylation and Degradability of Maize Stems Depend on Water Status. J. Agric. Food Chem., 66(19), 4800-4808.
15. El Hage, F., Virlouvet, L., Lopez-Marnet, P.-L., Griveau, Y., Jacquemot, M.-P., Coursol, S., Méchin, V., Reymond, M., 2021. Responses of Maize Internode to Water Deficit Are Different at the Biochemical and Histological Levels. Front. Plant Sci., 12(167).
16. Fan, S., Zhang, P., Li, F., Jin, S., Wang, S., Zhou, S., 2016. A Review of Lignocellulose Change During Hydrothermal Pretreatment for Bioenergy Production. Curr. Org. Chem., 20(26), 2799-2809.
17. FAOSTAT. URL https://www.fao.org/faostat/fr/\#data/ (accessed 22.03.25)
18. Gierlinger, N., Goswami, L., Schmidt, M., Burgert, I., Coutand, C., Rogge, T., Schwanninger, M., 2008. In Situ FT-IR Microscopic Study on Enzymatic Treatment of Poplar Wood Cross-Sections. Biomacromolecules, 9(8), 2194-2201.
19. Gorzsás, A., Stenlund, H., Persson, P., Trygg, J., Sundberg, B., 2011. Cell-specific chemotyping and multivariate imaging by combined FT-IR microspectroscopy and orthogonal projections to latent structures (OPLS) analysis reveals the chemical landscape of secondary xylem. Plant J., 66(5), 903-914.
20. Grabber, J.H., Hatfield, R.D., Ralph, J., 1998. Diferulate cross-links impede the enzymatic degradation of non-lignified maize walls. J. Sci. Food Agric., 77(2), 193-200. 21. Herbaut, M., Zoghlami, A., Habrant, A., Falourd, X., Foucat, L., Chabbert, B., Paës, G., 2018a. Multimodal analysis of pretreated biomass species highlights generic markers of lignocellulose recalcitrance. Biotechnol. Biofuels, 11, 52.
22. Herbaut, M., Zoghlami, A., Paës, G., 2018b. Dynamical assessment of fluorescent probes mobility in poplar cell walls reveals nanopores govern saccharification. Biotechnol. Biofuels, 11, 271-271.
23. Jung, H.G., Casler, M.D., 2006. Maize Stem Tissues: Impact of Development on Cell Wall Degradability. Crop Sci., 46.
24. Lam, M.S.-J.W.Q., Martinez, Y., Barbier, O., Jauneau, A., Pichon, M., 2013. Maize cell wall degradability, from whole plant to tissue level : different scales of complexity. Maydica, 58, 103-110.
25. Lam, T.B.-T., Iiyama, K., Stone, B.A., 2003. Hot alkali-labile linkages in the walls of the forage grass Phalaris aquatica and Lolium perenne and their relation to in vitro wall digestibility. Phytochemistry, 64(2), 603-607.
26. Leroy, A., Falourd, X., Foucat, L., Méchin, V., Guillon, F., Paës, G., 2021. Evaluating polymer interplay after hot water pretreatment to investigate maize stem internode recalcitrance. Biotechnol. Biofuels, 14(1), 164.
27. Li, T., Liu, N., Ou, X., Zhao, X., Qi, F., Huang, J., Liu, D., 2018. Visualizing cellulase adsorption and quantitatively determining cellulose accessibility with an updated fungal cellulose-binding module-based fluorescent probe protein. Biotechnol. Biofuels, 11(1), 105.
28. Li, X., Lu, J., Zhao, J., Qu, Y., 2014. Characteristics of corn stover pretreated with liquid hot water and fed-batch semi-simultaneous saccharification and fermentation for bioethanol production. PLoS One, 9(4), e95455.
29. Luterbacher, J.S., Moran-Mirabal, J.M., Burkholder, E.W., Walker, L.P., 2015. Modeling enzymatic hydrolysis of lignocellulosic substrates using fluorescent confocal microscopy II: Pretreated biomass. Biotechnol. Bioeng., 112(1), 32-42.
30. Meng, X., Ragauskas, A.J., 2014. Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr. Opin. Biotechnol., 27, 150-158.
31. Nagle, N.J., Donohoe, B.S., Wolfrum, E.J., Kuhn, E.M., Haas, T.J., Ray, A.E., Wendt, L.M., Delwiche, M.E., Weiss, N.D., Radtke, C., 2020. Chemical and Structural Changes in Corn Stover After Ensiling: Influence on Bioconversion. Front. Bioeng. Biotechnol., 8.
32. Paës, G., Habrant, A., Ossemond, J., Chabbert, B., 2017. Exploring accessibility of pretreated poplar cell walls by measuring dynamics of fluorescent probes. Biotechnol. Biofuels, 10(1), 15 .
33. Robert, P., Marquis, M., Barron, C., Guillon, F., Saulnier, L., 2005. FT-IR Investigation of Cell Wall Polysaccharides from Cereal Grains. Arabinoxylan Infrared Assignment. J. Agric. Food Chem., 53(18), 7014-7018.
34. Ropartz, D., Bodet, P.-E., Przybylski, C., Gonnet, F., Daniel, R., Fer, M., Helbert, W., Bertrand, D., Rogniaux, H., 2011. Performance evaluation on a wide set of matrixassisted laser desorption ionization matrices for the detection of oligosaccharides in a high-throughput mass spectrometric screening of carbohydrate depolymerizing enzymes. Rapid Commun. Mass Spectrom., 25(14), 2059-2070.
35. Scheller, H.V., Ulvskov, P., 2010. Hemicelluloses. Annu. Rev. Plant Biol., 61(1), 263-289.
36. Simmons, T.J., Mortimer, J.C., Bernardinelli, O.D., Pöppler, A.-C., Brown, S.P., deAzevedo, E.R., Dupree, R., Dupree, P., 2016. Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR. Nat. Commun., 7(1), 13902.
37. Siqueira, G., Milagres, A.M.F., Carvalho, W., Koch, G., Ferraz, A., 2011. Topochemical distribution of lignin and hydroxycinnamic acids in sugar-cane cell walls and its correlation with the enzymatic hydrolysis of polysaccharides. Biotechnol. Biofuels, 4(1), 7.
38. Veličković, D., Ropartz, D., Guillon, F., Saulnier, L., Rogniaux, H., 2014. New insights into the structural and spatial variability of cell-wall polysaccharides during wheat grain development, as revealed through MALDI mass spectrometry imaging. J. Exp. Bot., 65(8), 2079-2091.
39. Vermerris, W., Thompson, K.J., McIntyre, L.M., 2002. The maize Brown midrib1 locus affects cell wall composition and plant development in a dose-dependent manner. Heredity, 88(6), 450-457.
40. Vidot, K., Devaux, M.-F., Alvarado, C., Guyot, S., Jamme, F., Gaillard, C., Siret, R., Lahaye, M., 2019. Phenolic distribution in apple epidermal and outer cortex tissue by multispectral deep-UV autofluorescence cryo-imaging. Plant Sci., 283, 51-59.
41. Vo, L.T.T., Girones, J., Jacquemot, M.-P., Legée, F., Cézard, L., Lapierre, C., Hage, F.E., Méchin, V., Reymond, M., Navard, P., 2020. Correlations between genotype biochemical characteristics and mechanical properties of maize stem - polyethylene composites. Ind. Crops Prod., 143, 111925.
42. Wang, Q.Q., He, Z., Zhu, Z., Zhang, Y.-H.P., Ni, Y., Luo, X.L., Zhu, J.Y., 2012. Evaluations of cellulose accessibilities of lignocelluloses by solute exclusion and protein adsorption techniques. Biotechnol. Bioeng., 109(2), 381-389.
43. Wang, Y., Xu, X., Xue, H., Zhang, D., Li, G., 2021. Physical-chemical properties of cell wall interface significantly correlated to the complex recalcitrance of corn straw. Biotechnol. Biofuels, 14(1), 196.
44. Yang, Q., Pan, X., 2016. Correlation between lignin physicochemical properties and inhibition to enzymatic hydrolysis of cellulose. Biotechnol. Bioeng., 113(6), 1213-1224. 45. Yoo, C.G., Meng, X., Pu, Y., Ragauskas, A.J., 2020. The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: A comprehensive review. Bioresour. Technol., 301, 122784.
46. Zeng, M., Ximenes, E., Ladisch, M.R., Mosier, N.S., Vermerris, W., Huang, C.-P., Sherman, D.M., 2012. Tissue-specific biomass recalcitrance in corn stover pretreated with liquid hot-water: Enzymatic hydrolysis (part 1). Biotechnol. Bioeng., 109(2), 390397.
47. Zhao, X., Zhang, L., Liu, D., 2012. Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod. Biorefining, 6(4), 465-482.
48. Zoghlami, A., Paës, G., 2019. Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis. Front. Chem., 7(874).

Figure captions

Fig. 1: FASGA staining of (A) raw and (B) pretreated samples. Average spectra of raw parenchyma (C) and of pretreated (D) rind parenchyma (RP) and of both pith parenchyma (PP1 and PP2).

Fig. 2: Real-time monitoring of FTIR spectra, expressed as the sum of the absorbance during enzymatic hydrolysis of (A) raw and of (B) pretreated (red) parenchyma near the (red) rind (RP) and (blue) pith parenchyma (PP).

Fig. 3: Distribution and peak intensities of cellulose degradation products during enzymatic hydrolysis revealed by MALDI-MS imaging. COS2 distribution (A; D) and variations in the distribution of COSs according to the kinetics (B, E) in raw and pretreated samples. The COS intensities detected during hydrolysis in (C) raw and (F) pretreated samples. The white scale corresponds to 5 mm .

Fig. 4: Examples of time-lapse fluorescence images during enzymatic hydrolysis of (A) raw RP and (B) HWP RP, and the changes over time in the enzymes fluorescence intensity on the cell wall (C) and inside the lumen (D) under enzyme (Enz) and nonenzyme (Buf) conditions. Blue signal corresponds to cell wall alone; Yellow, enzymes alone; White, co-location of enzymes and cell walls. Field of view: $1,116 \times 1,116 \mu \mathrm{~m}^{2}$.

Fig. 5: Examples of time-lapse fluorescence images during enzymatic hydrolysis of (A) raw PP and (B) HWP PP, and changes in enzyme fluorescence intensity on the cell wall (C) and inside the lumen (D) over time. The blue signal corresponds to cell wall alone; Yellow, enzymes alone; White, co-location of enzymes and cell walls. The field of view: $1,116 \times 1,116 \mu \mathrm{~m}^{2}$.

Fig. 6: Analysis of variance of fluctuations in enzyme fluorescence measured in the lumens. (A) before 15 min of hydrolysis; (B) after 80 min of enzymatic hydrolysis. Rrp
and Prp stand for Raw-RP and Pretreated-RP, respectively. Rpp and Ppp stand for RawPP and Pretreated-PP, respectively.

Table 1: Diffusion coefficient of the DR40 measured in raw (RP) and HWP (PP). The results are expressed as means of 3 to 5 repetitions, following the conditions, with standard deviations in brackets. Different letters in the columns indicate significant differences (T-test, $\mathrm{P}<0.05$).

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Table 1:

	Raw		HWP		
	RP	PP	RP	PP1	PP2
Diffusion	1.79^{a}	1.13^{a}	1.49	0.79^{b}	1.44^{b}
$\left.\begin{array}{c}\text { coefficient } \\ \left(\times 10^{-2} .\right.\end{array} \mathrm{mm}^{2} . \mathrm{s}^{-1}\right)$					

