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Abstract

We study the impact of discrete versus continuous time on the behavior of agents in

the context of a dynamic common pool resource game. To this purpose, we consider a

linear quadratic model and conduct a lab experiment in which agents exploit a renewable

resource with an infinite horizon. We use a differential game for continuous time and

derive its discrete time approximation. In the single agent setting, we fail to detect, on a

battery of indicators, any difference between agents’ behavior in discrete and continuous

time. Conversely, in the two-player setting, significantly more agents can be classified

as myopic and end up with a low resource level in discrete time. Continuous time seems

to allow for better cooperation and thus greater sustainability of the resource than does

discrete time.
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1 Introduction

In many situations, we take decisions at any moment in time, asynchronously and inde-

pendent of other agents: sending a message, extracting water from a groundwater table,

reducing prices, etc. Many of the interactions we engage in have a continuous time aspect.

How does this ability to rapidly and asynchronously adjust actions shape our behavior? This

question has been of deep interest for behavioral and experimental economists over the past

decade. Indeed, many questions that were initially analyzed in discrete time in laboratory

experiments can today be analyzed using continuous time protocols that allow researchers

to compare the behavior of agents in discrete versus continuous time.

Previous articles find that continuous time can foster cooperation, but only under certain

conditions. When presenting prisoner’s dilemma games to two-person groups, Friedman and

Oprea (2012) find a higher median cooperation rate in continuous time. Bigoni et al. (2015)

combine elements of the design of Bó (2005) and of Friedman and Oprea (2012) to study co-

operation in repeated prisoner’s dilemma games. They find that contrary to previous results

in discrete time, cooperation is easier to achieve in continuous time with a deterministic time

horizon than with a stochastic time horizon. Oprea et al. (2014) study subjects’ contributions

in a public good game played in groups of five people. They find players contribute higher

amounts in continuous time than in discrete time but only when a rich communication proto-

col among participants is included. Introducing new laboratorymethods in order to eliminate

inertia in a subject’s decision in continuous time experiments, Calford and Oprea (2017) find

strikingly different behaviors in continuous vs. discrete time in a simple timing game where

two participants compete to enter a market. Finally, Leng et al. (2018) study the evolution of

cooperation by crossing time protocols (continuous vs. discrete time) and information feed-

back (group minimum effort level vs. effort level of each member of the group) in a minimum

effort coordination game played in groups of six people. Among the four treatments, the

authors find that the average payoff increases only when continuous time is associated with

the provision of information on the effort level of each member of the group.

Although studying interactions in the prisoner’s dilemma, public good, timing, or mini-

mum effort coordination games is extremely useful, these games abstract from a feature rele-
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vant to many economic applications, the presence of a state variable that makes the impact of

any decision to persist through time, which is the case in common pool resource (CPR) games

(Vespa 2020). The vast majority of the CPR literature that combines theory and experimenta-

tion is in discrete time. A possible explanation is that discrete time is easier to implement in

the lab and can be compared to a static repeated game inwhich the state variable evolves from

one period to the other (Herr et al. 1997, Gardner et al. 1997, Mason and Phillips 1997, Hey

et al. 2009, Suter et al. 2012, for instance). Nevertheless, Tasneem et al. (2017) recently tested

a CPR differential game in the lab using a continuous time protocol. Focusing on Markov’s

perfect equilibrium strategy, they tried to determine the relevance of the nonlinear equilibria

in a two-player common property resource game. Janssen et al. (2010) have also studied the

role of communication and punishment in a CPR game in continuous time. They find that

punishment can foster cooperation only when combined with communication. The authors

do not present the formal theoretical model underlying their experiment.1

In this paper we build on the previous literature to study the impact of discrete versus

continuous time on the nature of interactions in a two-person common pool resource (CPR)

game. Several important differences with previously tested games (prisoner’s dilemma, pub-

lic good, timing, and minimum effort coordination games) can lead to a different impact

of time on agents’ interactions. First, the presence of the state variable causes the impact

of any decision to persist through time (Vespa 2020), which can, for instance, generate dy-

namic free riding (Battaglini et al. 2016).2 Moreover, as opposed to prisoner’s dilemma games,

where payoffs can be directly read from amatrix, dynamic games are more difficult to handle.

These two elements can make the optimal solution harder to reach in the case of CPR games.

Reversely, infinite horizon can provide strategic opportunities to endogenously support co-

operative outcomes (Battaglini et al. 2016). In addition, using dynamic CPR games allows us
1Note also that some authors such as Noussair et al. (2015) conduct their experiments in discrete time, while

their theoretical model is in continuous time, which poses the question of to what theoretical predictions should
we compare lab results: those from discrete or those from continuous time models? Moreover, Tasneem et al.
(2019) study the ability of a single economic agent to exploit a renewable resource efficiently. To do that they
test in the laboratory an optimal control problem with an infinite horizon in continuous time and show that
extraction behavior results in a steady state of the resource only 56% of the time.

2Battaglini et al. (2016) define dynamic free-riding this way: “an increase in current investment by one agent
[which] typically triggers a reduction in future investment by all agents". In the context of a CPR, a decrease in
extraction level can be seen as an investment to obtain a higher resource level, and thus greater benefits in the
future.
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to explicitly derive equilibrium paths for three well identified types of behavior – myopic,

feedback and optimal. How does the nature of time affect the nature of strategic interactions

in this context? Can continuous time still foster cooperation? Does the nature of time affect

the equilibrium path to which participants are the closest?

To analyze these questions, we consider a simple linear quadratic model, based on Gisser

and Sanchez (1980), Negri (1989), and Rubio and Casino (2003), in which agents exploit a re-

newable resource with an infinite horizon. The resource can be assimilated to a groundwater

basin but other interpretations of CPR are possible. We use a differential game for continuous

time and propose a discretization of the CPR game so that the equilibrium paths for myopic,

feedback and optimal behaviors are almost identical in the discrete and continuous timemod-

els. For the implementation in the lab we choose to lead a non-contextualized experiment in

a between-subject design with four treatments. We cross the nature of time (discrete versus

continuous) and the number of subjects exploiting the resource (one versus two). In the con-

tinuous time treatments, we follow the literature and mimic continuous time by allowing the

agent to change his extraction rate every second. In the discrete time treatments, the agent

can change his extraction level every 10 seconds. About one hundred subjects participated

in each treatment.3

Presenting subjects with the simplest setting, i.e., a single agent exploiting the resource,

allows us to test whether the ability to manage a resource differs in continuous and discrete

time. Indeed, the greater number of decisions potentially taken in continuous time could fa-

cilitate a trial and error process to reach optimal management of the resource. It is important

to establish this baseline because, as explained earlier, dynamic situations are complex prob-

lems to handle, and it is important to understand the impact of the nature of time without

interactions. Our estimates indicating that only 37% of the agents play optimally, confirms

this statement. Our results also show that in all aspects tested, a subject’s ability is not af-

fected by the nature of time in a single agent setting. This allows us to deduce that the

differences observed in the multiplayer setting are due to the way we model time, i.e., that
3One exception to this way of implementing continuous time in the laboratory is Calford and Oprea (2017).

The authors propose a protocol where time freezes when one decision is taken in order to let the other player to
react to this decision without delay in the game. This protocol is useful and easy to implement for timing games
like that studied by Calford and Oprea (2017) but less appropriate for CPR games as we explain in Section 3.

4



the nature of time changes the nature of players’ interactions.

When running the experiment in a multiplayer setting, we find significant differences

between continuous and discrete time. For example, in discrete time the average resource

level is significantly lower. There is a larger proportion of agents that can be classified as

myopic and a larger proportion of agents that end up with a low resource level in discrete

time, while the proportion of optimal and feedback agents are not significantly different be-

tween the discrete and continuous time. Continuous time seems to favor a more sustainable

exploitation of the resource. Our underlying intuition for this result is similar to Friedman

and Oprea (2012), Oprea et al. (2014) and Leng et al. (2018). Continuous time allows subjects

to briefly switch to cooperative behavior, such as a socially optimal extraction rate, in order

to incite the other player to do the same, or conversely to quickly increase extraction if the

other player increases their extraction too much. The fact that we observe more stable ex-

traction levels in continuous time and that extraction levels are more homogeneous within

the group is consistent with this potential explanatory mechanism. It also results in less

unequally distributed payoffs in continuous than in discrete time.

Throughout thiswork, we provide several contributions to the literature. We offer the first

in-lab analysis of the impact of discrete versus continuous time in the case of CPR games. We

contribute to the analysis of common pool resources using differential games, by being the

first experimental paper to consider socially optimal and myopic strategies in a continuous

time setting. We also make two secondary contributions. We present an experimental pro-

tocol allowing to compare continuous and discrete time models in the laboratory. Finally,

to compare the behavior of subjects in the lab to theoretical projections, we combine mean-

squared deviation statistics and linear regressions.

The next section of this paper presents the theoretical setting. Section 3 describes the

experimental design used to test the theoretical model. Section 4 is devoted to the empirical

strategy, and results are analyzed in Section 5 and 6. The final section provides a discussion

and conclusion.
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2 The Model

We consider a simple linear quadratic model in continuous time, in which two agents, i, j

exploit a renewable resource over an infinite horizon. The resource can be assimilated to a

groundwater table. Water pumped provides the agent’s revenue B(w) depending only on

the extraction w. Agents also incur a cost C(H,w), which depends negatively on the level

of the groundwaterH . The parameters a, b, c0 and c1 are positive. An agent’s instantaneous

payoff is given by the difference between revenue and cost, as shown by equation (1):

B(w)︷ ︸︸ ︷
aw − b

2
w2−

marginal cost (c(H))︷ ︸︸ ︷
max(0, c0 − c1H)w︸ ︷︷ ︸

C(H,w)

(1)

We need to have a positive marginal or unitary cost c(H) to prevent the cost from be-

coming a subsidy. Thus it is important to adopt a piecewise marginal cost function:

c(H) =


(c0 − c1H) if 0 ≤ H <

c0
c1

0 if H ≥ c0
c1

The evolution of the resource in continuous time is given by the equation (2):

Ḣ(t) = R− αw(t) (2)

where R is the constant rainfall recharge and 1− α is the return flow coefficient.

The problem differs between continuous time and discrete time. In continuous time, de-

cisions are made at each instant t in real time and the resource evolves continuously, while

in discrete time, decisions are made during each period n and the resource evolves from one

period to the next.

Whether in continuous or discrete time, we analyze the behavior of agents in two set-

tings. First, in an optimal control problem where a sole agent exploits the groundwater, we

characterize both the myopic and the optimal behaviors. In the myopic solution, the agent

is only interested in the maximization of his current payoff (equation 1), regardless of the

evolution of the groundwater. In the optimal solution, the agent takes into account the evo-
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lution of the resource and maximizes the discounted payoff in infinite horizon. Second, the

behavior of agents can be analyzed in a game where strategic interaction is introduced by

considering two identical and symmetrical agents in the exploitation of the groundwater. A

feedback equilibrium path is defined, in addition to the myopic and optimal behaviors. In the

game, the optimal behavior, also called the social optimum or cooperative solution, is defined

as a behavior in which an agent’s extractions allow them to maximize the joint discounted

payoffs in order to maintain the resource at an efficient level. As in the single player case,

the myopic solution is the case where each agent is only interested in the maximization of

his current payoff (equation 1), regardless of the evolution of the groundwater. The feedback

equilibrium can be seen as a scenario in which agents adopt non-cooperative behavior, max-

imizing their own discounted net payoffs, while also taking into account the evolution of the

groundwater.

In continuous time, the discounted payoff (with r the discount rate) for player i is:∫ ∞

0

e−rt

[
awi(t)−

b

2
wi(t)

2 −max(0, c0 − c1H(t))wi(t)

]
dt (3)

and the dynamics are given as:



Ḣ(t) = R− α(wi(t) + wj(t))

H(0) = H0 and H0 ≥ 0, H0 given

H(t) ≥ 0

wi(t) ≥ 0

In discrete time, the discounted payoff (with 1−rτ the discount factor) and the dynamics

for player i are given as:
∞∑
n=0

(1− rτ)n
[
awi(n)−

b

2
wi(n)

2 −max (0, c0 − c1H(n))wi(n)

]
τ (4)



H(n+ 1) = H(n) + τ (R− α(wi(n) + wj(n)))

H(0) = H0 and H0 ≥ 0, H0 given

H(n) ≥ 0

wi(n) ≥ 0
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The discrete time model converges towards the continuous time model when the dis-

cretization step τ tends toward zero. The discretization rate τ chosen in discrete time pro-

vides a good approximation of the continuous time problem. In the Appendix A, we explain

how we discretized the continuous time model in order to obtain its discrete time equivalent.

Regarding the mathematical resolution, optimal solutions can be found by means of the

Hamiltonian operator. The Nash feedback equilibrium in continuous time can be found by

means of the Hamilton Jacobi Bellman (HJB) equation, by applying the guessing method to

guess a quadratic value function and in discrete time by means of the Bellman equation. Fi-

nally, myopic solutions are obtained by means of a simple first-order derivative. When wj

is dropped from the dynamics, one is able to solve the optimal control maximization prob-

lem (the sole-agent setting). Full calculations for all solutions are available in the Online

Appendix.

3 Experimental Design

We used a between-subject design in which participants in the sole-agent treatments were

different from the ones in the multiple-agent treatments. The experiment took place at the

Experimental Economics Laboratory of Montpellier (LEEM). From December 2019 to Febru-

ary 2020, a total of 200 students from the University of Montpellier participated in the first

part of the experiment. This part was devoted to data collection for the single agent condi-

tion. It included a total of 17 sessions, 11 where subjects took decisions in a continuous-time

treatment and 6 in a discrete-time one.4 From November to December 2020, a total of 190

subjects participated in the second part of the experiment, which was devoted to data col-

lection for the two-player game. The experiment involved 20 sessions of continuous and

discrete time treatments for groups of two players, so that we had 49 groups in continuous

time and 46 groups in discrete time.5 It was a non-contextualized experiment, using the oTree

platform (Chen et al. 2016), in which subjects participated in a ten-minute training phase of

the game, followed by a ten-minute effective phase of the game, which counted for their re-
4Since the continuous time condition involves higher network traffic, we limited the number of participants

per session to a maximum of 14, which explains the greater number of sessions for this treatment.
5ORSEE (Greiner 2015) is the platform used by the LEEM to manage the subject pool.
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muneration. The experimental currencies (ECU) accumulated by subjects in the experiment

were converted into cash payments with the conversion rate of 10 ECUs to 0.5 euro.6 Each

experimental session lasted around an hour.

We start by giving a global overview of the experiment, then we describe the parametriza-

tion. Finally we explain how we implemented the continuous time and the infinite horizon.

3.1 Global Description

In the sole-agent treatments, instructions explained the dynamics of the resource, the decision-

making process and its consequences on the available resource, the cost of extraction and the

payoff. After an initial individual reading, an experimenter proceeded to an out-loud reading

of the instructions. Next, subjects answered a digital questionnaire to make sure they under-

stood the evolution of the resource as well as the computation of payoffs. They were also

invited to ask questions by raising their hands.

To familiarize subjects with the graphical interface, they participated in a 10-minute train-

ing phase before a 10-minute paid phase. At the beginning of each phase, subjects had to

choose an initial extraction between 0 and 2.8 by moving their cursor on a graduated slider,

which displayed values up to two decimal points. Due to the quadratic nature of our revenue

function, any extraction level led to positive revenue. Figure B.1 in the Appendix B shows

a concave revenue curve with a maximum revenue reached for an extraction of 1.4. Figure

B.2 in the Appendix B also shows the unitary cost function, which decreases as the available

resource increases and vanishes when the level of the available resource is above 20.

In the continuous time instructions, the extraction refers to an extraction rate, while in

the discrete time instructions it refers to an extraction level. In addition, a distinction is made

between the differential equation representing the dynamics of the resource in continuous

time and the difference equation representing the dynamics of the resource in discrete time.

For the sake of simplification, we simply explain the dynamics in continuous time rather than

writing the differential equation. Once the subjects chose an initial extraction level, a new

screen appeared and subjects were able to see the dynamics of the resource along with their
6ECU means Experimental Currency Unit.
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payoff, which included the cumulative and continuation payoffs, updated every second in the

continuous time treatment and every period in the discrete time treatment.

Adapted instructions were provided to subjects in the multiple-agent treatments. Envi-

ronments remained the same as in the sole agent treatments, except that subjects extracted

the resource in groups of two. The layout of the user interface was slightly different from

that of the sole agent treatments, with an additional curve showing the pair’s total extraction.

Complete instructions for the four treatments can be found in the Online Appendix.

3.2 Parameters

Table 1 reports the parameters used. To get comparable results, parameters were the same in

continuous time and discrete time for both the sole- and multiple-agent treatments.

Table 1: Parameters for the experiment

Variable Description Value

a Linear parameter in the revenue function 2.5

b Quadratic parameter in the revenue function 1.8

c0 Maximum average cost 2

c1 Variable cost 0.1

c0 − c1H Marginal or unitary cost 2− 0.1H

r Discount rate in continuous time 0.005

β = (1− rτ) Discount factor in discrete time 0.995

R Natural recharge 0.56

α Return flow coefficient 1

H0 Initial resource level 15

τ Discretization step 0.1 & 1

Figure 1 and 2 below show the theoretical time paths for the extraction and resource

levels in continuous time for 100 seconds. The theoretical time paths in discrete time are

almost identical to those in continuous time. See for instance Appendix A for the feedback

equilibrium (continuous version with τ = 0.1 and discrete version with τ = 1).
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Figure 1: Extraction behaviors and resource levels in sole-agent continuous time

Figure 2: Extraction behaviors and resource levels in multiple-agent continuous time

The infinite horizon requires us to set a small discount rate r to capture subjects’ attention

on the sustainability of the resource. The corresponding discount factor in discrete time is β.

We also chose these parameters so that the steady state level of the resource in the socially

optimal case is strongly separated from other cases. The socially optimal behavior leads to a

high level of the groundwater, while the myopic behavior results in low groundwater levels

(see the right sides of figures 1 and 2).
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Both the natural recharge R and the return flow coefficient α were designated at a small

enough size to capture the renewable nature of the resource, simulate real life conditions and

avoid floods in the model.7

In situations where a subject’s extraction is strictly higher than the available resource

(i.e., the stock plus the natural recharge), the rule was to set the extraction to zero until

she changed her decision or until the amount of the resource increased enough to allow

for a new extraction. This rule was chosen because it is easy to implement in the lab and

because setting an allocation rule for the extraction in proportion to the available resource

would have led to a multiplicity of equilibria, which would have greatly complicated the

empirical strategy needed to compare lab results to equilibrium paths without revealing any

(particularly) interesting information on the behavior of agents.

3.3 Decision Timing in Continuous and Discrete Time

One of the main challenges of our experimental protocol is the implementation of continuous

time in the lab. The computer is naturally unable to implement "pure" continuous time in the

sense that time doesn’t stop and that decisions can be taken at literally any moment. Most

previous experiments implement continuous time by letting people change their decision

very frequently, every second or less, in order to mimic continuous time (Friedman and Oprea

2012, Oprea et al. 2014, Bigoni et al. 2015, Leng et al. 2018).

One exception to this way of implementing continuous time is Calford and Oprea (2017).

The authors study a timing game where two firms compete to enter a market. They dis-

tinguish two types of continuous time in their experiment: a (realistic) inertial continuous

time and a perfectly continuous time. In the (realistic) inertial continuous time, subjects are

allowed to enter the market at any time, but when the first firm decides to enter, the other

is unable to enter at the exact same time. Indeed, subjects take a brief moment to think and

decide to enter or not, which generates natural inertia in decision making. To get rid of this

inertia, Calford and Oprea (2017) propose to freeze time following the decision of one firm

to enter the market. If the counterpart enters during the window of the freeze, the decisions
7The return flow coefficient is the quantity of water returning to the groundwater after each extraction.
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of the two players are considered as simultaneously taken. Otherwise, the game continues

as in inertial continuous time. The authors call this perfectly continuous time.

Calford and Oprea (2017)’s protocol is interesting and is easy to implement with timing

games with one decision (entering a market). In CPR games like ours where up to 600 deci-

sions can be taken, it would become cumbersome. In this experiment we follow the literature

first mentioned (Friedman and Oprea 2012, Oprea et al. 2014, Bigoni et al. 2015, Leng et al.

2018) and let subjects change their extraction level very frequently. In practice, the time that

elapses between two instants must be short enough so that the subject in the experiment feels

like it is continuous. We chose to set one second as the time interval between two instants.

Although not the shortest possible interval we could have implemented in the laboratory,

we choose the second as the most relevant one; it is understood by everyone, and enough

time elapses between two seconds for computers to perform calculations and exchange in-

formation across the network. Moreover, this interval facilitates the understanding of the

explanation by the subjects.8,9

To be implemented in the lab, the continuous time model thus has to be discretized. We

explain in the Appendix A how to discretize the continuous time model in order to obtain its

discrete time equivalent. To provide an experiment that is as close as possible to continuous

time, one has to choose a discretization step that is as small as possible. We choose τ = 0.1 to

capture the specific characteristic of continuous time, i.e., its uninterrupted evolution. This

means that in our continuous time treatment, one second of real time corresponds to 0.1 in-

stant in the model. Thus, 10 minutes of experiment are equal to 600 seconds and equivalent

to 60 instants. In the discrete time treatment, we have chosen a larger but reasonable dis-

cretization rate, τ = 1. With this rate, 1 period equals 1 instant in the model. Therefore,
8In the sole agent continuous time treatment, subjects were able to change their extraction rate at any

moment by simply moving the graduated slider displayed on their computer. Every second, the computer
transmitted the slider value to the server, which then performed the computations (resource and payoff) and
updated the values displayed on the computer’s graph and text interfaces.

9In the two-player continuous-time treatment, player 2’s computer sent the cursor value to the server as soon
as it changed, while player 1’s computer transmitted the cursor value to the server every second, triggering the
server to continuously broadcast the updated values to both players. Thus, every second, the server took player
1’s current extraction and player 2’s most recent extraction (i.e., the last one transmitted by his computer). In
this way, time was synchronized between the two members of the group, since only one player was triggering
the continuous updating of the information. This also reduced network traffic because as long as the second
player did not change his extraction, his computer did not transmit a new value.

13



subjects participated in a 60-period dynamic environment. In addition, in order to ensure a

similar duration in both treatments, we gave the subject exactly 10 seconds in each period to

take her decision, which means that the play time was also 10 minutes in discrete time.

The graphical user interface was divided into four areas. On the top left, a graph showed

the evolution of the player’s extraction. At the top right, a graph displayed the evolution of

the resource, and at the bottom left there was a graph showing the evolution of the payoff.

Finally, at the bottom right, a text box presented the same information as the graphs but in

text form. Figure B.3 in Appendix B shows a screenshot of the user interface for the sole

agent treatment in continuous time. In the multiple agent treatments, the user interface was

identical except that an additional curve in the upper left graph showed the evolution of the

group’s total extraction.

3.4 Infinite Horizon

Several ways of modelling the infinite horizon have been proposed in the literature. In re-

peated games, a heavily used solution is random termination. Fréchette and Yuksel (2017)

compare variations of this solution. With dynamic CPR games, an alternative is to use a con-

tinuation payoff.10 In this experiment we preferred this solution, implemented by Tasneem

et al. (2017) and Tasneem et al. (2019), as it allows subjects to see directly what they would

earn if the game went forever.

In both continuous and discrete time, the payoff is composed of two elements: (i) a cu-

mulative payoff from the first instant of play (t = 0) to the present instant (t = p), and (ii)

a continuation payoff, which is computed as an integral of payoffs from the present instant

(t = p) to infinity (t = ∞), assuming that the player’s extraction remains unchanged. In

the two-player game, the continuation payoff was calculated assuming that both players’

extraction remained unchanged.

The cumulative payoff in continuous time corresponds to the discounted integral of the

instantaneous payoffs from the beginning of the experiment up to the present instant. Thus,
10Noussair andMatheny (2000) and Brown et al. (2011) show that behavior is not significantly different under

random termination or continuation payoff in single-agent cases. Moreover, with a random ending in a two-
player game, the players may have different beliefs about the last period or instant. Continuation payoff avoids
this problem.
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the discount rate is r = 0.5% and means that the payoff of instant t is multiplied by e−0.005×t.

The discounting principle allows subjects to understand that the same instantaneous pay-

off has a different discounted value according to the instant. In other words, as time goes

on, the payoffs of the last instants have a lesser impact on the subject’s total payoff for the

experiment. Similarly, the cumulative payoff in discrete time corresponds to the discounted

sum of each period’s payoff from the beginning of the experiment up to the present period.

Thus, the discount factor is β = 0.995 and means that the payoff of period n is multiplied

by 0.995n. The discounting principle allows subjects to understand that the same payoff has

a different discounted value according to the period. In other words, in the experiment, the

same instantaneous payoff contributes less to the total final payoff when it occurs in the later

periods rather than in the earlier periods.11

4 Empirical Strategy

Two hundred subjects participated in the sole-agent (optimal control) experiment and 190

in the multiple-player (game) experiments. They took (paid) extraction decisions for 600

seconds during each session. We use these extraction decisions data to understand whether

agents take different decisions in continuous vs. discrete time and in the control vs. in the

game. Through the empirical analysis, we use standard tests such as the Mann-Whitney and

the Fisher exact proportion tests to compare our indicators among the different treatments.

Furthermore, to determine whether agents demonstrated myopic or optimal behavior (or

feedback behavior in the game), we use the empirical strategy presented in this section. For

ease of understanding, the empirical strategy for the sole-agent setting is first explained in

detail.

To identify which theoretical extraction pattern an agent’s extraction comes closest to, a

widely used statistic is the mean squared deviations (MSD, e.g., Herr et al. 1997). The mini-

mum MSD gives the agent type. The MSDs are calculated for each agent such that:
11Notice that while discounting allows us to implement the continuation payoff here, it has limited impact

on the payoffs that are accumulated within the 10 minutes of the game. Given our parametrization, the optimal
extraction rate when R=20 is equal to 0.56. At t=18 (first instant/period that R=20 with the optimal extraction
path) it generates a payoff of 1.02 ECU while at t=60 (the last instant/period) it generates a payoff of 0.82 ECU,
a gap of only 20%.
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MSDth
my =

∑T
t=1

(
w(t)− w(t)thmy

)2
T

MSDth
op =

∑T
t=1

(
w(t)− w(t)thop

)2
T

(5)

where w(t) is the extraction of the agent at time t, w(t)thmy is the constrained myopic

theoretical extraction at time t, and w(t)thop is the optimal theoretical extraction at time t.

Agents can be classified as myopic or optimal, depending onwhichMSD,MSDth
my orMSDth

op

is the smallest. Comparing extractions of the agent to the theoretical constrained myopic

and optimal extraction in this way is imperfect since an agent can make mistakes and begin

adopting an optimal path after, say, 30 seconds, which will not be captured correctly by the

method.

For instance, if an agent under-extracts for the first 30 seconds, the optimal extraction at

time 31, given the observed groundwater levelH (called conditional, w(31)cop) will be greater

than the optimal extraction at time 31 if the agent behaved perfectly optimally from time 0

(w(31)thop). Thus, in order to correctly identify an agent’s behavior type - myopic or optimal -

we compare observed extraction to conditional extractions throughout the remainder of the

paper. Conditional extractions are computed with respect to the t − 1 actual groundwater

level. Thus, we compute the following MSDs :

MSDc
my =

∑T
t=1

(
w(t)− w(t)cmy

)2
T

MSDc
op =

∑T
t=1

(
w(t)− w(t)cop

)2
T

,

(6)

wherew(t)cmy is the conditional constrainedmyopic extraction of the agent at each second

(every ten seconds for discrete time), and w(t)cop is the conditional optimal extraction of the

agent. Agents are classified as myopic or optimal depending on which MSD, MSDc
my or

MSDc
op is the smallest.

The drawback of a classification of agents based on the MSD alone is that an agent will
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always be classified, even if he doesn’t at all follow the theoretical patterns studied.12 To

overcome this flaw, we add a second criteria based on a regression analysis. Supposing that

for a given agent, we have:

MSDc
my < MSDc

op, or

MSDc
my > MSDc

op,

(7)

then we run the following regression:

w(t) = β0 + β1w(t)
c
my + εt, or

w(t) = β0 + β1w(t)
c
op + εt.

(8)

We consider an agent to be significantly myopic (or optimal) if β1 is positive and signifi-

cantly different from 0. This allows us to categorize the agents as: myopic, optimal, or unde-

termined.13 Regarding the econometric time series treatments, we implement an augmented

Dickey-Fuller test to detect the presence of unit roots in the series. In case of non-stationarity

of the variables, we run our regressions on a differentiated series. Serial correlation of the

error terms is dealt with using Newey-West standard errors, and sensitivity tests using 1, 5,

and 10 lags are implemented.14

We follow exactly the same strategy to analyze experimental data for the game, but this

time for three instead of two predicted behaviors, namely: myopic, optimal and feedback.

Note that the continuous time framework provides us with 600 decisions per agent, while
12To take a concrete example, instead of comparing the agent’s extractionw(t) to the conditional constrained

myopic and conditional optimal extraction, w(t)cmy and w(t)cop, we could compare it to the temperature in
Moscow and Istanbul from day 1 to day 600, and we would find that our agent’s extraction is closer to the
temperature either in Moscow or in Istanbul, because one MSD will always be smaller than the other, even if
completely irrelevant.

13An alternative is proposed by Suter et al. (2012), who run a similar regression (without the constant term)
and consider that an agent follows a given behavior if the coefficient is not significantly different from 1. A
natural way to do this is to implement a Wald test with:{

H0 : β1 = 1
HA : β1 ̸= 1,

and W =
(β̂1 − 1)2

var(β̂1)
→ F(1,300)

In this case, a very imprecisely estimated coefficient β1 (very large var(β̂1)) will lead us to rejectHA and classify
the agent as myopic or optimal, although he follows neither an optimal or myopic path. This is why we propose
the aforementioned alternative rule for classification.

14We present regression results using 1 lags. Results using 5 and 10 lags are available upon request.
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the discrete time framework provides us with only 60. This greatly impacts our empirical

strategy as β-coefficients would have more chances to be significant in continuous time - a

greater number of observations leading to a lower minimum effect size. To avoid this issue,

we keep only one observation every ten seconds when running the regressions in continuous

time.

Finally, in the game the classification is made at the group level. At the group level it is

quite straightforward to calculate the conditional theoretical extraction at each moment in

time; it would be nearly impossible at the individual level. The optimal extraction level to

maximize at each moment of time at the group level is unique, while at the individual level it

depends on the extraction of the other player. Dividing the optimal group extraction by two

would amount to assuming that the other player plays exactly optimally aswell. Furthermore,

even if we tried to classify one player to define the optimal or myopic path for the other group

player, the question of which player in the group to classify first would remain. Finally,

what matters for the sustainability of the common resource is the total extraction, i.e., what

happens at the group level.

5 Main results

Figure 3 presents an overview of our results. We plotted the mean resource by treatment

along with the 95% confidence interval around the estimated mean. It seems we have close

average resource levels in the two time treatments in the control, but different ones in the

game. Also, the average resource level increases in the control and decreases in the game.
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Figure 3: Evolution of mean resource level by treatment

In the rest of the section we take a closer look at what happens within each treatment. We

first compare the agents in the control setting. Second, we compare the average behaviors in

the control and in the game. Third, we thoroughly study behaviors in the game. Note that

through the rest of the paper, the term ‘agents’ is used to refer to subjects in the control, the

term ‘players’ to subjects in the game, and the term ‘groups’ to groups of two subjects that

were paired in the game.

5.1 Analysis of the Optimal Control

Table 2 compares continuous and discrete time over various indicators. The average resource

level is not significantly different between the two treatments. About 40% of the agents reach

a resource level greater than 20 in each treatment (the optimal steady state resource level) and

at approximately the same time. Only three agents in each treatment end up with a resource

level below ten. Finally, the average extraction level is around 0.50 in both treatments and,
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perhaps more surprisingly, the number of times the agents change their extraction level is not

significantly different between the continuous and discrete time treatments, while in theory

they had the possibility to change it 60 times in discrete time and 600 times in continuous

time.



Table 2: Continuous versus discrete time in the control

Average agent’s resource level Mann-Whitney test

Mean S.D. N Z-stat Exact prob

Discrete time 17.572 2.639 98 -0.98 0.328

Continuous time 17.144 3.297 102 - -

Agents reaching R=20 Fisher exact test

Yes No N Odds ratio Exact prob

Discrete time 39 59 98 0.983 0.535

Continuous time 41 61 102 - -

Time agents reach R=20 Mann-Whitney test

Mean S.D. N Z-stat Exact prob

Discrete time 23.795 13.546 39 -0.563 0.577

Continuous time 23.115 15.460 41 - -

Agents ending up with R<10 Fisher exact test

Yes No N Odds ratio Exact prob

Discrete time 3 95 98 1.042 0.640

Continuous time 3 99 102 - -

Average agents extraction Mann-Whitney test

Mean S.D. N Z-stat Exact prob

Discrete time 0.497 0.064 98 0.992 0.322

Continuous time 0.501 0.075 102 - -

Number of agents extraction change Mann-Whitney test

Mean S.D. N Z-stat Exact prob

Discrete time 34.122 17.603 98 -0.304 0.762

Continuous time 44.902 47.515 102 - -

Agents with smaller MSDc
my thanMSDc

op Fisher exact test

Yes No N Odds ratio Exact prob

Discrete time 6 92 98 0.446 0.087

Continuous time 13 89 102 - -

The fact that we observe a substantial share of agents reaching a resource level above 20

and very few ending up with a resource level below ten is consistent with the fact that the
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average resource level in the control observed in Figure 3 is closer to the optimal than to the

myopic path. This is confirmed by the MSDs map Figure 4, which presents the location of

agents with respect to theMSDc
op on the y axis and theMSDc

my on the x axis. Agents located

above the bisector can be considered as more myopic (MSDc
op > MSDc

my) and vice versa.

Very few agents have a greater MSDc
op than the MSDc

my, i.e., 19 over 200. This proportion

is slightly lower in discrete than in continuous time (see the last test in Table 2).

Figure 4: Map of conditional MSDs in the control

As we explained in Section 4, using the MSD alone is unsatisfactory, because we want to

know if agents are significantly optimal or myopic. Applying the regression filter presented

in the previous section leads us to find that in discrete time 33 agents can be classified as sig-

nificantly optimal and one as myopic, and 41 can be considered optimal and four as myopic

in continuous time. Proportions of optimal and myopic agents are not significantly different

between the two treatments. During the last period, optimal agents have an average resource

level of 19.104 (theoretical one= 20), significantly larger than the myopic agents, who end up
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with an average resource level of 8.891 (theoretical one = 5.09).15 As expected, average pay-

offs are not significantly different between the two treatments (see Table 3). The proportion

of optimal agents seems comparable to the experiment of Tasneem et al. (2019) who found

that extraction behavior results in a steady state of the resource 56% of the time, with the

mode of the distribution being optimal.16 Also, the average efficiency ratio (individual payoff

over the optimal payoff, here 220 ECUs) is 83% in Tasneem et al. (2019)’s study while it is 88%

in ours. Suter et al. (2012) found a slightly higher efficiency ratio in the optimal control in a

discrete time experiment, about 95%.

Table 3: Classification, final resource level, and payoffs in the
control

Proportion of optimal agents Fisher exact test

Yes No N Odds ratio Exact prob

Discrete time 33 65 98 0.755 0.209

Continuous time 41 61 102 - -

Resource level at the last period: Mean = 19.104, S.D. = 1.827

Proportion of myopic agents Fisher exact test

Yes No N Odds ratio Exact prob

Discrete time 1 97 98 0.253 0.198

Continuous time 4 98 102 - -

Resource level at the last period: Mean = 8.891, S.D. = 3.165

Average agent payoffs Mann-Whitney test

Mean S.D. N z-stat Exact prob

Discrete time 191.370 38.497 98 -0.755 0.452

Continuous time 196.605 16.878 102 - -

To summarize, in a control setting, both continuous and discrete times lead to similar

choices by participants. Having made this first observation we now study how the nature of
15By "theoretical one", we mean the resource level at the end of the experimental stage if an agent played

perfectly optimally or myopically during the whole experimental stage.
16Amore precise comparison of the results is not possible since the authors use a different empirical strategy.



time affects the nature of strategic interactions between players.

5.2 The Control Versus the Game

The first observation that can be made by looking at Figure 3 is that the average level of

the resource is lower in the game than in the control and decreases over time, whereas the

resource level was increasing over time in the control. Mann-Whitney tests reported in Table

4 confirm that, compared to the control, the average resource level in the game is significantly

lower and the average extraction level significantly higher. This is consistent with what one

would expect if agents had unlimited rationality, since they would play optimal in the control

and feedback in the game. In addition, we observe that agents change their extraction levels

more often in the game than in the control. Tables M.1 and M.2 in the Online Appendix

complete this analysis by proposing a comparison of the control and the game in discrete

and continuous time separately. Results are fully aligned with those presented in Table 4. It

is nonetheless worth noting that the number of extraction changes increases by only 56% in

discrete time while the number of extraction changes triples in continuous time.



Table 4: Control versus game

Agent and group average resource levels Mann-Whitney test

Mean S.D. N Z-stat Exact prob

Control 17.354 2.993 200 9.720 0.000

Game 10.653 5.406 95 - -

Agent and group average extraction levels Mann-Whitney test

Mean S.D. N Z-stat Exact prob

Control 0.499 0.069 200 -10.025 0.000

Game 0.652 0.012 95 - -

Number of agents and groups extraction changes Mann-Whitney test

Mean S.D. N Z-stat Exact prob

Control 39.62 36.415 200 -5.541 0.000

Game 60.658 56.041 190 - -

Agents and groups with smaller MSDc
my thanMSDc

op Fisher exact test

Yes No N Odds ratio Exact prob

Control 19 181 200 0.207 0.000

Game 32 63 95 - -

Finally, theMSDsmap reported in Figure 5 shows that, compared to Figure 4, significantly

more agents have a smallerMSDc
my thanMSDc

op in the game than in the control (32 groups

over 95, see Fisher test in Table 4).
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Figure 5: Map of conditional group MSDs in the game

5.3 Analysis of Behaviors in the Game

Table 5 compares the decisions in discrete and continuous time in the game over various

indicators. The average resource level is significantly lower in discrete time and the average

extraction significantly higher. Very few groups reach a resource level greater than 20 –

only five in each treatment, and at approximately the same time. The big difference with the

control is that now a large number of groups end up with a resource level below ten and in a

significantly larger proportion in discrete time. Introducing strategic interaction thus leads to

an over-exploitation of the resource, as the theory predicted, but to a greater extent in discrete

time, suggesting that continuous time allows for better cooperation between players. Finally,

the number of times the agents change their extraction level is now significantly greater in

continuous time.

Continuous time offers more opportunities to change one’s extraction level. This pos-

sibility can be used to test the reaction of the other players and perhaps to try to induce a
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change in their behavior. For example, one player can temporarily lower his extraction level

to see if the other player will do the same. This type of test is less expensive in continuous

time than in discrete time. Indeed, in discrete time, the player can only make one decision

per period and this corresponds to one instant, whereas in continuous time, the player can

make one decision per second and this corresponds to only 0.1 of an instant. In other words,

the opportunity cost of testing a strategy, in terms of payoff, is much lower in continuous

time, because only a fraction of the payoff is given up during the temporary test strategy.

This mechanism through which continuous time can foster cooperation was also advanced

by Friedman and Oprea (2012), Oprea et al. (2014) and Leng et al. (2018). Oprea et al. (2014)

calls this "pulse behavior" and sees it as a non-verbal form of communication. It can be used

as a way to incite the other player to decrease extraction up to the optimal level or to retaliate

if the other players increase their extraction level too much.



Table 5: Continuous versus discrete time in the game

Average group resource Mann-Whitney test

Mean S.D. N Z-stat Exact prob

Discrete time 9.06 5.884 46 2.867 0.004

Continuous time 12.149 4.477 49 - -

Groups reaching R=20 Fisher exact test

Yes No N Odds ratio Exact prob

Discrete time 5 41 46 1.073 0.589

Continuous time 5 44 49 - -

Time required for groups to reach 20 Mann-Whitney test

Mean S.D. N Z-stat Exact prob

Discrete time 27.8 12.911 5 0.314 0.314

Continuous time 32.46 14.622 5 - -

Groups ending up with R<10 Fisher exact test

Yes No N Odds ratio Exact prob

Discrete time 31 15 46 3.89 0.001

Continuous time 17 32 49 - -

Average players extraction Mann-Whitney test

Mean S.D. N Z-stat Exact prob

Discrete time 0.345 0.129 92 -2.352 0.019

Continuous time 0.308 0.114 98 - -

Number of extraction changes by players Mann-Whitney test

Mean S.D. N Z-stat Exact prob

Discrete time 40.674 16.202 92 4.203 0.000

Continuous time 79.418 71.68 98 - -

Applying the regression filter presented in Section 4 leads us to find that 14 groups (28

players) can be classified as significantly myopic in discrete time versus three groups in con-

tinuous time, making the proportion of myopic behavior significantly higher in discrete time.

Six groups are classified as feedback in the two treatments, and we find only two optimal in

discrete time and one in continuous time. The share of optimal and feedback agents are not
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significantly different between discrete and continuous time. Note that the presence of op-

timal groups is consistent with Battaglini et al. (2016)’s argument that infinite horizon can

provide strategic opportunities to endogenously support cooperative outcomes. The resource

level at the last period ranks as expected, at 20.737 for the optimal groups (theoretical level

= 20), 7.186 for the feedback ones (theoretical level = 6.58), and 2.369 for the myopic ones

(theoretical level = 0.04).

As a result, we observe significantly higher average individual payoffs in continuous time

than in discrete time. Efficiency ratios in the game are lower than in the control, and lower

in discrete time (48%) than in continuous time (64%).17

17The maximum group payoff is 240 ECUs, so we compute the individual efficiency ratio by halving this
value. Nevertheless, it is possible to get "more than your own share". Obviously, if one of the two members of
the pair extracts a very small amount of groundwater, the other member can obtain more than 50% of the total
maximum payoff.



Table 6: Analysis of types in the game

Proportion of optimal groups Fisher exact test

Yes No N Odds ratio Exact prob

Discrete time 2 44 46 2.182 0.476

Continuous time 1 48 49 - -

Resource level at the last period: Mean = 20.737, S.D. = 0.654

Proportion of feedback groups Fisher exact test

Yes No N Odds ratio Exact prob

Discrete time 6 40 46 1.075 0.575

Continuous time 6 43 49 - -

Resource level at the last period: Mean = 7.186, S.D. = 2.848

Proportion of myopic groups Fisher exact test

Yes No N Odds ratio Exact prob

Discrete time 14 32 46 6.708 0.002

Continuous time 3 46 49 - -

Resource level at the last period: Mean = 2.369, S.D. = 1.551

Average individual payoffs Mann-Whitney test

Mean S.D. N Z-stat Exact prob

Discrete time 57.987 46.233 92 3.184 0.002

Continuous time 76.806 41.897 98 - -

Finally, Figure 6 provides an overview of the results of the classification by type by plot-

ting the cumulative density functions (c.d.f.) of the resource levels. The distribution of the

observed resource levels rank as expected, with the myopic groups experiencing the lowest

resource levels, followed by the feedback and optimal groups. The rest of the groups, labeled

the "undetermined", display a high level of heterogeneity, that will be partially analyzed in

the next Section.
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Figure 6: Cumulative density functions of the resource levels by type

6 Further results

In this section, we examine two possible explanations for the the fact that there is better

sustainability of the resource in continuous time: the fact that continuous time induces co-

operation at a lower opportunity cost and that it allows for quicker decisions. Next, we try

to classify groups that are not close to the theoretical paths defined in Section 2, by looking

at the evolution of the resource, and at the behavior of players at the end of the game.

6.1 Inducing cooperation at a lower opportunity cost

Our results show that continuous time fosters cooperation and allows for more sustainable

management of the resource than does discrete time. Our intuition is that continuous time

offers the possibility to induce cooperation at a lower opportunity cost by lessening one’s

own extraction to incite the other player to do the same or to retaliate against them for
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over-extracting. If this mechanism actually applies, the threat of immediate sanction should

make extraction patterns more stable and extraction levels should be more homogeneous,

resulting in a more even distribution of payoffs within groups. To test this reasoning, we

compute several statistics.

First, for each player we compute the absolute value of the difference of extraction be-

tween two consecutive instants (|Et − Et−1|) and calculate the average value over time by

treatment, as did Oprea et al. (2014).18 As shown by Figures 7.a and 7.b, continuous time

leads to greater stability than does discrete time, and, not surprisingly, playing alone leads to

greater stability than playing with someone else.19

(a) Evolution through time in the game (b) Cumulative density functions

Figure 7: Variations in players’ extraction levels (w)

Second, we compute the absolute value of the difference in extraction levels between two

players (A and B) of the same group at each point in time (|EtA − EtB|). We then take the

average value over each period of time, by treatment.20

Figure 8.a shows that the average difference in extraction inside groups is almost always

greater in discrete time, which is confirmed by the c.d.f. displayed in Figure 8.b.21 Also,

although extraction level differences decrease over the course of the game, it remains an
18To make continuous and discrete time comparable, we take the difference between two decisions separated

by ten seconds in continuous time.
19In Figure 7.a we also see an increase in stability over time for both treatments. Note, however, that the

greater instability in the beginning of the play time can be explained by the game setting. Indeed, players need
first to either let the resource grow or deplete it before reaching a steady state, depending on their preferred
equilibrium.

20To make continuous and discrete time comparable, we use only one decision every ten seconds in contin-
uous time.

21The c.d.f. are statistically different according to the Kolmogorov–Smirnov test (p-value < 0.05).
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issue until the end. Indeed, at the last instant the average difference in extraction levels still

represents two-thirds of the average player’s extraction.22

(a) Evolution through time (b) Cumulative density functions

Figure 8: Difference of extraction levels (w) within groups

To see whether or not within-group differences in extraction levels results in more un-

equal distribution of payoffs, we compute the Lorenz curves of individual final payoffs in the

game. We can see in Figure 9.a that final payoffs are more unequally distributed in discrete

time. More precisely, 50% of the poorest players share 28% of the payoffs in continuous time

while they share 17% in discrete time. The Lorenz curves in Figure 9.a are easily readable

but here unequal distribution can come from between-group inequalities and within-group

inequalities. To take a closer look at within-group inequalities we compute the difference

between individual final payoffs within a group and plot the corresponding Lorenz curves

(Figure 9.b). Payoff distribution is more unequal in the discrete time setting. If within-group

payoff differences were the same for all groups, the Lorenz curves would be confounded with

the diagonal. Here we see that large payoff-differences represent a greater proportion of total

payoff differences in discrete time than in continuous time, as the Lorenz curve for discrete

time is further from the diagonal than the Lorenz curve for continuous time.23

22The average difference in extraction between players of the same group at the end of the game equals 0.18,
while the average player’s extraction level equals 0.27.

23Concentration (Gini) indexes are significantly different whether we use the standard, Erreygers orWagstaff
indexes (O’Donnell et al. 2016).
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(a) Individual final payoffs (b) Within-group difference in final payoffs

Figure 9: Lorenz curves

To summarize, even if we cannot prove themechanism at play, the fact that extractions are

more stable and that within-group differences in final payoffs are lower in continuous time is

consistent with the fact that continuous time offers a less costly opportunity to influence the

other player’s decisions. As a result, continuous time seems to reduce inequality in payoff

distribution, in addition to favoring more sustainable resource exploitation.

6.2 Spontaneity of decisions: intuition versus reflection

In this subsection, we examine a second potential explanation for the greater cooperation

in continuous time, based on the widely cited result of Rand et al. (2012). They find that

in public good games and prisoner’s dilemma experiments, faster decisions are associated

with greater prosociality. The explanation advanced in the article is that quick decisions

are based on intuition and slower ones on reflection. Rand et al. (2012) argue that as we

develop intuition in the context of daily life, where cooperation is typically advantageous

because many important interactions are repeated and one’s reputation is often at stake,

our automatic first response is to be cooperative. Reflection can overcome this cooperative

impulse and instead adapt to the unusual situation created in laboratory experiments, where

cooperation is not advantageous.

To capture the role of intuition, they use one-shot games or only the first round of re-

peated games. In our case, we study games in which players can make from 60 to 600 deci-
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sions within 10 minutes. As such, they have plenty of time to base their action on reflection

rather than intuition. Nevertheless, one could argue that faster decisions at the beginning of

the experimental stage could somehow send agents on a cooperative path. We deem unlikely

that this phenomenon will play a role in our setting, as the initial extraction level has to be

set (with no time limit) by the players for the 10-minute experiment to begin. Yet if intuitive

reasoning plays a role in our setting, it might manifest with the first change in extraction

(once the 10-minute experiment has begun), which would occur sooner in the continuous

time setting. We computed several statistics to challenge these ideas.

First, the difference between the initial extractions in discrete versus continuous time is

non-significant. Second, on average, players change their extraction level for the first time

after 29 seconds in discrete time and after 24 seconds in continuous time, but that differ-

ence is non-significantly different from 0. Finally, the difference in extraction levels after the

first change in extraction in discrete versus continuous time is also non-significant (Detailed

results can be found in Table M.3 in the Online Appendix).

To summarize, the statistics examined do not encourage us to believe that Rand et al.

(2012) result is a strong driver of the better sustainability of the resource in continuous time.

This might be due to the nature of the experiment, whose 10 minutes allow for reflection,

more than intuition, to drive decisions.

6.3 Heuristic analysis of undetermined group profiles

The optimal, myopic and feedback behaviors allow us to classify 34% of the groups in the

game. We graphically explored the resource patterns of the remaining undetermined groups

in search for some typical behaviors. This led us to observe three additional categories of

players. In the first category, which we call the "status quo", players maintain the resource

around the initial level of 15. We find eight groups in discrete time and 11 in continuous time

that maintain the resource between the levels of 13 and 17 during the whole experiment.

A second category, which we call the "convergent", puts together groups that end up with a

resource around the level of 20, whichwould lead to optimal behavior, but these groups do not

exactly follow the optimal path or reach the optimal resource level during the initial periods of
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the experimental stage. We find three groups in discrete time and five in continuous time that

end upwith a resource level between 18 and 22. Finally, some groups deplete the resource and

adopt a behavior that falls between myopic and feedback. We find 12 groups in discrete time

and 10 in continuous time that end up with a resource level below 10 without being classified

as myopic or feedback. With these next categories added to the three theoretical behaviors

studied, we are thus able to classify 85% of the groups in the game. In the six categories

proposed, the proportion of each categories is significantly different between continuous

and discrete time only for the myopic behavior (see full results in Table 6 in Section 5.3 and

Table M.4 in the Online Appendix).

6.4 Behavior at the end of the game

Given the way wemodel the infinite horizon, one could think the last instant decisions would

be greatly informative about players’ behavior and equilibrium selection in the multi-players

treatments. Graphs previously displayed and the ones presented in the Online Appendix do

not support this conjecture. The average resource level remains stable (Figure 3). Final gains

and resource levels are aligned with expectations regarding players’ profile over the course

of the game, with optimal players earning the highest payoffs, followed by feedback and my-

opic players (Figures S.1 and S.2 in the Online Appendix). Regarding extraction levels, we

do not observe specific changes during the final instants/periods. The percentage of subjects

changing their extraction level during the last period is not greater than during the rest of the

playtime (Figure S.3 in the Online Appendix), nor is the amplitude of the variation in extrac-

tion levels (Figures 7 and 8). Finally, the analysis of the last instant’s/period’s extraction level

by group of subjects is not particularly informative (see Figures S.4 in the Online Appendix).

We observe that 10 groups end up with an extraction level greater than the natural recharge

R (implying a depletion of the resource in the long run) in discrete time and 10 in continuous

time. Among these groups, 5 are classified as myopic, 1 as feedback and 14 as undetermined

(see Tables M.5 in the Online Appendix). It seems that equilibrium selection is determined

over the whole course of the game, as many decisions influence the resource level, and that

the last instants/periods are not specifically informative about subjects’ behaviors. This sug-
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gests that the use of continuation payoffs to simulate the infinite horizon works well in our

context.

7 Conclusion

In this paper, we intended to determine the impact of the nature of time, discrete or con-

tinuous, on the behavior of agents in the context of a dynamic CPR game. To this end, we

considered a simple linear quadratic model in which agents exploit a renewable resource

over an infinite time horizon. Starting from a differential game, we proposed a discretization

such that the equilibrium paths for the myopic, feedback and optimal behaviors are almost

identical in discrete and continuous time. We then took on the challenge of implementing

continuous time and infinite horizon in the lab, allowing participants to make extraction de-

cisions every second, and adding continuation payoffs to cumulative payoffs to simulate an

infinite horizon.

To determine whether the nature of time has an impact on the ability of agents to manage

a resource, we first looked at the situation where the resource is owned by a single agent.

Observations showed no difference between discrete and continuous time, based on a battery

of indicators, including the average level of the resource, the average level of extraction, the

proportion of myopic agents, and the proportion of optimal agents. Furthermore, about 35%

of the subjects could be classified as significantly optimal and the average resource level

increased over time, as is the case with the optimal solution.

In the context of a two-player game, the results were dramatically different. First, unlike

what we observed with a single agent, the average resource level decreased over time, as

is the case with the myopic and feedback equilibrium paths. Furthermore, only 2% of the

groups behaved according to the optimal (cooperative) path. The competitive nature of the

game when multiple players simultaneously extract on the same resource explains the dif-

ficulty in adopting a sustainable path. Second, we observed significant differences between

discrete and continuous time settings. In particular, the discrete time setting led to the ob-

servation of a larger number of agents exhibiting myopic behavior, thus leading to a much
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lower average resource level than that observed in the continuous time setting. The continu-

ous time environment seems to allow for better cooperation within groups and thus greater

resource sustainability. Although our experimental design does not allow us to prove the

exact mechanism at play, our intuition is consistent with Friedman and Oprea (2012), Oprea

et al. (2014) or Leng et al. (2018): compared to discrete time, continuous time allows for rapid

and adaptive strategic choices that promote the emergence of cooperation, either by inducing

a player to attempt to influence the other or to retaliate against the other player’s tendency

to over-exploit the resource. The observed greater stability of continuous-time extraction, as

well as the greater homogeneity within groups in this environment, is consistent with this

explanatory mechanism.

We intentionally used a very simple design, as to our knowledge we are the first paper

to test the impact of the nature of time on the nature of interactions in dynamic CPR games.

Consequently, many extensions are possible. We hope our work can offer a basis for future

works to examine, for instance, whether continuous time can still foster cooperation when

increasing the group size, as the continuous time frame by itself was able to induce cooper-

ation compared to the discrete time frame in a two-person prisoner’s dilemma in Friedman

and Oprea (2012), but not in a five-person public good game as in Oprea et al. (2014) or a

six-person minimum effort game as in Leng et al. (2018). Also, many refinements of the un-

derlying theoretical model and of the game setting are possible. In particular, the role of

major mechanisms such as rewards, punishments and communication settings in the contin-

uous versus the discrete time frame remain to be examined.
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Appendices

A The Discretization of the Continuous Time Model

This section presents the procedure adopted to discretize the continuous time model. Let’s

consider the following continuous time model:

max
w(t)

∫ ∞

0

e−rtf(w(t), H(t))dt (9)

s.t



Ḣ(t) = R− αw(t)

H(0) = H0 ≥ 0, H0 given

H(t) ≥ 0

w(t) ≥ 0

For the discretization of the model above, let’s consider τ as the discretization step and n

as a period. Time is discretized into intervals of length τ , such that the differential equation

and the payoff are approximated in each interval nτ , (n+1)τ . Thus, the discretization of the

objective function gives:

∫ (n+1)τ

nτ

e−rtf(w(t), H(t))dt =

[
−e−rt

r
f(w(n), H(n))

](n+1)τ

nτ

= −e−r(n+1)τ

r
f(w(n), H(n))−

(
−e−rnτ

r

)
f(w(n), H(n))

=
e−rnτ

r

(
−e−rτf(w(n), H(n))

)
+

e−rnτ

r
f(w(n), H(n))

= f(w(n), H(n))
e−rnτ

r

(
−e−rτ + 1

)
∫ (n+1)τ

nτ

e−rtf(w(t), H(t))dt = f(w(n), H(n))e−rnτ

(
1− e−rτ

r

)

Using Taylor’s first order limited development of e−rτ gives :

e−rτ ≃ 1− rτ
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Thus, the objective function becomes:

∫ (n+1)τ

nτ

e−rtf(w(t), H(t))dt ≃ f(w(n), H(n))(1− rτ)n
(
1− (1− rτ)

r

)
= f(w(n), H(n))(1− rτ)n

(
1− 1 + rτ

r

)
∫ (n+1)τ

nτ

e−rtf(w(t), H(t))dt = f(w(n), H(n))(1− rτ)nτ

The discretization of the dynamics gives:

H(n+ 1) = H(n) + (R− αw(n)) τ

The discrete time problem can be defined as:

max
w(n)

∞∑
n=0

(1− rτ)n
[
aw(n)− b

2
w(n)2 −max (0, c0 − c1H(n))w(n)

]
τ (10)

s.t



H(n+ 1) = H(n) + τ (R− αw(n))

H(0) = H0 ≥ 0, H0 given

H(n) ≥ 0

w(n) ≥ 0

The discrete time model therefore converges towards the continuous time model when

the discretization step τ tends toward zero.

In order to see the degree of the approximations used in the experience, with the parameters

chosen in the model, Figure A.1 shows the feedback trajectory in continuous time and in the

discretizations (τ = 0.1 and τ = 1).
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Figure A.1: Feedback equilibrum in continuous and discret time
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B Figures from Experimental Instructions

Figure B.1: Total revenue from extraction

Figure B.2: Unitary cost of extraction
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Figure B.3: Decision-making screen shot. We follow a hypothetical subject who chooses his
extraction rate at random
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