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Abstract: To translate metabolic networks into dynamic models, the Structural Kinetic Modelling
framework (SKM) assumes a given reference state and replaces the reaction elasticities in this state by
random numbers. A new variant, called Structural Thermokinetic Modelling (STM), accounts for
reversible reactions and thermodynamics. STM relies on a dependence schema in which some basic
variables are sampled, fitted to data, or optimised, while all other variables can be easily computed.
Correlated elasticities follow from enzyme saturation values and thermodynamic forces, which are
physically independent. Probability distributions in the dependence schema define a model ensemble,
which allows for probabilistic predictions even if data are scarce. STM highlights the importance of
variabilities, dependencies, and covariances of biological variables. By varying network structure,
fluxes, thermodynamic forces, regulation, or types of rate laws, the effects of these model features can
be assessed. By choosing the basic variables, metabolic networks can be converted into kinetic models
with consistent reversible rate laws. Metabolic control coefficients obtained from these models can tell
us about metabolic dynamics, including responses and optimal adaptations to perturbations, enzyme
synergies and metabolite correlations, as well as metabolic fluctuations arising from chemical noise.
To showcase STM, I study metabolic control, metabolic fluctuations, and enzyme synergies, and how
they are shaped by thermodynamic forces. Considering thermodynamics can improve predictions of
flux control, enzyme synergies, correlated flux and metabolite variations, and the emergence and
propagation of metabolic noise.

Keywords: metabolic model; structural kinetic modelling; dependence schema; reaction elasticity;
model ensemble

1. Introduction

In this article, I describe a modelling framework called Structural Thermokinetic
Modelling (SKM, [1,2]) in which metabolic models are constructed around given metabolic
states. STM extends the existing Structural Kinetic Modelling paradigm (SKM) to account
for reversible reactions and thermodynamic forces. This makes it a good tool for assessing
the effects of these forces on model dynamics. Furthermore, for metabolic systems with
unknown parameters, STM provides a convenient and flexible framework for model fitting,
ensemble modelling, and optimisation that keeps track of uncertainties while imposing
constraints set be the modeller.

Metabolic fluxes in cells are shaped by network structure, reaction thermodynamics,
enzymatic rate laws, and enzyme regulation. Flux, metabolite, and protein data provide a
detailed picture of metabolism, and computational models can help us answer important
biological questions. For example, how do enzyme-inhibiting drugs, enzyme overex-
pression, or changes in nutrient levels affect a cell’s metabolic state? Will local enzyme
perturbations have long-range effects on the fluxes or are they compensated by changes
of nearby metabolite concentrations [3]? To address such questions, metabolic networks,
comprising thousands of reactions, have been built [4,5], and methods such as Flux Balance
Analysis (FBA) [6,7], MoMA [8], the principle of minimal fluxes [9], or ROOM [10] predict
plausible flux distributions from heuristic assumptions [11] or sampling [12]. Thermo-
dynamic flux analysis [13–17] relates fluxes to metabolite concentrations via equilibrium
constants and thermodynamic forces. However, it does not describe how metabolic fluxes
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arise mechanistically. How can we predict the effects of enzyme concentrations, external
metabolite concentrations, or parameters like temperature or the dilution rate on fluxes? If
metabolite concentrations were constant, reaction fluxes would be directly proportional
to enzyme concentrations. However, this is not the case in reality: the interplay between
fluxes, concentrations, and enzyme activities leads to stationary fluxes and metabolite
concentrations which depend on enzyme levels in complicated ways. To understand how
enzyme inhibition changes metabolic fluxes, we need to know its effects on metabolite
concentrations. Flux analysis cannot describe this because it does not consider rate laws,
enzyme saturation, and regulation by effector molecules. Kinetic models would tell us how
enzyme perturbations change the fluxes and metabolite concentrations in steady state, but
kinetic rate laws and rate constants are largely unknown, especially in less well-studied
organisms.

Close to a steady state, metabolic dynamics can be approximated by linear models.
Metabolic Control Theory [18–20] (MCT, Figure 1) considers perturbations such as enzyme
inhibitions, quantifies their effect on reaction rates, and infers network-wide steady state
changes. MCT uses two types of sensitivity coefficients: reaction elasticities describe how
reaction rates change with changing metabolite concentrations: they concern immediate
effects on a fast time scale and depend only on the rate law of the perturbed reaction.
Response and control coefficients, in contrast, describe long-term, wide-range effects of
perturbations on steady-state fluxes and concentrations (see Supplementary Text S5.2). MCT
has various applications. Using response coefficients we can assess the effects of enzyme
inhibition, differential enzyme expression, varying external metabolite concentrations,
enzyme inhibition by drugs, or genetic modifications. A Taylor expansion based on
response coefficients can also describe complicated perturbations (e.g., activity changes of
all enzymes), optimal enzyme allocation in pathways [21], and parameter uncertainty or
variability [22]. Second-order response coefficients [23], describing synergy effects, play a
role in predicting optimal differential expression [24]. In systems with periodic [25,26] or
random [22] parameter fluctuations, the variations of fluxes and metabolite concentrations
depend on spectral response coefficients. Importantly, all these phenomena can be described
without a full kinetic model: linearised models with the same network structure and
reaction elasticities as in the original model suffice to describe the dynamics of small
fluctuations caused by static or periodic parameter perturbations or chemical noise, and
powerful theory exists for optimal control and model reduction in such linear models [27].
Thus, all we need to know are network structure and elasticities. However, if only the
network structure is known, how can we obtain elasticities from few or no other data?

Structural Kinetic Modelling, the ORACLE framework [28–32], and similar meth-
ods [33–36] replace reaction elasticities with random numbers. Reaction rates increase
with the substrate concentrations and decrease with the product concentrations. This is
encoded in the signs of reaction elasticities: they are positive for substrates and activators,
and negative for products and inhibitors (where “substrate” and “product” refer to the
flux directions). Assuming irreversible rate laws, SKM equates the scaled elasticities to
saturation values, numbers between 0 and 1 that describe the fraction of catalysing en-
zyme molecules that are bound, on average, to metabolites. In SKM, saturation values are
treated as free variables and sampled from random distributions. Possible ranges can be
derived from rate laws, e.g., a range ]0, 1[ for substrate elasticities in mass-action kinetics.
The resulting elasticity matrix is sparse, reflecting network structure and regulation arrows.
Each row describes one reaction: substrates and activators lead to positive matrix ele-
ments, while products and inhibitors lead to negative elements. To sample the elasticities,
each non-zero matrix element is replaced by a random number with the required sign.
A sampled elasticity matrix defines a linearised kinetic model, whose Jacobian matrix
determines the stability of the reference state as well as the dynamic behaviour around
it. Given metabolite concentrations and fluxes, reaction elasticities can be converted into
kinetic constants: hence, instead of sampling elasticities, one may also sample some kinetic
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parameters directly and compute the others [37,38]. Structural kinetic modelling has been
applied to various cell biological questions [39–42].
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Figure 1. Metabolic rate laws and dynamics: elasticities, thermodynamic forces, and metabolic
control. (a) A reaction rate depends on metabolite concentrations as described by a rate law v(e, c).
The slope ∂v/∂c is called reaction elasticity. (b) In strongly driven reactions, with a driving force
θ = ln v+

v−� 1, the net rate is dominated by the forward rate and the product elasticity is almost
zero. In contrast, close to chemical equilibrium (with a driving force θ ≈ 0 and large forward and
backward rates, but a small net rate), the scaled elasticities Êvl

ci = ci
vl

∂vl
∂ci

are large. (c) Metabolic
control coefficients describe how perturbations in single reactions shape steady-state fluxes and
metabolite concentrations across the network. If an enzyme is inhibited or repressed, upstream
metabolites accumulate and downstream metabolites deplete. The details of this response depend on
network structure, flux distribution, and reaction elasticities. Thermodynamic forces shape metabolic
control via the elasticities: a strongly driven reaction, with its low product elasticity, is insensitive to
downstream processes and deprives all downstream enzymes of their flux control.

If elasticities are variable, uncertain, or unknown, what variability or subjective uncer-
tainty can we expect in a model? To explore this, we can study model ensembles, models
in which some model features are given (e.g., network structure and flux distribution),
while others are varied (e.g., metabolite concentrations and kinetic constants). By sam-
pling variable features from random distributions [22,43] and translating the linearised
model back into a full kinetic model, a model ensemble can be created. Given a set of
sampled model instances, we can estimate the probability distributions for an infinitely
large ensemble. In practice, by generating many model instances (with the same network
structure, but different elasticities), one can explore the dynamics allowed by our network
and assess their probabilities. By computing the probabilities for different model outputs
or types of behaviour, we can see how they depend on network structure, fluxes, or rate
laws. If most of the model instances show a certain behaviour, this behaviour can be
attributed to the model features kept fixed, while varying properties may be attributed to
the features sampled. In a model ensemble, we can also screen for models with a given
property—e.g., stable oscillations—and check which model details—such as inhibition
arrows or specific elasticity values—are overabundant in this subensemble, and thus poten-
tially responsible for these features [1]. Finally, different model variants can be compared:
each variant is translated into a model ensemble and significant differences between the
ensembles can be attributed to differences in model structure.

Despite all its merits, ensemble modelling by SKM has one major drawback: it ignores
the fact that elasticities are interdependent due to basic physical laws. The net flux in
chemical reactions results from a difference of one-way rates v+ and v−, the rates of
microscopic reaction events in forward and backward direction. In chemical equilibrium,
the ratio of product and substrate concentrations is given by the equilibrium constant, the
net rate v vanishes, and the two one-way rates must be equal. More generally, their ratio is
given by v+

v− = eθ , where the thermodynamic force θ = −∆rG/RT represents the reaction
Gibbs free energy ∆rG, but dimensionless and with a flipped sign [44]. The quantity A =
−∆rG = RT θ, still dependent on Boltzmann’s gas constant R and absolute temperature T, is
called reaction affinity. The thermodynamic force θ depends on the chemical potentials and
therefore on substrate and product concentrations, and can range between two extremes.
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In equilibrium reactions, the force vanishes, the one-way rates v+ and v− are equal, and the
net flux v vanishes too. Strongly driven reactions, in contrast, have large thermodynamic
forces, a negligible backward flux v−, and a net flux close to the forward flux v+. By
tuning the one-way fluxes (v+ = eθ

eθ−1
v, 1

eθ−1
v− = v), the thermodynamic force shapes

elasticities: if a force is large, the backward rate will be negligible, the net rate does not
depend on the product concentrations, and the product elasticities vanish. Since the forces
themselves are subject to Wegscheider conditions [45] (they must sum to zero over loops in
the network) and elasticities depend on them, elasticities may be interdependent across
the entire network [46]. Ignoring this fact, SKM leads to thermodynamically inconsistent
models [46] (for an example, see Supplementary Section S2.2).

How can we solve this problem? Sampling correlated elasticities—satisfying network-
wide thermodynamic constraints—seems difficult, but it is actually easy for certain rate
laws: using formulae from [46], elasticities can be computed from thermodynamic forces
and saturation values, both of which can be independently varied. Below, I use this to
construct model ensembles: I describe an algorithm for sampling reaction elasticities, while
fully accounting for dependencies due to reversible rate laws. I then show how thermody-
namics and enzyme saturation shape control properties, dynamic time courses, enzyme
synergies, and fluctuations in metabolic systems. Importantly, also enzyme synergies and
other second-order effects are described by closed formulae.

Since it adds thermodynamics to SKM, the framework is called Structural Thermoki-
netic Modelling (STM). A thermodynamically feasible metabolic state serves as a basis
for constructing thermodynamically feasible models. Compared to the original SKM, the
modelling procedure is more formalised: all model variables (including metabolite concen-
trations and fluxes) are determined step by step by inserting known values, sampling, or
optimisation. The workflow follows a schema that describes the model variables, guaran-
tees physical correctness, and can be used to define probability distributions. By separating
network (defining the biological system) and schema (defining types of variables and their
physical dependencies), models can be built flexibly, and their mathematical relationships
are easy to see. This makes STM well-suited for automatic model construction.

Studying thermodynamic forces does not only lead to more realistic models, but can
also reveal important aspects of cell physiology. The forces do not only determine possible
flux directions, but have also effects on reaction rates at given enzyme levels, enzyme
demands at given desired fluxes, the reversibility of reactions, the controllability of fluxes,
the generation of chemical noise, and its propagation across the network. Since all this
affects the proper functioning of cells, the thermodynamic forces in a metabolic network
will not be distributed randomly, but are well adjusted to the flux profile. Thermodynamic
forces should not be too small because this would reduce enzyme efficiency and create ther-
modynamic bottlenecks. Force patterns avoiding such bottlenecks can be computed [47].
In contrast, large driving forces entail a energy high dissipation which reduces the yield on
substrate. However, aside from this trade-off, placing high or low driving forces in specific
reactions in the network can have favourable effects. The first reactions in unbranched
biosynthesis pathways are often strongly forward-driven, which is expected to improve a
pathway’s dynamic control properties [48]. Theoretically, strongly forward driven reactions
can serve as “diodes” for fluctuations: metabolic noise and, possibly, information-carrying
signals pass only in one direction. Moreover, in substrates of thermodynamically un-
favourable reactions, the concentration tends to increase with the flux, which makes these
metabolites suitable flux sensors [49].

While hypotheses about force patterns and their functions are easily made, testing
such claims is difficult because the forces cannot be tuned independently: emerging from
metabolite concentrations, the forces in a network are under many constraints. Moreover,
direct effects of forces may be hard to distinguish from effects of the underlying metabolite
concentrations: for example, a high product level will decrease a reaction rate in two ways:
by decreasing the driving force and by saturating the enzyme. In the rate law, these effects
appear entangled and disentangling them is not easy: if we vary an enzyme concentration
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experimentally, this changes metabolite levels, fluxes, thermodynamic forces, and enzyme
saturation levels at once. STM enables targeted changes in models, for example, varying
the thermodynamic forces while keeping all fluxes unchanged and averaging over many
possible choices of saturation values. By assessing the results, we can study the effects of
thermodynamic forces alone, which casts light on their possible functional roles.

2. Results
2.1. Structural Thermokinetic Modelling

Structural Thermokinetic Modelling (STM) is a framework for building kinetic metabolic
models with reversible rate laws. It is simple, can flexibly integrate available data, yields
consistent models, and can be used for semi-automatic model construction. STM is based
on a dependence schema, describing the dependencies between variables by linear or
nonlinear functions. In contrast to SKM, elasticities are not directly given by saturation
values but depend additionally on thermodynamic forces. Elasticities can be computed
from thermodynamic forces and saturation values for a number of rate laws [46]. The
resulting elasticity matrices reflect network structure, fluxes, thermodynamics, and enzyme
saturation with reactants and regulators. Any choice of basic variables leads to consistent
models and any consistent model can be obtained by a choice of the basic variables. The de-
pendence schema can also be used for error propagation or for tracing small perturbations:
in this case, arrows in the schema correspond to connection matrices, containing deriva-
tives between model variables. STM can also be used to define probability distributions:
a probability distribution of the independent basic variables determines the distributions
and correlations of all variables. In turn, any feasible distributions of model variables can
be defined by distributions of the basic variables.
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Figure 2. Dependence schema and systematic model construction. (a) Dependencies between model
variables (kinetic constants and state variables) in kinetic metabolic models. A dependence schema
describes physical or logical dependencies between variables and can serve as a blueprint for model
construction. For simplicity, the schema is shown in four parts, corresponding to four steps of model
construction. (1) Metabolic state phase. Fluxes and thermodynamic forces must have the same signs.
Predefined flux directions define sign constraints on fluxes and thermodynamic forces, and fluxes and
chemical potentials can be sampled under these constraints. (2) Kinetics phase. Saturation values βM

li ,
βA

li , and βI
li can be chosen independently between 0 and 1. Together with metabolite concentrations

and thermodynamic forces, they determine kinetic constants (kM
li , kA

li , and kI
li) and reaction elasticities.

The elasticities further determine control properties (3) as well as kinetic constants and enzyme
concentrations (4), allowing us to reconstruct the entire kinetic model. In the graphics, some variables
stem from previous steps (types of variables marked by colours). (b) Model construction around a
metabolic reference state. Based on a dependence schema, basic model variables can be freely chosen
or sampled, while derived variables are computed from them.

To construct metabolic states and kinetic models, STM follows the dependence schema
(Figure 2): basic variables are freely chosen, while derived variables are computed from
them. In practice, “choosing” can mean that variables are sampled, chosen manually,
fitted to data, or optimised. During the stepwise model construction, various pieces of
data can be included. In the “metabolic state” phase, we choose thermodynamically
feasible fluxes, metabolite concentrations, and equilibrium constants (which in turn may
depend on Gibbs free energies of formation or independent keq values as basic variables).
The flux distribution must be thermodynamically feasible: flux directions must follow
the thermodynamic forces, which depend on metabolite concentrations and equilibrium
constants. All these variables can be obtained by existing methods for thermodynamic
flux modelling: for example, equilibrium constants can be obtained by eQuilibrator [50]
and feasible metabolite concentrations can be obtained by MDF [47]. In the “kinetics”
phase, saturation values are chosen in the range ]0, 1[ (or possibly in a smaller range or
using a beta distribution) and the elasticity matrix is computed using Equation (1). Each
elasticity matrix corresponds to a consistent kinetic model with reversible rate laws which
can be easily reconstructed. From the elasticity matrix, we further obtain the unscaled
elasticities Evl

ci , the Jacobian matrix and response or control matrices used in Metabolic
Control Theory. Using these matrices, we can study model properties such as dynamic
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stability, oscillations, linearised temporal dynamics, and the propagation of noise. Finally,
without any further sampling, the second-order elasticities can be computed. From the
first and second order elasticities, we obtain second-order response and control coefficients,
which describe synergy effects of double parameter perturbations.

Figure 3 shows how a model of central metabolism in Escherichia coli can be constructed
step by step. The model is a modified version of the model from [51], with additional
exchange reactions for some of the biomass precursors. The stationary flux distribution was
obtained from measured metabolic fluxes by projecting flux data onto the space of stationary
fluxes while constraining the flux directions. Metabolite concentrations and thermodynamic
forces for the reference state were determined by balancing [52] metabolite concentration
and reaction Gibbs free energy data, in agreement with flux directions. Model structure and
data were taken from [51] (for details, see Data Availability). The reference state satisfies all
relevant constraints: stationary fluxes, Wegscheider conditions for equilibrium constants
and thermodynamic forces, Haldane relationships for kinetic constants, and consistent
directions of fluxes and driving forces. For the saturation values, all enzymes were assumed
to be half-saturated, setting all saturation values to standard values of 1

2 (for the choice
of this value, see Supplementary Section S3.1). Instead of assuming the same saturation
value for all enzymes, we may also insert known, specific saturation values (obtained from
known kM values and metabolite concentrations); for ensemble modelling, we may sample
them in the range ]0, 1[ or around plausible values. In the model, small-molecule regulation
of enzymes (such as allosteric inhibition) was ignored, but it could easily be included.
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Figure 3. Systematic model construction by STM. Model of central carbon metabolism in Escherichia
coli (for model details, see Data Availability). Network structure and flux data (from cells respiring on
glucose) were taken from [51]. The panels show different types of variables obtained during model
construction following the schema in Figure 2 (circles: metabolites; arrows and squares: reactions).
By repeatedly sampling the basic variables and computing the others, a model ensemble can be
constructed. (a) Thermodynamically feasible fluxes (red arrows) obtained by flux minimisation (data
from [53]); (b) metabolite log-concentrations. Metabolite concentrations and thermodynamic forces
were determined by thermodynamic balancing [54] of metabolite and reaction Gibbs free energy data.
(c) chemical potentials; (d) thermodynamic forces in units of RT; (e) saturation values, set to standard
values of 1

2 . Alternatively, the saturation values could be determined from data or be sampled at
random between 0 and 1; (f) scaled reaction elasticities Êvl

ci ; (g) scaled control coefficients (̂C)rPFK
vl

for the flux in upper glycolysis (phosphofructokinase reaction) as the target variable; (h) enzyme
synergies (given by scaled second-order control coefficients) for the glycolytic flux. Positive values
are shown in blue, negative values in red, zero values in white. For clarity, only enzyme synergies in
the outer 5 percent quantiles are shown.
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Will models constructed by STM be biologically plausible? To test this, I considered
a model of the threonine pathway in E. coli [55] (from BioModels Database [56]) and
constructed a twin version with the same reference state and elasticities set to 1

2 . To compare
the two models, I simulated a sudden concentration increase of the external substrate
aspartate (see Supplementary Figure S3). Despite the different kinetic constants, the
simulations show similar qualitative dynamics and time scales. Hence, realistic fluxes and
metabolite concentrations, together with plausible assumptions about enzyme saturation,
can suffice to obtain realistic unscaled elasticities and a plausible dynamic behaviour.

Aside from constructing a single model, we can also build model ensembles with
broad parameter distributions. Model ensembles can be used to study the effects of model
structure, flux distribution, thermodynamics, or enzyme saturation on metabolic behaviour,
and to test which details have significant effects on model outputs. For example, to study
the role of thermodynamic forces in flux control, we may generate two model ensembles
with the same fluxes, but different forces. Within each ensemble, saturation values are
varied and flux control coefficients are computed. By comparing the two ensembles, we
can check which control coefficients differ significantly due to the different forces. To
assess significance for a single control coefficient, its distributions (arising from sampled
saturation values) are compared between the ensembles (representing different choices of
forces). Since a model contains many different control coefficients, the problem of multiple
testing must be addressed [57] (see Methods and Supplementary Section S3.2).

Ensemble models can answer a wide range of questions, e.g., how metabolic dynamics,
homeostasis, and control depend on network structure, thermodynamics, enzyme satu-
ration, or regulation. Even with little data, we can study control or synergy coefficients,
compute their distributions and correlations, and see which control coefficients differ signif-
icantly from zero. All these predictions are probabilistic, reflecting the uncertainties arising
due to missing or imprecise data. While building a model ensemble does not require any
kinetic data at all, inserting some data (e.g., kinetic constants) will decrease variability and
narrow down the model results. Hence, data that would usually not suffice for model
fitting can still be used for model predictions by STM, where their uncertainty ranges can
be assessed. The basic STM approach can be extended in various ways. Supplementary
Materials Section S3.3 describes “biological” extensions considering cell compartments,
metabolite dilution by cell growth, models with thermodynamically infeasible fluxes, di-
vergencies close to chemical equilibrium, enzymatic reactions composed of elementary
steps, multiple steady states, and adaptations of enzyme levels. It also describes some
statistical extensions regarding prior distributions for saturation values, the analysis of
sampled target variables, significant differences between model variants, and ways to
impose distributions of target variables.

In summary, STM helps us build realistic metabolic models, study their control proper-
ties, and assess how these properties vary. The underlying dependence schema shows how
model variables depend on each other. Equipped with these methods, we now study the
role of thermodynamic forces in metabolic dynamics and control. In the following sections,
I show how different aspects of metabolic dynamics—including flux control, linearised
metabolic dynamics, enzyme synergisms, and metabolic fluctuations—are shaped by the
pattern of thermodynamic forces in the network.

2.2. Metabolic Effects of Gene Expression Changes

When enzyme levels are changing, how will this change the network-wide fluxes? In
Flux Balance Analysis (FBA), these effects can be modelled by changing the flux bounds (as
a proxy for changing enzyme activities) and re-optimising the fluxes. In MCT, the effects of
enzyme changes are directly described by control and response coefficients, and synergy
coefficients can be additionally used for more precise approximations [22] or to account for
the adaptation of other enzymes [24].

If a target variable such as ATP or biomass production contributes to cell fitness,
enzymes should have a positive effect on this variable: if an enzyme had a negative effect,
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the cell would benefit from downregulating this enzyme [58] and would probably have
done so already! In enzyme-optimal states [21,59], the marginal cost and benefit of each
enzyme must be balanced, so each enzyme must have a positive control over the metabolic
objective, i.e., a positive marginal benefit [59]. Likewise, in FBA models, an enzyme knock-
down can decrease the metabolic benefit, but can never increase it—otherwise, FBA would
have chosen a smaller flux from the start. However, this holds only if we assume optimal
states. Generally, without optimality assumption, enzymes can have positive or negative
control over different fluxes: for example, inducing some enzymes may reduce biomass
production.

To see which enzymes are likely to have a negative flux control over a flux objective, I
built a series of models describing the flux distributions in central metabolism of human
hepatocytes. Starting from the large Hepatonet1 network, sparse flux distributions for
specific objectives (for example, ATP regeneration during aerobic growth on glucose) were
determined by FBA with flux minimisation. In the original paper [9], for each of these
flux distributions, a network model was built by omitting reactions with inactive fluxes.
I adopted these models and applied STM as described for the E. coli model. Metabolite
concentrations were determined by thermodynamic balancing of measured concentrations
in E. coli as a substitute for human hepatocyte data. Using these flux distributions, I
obtained models representing a large number of different flux objectives and checked
their control coefficients. For example, with ATP production as the flux objective (details
in Supplementary Section S3.4), all active enzymes have a positive control over ATP
production. This was a typical case: usually, most of the active enzymes had a positive
control over the flux objective—even if the models were not constructed to be in enzyme-
optimal states! Apparently, suppressing unnecessary fluxes in the FBA step, based on a
flux objective, already led to a state in which most enzymes have a positive control over
the flux target once kinetics are considered. While this makes intuitively sense, it provides
strong support for FBA: even if FBA ignores kinetics, it seems to provide a good starting
point for kinetic models, providing fluxes that are likely to support enzyme-optimal states.

While enzymes can have a negative flux control (e.g., a control over reactions that
compete with the enzyme for substrate), it is hard to imagine that they negatively control
their own flux. However, there are examples of this. Figure 4a shows results from a variant
of our hepatocyte model, but with UTP production during anaerobic growth on glucose.
UTP is regenerated from UDP via the phosphotransferase reaction UDP + ATP↔ UTP
+ ADP, catalysed by nucleoside diphosphate kinase (NDK). The influence of NDK on its
own steady-state flux is described by the flux control coefficient CvUTP

eUTP . Surprisingly, in a
kinetic model constructed by STM with half-saturated enzymes, this control is negative: a
higher enzyme level decreases the flux! This paradoxical effect also shows up in dynamic
simulations: when the enzyme level increases, the flux first increases as well, but then drops
below the original flux. If we plot the steady-state flux against the enzyme concentration,
the slope of the curve—i.e., the response coefficient RvUTP

eUTP —is negative in the reference
state. Probably, the reason is that UTP production consumes ATP; due to the turbo design
of glycolysis [60], a high ATP consumption reduces the ATP level drastically, entailing a
decrease in UTP rephosphorylation. In contrast, a lower NDK level allows ATP to recover,
and UTP rephosphorylation increases. Is this paradoxical self-inhibition behaviour typical
or is it a rare exception, maybe caused by our choice of identical saturation values of 1

2 ?
To see this, we can use STM: with saturation values randomly drawn between 0

and 1, about 90 percent of the models show the paradoxical self-repression effect. Thus,
this effect does not depend on fine-tuned parameters, but is likely given our network
structure, flux distribution, and metabolite concentrations. To further assess the role of
the thermodynamic forces, I varied them proportionally (see Supplementary Section S3.1):
when bringing all reactions closer to equilibrium, the effective self-inhibition stopped,
while increasing the driving force increased self-inhibition. The example shows how STM
can help us understand how network structure, reference state, thermodynamic forces, or
details of enzyme kinetics contribute to metabolic dynamics. How they affect emergent
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system properties and to what extent; and whether an observed behaviour is surprising
or likely, given all our physical and physiological knowledge. I end this section with a
question for the interested reader: if enzymes such as NDK can “paradoxically” decrease
their own flux, how should such enzymes be regulated?

(a) Flux after enzyme upshift (b) Enzyme-flux response (c) Scaling of forces
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Figure 4. Paradoxical flux control: a model of UTP rephosphorylation in human hepatocytes. Fluxes
in central metabolism were obtained in [53] by FBA with UTP production as the objective. Here,
flux control coefficients were obtained by STM with standard elasticities, i.e., saturation values of
0.5. Paradoxically, the UTP-regenerating enzyme NDK has a negative control over its own flux.
(a) Metabolic dynamics after an NDK upshift. A higher NDK activity first speeds up the reaction,
but later the rate drops below its initial value. (b) Dose–response curve between NDK amount
and steady-state UTP production. In the reference state (vertical line), the curve slope (response
coefficient) is negative: an enzyme increase decreases the flux. (c) The response coefficient depends
on thermodynamic forces. To see this, all thermodynamic forces were increased by a common factor
(x-axis): with higher thermodynamic forces, the response (y-axis) becomes more negative.

2.3. Enzyme Synergisms and Epistasis

Interactive effects of several enzyme levels (or other parameters) on target variables
are called synergisms. In STM, synergy effects are obtained from the second-order response
coefficients, also called synergy coefficients (see Figure 3h for the E. coli model). While
synergisms can be computed for any perturbation parameters, including concentration
variations in the growth medium, here we focus on enzyme pairs. How do STM predictions
compare to predictions by FBA? Figure 5 shows a comparison between STM and two
constraint-based modelling frameworks: classical FBA and MoMA (see Methods). The
synergisms predicted by MCT confirm our expectations (see Supplementary Text 4.1):
cooperating enzymes (e.g., in the same metabolic pathway) show buffering synergisms
(inhibiting one of them impairs the pathway function, and inhibiting the second enzyme
has less extra effect), while enzymes in alternative pathways show aggravating synergisms:
an inhibited pathway can still be bypassed, and only simultaneous inhibitions take effect.

In constraint-based models, there is no direct formula for synergisms: they need
to be computed numerically one by one. The formulae of MCT, in contrast, show how
synergisms reflect network structure and flux directions (which also define “upstream”
and “downstream” enzymes). The synergy coefficients depend on three factors (formulae
in Supplementary Section S5.2): on flux control coefficients Cj

v between the two catalysed
reactions; on control coefficients Cy

u between these reactions and the target variables; and
on second-order elasticities in the entire network. The formula suggests that a large first-
order control between perturbed reactions and target variable, as well as a large control
between the reactions, increase the positive or negative synergisms. Enzyme synergisms
computed by MCT depend on the enzyme perturbed, but not on the perturbation parameter:
there is no difference between enzyme knock-outs, enzyme-inhibiting drugs, or other
perturbations that decrease enzyme activities. In the predictions, the synergy effects for a
double knock-down, a double enzyme inhibition, and a combination of knock-down and
enzyme inhibition will be the same. This is in line with experiments: genes with many
epistasis partners are also more likely to show gene-drug interactions [61]. In reality, cells
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may compensate enzyme perturbations by changes of gene expression, which changes
the overall synergisms. This effect was not considered here, but our synergy coefficients
could be corrected for optimal enzyme adjustments [24]. Importantly, enzyme synergisms
are just a specific example: MCT defines synergisms not only between enzyme levels and
metabolic fluxes, but between any pairs of model parameters (including external metabolite
concentrations) and with respect to any target variables (including metabolic fluxes and
concentrations).

(a) Network model
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Figure 5. Enzyme synergy effects in a linear pathway with alternative routes. The (scaled) synergisms
towards a fitness-relevant objective (e.g., biomass production) can tell us about epistasis. (a) network
structure. A conversion from S1 to S3 can occur directly or via the intermediate S2. The following
plots show synergy effects for double inhibitions predicted by FBA (b) or MoMA (c). To simulate
enzyme inhibitions, a flux decrease to 90 percent of the original value was imposed by setting a
bound at 0.9 times the unperturbed reaction flux. The double inhibition of an enzyme is simulated by
applying the inhibition twice, i.e., leading to a relative flux decrease factor of 0.81. Synergy effects
are shown by line colours (red: aggravating, blue: buffering) and as a matrix. Colour ranges span
the observed synergy effects in each panel (red: negative; white: zero; blue: positive). Small values,
below one percent of the maximal absolute value, are not shown. (d) Synergy effects computed by
Metabolic Control Theory, assuming common modular rate laws and half-saturated enzymes. A
model ensemble with saturation values sampled from uniform distributions yields almost the same
results on average. Also a different rate law (the simultaneous binding modular rate law) yields very
similar results (see Supplementary Figure S4). Compare Figure 3 for synergy effects in E. coli.

2.4. Uncertain States and Metabolic Fluctuations

Model ensembles can help us model variability between cells, fluctuations in time
(e.g., of metabolite concentrations inside a single cell), and uncertainty in models due to
missing or uncertain data. Notably, the variability and correlations of cell variables are
shaped by network structure and enzyme kinetics. Metabolite concentrations and fluxes
that vary in time can be described by random fluctuations that emerge, for example, from
variable enzyme concentrations, external perturbations, or chemical noise and propagate
in the network. All sources of noise have their own dynamics. Fluctuating enzyme
concentrations, for example, can be caused intrinsically (by noise in transcription and
translation) or extrinsically (by variability in other cell variables) [62,63]. In their frequency
spectrum, typical frequencies are on the time scale of protein dynamics (protein degradation
or dilution in growing cells) or slower. Chemical noise arises from the stochastic rates of
single reactions because single reaction events occur randomly. The fluctuations percolate
through the network, add up, and cause variability in all metabolite concentrations and
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fluxes. For an example, see Figure 6 (calculations are explained in Methods). If variations
are slow, we can describe the cells by a random ensemble of steady states.

(a) Control and correlation (b) Static variability (c) Static covariances

Negative

Metabolic control:

Positive

Accumulation

Accumulation

Depletion

Depletion

Correlated variations:

Positive

Negative

Enzyme
activation

(d) Thermodynamic forces (e) Noise production (f) Concentration fluctuations

Figure 6. Static changes and dynamic fluctuations of metabolite concentrations. (a) Variability of
metabolic states caused by perturbed reaction rates (schematic drawing). An enzyme activation
(left) increases a single reaction rate (solid arrow), which changes the steady-state metabolite concen-
trations and fluxes (dotted arrows). Similarly, variability in enzyme activities (quasi-static random
changes) causes slow correlated metabolite variability (curved lines on the right, blue: positive; red:
negative); (b) variation of metabolite concentrations in E. coli central metabolism (Figure 3) caused
by uncorrelated variable enzyme concentrations (geometric standard deviation of enzyme levels: 2).
Standard deviations of log concentrations are shown by colours; (c) correlated metabolite variations
(covariances of log concentrations) are shown as coloured lines (values below 10% of the maximal
value were removed for clarity). Metabolite variances (in (b)) and covariances (in (c)) computed
from first-order response coefficients. Local enzyme fluctuations lead to network-wide metabolite
fluctuations: the frequency spectra are related by spectral response coefficients. (d) Thermodynamic
forces (same data as in Figure 3d). Effects of chemical noise in a cell volume of 2 µm3 and with a
glycolytic flux of 1 mM/min; (e) reactions close to equilibrium (small thermodynamic forces) produce
strong chemical noise because of their large forward and backward fluxes. Spectral power density
of the original noise; (f) resulting metabolic fluctuations: fast fluctuations at a frequency of 1 s−1.
Formulae are given in Supplementary Section S5.2.

For an example of temporal fluctuations, we consider chemical noise, one possible
cause of metabolic fluctuations. Individual reaction events happen randomly, which can
be described by random fluctuations in the reaction rates. A typical enzyme (with 1000
copies in a bacterial cell and kcat = 10 s−1) catalyses around 104 net reaction events per
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second. If we assume strongly driven reactions (i.e., neglect backward rates), count the
reaction events within one-second time intervals, and describe the count numbers by a
Poisson distribution, we expect 104 events per second on average with a standard deviation
of
√

104 = 102, i.e., a relative standard deviation of one percent. Over larger time intervals,
the relative standard deviation is smaller because fluctuations average out. How does
this chemical noise translate into metabolite and flux fluctuations? In metabolism, noise
from different reactions propagates through the network, adds up, becomes damped or
sometimes amplified, and leads to correlated fluctuations of metabolite concentrations
and fluxes. To model this, we can add a white noise term to each rate law, which leads
to a chemical Langevin equation [64]. The white noise spectrum contains all frequencies
with uniform amplitudes, but the linearised model acts as a linear filter that translates the
white spectrum into a coloured noise spectrum of the resulting metabolite fluctuations (see
Section 4.5).

Thermodynamics affects both the generation and transmission of noise. When mod-
elling chemical noise by the chemical Langevin equation, each reaction rate v∗ contains

an additive noise term with spectral density S(ω) ∼ Dg(
√
|v∗l |). However, this formula

does not apply to the net rate vl , but to the one-way rates v+ and v− (see Supplemen-
tary Text S5.3). In reactions near chemical equilibrium with a given net flux, these rates
become large and contribute strongly to chemical noise. In contrast, strongly driven
reactions produce less chemical noise and can serve as rectifiers for noise propagation
(resembling a diode). The latter effect is captured by Rc

p(ω), which depends on the elastici-
ties and therefore on thermodynamic forces. Hence, to model metabolic fluctuations, we
just need to know the reaction elasticities, which can be obtained by STM. Figure 7 shows
correlated metabolite fluctuations in our E. coli example model (see Figure 3). In the simu-
lations, fast fluctuations are strongly damped far from their source reactions, while slow
fluctuations can propagate further, causing network-wide flux and metabolite variations.

The effects of other fluctuating parameters (including enzyme level and external
metabolite concentrations) can be computed similarly: their spectral density matrices S(ω)
have to be known or guessed. Given the strong damping of chemical noise, the slow fluc-
tuations caused by enzymes and the environment will dominate the observed variability
in fluxes and metabolite levels. Pink noise, with fluctuations mostly at lower frequencies,
may give rise to state fluctuations that look quasi-static. Finally, static covariance matrices
can also be used to describe subjective uncertainty (for example, in models with known
metabolic states but unknown kinetics). Likewise, temporal fluctuations may represent
uncertainties or, as it were, information: for example, if we model a cell in an unknown
fluctuating environment and if we interpret metabolic fluctuations as signals, the informa-
tion they carry about the environment can be quantified by Shannon information and can
be computed from correlations and autocorrelations of these variables.
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(a) Fast noise ( f = 1 s−1) (b) Frequency dependence (c) Slow noise ( f = 0.001 s−1)
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Figure 7. Metabolite fluctuations due to chemical noise. Chemical noise causes random fluctuations
of metabolite concentrations and fluxes. In a chemical Langevin equation, chemical noise is modelled
by adding white-noise terms to the reaction rates. Fast and slow fluctuations are damped differently
in the network. (a) High-frequency metabolite fluctuations (spectral densities at oscillation freuency f
= 1 s−1) exist only close to the noise source. Circle colors show the spectral densities at 1 s−1, line
colors show covariances (blue: positive; red: negative). (b) Metabolite fluctuations decrease with
the frequency (see Figure 6). (Top): spectral densities, each curve corresponds to the variance of one
metabolite over a range of frequencies. (Bottom): each curve corresponds to the standard deviation
of a metabolite concentration (square root of spectral density, shown on the y-axis), computed for
different time resolutions of observation (x-axis). For details, see Supplementary Figure S5a. (c)
Low-frequency metabolite fluctuations (oscillation period of 17 min) are correlated along the entire
pathway. Results for flux fluctuations are shown in Supplementary Figure S5b. Smoothing at
different time resolutions changes the variance of metabolite fluctuations. At low time resolutions,
high-frequency fluctuations are filtered out (see Supplementary Figure S5a).

2.5. Network Structure and Thermodynamic Forces Shape Metabolic Dynamics

The structure, dynamics, regulation, and function of metabolic systems are closely
related. If proteins cooperate (e.g., if they belong to the same protein complex or pathway),
this leads to synergisms and may be reflected in epistasis (i.e., synergisms of gene deletions
towards a fitness-relevant variable), phylogenetic profiles [65], co-expression (or a temporal
order of activation along the pathway [66]), and shared regulation mechanisms (e.g., be-
tween enzymes encoded in an operon). Similarly, network structure is also reflected in
metabolite fluctuations and their correlations [67]. Of course, all these functional patterns
portray network structure in indirect ways: while network edges are sparse, connecting
adjacent metabolites and reactions, the resulting dynamic effects link elements across the
entire network (but reflecting, for example, proximity within pathways). As an example
of global effects, we may consider the propagation of metabolic fluctuations: as we saw
above, chemical noise originates in each single reaction and propagates in the network.
On their way through the network, high-frequency components are strongly damped (so
they almost vanish far from their source reaction), while low-frequency components travel
through the entire network, leading to slow or quasi-static variations of the flux distribution.
To understand this in detail, we need to relate (local) network structure to (network-wide)
metabolic dynamics. Once we understand causal dynamic effects (e.g., enzyme levels
affecting metabolite concentrations and fluxes), we may invert this relationship and ask
what enzyme profiles are best suited to achieve a desired metabolic behaviour [21,24,51,59],
and what regulation mechanisms can realise these profiles.

How are network structure, dynamics, and function related precisely? To see this,
we note that enzyme control and synergies, metabolite fluctuations, and possibly optimal
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differential expression patterns [24] reflect response coefficients, and that these coefficients
depend on local network structure and local fluxes, concentrations, and reaction elasticities.
Metabolic perturbations (of an enzyme, a metabolite concentration, or a reaction rate) have
immediate local effects, which entail network-wide long-term effects. The immediate local
dynamics is determined by the kinetics of single reactions at given metabolite levels, while
the network-wide dynamics emerges from them as metabolite levels change dynamically
after a perturbation. MCT describes these two stages, respectively, by elasticities and by
control or response coefficients. Local network structure and kinetics are encoded in the
stoichiometric matrix N and elasticity matrix Ec, which is shaped itself by thermodynamics
and enzyme saturation as considered in STM. The matrix product N Ec yields the Jacobian
matrix, which is local and sparse. The inverse of this Jacobian matrix leads to the non-
sparse control and response matrices that describe network-wide changes of steady states.
Another link between (local) network structure and (network-wide) metabolic behaviour
can be made by the summation and connectivity theorems of MCT [18,20]: the control
coefficients along a stationary flux distribution (which depend on network structure, but
not on kinetics) must have a fixed sum (summation theorem), while the control coefficients
around a metabolite are constrained by local elasticities (connectivity theorem). Hence, the
control coefficients are constrained by ths network structure, but their precise values also
depend on the elasticities—which can be explored by STM.

As we already saw, thermodynamic forces can have various effects on dynamics.
Within a reaction, large forces imply a large energy dissipation per flux, and the relatively
small one-way fluxes (given by v+ ≈ v, v− ≈ 0) cause only little chemical noise. Due to the
backward flux, the enzyme works efficiently and the enzyme demand per net flux is low. At
the same time, the net rate is insensitive to the product concentration, so the product elas-
ticity is low. Moreover, if a thermodynamic force is large, flux reversals would require large
concentration changes, which makes such reversals physiologically difficult or impossible.
As we saw before, due to their influence on elasticities, the thermodynamic forces have
an impact on flux control in the entire network. Finally, thermodynamic forces, saturation
values, and fluxes define typical relaxation times for metabolites. Local metabolite perturba-
tions δci tend to be dampened, as described by the linearised dynamics δċi = ∑l nil Eli δci.
If the initial state is stable, the dynamics will decrease the initial perturbation, and ci will
return to its reference value [68]. The relaxation time τi = 1/(∑l nil Eli) can be estimated
from thermodynamic forces and enzyme saturation values.

In a linear pathway, these effects are easy to see: a strongly driven reaction has
a low product elasticity and is not affected by downstream processes: it has full flux
control and leaves no flux control to the downstream enzymes. Therefore, a change
in downstream enzyme levels has no effect on the flux: it just changes the metabolite
levels. Dynamically, the forward-driven reaction would act as a rectifier for metabolic
fluctuations, just like a diode in electrical circuits: fluctuations can pass only in one direction.
In reactions with finite thermodynamic forces, similar tendencies can be expected (see
Supplementary Figure S6). For example, due to their large flux control, such reactions are
likely targets for regulation in linear pathways [47].

How can all this be shown using models? While fluxes in linear pathways can be
described by a closed formula, no such formulae exist for fluxes in larger networks. Even
if similar behaviour can be expected in larger networks, probably it cannot be proven
analytically. However, STM provides the tools to study all this in detail.

3. Discussion

Let me summarise some main advantages of STM. First, it clarifies the links between
metabolic concentrations and fluxes, enzyme parameters, and enzyme efficiencies and
shows how these factors can be varied by cells. We can understand the interplay of
enzyme concentrations, metabolite concentrations, and fluxes, simulate periodic random
perturbations and chemical noise [26], and predict enzyme adaptation to changing supply
and demand or to enzyme-inhibiting drugs [24]. Second, STM provides a link between flux
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analysis and kinetic models, showing how a metabolic state—for instance, fluxes and forces
predicted by thermodynamic Flux Balance Analysis—determines the metabolic dynamics
around it. Third, STM makes MCA applicable when model kinetics are missing and allows
us to translate metabolic networks into kinetic models when data are scarce. This can also
be useful to explore possibilities or variances in cell populations.

STM lends itself to ensemble modelling, model construction, and optimisation. In
global variability analysis, model variables are sampled from broad distributions reflecting
plausible parameter ranges [69–71]. For model construction, available kinetic, thermody-
namic, or metabolic data [72,73] can be inserted into a model or be used to define ranges or
distributions for sampling. While automatically constructed models are not fully reliable,
they can be improved by drawing on existing, hand-curated models. STM can be used
to convert given models with known kinetic parameters into standardised models with
generic reversible rate laws. Conversely, after a model has been constructed by STM, some
of the rate laws may be replaced by detailed laws obtained from enzyme assays [74]. In this
case, the equilibrium constants of these rate laws should be imposed during STM. Finally,
to provide existing pathway models with realistic dynamic boundaries, we may couple
them to linearised and reduced models of the surrounding network [27], again constructed
by STM.

To use STM for optimisation, we can replace our sampling steps by optimisation loops.
In the dependence schema, the enzyme levels at predefined fluxes are convex functions
of logarithmic metabolite concentrations and kinetic constants [75]. Convex optimality
problems resembling Enzyme Cost Minimisation [47] can be defined and be solved, for
example, with genetic algorithms. However, this should not be seen as a simulation of
evolution because “mutations” and “selection” in these simulations do not act on enzyme
levels as in reality, but directly on metabolite concentrations and fluxes. Alternatively,
STM can also be a framework for parameter estimation. In a Bayesian setting resembling
Model Balancing [75], finding the posterior mode would be an optimality problem with a
“fitness function” encoding the log posterior. Posterior sampling could be implemented by
applying Monte Carlo Markov Chain methods to the same problem. Whether we optimise a
biological fitness or a posterior probability, and whether we use deterministic optimisation
or probabilistic sampling methods, the dependence schemas of STM always provide a good
parameterisation of our metabolic models.

In metabolic engineering, STM can be used in different ways. First, models may be
built from available data by inserting known values or sample model variables around
them. Model predictions may be used to choose promising pathway designs when data
are scarce. Second, STM may reveal the effects and affordances of pathway features,
e.g., the effects of structural variants, enzyme kinetics, or regulation. Third, we may use
STM for optimisation with several objectives. For example, production yield (which only
depends on the flux profile) and dynamic stability (which also depends on kinetics) can be
subsequently optimised. In a cell, these objectives cannot be controlled separately: external
perturbations will change fluxes and stability at the same time. However, STM calculation
can tell us about possible trade-offs and about probabilities of finding favourable solutions,
and can guide our search for suitable growth media or genetic modifications.

How can we predict the effects of enzyme perturbations such as single-enzyme inhibi-
tions or differential expression of many enzymes? Metabolic responses may be quasi-static
or dynamic and concern metabolite concentrations and fluxes. Constraint-based models
ignore kinetics and replace them by heuristic rules: FBA predicts the most favourable flux
changes, while MoMA predicts minimal changes. In both cases, enzyme repression can be
modelled by restricting a reaction to smaller fluxes (knock-down) or zero fluxes (knock-out)
and computing the perturbed flux distribution by maximising a metabolic objective (in
FBA) or minimising the necessary changes in flux (in MoMA). If multiple enzymes are
repressed, the flux in a linear pathway depends on the lowest flux bound while the other
repressions have no effect. Therefore, in linear pathways, both methods predict buffering
interactions. MCT, in contrast, predicts metabolic responses by kinetic models and control
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coefficients which reflect thermodynamics, enzyme saturation, and regulation and can
be determined by STM. Reactions are not simply “reversible” or “irreversible”, like in
FBA, but vary gradually between near-equilibrium and strongly forward driven reactions
depending on thermodynamic forces. The quantitative effects of these forces, e.g., on the
transmission of fluctuations, can be studied systematically. Moreover, an enzyme inhibition
may change the control coefficients themselves, which leads to synergisms. MCT captures
these synergisms by synergy coefficients.

Of course, MCT has its limitations. First, it holds only for small perturbations: with
large perturbations, predicted concentrations may become negative. In steady-state MCT,
this can be avoided by modelling log-concentrations. In dynamic simulations, we need to
consider absolute concentrations, and to avoid negative concentrations heuristic correction
functions can be applied. Second, STM assumes that enzyme levels are known and, by
default, does not predict enzyme adaptations. In fact, the extra effects of such adaptations
are second-order effects and can be neglected if perturbations are small (except for some
systems at bifurcation points), or if we focus on dynamics much faster than enzyme changes.
However, there are ways to consider enzyme adaptation in our predictions: if they are
known from experiments, they can be inserted as enzyme perturbations; otherwise, optimal
adaptation may be predicted based on a principle using control coefficients from STM [24].

STM does not only provide a framework for model construction, but it also clarifies
physical and statistical dependencies between cell variables. A dependence schema, as
in Figure 2, summarises constraints and shows how variables can be sampled, fitted,
optimised, or chosen manually. To construct a dependence schema, we choose a set of
physically independent “basic” model variables and treat all other variables as dependent.
Along with strict physical dependencies, statistical dependencies can be defined by setting
distributions for the basic variables, which lead to a joint distribution of all model variables.
While a schema, endowed with a prior, determines all statistical dependencies between
variables, the same dependencies may be expressed by different schemas, some of which
allow us to use simple priors. Dependence schemas can be used for model construction,
fitting, optimisation, and statistical analysis, and to learn how model variables determine
metabolic behaviour. Knowing the model constraints allow us to discard infeasible models
(e.g., describing a perpetuum mobile), and to restrict the model results, for example,
the possible ranges of variables. By combining a dependence schema with probability
distributions, plausible or measured data values can be inserted into the model and the
remaining uncertainties can be assessed.

The dependencies and covariances of variables do not only matter in models, but also
for cells in reality: kinetic constants or state variables may co-vary between the states of
a cell, between cells in a population, during evolution, or between species. Some of this
covariation is caused by physical constraints. For example, Haldane relationships between
kcat and KM limit the ways in which enzyme mutations can change these parameters [76].
In general, we do not know how enzyme mutations will change these parameters. Can
we see some of them as independent and the others as dependent on them? For example,
can we assume that Michaelis constants and forward kcat values vary independently,
and see backward kcat as derived variables? Similarly, should we assume that enzyme
concentrations correlate positively with catalytic constants (because both quantities are
under a selection pressure for high enzyme capacity) or negatively (because if an enzyme
is highly efficient, less of this enzyme is needed)? In fact, there is no “true” set of basic
parameters in reality, only pragmatic choices in models: if variables have low statistical
dependencies and large effects in the model, it is convenient to treat them as independent.
Moreover, dependencies are always conditional: two variables may be dependent, but
independent given another variable. In summary, dependencies between cell variables are
important, and dependence schema are a good tool to describe them.

STM and SKM implement a retromodelling approach: we first choose a metabolic
reference state and then the elasticities, rate laws, and control properties in this state.
Retromodelling allows us to define state variables and kinetic constants separately and to



Metabolites 2022, 12, 434 19 of 30

study the effects on dynamics. For instance, by varying the thermodynamic forces we may
turn reactions into rectifiers for metabolic fluctuations and adjust the stability and control
of metabolic states. In unbranched pathways—where pathway fluxes can be computed
analytically [77]—these effects are easy to understand. In larger networks, this is impossible,
but STM allows us to study such effects both by sampling and by formulae that clarify the
steps from thermodynamics to elasticities and from elasticities to control coefficients.

Retromodelling can be helpful for optimisation with several objectives, e.g., to achieve
not only desired fluxes, but also desired control properties such as homeostasis, robustness,
and adaptability. We begin with a desired flux distribution and construct, step by step,
other state variables and kinetic constants that support this flux distribution. In each step,
we can account for different constraints and objectives, e.g., optimal production rates when
choosing the flux distribution. This “reverse” approach may help us think differently
about optimisation in evolution or biotechnology, how metabolic states can be tuned, and
with what protein costs. For example, we may imagine that cells need to optimise, first
and foremost, their fluxes and concentrations under standard conditions, and secondly
stabilise this state or make it homeostatic or better controllable by tuning the elasticities.
To achieve this, evolution may vary thermodynamic and kinetic properties of reactions,
tweak saturation values or add regulations, leading to different control patterns. For
example, inhibiting an enzyme allosterically may stabilize the metabolic state, but will
make the enzyme less efficient. To keep the fluxes unchanged, the lower enzyme efficiency
must be compensated by higher enzyme levels. During model construction by STM, such
targeted changes can easily be applied. This shows again that STM is not just a tool for
model construction, but a framework for thinking about variability and optimality in cell
populations, in evolution, or in engineered cells.

4. Materials and Methods
4.1. Constructing Kinetic Metabolic Models

Model building by STM relies on kinetic and thermodynamic laws and on Metabolic
Control Theory. An overview of concepts and formulae is given in Supplementary Sec-
tion S2.1. To translate metabolic networks into kinetic models, we need to integrate data
about kinetics, thermodynamics, and metabolic states. In general, model construction poses
a number of challenges: (i) finding realistic rate laws and kinetic constants; (ii) ensuring con-
sistent equilibrium states of the model, with metabolite concentrations leading to vanishing
fluxes; (iii) choosing a reference state with realistic fluxes and metabolite concentrations;
and (iv) assessing variability and uncertainties in model parameters and metabolic states.
A metabolic model can be parameterised automatically with the help of generic rate laws,
including mass-action, power-law [78], linlog [79], thermodynamic-kinetic [80] or modular
rate laws [46,70]. The use of reversible rate laws with consistent kinetic constants (i.e., con-
stants satisfying Wegscheider conditions and Haldane relationships [81]) can guarantee
consistent equilibrium states.

In kinetic models, enzyme levels and external metabolite concentrations are usually
treated as parameters that determine the steady state. However, fitting such models to fluxes
is difficult. Retromodelling reverts this procedure: we start from a flux distribution and
construct metabolite concentrations and rate laws around it. We can do this as follows. After
choosing the fluxes, the MDF method [47] can be used to identify reactions with poor ther-
modynamic forces and to choose metabolite concentrations that avoid such thermodynamic
bottlenecks. Then, there are different ways to proceed. On the one hand, one may define
reversible rate laws, choose plausible metabolite concentrations, and compute the enzyme
demands [37,82,83], or optimise metabolite and enzyme concentrations simultaneously for
a minimal enzyme cost [84]. On the other hand, one may first construct a metabolic state
(including fluxes and metabolic concentrations) and then find kinetic constants that realise
this state.
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4.2. Elasticities and Their Dependence on Thermodynamic Forces

Enzyme kinetics and metabolic control are closely related to thermodynamic forces
(Figure 1). In this section, I summarise some important formulae. The metabolic dynamics
close to a reference state depend on (unscaled) reaction elasticities, defined as derivatives
Evl

ci = ∂vl/∂ci of kinetic rate laws νl(c) with respect to metabolite concentrations ci. Elastic-
ities describe the immediate, local effects of metabolite perturbations on reaction rates: to
define them, we formally assume that metabolite concentrations are not dynamic variables,
but parameters to be tuned from the outside. At high substrate concentrations, an enzyme
becomes saturated and an additional substrate has little effect, so the elasticity is low.
Elasticities between rates and other variables, e.g., enzyme levels, are defined accordingly.
Importantly, the unscaled elasticities Evl

ci can be rewritten as Evl
ci = vl Êvl

ci
1
ci

with unitless

scaled elasticities defined as Êvl
ci Êvl

ci = ci
vl

∂νl
∂ci

(or Êvl
ci = ∂ ln |vl |/∂ ln ci). Scaled elasticities

describe effective reaction orders. For irreversible rate laws, we obtain Êvl
ci ≈ 1 in the en-

zyme’s linear range and Êvl
ci ≈ 0 near saturation. If a reaction has two substrate molecules

of the same chemical type, we obtain an elasticity Êvl
ci > 1. Formulae for second-order

elasticities defined, via second derivatives are given in Supplementary Section S2.2. To
linearise a metabolic model around a reference state, we only need the stoichiometric matrix
and the unscaled elasticity matrix Ec. Both matrices can easily be obtained if the reference
concentrations, fluxes, and rate laws are known. A perturbation (e.g., shifting the initial con-
centrations by a vector ∆c(t)) will lead to a linearised dynamics; by solving the differential
equations d

dt ∆c(t) = A ∆c with the Jacobian matrix A = N Ec, we can simulate the propaga-
tion of dynamic perturbations across the network and determine their long-term effects [27].
In models with conserved moieties, a complication arises: the internal stoichiometric matrix
has non-full row rank, and we need to use independent metabolite concentrations as the
free variables. Their concentrations follow a dynamic equation d

dt ∆cind(t) = A ∆cind with
Jacobian matrix A = Nind Ec L, and c(t) = L (cind(t)− cind(0)) + c(0), where N = L Nind

and N has full row rank.
The choice of enzyme elasticities reflects some functional trade-offs. At low enzyme

saturation, elasticities are high, enzyme efficiency is low, and the enzyme demand per flux
(i.e., the inverse enzyme efficiency) is high. At high saturation, conversely, the reaction rate
hardly changes with the substrate level, so the reaction is “stiff”: fluctuations in inflowing
substrate cannot be buffered and lead to large fluctuations in substrate levels. Hence, the
optimal choice of saturation values (and thus of elasticities) will reflect trade-offs between
enzyme demand and favourable control properties.

If we know the fluxes and concentrations in a metabolic state, how can we find the
elasticities? The elasticities depend on the rate laws with many unknown parameters.
Modular rate laws (see Supplementary Text 2.2) are generic reversible rate laws based on
simple enzyme mechanisms, with random-order binding. The formulae contain terms
of the form βX

li = ci/(ci + kX
li ), called saturation values. A saturation value describes the

saturation of an enzyme with a reactant or small-molecule regulator, where ci is a metabo-
lite concentration, and kX

li is the dissociation constant between enzyme and metabolite
(where X stands for M (reactants), A (activators), or I (inhibitors)). In writing kM instead
of KM, the superscripts are used for convenience to leave space for lower reaction and
metabolite indices, for example kM

li . In modular rate laws, which rely on a quasi-equilibrium
approximation [46], the kX are dissociation constants and half-saturation concentrations at
the same time. Saturation values range between 0 and 1, and from saturation values and
metabolite concentrations, we can reconstruct the dissociation constants kX

li .
The scaled elasticities of modular rate laws consist of two terms [46],

Êvl
ci = Êrev

li + Êsat
li . (1)

The thermodynamic “reversibility” term Êrev
li depends directly on the thermodynamic force

θl , while the kinetic term Êsat
li arises from kinetics and depends on the saturation values.

Since the forces are coupled through Wegscheider conditions, all elasticities can be interde-
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pendent. However, given the forces and metabolite concentrations, the saturation values
can be freely varied without violating any physical laws (for proof, see Supplementary
Section S2.2). Details about modular rate laws and their first- and second-order elasticities
can be found in [46].

All thermodynamically consistent reversible rate laws share the same numerator,
which has the shape of mass-action rate law [46]. The numerator determines the thermody-
namic elasticity term Êrev

li [46]

Êrev
li =

v+l mS
li − v−l mP

li
vl

=
ζl mS

li −mP
li

ζl − 1
(2)

with substrate and product molecularities mS
li and mP

li and a flux ratio ζl =
v+l
v−l

= eθl .

The flux ratio, and therefore the elasticity term Êrev
li , depends on the thermodynamic

force θl = −∆rGl/RT, with Boltzmann’s gas constant R and absolute temperature T. For
forward reactions near equilibrium (i.e., small positive thermodynamic forces θl ≈ 0),
the substrate terms (where mS

li > 0, mP
li = 0) are close to infinity and the product terms

(where mS
li = 0, mP

li > 0) are close to −∞. For completely forward-driven reactions (with
thermodynamic force θl → ∞), we obtain elasticities mS

li for substrates and 0 for products.
Between these extremes, the elasticities vary with the thermodynamic force. With a small
force of 1 kJ/mol ≈ 0.4 RT and with molecularities and stoichometric coefficients equal to
1, Equation (2) yields scaled substrate elasticities of ≈ 3 and product elasticities of ≈ −2. In
contrast, for a force of 10 kJ/mol, we obtain values of 1.02 (substrate) and −0.02 (product).

The form of the kinetic elasticity term Êsat
li depends on the type of modular rate law

used. With mass-action or power-law rate laws without regulation, the kinetic term Êsat
li

vanishes and the elasticities follow directly from network structure and driving forces:

Ê = Êrev = Dg(v)−1[Dg(v+)MS −Dg(v−)MP] = Dg(ζ − 1̂)−1[Dg(ζ)MS −MP]. (3)

With other rate laws, a kinetic elasticity term Êvl
ci needs to be added. For example,

the simultaneous-binding modular (SM) rate law with non-competitive activation and
inhibition [46] yields a kinetic term consisting of terms related to substrates S, products P,
activators A, and inhibitors I:

Êvl
ci = Êrev

li −
[
mS

li βM
li + mP

li βM
li

]
︸ ︷︷ ︸

Êden
li

+
[
mA

li (1− βA
li )−mI

li βI
li

]
︸ ︷︷ ︸

Êreg
li

. (4)

The terms Êreg
li and −Êden

li reflect two parts of the rate law: a prefactor for regulation
and the rate law denominator. Equation (4) shows that STM generalises Structural Kinetic
Modelling: the elasticity formula in SKM,

Êvl
ci = mS

li (1− βM
li ) + mA

li (1− βA
li )−mI

li βI
li, (5)

is a limiting case of Equation (4) for completely forward-driven reactions, where βM
li = 0

and Êrev
li = mS

li. We now see the effect of reversible reactions: by using Equation (4)
(STM) instead of Equation (5), the elasticities become thermodynamically consistent and
interdependent. With the common modular rate law [46] (or “convenience kinetics” [70]),
the formula for scaled elasticities is more complicated:

Êvl
cj = βl j

ζl mS
l j −mP

l j

ζl − 1
− βl j

mS
l jψ

+
l + mP

l jψ
−
l

ψ+
l + ψ−l − 1

+ mA
li αA

li −mI
li βI

li, (6)

where ψ±l = ∏l(1 + ci/kM
li )

m±li . Formulae for other rate laws and second-order elasticities
can be found in [46] and Supplementary Section S5.5.
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There is another useful elasticiy formula. In reactions with a positive flux, all reversible
rate laws can be written in the factorised form [85]

v = e kcat ηrev(θ) ηsat(c) (7)

where the efficiency terms are unitless numbers between 0 and 1 and the thermodynamic
efficiency is given by ηrev(θ) = 1− exp(−θ). Here, forward kcat values and equilibrium
constants appear as basic parameters, where kcat, keq, and θ are defined with respect to the
flux direction. Using the factorization (7) and assuming constant efficiency terms ηrev and
ηsat, we obtain a linear enzyme–flux relationship: the metabolite concentrations do not
play a role and all elasticities vanish. A bit more realistically, we can compute ηrev, in each
state, from the known metabolite concentrations and keq values, thus considering the effect
of driving forces (while still setting ηsat = const.), thus ignoring saturation or regulation
effects. In the general case with variable efficiency terms, the formulae for scaled elasticities
Êvl

cj =
ci
vl

∂vl
∂ci

read (see Supplementary Section S2.2)

Êvl
cj =

−1
e−θl − 1

nil +
∂ ln ηsat

l
∂ ln ci

, (8)

where the first term arises from ηrev(θ(c)) and the second term depends on the choice of
rate law. Without the second term (e.g., assuming full saturation), we obtain an elasticity
formula that depends only on thermodynamic forces. Below we are interested in the
interplay between thermodynamics and saturation, so this formula will not be considered
any further.

4.3. Model Construction by STM

In STM, the mathematical structure of a model is described by a dependence schema
(Figure 2a) that lists all independent “basic” variables and the remaining “derived” variables.
For brevity, I will use the term “variables” not only for fluxes, metabolite concentrations
and enzyme concentrations, but also for kinetic and thermodynamic constants. Following
the schema, we can build models systematically step by step (Figure 2b): we start from
a network (reaction stoichiometries and regulation arrows), determine the state variables
(concentrations, fluxes, equilibrium constants), choose the saturation values, and compute
consistent (first- and second-order) elasticities by using Equation (1). The kinetic constants
can be reconstructed easily. From the second-order elasticities, we obtain second-order
control and response coefficients, describing enzyme synergies for static [23] or periodic
perturbations [26]. Any feasible model with the type of rate laws considered can be obtained
in this way (for details, see Supplementary Section S2.1).

During model construction, model variables can be chosen in various ways: they can
be replaced by data values, sampled, fitted, or optimised. Below, we assume that fluxes are
fitted to data or determined by FBA, metabolite concentrations are chosen within feasible
ranges and in line with the flux directions, and saturation values are sampled. With this
set-up, the hardest step is the choice of fluxes, which need to be thermo-physiologically
feasible; that is, thermodynamically realisable with metabolite concentrations in given
physiological ranges, which also implies that the flux distribution must be loopless [86].
Such fluxes can be obtained by EBA or thermodynamic FBA (based on mixed-integer linear
problems) or by starting from given fluxes and removing infeasible loops. Notably, STM
can be applied to non-steady reference states, for example to flux data that were mapped to
a pathway model without all necessary in- and outfluxes. However, in this case, the next
step—Metabolic Control Theory—will require a steady reference state. To construct such a
state with measured fluxes, models may be augmented with extra incoming and outgoing
reactions. Given the fluxes, feasible metabolite concentrations can be determined, e.g., by
the Max-Min Driving Force (MDF) method [47]. If a flux distribution is thermodynamically
infeasible, some thermodynamic forces will go against the flux direction. To apply STM
in this case, we may change the forces by adding extra terms attributed to hypothetical
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extra metabolites (see Supplementary Section S2.4). To guarantee stable states in our model
ensemble, we may proceed like in SKM: for each model instance, we check that the model
has a stable reference state (i.e., that the eigenvalues of the Jacobian matrix have negative
real parts), and discard all models with unstable states. In the resulting ensemble, the model
variables may show different distributions and correlations: e.g., saturation values may
not follow the original distributions and become correlated. It is not generally known how
flux patterns, metabolite concentrations, thermodynamic forces, and enzyme saturation
contribute to stability and how the chances of finding a stable state depend on network
size. This would be an interesting question to be studied by STM.

As noted before, in model construction by STM the basic model variables can be
sampled, freely chosen, fitted to data, or optimised for a fitness objective. We can use all
this to incorporate extra knowledge or data. A consistent set of kinetic constants, as input
data for STM, can be obtained by parameter balancing. Parameter balancing is a method
for translating incomplete, inconsistent, and uncertain data into complete, consistent sets
of model variables [52,54]. Given such input data, known kM values can be converted
into saturation values. These values can then be inserted directly, or saturation values
can be sampled around them (uniformly or following a beta distribution) to account for
uncertainties or missing information [87]. Known kcat values can be used similarly: in
the dependence schema, the kV values, together with equilibrium constants and fluxes,
determine the turnover rates kcat

+ and kcat
− and the enzyme concentrations e for the same

reaction. To match them to data, we can first choose kV values at random and then modify
them to obtain a good fit of forward kcat value, enzyme concentration, and flux; or we use a
different schema with forward kcat values instead of kV as basic variables.

When applying STM, I noticed that reference metabolite concentrations and fluxes—and
not just the saturation values—are really important for model dynamics because of how they
shape the unscaled elasticities. For example, the known metabolite concentrations make
the reconstructed threonine pathway model (in Supplementary Figure S3) work rather well.
Hence, if metabolite concentrations and fluxes are unknown, one should always sample them
broadly together with the saturation values. I also observed that, for obtaining reasonable
model dynamics, small driving forces should be avoided (as assumed in the MDF method):
ideally, in the reference states, driving forces should be restricted to values θ > 1.

Finally, STM may also be used for Bayesian model fitting and to predict biologically
optimal states. In these cases, model variables are not sampled but treated as choice
variables to be fitted or optimised. Unfortunately, the resulting optimality problems are
typically non-convex and hard to solve. Model balancing, which defines simplified convex
optimality problems, may be used instead [75].

By repeatedly sampling model parameters, we obtain an ensemble of models that all
share the same structure but show different parameter values [22,28,33]. Model ensembles
can impose a network structure and some other choices made by the modeller (e.g., given
fluxes and metabolite concentrations), but allow for variability in all other variables. Dif-
ferent model assumptions or model variants will lead to different model ensembles. To
study how choices of model structure, metabolic state, or kinetics determine metabolic
dynamics, we generate model variants, translate them into model ensembles, and search for
significant differences in their behaviour. Significance tests are described in Supplementary
Section S3.2.

The STM algorithm can be modified in various ways.

1. Cell growth. To model metabolism in growing cells, the formulae must be adapted. For
balanced growth at a cell growth rate λ, all cellular compounds must be reproduced
continuously, so the fluxes follow a mass balance condition N v− λ c = 0 with an
extra dilution term. Metabolite concentrations and fluxes are tightly coupled by this
equation, and in model construction they must be chosen together. In the kinetic
model, a dilution term −λ ci must be added to the ODE of each metabolite, and the
Jacobian matrix (which also appears in formulae for the control matrices) contains an
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extra term −λ I. Moreover, conserved moieties in such models must always vanish
because otherwise they would be diluted, thus preventing a steady state.

2. Kinetic constants as basic variables. Instead of choosing saturation values and con-
centrations and then computing the constants kX

li , we may treat the constants kX
li as

basic variables and compute the saturation values from them. The distributions for
ratios c/kM and for saturation values β = c/kM

1+c/kM = c
kM+c are obviously related. If β

is uniformly distributed in ]0, 1[, the ratio c/kM shows a probability density function
prob(c/kM) = 1

(1+c/kM)2 , i.e., ln(c/kM) follows a logistic distribution with location
parameter 0 and scale parameter 1 (see Supplementary Section S5.1). In practice,
we may conveniently sample saturation values from uniform or beta distributions,
while kinetic constants may be sampled from sufficiently narrow gamma distributions
or from similar log-normal distributions (for the choice of probability distributions,
see Supplementary Text 3.1). By sampling saturation values not within ]0, 1[ but in
a smaller range, one may avoid full saturation, and one may sample kM, kA, and kI

values around known experimental values.
3. Multiple steady states. To build a model with multiple steady states, in the metabolic

state phase we choose one set of equilibrium constants, but several sets of concen-
trations and fluxes for the different steady states; in the kinetics phase the constants
kM

li , kA
li , and kI

li and velocity constants kV
l (geometric means of forward and backward

catalytic constants) are chosen or sampled, for example, by parameter balancing
[37,52,54]. Finally, enzyme concentrations for each state are computed by matching
reaction rates from the rate laws to predefined fluxes.

Eventually, for more realistic models, some of the generic rate laws may be replaced
by more detailed rate laws obtained from enzyme assays [74]. For other extensions and
modifications of STM, see Supplementary Section S3.3.

4.4. Metabolic Control and Synergy Effects

If enzymes are perturbed by inhibition or transcriptionally, how will this change the
metabolic concentrations and fluxes? Inhibiting an enzyme makes substrates accumulate
and products deplete. These changes have further effects, which counteract the original
effect and eventually lead to steady-state changes in the entire network. To understand
such indirect effects, let us think of a simple example: a reaction perturbed by a single
parameter (e.g., an enzyme level or an external substrate concentration). In MCT, the direct
effects on reaction rates are described by parameter elasticities and the further effects (on
steady-state metabolite concentrations and fluxes) are described by control coefficients. By
multiplying parameter elasticity and control coefficient, we obtain the response coefficient
(the sensitivity between parameter perturbation and metabolite concentrations or fluxes).
Small perturbations can be treated as additive: the effects of simultaneous perturbations can
simply be summed over. A variation δe of enzyme activities, at fixed external metabolite
concentrations (δcext = 0), will lead to a flux variation δv = CV Ec δe, with the unscaled
control coefficient matrix CV = I− Ec L (NR Ec L)−1 Nind. Increasing an enzyme activity
can increase or decrease fluxes across the network. Each matrix column describes the
(positive or negative) effects of an enzyme on all the fluxes. The control coefficients are
usually unknown, but STM allows us to guess them based on information about network
structure, reference fluxes, metabolite concentrations, thermodynamic forces, and enzyme
saturation.

For small enzyme perturbations, the effects of enzyme perturbations on fluxes and
other target variables can be described by a linear approximation: a variation δej of the
enzyme level leads to flux changes δvl = Rvl

ej δej. For larger perturbations, however, the
results may be different, and we describe this as synergy effects: an enzyme perturbation
changes not only the target variable, but also the very effects of enzymes on this variable.
The extra effect is called synergism, or “antagonism” when it is negative. Antagonisms
arise, for example, if two enzymes share the same substrate: as one enzyme concentration
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goes down, the substrate concentration increases and the flux catalysed by the other
enzyme goes up, increasing its own flux control. Synergisms do not only exist between
enzymes, but between any variables (or discrete network features) that affect the reaction
rates. Besides enzyme concentrations, this may include enzyme inhibition, knock-outs,
differential expression, or perturbations of external metabolite concentrations. Generally,
to quantify synergisms, we consider two perturbations (e.g., of enzyme activities) and a
target variable (e.g., the biomass production rate). If single perturbations a and b change
the target value by factors wa or wb (typically smaller than 1, if the target variable is a
maximisation objective), we may expect, as a guess, that a double perturbation will lead to
a change wa · wb. We now compare this guess to the actual change wab. If the two values
differ, we describe this by a synergy effect ηz

ab = ln wab
wa wb

. Otherwise, if we expect additive
instead of multiplicative changes, the difference ηz

ab = wab − (wa + wb) can be used to
define a synergy effect.

How can synergisms be predicted from models? We need a model that predicts
changes in a metabolic target variable (e.g., a flux or metabolite concentration) after sin-
gle or double perturbations of enzyme concentrations (in kinetic models) or of fluxes (in
flux analysis). Synergies in kinetic models can be computed numerically: we vary two
enzyme levels and simulate the effect on the steady-state fluxes. A first inhibition will
change the flux control coefficients of all enzymes, and therefore the effect of a second
inhibition. For small perturbations, the synergy effect can be approximated to second order.
While the usual first-order response coefficients capture linear effects of single enzymes,
the second-order response coefficients (or “synergy coefficients”) capture synergisms of
enzyme pairs and second-order effects of single enzymes. Concentrations can be described
on log scale to guarantee that concentrations stay positive. Logarithms applied to fluxes
would make it impossible for predicted fluxes to change their direction. With logarith-
mic enzyme changes ∆ ln ea and ∆ ln eb (where ∆ ln ea ≈ ∆ea

ea
), the synergism is given by

ηz
ab ≈ R̂z

eaeb
∆ ln ea ∆ ln eb, where R̂z

eaeb
is the scaled synergy coefficient. If two enzymes are

inhibited, negative synergisms (R̂z
eaeb

< 0) are called aggravating while positive synergisms
(R̂z

eaeb
> 0) are called buffering. The second-order effects of single-enzyme perturbations

are described by self-synergisms: they are usually aggravating because inhibition tends to
increase an enzyme’s own control, which increases the effect of the inhibition on the target
variable.

Different modelling frameworks make different assumptions. FBA tries to maximise
the metabolic objective even after a perturbation; MoMA assumes that fluxes show mini-
mal changes despite perturbations, thus behaving homeostatically; MCT instead predicts
flux responses from metabolic dynamics, assuming that enzyme concentrations remain
constant (as considered below) or are optimally adapted (see [24]). How are the synergisms
computed in practice? In FBA or kinetic model simulations, synergy effects are simulated
one by one for each enzyme pair. To model flux perturbations by FBA, we first solve an
FBA problem with a given objective function (e.g., biomass production flux) to obtain a
flux profile and a resulting target variable (typically, the objective itself). To mimic an
enzyme inhibition, we limit the catalysed flux, constraining it to a certain percentage of
the original flux (e.g., 90% for a small perturbation, 50% for a large perturbation or knock-
down, 0% for complete inhibition or knock-out). By solving the FBA problem again, we
obtain the perturbed target value, and by repeating this procedure for single and double
perturbations, we can compute all synergy effects. Synergy effects in MoMA are computed
similarly: again, the inhibited reactions are constrained, but the new fluxes are supposed to
resemble as much as possible the unperturbed flux. With synergy effects computed like
this, a double inhibition in a linear pathway has a simple effect: the new pathway flux is
the minimum of the two inhibited fluxes. Thus, after a first inhibition, the second inhibition
has either its full effect or no effect at all. In both cases, we obtain buffering synergisms.
In MCT, synergisms are obtained from second-order elasticities, which can be sampled by
STM (see Supplementary Section S2.1). Epistasis—synergy effects of gene deletions on cell
fitness—can be predicted similarly, considering gene knock-outs as large perturbations
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and cell growth as the target variable. To obtain an epistasis measure suited for FBA,
with comparable ranges for positive and negative epistasis, Segrè et al. [88] introduced a
correction for buffering interactions (see Supplementary Text 4.1). With MCT, this is not
necessary because positive and negative synergisms are already in similar ranges.

4.5. Variability and Fluctuations in Cells

How are the variability, correlations, and temporal fluctuations of cell variables shaped
by network structure, fluxes, and thermodynamic forces? For simplicity, let us first consider
static variability between cells and then dynamic fluctuations within a cell—keeping in
mind that static variability is just a a limiting case of dynamic fluctuations at frequency
zero. To describe a cell population, we may use a single model for all cells, but with differ-
ences in the input variables that determine the steady states (e.g., randomly distributed
enzyme concentrations el with a covariance matrix Σe). In a first-order approximation,
the covariance matrix of metabolite concentrations is given by Σc = Rc

e Σe Rc
e
>, with the

response coefficient matrix Rc
e [22]. A more precise second-order approximation requires

synergy coefficients. Similar formulae hold for all perturbation parameters (e.g., external
metabolite concentrations, kinetic constants), and for variations in fluxes. The same co-
variance formula can also be used to describe subjective uncertainty, e.g., about predicted
steady states, based on uncertain model parameters [22].

Fluctuations in time are described similarly (see [26] and Supplementary Text 4.2).
Tracing stochastic fluctuations is difficult, but statistical properties such as amplitudes, time
correlations, and correlations between fluctuating variables are easy to obtain in linearised
models. We just need to consider their Fourier transforms, that is, the noise spectrum in
frequency space. Fluctuating parameters and variables are characterised by their spectral
power density matrices, which resemble the static covariance matrices Σ, but are complex-
valued (Hermitian instead of symmetric) and frequency-dependent. The spectral power
density S(ω) describes the “weight” of at frequency ω in the stochastic process. Correlated
fluctuating variables are described by a matrix with diagonal elements describing the
spectral power densities and off-diagonal matrix elements describing correlations. For
uncorrelated white noise, this matrix is an identity matrix S(ω) = I. If the spectral
densities of the original parameter fluctuations are known, the resulting spectral densities
of state variables can be computed in a linear approximation (see Supplementary Section
S4.2). In linear metabolic models with a stable reference state, noise parameters pj with
spectral density matrix Sp will lead to fluctuating metabolite concentrations with a spectral
density matrix Sc(ω) = Rc

p(ω) Sp(ω)Rc
p(ω)>. Again, diagonal elements are real-valued

and contain the spectral density of a concentration ci, while correlations are described by
complex-valued off-diagonal elements. Random distributions of steady-state fluxes are
described similarly by a matrix Sv(ω) = Rv

p(ω) Sp(ω)Rv
p(ω)>. The effects of parameter

fluctuations depend on the frequency: slow fluctuations (that is, Sp(ω) ≈ 0 except for
ω ≈ 0) have quasi-static effects, creating permanent differences between cells.

What can we learn from the spectral densities about measured variability in cells? In
measurement data, noise appears as a variability on a particular time scale, the time resolved
in our measurement. If concentration measurements take a second, faster fluctuations will be
averaged over and our data can reveal variations only on slower time scales. Hence, what
interests us is the variability in a variable, averaged over a time window ∆t (or after applying
to our stochastic process a smoothing kernel of width ∆t). Such results will be shown in Figure
7 in Results, centre bottom (for calculation details, see Supplementary Figure S5a).

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/metabo12050434/s1: Table S1: Symbols used in STM, Figure S1:
Structure and kinetic description of metabolic networks, Figure S2: Constructing kinetic metabolic
models in steady state, Figure S3: A kinetic model reconstructed by STM, Figure S4: Enzyme synergies
in a schematic metabolic pathway, Figure S5: Fluctuations caused by chemical noise, Figure S6:
Thermodynamic forces in a linear chain and their effects on metabolic control. References [1,14,15,17–
20,22–26,45,46,52,53,55,57,64,65,70,74,80,81,87–90] are cited in the Supplementary Materials.
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