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Abstract: Protein is one of the major macronutrients essential in human nutrition. Protein sources
especially animal sourced proteins are expensive, thus much work has been carried out to explore
alternative protein sources. Seaweeds, or macroalgae, are emerging as one of the alternative protein
sources. They are rich in protein with an excellent amino acid profile comparable to the other
conventional protein sources. Seaweed protein contains bioactive components, such as free amino
acids, peptides, lectins, and phycobiliproteins, including phycoerythrin and phycocyanin, among
others. Seaweed proteins have been proved for their antihypertensive, antidiabetic, antioxidant, anti-
inflammatory, antitumoral, antiviral, antimicrobial, and many other beneficial functional properties.
Therefore, seaweed proteins can be a natural alternative source for functional food development.
This paper discusses the compositional and nutritional aspects of seaweed protein, protein extraction
techniques, functional properties of various seaweed proteins, as well as their safety for new product
development and functional food applications.
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1. Introduction

Traditional agriculture is no longer enough to meet the global food demand as the
world population keeps rising, and as a result, protein is one of the main nutrients that
will be in short supply in the near future. Therefore, alternative, unconventional protein
sources and production methods are necessary to fulfil the global protein requirement and
to improve the nutritional status of the global population [1,2].

Seaweeds are emerging as one of the alternative protein sources with several benefits
over traditional high-protein crops in relation to nutritional value, productivity, protein
yield per unit area, and the need for arable land, freshwater, and artificial fertilizer [3].
Algae are aquatic organisms categorized as microalgae and macroalgae based on their size.
Multicellular macroalgae are referred to as seaweeds. Macroalgae are grown predominantly
in the marine environment and classified into three main taxonomic groups based on color
or pigments and their habitat: brown algae (Phaeophyta), red algae (Rhodophyta), and
green algae (Chlorophyta) [4–6]. Seaweeds include more than 10,000 species, though only
145 species are harvested for human consumption for their flavor, texture, or culinary ver-
satility, including Enteromorpha, Monostroma, Caulerpa, Laminaria, Undaria, Hizikia, Palmaria,
and Porphyra [7]. More examples are listed below (Table 1 and Figure 1).

Phycology 2022, 2, 216–243. https://doi.org/10.3390/phycology2020012 https://www.mdpi.com/journal/phycology

https://doi.org/10.3390/phycology2020012
https://doi.org/10.3390/phycology2020012
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/phycology
https://www.mdpi.com
https://orcid.org/0000-0001-6980-5155
https://orcid.org/0000-0002-9863-150X
https://doi.org/10.3390/phycology2020012
https://www.mdpi.com/journal/phycology
https://www.mdpi.com/article/10.3390/phycology2020012?type=check_update&version=1


Phycology 2022, 2 217

Table 1. Edible species of seaweeds.

Green Algae Red Algae Brown Algae

Caulerpa spp. Champia compressa Alaria esculenta
Codium spp. Chondrus crispus Ascophyllum nodosum

Enteromorpha spp. Eucheuma denticulatum
(formerly Eucheuma spinosum) Durvillaea antarctica

Monostroma spp. Gelidiella acerosa Eisenia bicyclis
Ulva spp. (formerly
Enteromorpha spp.) Gracilaria corticata Fucus serratus

Ulva lactuca (formerly Ulva
fasciata) (sea lettuce) Gracilaria edulis Fucus vesiculosus

Ulva australis (formerly
Ulva pertusa)

Gracilariopsis longissima
(formerly Gracilaria verrucosa) Himanthalia elongata

Mastocarpus stellatus Laminaria digitata
Osmundea pinnatifida Laminaria hyperborea

Palmaria palmata (dulse) Postelsia palmiformis

Porphyra spp. (nori) Saccharina japonica (formerly
Laminaria japonica)

Porphyra laciniata Padina spp.
Porphyra umbilicalis Sargassum fusiforme

Pyropia columbina (formerly
Porphyra columbina) Sargassum muticum

Solieria robusta Sargassum swartzii
Sargassum vulgare

Stoechospermum marginatum
Undaria pinnatifida
Undaria undarioides

Source: Mahadevan, 2015 [8]; Pandey et al., 2020 [9]; Fleurence et al., 2018 [10]; Shannon and Abu-Ghannam [11].
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Figure 1. Some edible algae species. (A) Ulva lectuca; (B) Codium fragile; (C) Caulerpa sertularioides;
(D) Halimeda spp.; (E) P. palmata; (F) Hypnea pannosa (G) Padina spp.; (H) Sargassum spp. Photo
courtesy by Piyumika Madhushani.
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Edible seaweeds contain polysaccharides (starch, laminarin, floridoside, cellulose,
hemicellulose, and hydrocolloids such as agar, alginate, and carrageenan), proteins, miner-
als (Na, Fe, Mg, Ca, I, K, Zn, F, and Se), vitamins (A, B1, B2, B9 (folic acid), B12, C, D, E, and
K), antioxidants (vitamin C and E, polyphenols, sulphated polysaccharides, carotenoids,
sterols, phlorotannins, catechins and proteins), polyphenols (catechins, flavonols, and
phlorotannins) and low amounts of fat, which are predominantly mono and polyunsatu-
rated fatty acids with low caloric value [5,9,12–15].

Many countries produce seaweeds, and Chile, China, Korea, and Japan are the largest
producers. Seaweeds are produced in two ways: (1) wild capture (from natural marine
systems) and (2) aquaculture (controlled system). According to FAO statistics, 33.3 million
MT of aquatic plants, primarily marine macroalgae, were produced globally in 2018, of
which 0.95 million MT (2.9%) were produced by wild capture and 32.4 million MT (about
97.1%) from aquaculture [16]. The data also show that wild capture is declining, whereas
aquaculture of seaweeds has steadily increased in the last ten years [16], due to increasing
concern for the protection of a high biodiversity ecosystem as they play an essential role
in water purification, coastal erosion protection, carbon fixation, and nursery habitats for
several species [17,18].

Currently, several protein-rich macroalgae, such as U. lactuca (Chlorophyta), U. pin-
natifida, F. serratus (Phaeophyceae), Neopyropia tenera (formerly Porphyra tenera), C. crispus,
and P. palmata (Rhodophyta) (17–44% of proteins), are approved by the European Food and
Safety Authority for human consumption [19].

Seaweeds are widely used as human food, animal feed, dietary substitutes, gelling
agents, stabilizers in food preparations, thickening agents (hydrocolloids such as agar,
alginate, and carrageenan), and additives for functional foods. Some seaweeds have
potential pharmaceutical and medicinal uses against cancer, allergies, diabetes, oxidative
stress, inflammation, thrombosis, obesity, lipidemia, hypertension, iodine deficiency, and
other degenerative ailments. Seaweeds have also been exploited as an ingredient in
cosmetics (oil, peptides, amino acids, vitamins, amongst others) [20–22]. In addition,
seaweeds can also be used in fertilizer and biofuel like biodiesel, bioethanol, biomethane,
biogas, bio-oils, and hydrogen gas preparation [23,24].

Seaweeds have been used in human diet since ancient times and are traditionally
consumed as raw, dried, baked, pickled form, or mixed with other food products (in soups,
stews, bread, salads, and snacks) in East Asia, particularly in China and Japan [8,25,26].

Apart from satisfying hunger and providing energy and nutrition, the other functions
of food are modulating physiological systems, preventing diseases, reducing health risks,
and improving human well-being. In this context, the development of functional foods is
becoming a primary focus of new product development [27].

Seaweeds are consumed for their functional benefits beyond their nutritional value
and are highly marketed as “functional foods” or “nutraceuticals” [28,29]. Though these
terms have no legal status in many countries, much of the literature defines them as “foods
that contain bioactive compounds, or phytochemicals, that may benefit health beyond their
nutritional value” [28].

Seaweeds are rich in protein (up to 47%) and contain bioactive compounds such as
peptides, glycoproteins, lectins, mycosporine-like amino acids, and phycobiliproteins [30].
At present, seaweed proteins or purified protein fractions are rarely used in functional food
development. Therefore, this paper discusses the seaweed as a potential source of functional
proteins with regards to protein composition and amino acid profile, nutritional aspects of
seaweed protein, protein extraction techniques, functional properties of various seaweed
proteins, applications, as well as their safety in the interest of new product development or
functional food applications.

2. Protein Content of Seaweeds

Seaweeds contain up to 47% of protein on a dry weight basis, which is close to the
protein content of traditional protein sources such as meat, egg, soybean, and milk [31].
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Generally, the protein content is low in brown algae (4–24% of dry weight) and high in red
(8–47% of dry weight) and green algae (9–33% of dry weight) and can be comparable to
other protein sources such as soybean (38% of dry weight) [32,33]. Table 2 summarizes the
protein content of some edible seaweed in three phyla (Table 2).

Table 2. The protein content of selected edible seaweeds on a dry weight basis.

Seaweed Species or Genus Protein (% of
Dry Mass) Reference

Phaeophyceae (Brown Algae)

A. nodosum 3–15 [10]
A. esculenta 9–20 [34]
F. serratus 3–11 [35]

F. vesiculosus 12.9 [36]
Fucus spp. 3–11 [37]
H. elongata 6–11 [38]
L. digitata 8–15 [10,35]

S. japonica (formerly L. japonica) (kombu) 12 [39]
U. pinnatifida (wakame) 11–24 [10,40]

Chlorophyta (Green Algae)

Caulerpa lentillifera 19.38 [41]
Cladophora rupestris 29.8 [35]

Ulva intestinalis (formerly Enteromorpha intestinalis) 10–18 [38]
U. lactuca (formerly U. fasciata) (sea lettuce) 8.7–32.7 [10,35]

U. australis (formerly U. pertusa) 17.5–26.0 [10]
Ulva rigida 15–25 [38]

Ulva rotundata (formerly Ulva pseudorotundata) 10.0 [42]

Rhodophyta (Red Algae)

Agarophyton vermiculophyllum
(previously Gracilaria vermiculophylla) 17.0% [43]

C. crispus 21–27 [10,44]
Gracilaria spp. 7–13 [45]

G. corticata 22.8 [46]
G. edulis 25.3 [46]

Gracilaria salicornia 9.58 [45]
Gracilaria gracilis 31–45 [42,47]

O. pinnatifida 20.6–27.3 [35,48]
P. palmata (dulse) 8–35 [10,49]

Porphyra spp. (nori or purple laver) 33–50 [35]
P. columbina (formerly P. columbina) 25 [50]
N. tenera (formerly P. tenera) (nori) 33–47 [10]

P. umbilicalis (nori) 15–37 [38]

The content of protein, peptides, and amino acids varies with the species, season,
maturity, and environmental factors [43,51–53]. Moreover, differently processed samples,
protocols used for protein evaluation, and nitrogen-to-protein conversion factors affect
the accuracy of protein quantification, such that it is difficult to compare the results from
different studies [54,55]. The crude protein content of seaweeds is widely calculated from
total nitrogen content (N × 6.25). Studies showed that the traditional nitrogen to protein
conversion factor of 6.25 leads to an overestimation of the protein content of seaweed and
the true nitrogen to protein conversion factor for each seaweed species is found in the range
of 3–5 [54–57].

3. Quality of Protein in Seaweeds

The quality of a protein can be determined by amino acid composition, proportion
or ratios, digestibility, and bioavailability [29,58]. Since different methods with various
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standard patterns are used to assess protein quality, it is difficult to compare the published
data [58].

3.1. Amino Acid Composition

The amino acid composition is essential to determine the protein quality of seaweeds
and to ensure the adequate intake of essential amino acids [59]. Seaweeds contain all the
amino acids required for human nutrition, especially glycine, alanine, arginine, proline,
glutamic, aspartic acids, and almost all essential amino acids [60]. Table 3 shows the
essential amino acid (EAA) composition of selected species of seaweeds.

Table 3. Comparison of EAA composition (mg/g protein) of selected edible seaweeds with
FAO/WHO/UNU, 2007.

Protein
(% dw) His Ile Leu Lys Met +

Cys 2 Met Cys Phe +
Tyr 3 Phe Tyr Thr Trp Val EAA/

NEAA EAA%

FAO/WHO/UNU,
2007

AA Scoring
Pattern 1 [61]

15 30 59 45 22 16 6 38 23 6 39

Brown Seaweeds

U. Pinnatifida [53] 13.1 68.2 50.8 78.5 69.6 NR 30.9 NR 93.2 47.1 46.1 42.7 NR 35 NR NR
U. pinnatifida [62] 12.5 21.6 47.3 89 58 73.1 7.3 65.8 110.4 49.4 61 53.6 NR 31.1 NR 48.4

H. elongata [62] 5 20.2 43.6 79.3 60.9 68.8 4.3 64.5 113.7 55.9 57.8 54.8 NR 28.2 NR 47
A. nodosum [63] a 7.6 49.8 48 58.8 14.3 11.2 NR NR 46.6 30.7 15.9 62.4 5.8 54 1 37.7

Green Seaweeds

U. australis (formerly
U. pertusa) [64] 15.4 8.6 25.9 52 30.1 NR NR NR 59.6 36.7 22.9 34.8 NR 39.1 0.72 42

U. intestinalis
(formerly

E. intestinalis) [64]
17.9 7.4 25.3 49.7 19.6 NR NR NR 52.1 35.9 16.2 41.7 NR 40.5 0.67 40

U. rigida [29] 10.2 30.7 46.1 82 49.4 19.9 NR NR 93.9 NR NR 50.8 8.8 60.1 0.69 40.8
U. lactuca (formerly

U. fasciata) [65] 7.1 13.1 40 72.6 46.4 6.1 6.1 0 93.4 57.1 36.3 62 NR 70.1 NR NR

Red Seaweeds

P. umbilicalis [62] 39 15.7 36.5 76.8 56.1 75.9 8.7 67.2 93 46.8 46.2 57.8 NR 12.3 NR 42.4
P. palmata [31] 15.2 18.5 65 81 107.8 34.7 28 6.7 93.3 NR NR 47.4 NR 143.6 0.89 47
P. columbina
(formerly

P. columbina) [50] a
24.6 12.6 27.1 73.8 60.1 35.7 16.8 18.9 62.5 37 25.5 59.1 6.3 58.5 0.65 NR

Gracilaria changii [66] 12.6 NR 42.3 53.4 48.7 16.1 NR NR 63.5 NR NR 49.3 NR 39.1 1.61 NR
A. vermiculophyllum

(formerly
G. vermiculophylla)

[29]

13.4 10.7 54.9 84.5 54.4 12.9 NR NR 90.8 NR NR 58.2 4.0 64.1 0.67 40.1

1 FAO/WHO/UNU, 2007 amino acid scoring pattern for adults in mg/g protein. 2 Sulfur amino acids
(methionine + cysteine). 3 Aromatic amino acids (phenylalanine + tyrosine). NEAA, non-essential amino acids.
Amino acids are represented using the three-letter abbreviation code: His, histidine; Ile, isoleucine; Leu, leucine;
Met, methionine; Cys, cysteine; Phe, phenylalanine; Tyr, Tyrosine; Thr, threonine; Trp, tryptophan; Val, valine. NR,
Not Reported. a The data was originally expressed as g/100 g protein.

The most abundant essential amino acids in seaweeds are leucine, valine, threonine,
and the aromatic amino acid phenylalanine, of which leucine makes up the highest amount
in most seaweeds (Table 3). The most abundant EAA in brown seaweed, H. elongata (sea
spaghetti), A. esculenta (Irish wakame), and red seaweed, P. umbilicalis (nori), is leucine [67].
De Bhowmick and Hayes found that leucine is the most predominant amino acid in
A. esculenta and F. serratus, and valine, followed by leucine in U. lactuca (formerly U. fasciata)
and P. palmata [68].

Aspartic acid and glutamic acid together constitute a large proportion of total amino
acids in many seaweeds [69,70], notably in A. nodosum (38.22% of total amino acids) [71],
P. palmata (25.42%), C. crispus (38.62%) [52], Ulva spp. (formerly Enteromorpha spp.) (28.11%),
Gracilaria spp. (25.82%) [72], Fucus spp. (22–44%), U. rotundata (32%), and U. rigida
(26%) [37]. The abundance of these amino acids is responsible for the special flavors
and tastes of seaweed, and glutamic acid is the main component in the taste sensation of
“umami” [5,64].
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Various factors, such as species, preservation method, extraction method, seasonal
variation, and the environment in which they grow, influence the amino acid composition
of seaweeds [29,53,73,74].

3.2. Amino Acid Ratio

Proportion or ratios of amino acids, such as the ratio of EAA to non-essential amino
acids or total amino acids (EAA/NEAA or EAA/total AA), essential amino acid index
(EAAI), and amino acid score (AAS), have been used to assess the protein quality of
seaweeds in various studies [29].

Based on Table 3, seaweeds consist of 37.7–48.4% of EAA, and the ratio of EAA to
NEAA is in the range of 0.65–1.61. Though red seaweed generally contains a higher
amount of protein (Table 2), the concentration of EAAs per gram of protein or the ratio of
EAA/NEAA is lower in red seaweed (Table 3) [62].

Almost half of the total amino acids (about 40–50%) in seaweeds consists of EAA [42],
which is close to the value of soya (39%) and egg protein (47%) [31]. Furthermore, the
ratio of EAA/NEAA is used to evaluate the distribution of amino acids in seaweed pro-
teins [29]. The EAA/total AA ratio or EAA percentage for three brown seaweeds, A.
nodosum, F. vesiculosus, and Bifurcaria bifurcata, were reported as 38.87, 40.99, and 39.99%,
respectively [36]. The under-exploited edible seaweeds in India, such as Acanthophora
spicifera, G. edulis (Rhodophyta), Padina gymnospora (Phaeophyceae), U. lactuca (formerly U.
fasciata), and Ulva flexuosa (formerly Enteromorpha flexuosa) (Chlorophyta) were reported to
contain 41–50% (0.41–0.50) of EAA in total AA with an EAA/NEAA score of 0.72–1.02 [75].
Similar results also have been recorded for Hypnea japonica, Hypnea charoides (Rhodophyta),
U. lactuca (formerly U. fasciata) (Chlorophyta) (36.2–40.2%) [76], and P. palmata (Rhodophyta)
(40.9–42.1%) [55]. Norziah and Ching also stated that the ratio of EAA to total AA is 0.4 in
Gracilaria changgi [77]. The EAA/total AA and EAA/NEAA ratios for brown seaweed Sar-
gassum polycystum were reported as 0.5 and 1.0, respectively [78]. Rosemary et al. reported
that red seaweeds, G. corticata and G. edulis, have a good EAA/NEAA ratio (0.62 and 1.19,
respectively) and EAA/total AA ratio (0.29 and 0.54, respectively) [46].

3.3. Amino Acid Score

Amino acid score (AAS) or chemical score is calculated using the following equation:

AAS (%) =
mg AA in 1 g of the seaweed protein tested

mg AA in 1 g reference protein
× 100 (1)

The amino acid composition in the tested sample is compared with a reference pro-
tein, the amino acid requirement pattern defined by the FAO/WHO/UNU for children
(3–10 years of age) or adults [61], or the respective amino acid content for eggs or legumi-
nous plants (soybean) [42,57,77]. The AAS evaluates the actual abundance of individual
EAA in food material and relates it to dietary requirements or a reference protein, and
thereby, it is also possible to determine the limiting amino acid. The lowest score (<0.100)
obtained for the essential amino acids in a tested protein is the “most limiting amino acid”,
which means the concentration of the corresponding amino acid is lower than the reference
standard [40,79].

The sulfur amino acids (methionine and cysteine), lysine, and tryptophan are often
limiting amino acids in seaweed protein [80]. This composition pattern varies with the
species. In comparison, leucine and isoleucine in red algae, and methionine, cysteine, and
lysine in brown algae, are often deficient amino acids [40,52].

Limiting amino acids in H. japonica, H. charoides, and U. lactuca (formerly U. fasciata)
are methionine (0.24–0.79 AAS) and lysine (0.68–0.80 AAS) [65]. Machado et al. identified
methionine (58.4–93.4% AAS) as limited EAA in Porphyra dioica, P. umbilicalis, A. vermiculo-
phyllum (previously G. vermiculophylla) (Rhodophyta), and U. rigida (Chlorophyta) [29]. The
most limiting amino acid in U. australis (formerly U. pertusa) and U. intestinalis (formerly E.
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intestinalis) was lysine, followed by leucine, despite the fact that leucine was present at a
higher amount in both species (49.7–52.0 mg/g protein) [64].

When egg protein is used as a reference protein, seaweeds have better sources for
isoleucine, threonine, and valine (>1.00 or 100% EAA score), and are deficient in methionine
(0.5 or 50%), whatever the phylum considered [42]. In another study, lysine was identified
as a limiting amino acid in G. changgi [77].

Seaweeds can be a good source of high-quality protein as it consists of a high concen-
tration of EAA (40–50% of total amino acids) with an excellent EAA profile close to that
of egg protein and a higher AAS than other plant-based protein, except soy, which has an
AAS of 1.00 [11]. Therefore, seaweeds can be an alternative source of traditional protein in
human food and animal feeds.

3.4. Digestibility and Bioavailability

Protein quality does not solely depend on the amino acid profile. Even with an
excellent amino acid profile, the protein may have lower nutritional value if the digestibility
is low due to poor bioavailability [81]. Therefore, the bioavailability of proteins is an
essential factor in determining protein quality, and can be described as the degree to
which amino acids or small peptides from a test protein consumed by a living organism are
finally transported across the intestinal membrane and into the body [82]. As bioavailability
includes digestibility and absorption mechanisms [82], studies examining the bioavailability
of protein are required to incorporate in vivo experiments.

Using animal assay, in vivo protein digestibility can be determined by measuring
the amount of nitrogen absorbed (the difference between the nitrogen intake and nitro-
gen recovered from the feces) relative to the nitrogen intake [83]. However, compared
to the in vivo method, the digestibility of seaweeds has been widely studied based on
rapid and cost-effective in vitro methods [65,84,85], which also give information about
the bioavailability of food proteins [82]. In vitro digestibility relies on several proteolytic
enzymes such as pepsin, pancreatin, trypsin, chymotrypsin, or a mixture of these en-
zymes [50,65,86,87]. This enzymatic approach is based on in vitro simulations of human
digestion, and most methods use mammalian gastric and/or pancreatic and intestinal
enzymes in the assay [83,86,87].

Red seaweed has the highest digestibility among the three phyla [65,85], whose values
are comparable with some plant sources, including grains (69–84%), legumes (72–92%),
fruits (72–92%), and vegetables (68–80%), and slightly lower than animal protein sources (ca-
sein and whey) [1,85]. Table 4 shows the relative in vitro digestibility of selected seaweeds
using a multi-enzyme assay (porcine pancreatic trypsin, bovine pancreatic chymotrypsin,
and porcine intestinal peptidase) at pH 8.0 and 37 ◦C.

However, the values reported for in vitro digestibility of seaweeds are highly variable
depending on the particular assay used [37,85,86]. Further, the in vitro digestibility of
seaweed proteins can differ according to the species and seasonal variations in glycoprotein
and antinutritional factors such as phenolic molecules or polysaccharides [37,65]. This lack
of consistency makes the resulting data challenging to compare.

In vitro digestibility (using multi-enzyme assay; pepsin, trypsin, and chymotrypsin at
neutral pH) of A. esculenta, F. serratus, F. vesiculosus (Phaeophyceae), U. lactuca (formerly U.
fasciata) (Chlorophyta), P. palmata, and Asparagopsis taxiformis (Rhodophyta) were quite simi-
lar (0.77–0.82) [68]. The digestibility of U. pinnatifida (brown) was recorded as 17% and 66.6%
when using pepsin (acidic pH, 37 ◦C) and pancreatin (pH 7.6, 37 ◦C), respectively [37,88].
When using the combination of pepsin and pancreatin, the digestibility of P. columbina (for-
merly P. columbina) was reported as 74.3% [50]. Table 5 shows the digestibility of selected
seaweeds using various assays.
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Table 4. Relative digestibility of selected seaweeds.

Seaweeds Digestibility (%) 1

Red Seaweed

H. charoides [65] 88.7
H. japonica [65] 88.9
P. palmata [85] 85.8
C. crispus [85] 84.2

Sarcodiotheca gaudichaudii [85] 86.7

Green Seaweed

U. lactuca (formerly U. fasciata) [65] (green seaweed) 85.7

Brown Seaweed

A. nodosum [85] 78.7
F. vesiculosus [85] 78.8
A. esculenta [85] 79.2

1 Relative digestibility is expressed as a percentage compared with casein digestibility (100%). The in vitro
digestibility was determined by multi-enzyme hydrolysis using porcine pancreatic trypsin, bovine pancreatic
chymotrypsin, and porcine intestinal peptidase at pH 8 and 37 ◦C.

Table 5. Relative digestibility of selected seaweeds using various assays.

Seaweeds
Digestibility (%) 1

Reference
Pepsin Pancreatin Pepsin+

Pancreatin Pronase

U. australis (formerly U. pertusa) (green) 17.0 66.6 - 94.8

[37,88] a
U. pinnatifida (brown) 23.9 48.1 - 87.2

N. tenera (formerly P. tenera) (red) 56.7 56.1 - 78.4
S. japonica (formerly L. japonica) (brown) 39.0 54.0 - 83.9

P. palmata (red) - 56.0 - -

P. columbina (formerly P. columbina) (red) - - 74.3 - [50] b

P. palmata (red) 87.4 84.9 87.3 -

[86] c

N. tenera (formerly P. tenera) (red) 73.2 65.9 70.2 -
E. bicyclis (brown) 57.6 73.2 57.1 -

Sargassum fusiforme (formerly Hizikia
fusiformis) (brown) 51.8 65.8 51.8 -

S. japonica (formerly L. japonica) (brown) 70.2 76.1 72.1 -
U. pinnatifida (brown) 69.1 87.5 68.6 -

1 Relative digestibility is expressed as a percentage compared with casein digestibility (100%). The in vitro
digestibility was determined by various assays using, a pepsin in acidic pH, pancreatin in pH 7.6, and pronase in
pH 8.6 at 37 ◦C; b not reported; c pepsin at pH below 1.7 and 40 ◦C followed by pancreatin at pH 7.5 and 40 ◦C for
24 h.

Though the seaweeds contain a higher amount of protein, the inhibitory effect of
macroalgal compounds like glycoprotein and other antinutritional factors (phenolic com-
pounds or polysaccharides) reduces the digestibility [1,37].

Polysaccharides, notably soluble fibers (xylan and carrageenan) and their interac-
tion with proteins or proteolytic enzymes, reduce protein hydrolysis in seaweed [84,85].
Fleurence also suggested that the glycosylation level of the protein fraction or glycoprotein
content may decrease the rate of hydrolysis by enzymes such as trypsin and chymotrypsin
and influence the digestibility of Ulva armoricana protein [37]. Further, Marrion et al. re-
ported that the presence of higher soluble fiber reduced the digestibility of P. palmata and G.
longissima (formerly G. verrucosa) [84].

Oxidized phenolic compounds may react with amino acids and proteins, thereby
inhibiting the activity of proteolytic enzymes. A strong negative correlation between
total phenolic content and in vitro digestibility of seaweed protein has been reported in
various studies [65,85]. Typically, brown seaweed contains a higher amount of phenolic
compounds, including catechins, flavanols, and phlorotannins, which greatly influence
protein digestibility [1].
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However, these in vitro studies only give an approximation of the true protein di-
gestibility. Therefore, biological evaluation using human and animal feeding studies
(in vivo protein digestibility) is required for an accurate prediction of the nutritional value
of seaweed protein.

4. Protein Extraction Methods

Seaweed has poor protein digestibility in its raw, unprocessed form because of its
complex cell wall, which poses a physical barrier in the absence of digestive enzymes in the
gastrointestinal tract, and greatly emphasizes the need for protein extraction techniques
to improve their digestibility [52]. Protein can be extracted from dried seaweed powders
using conventional or classical methods, including physical, chemical, enzymatic methods,
and other novel methods [42,71], then the protein can be collected by centrifugation or
filtration. The dissolved protein can be obtained by various recovery and purification
techniques, such as ultrafiltration, chromatography techniques, dialysis, and/or precipita-
tion using ammonium sulphate followed by centrifugation [89–91]. High-purity proteins
are not required to produce regular food and feed but are essential for functional food
development. Chromatography is the main purification technique that uses molecular
exclusion, ion exchange, affinity, and hydrophobic interactions [92]. The extracted protein
can be preserved by preconcentration and drying techniques (freeze-drying and oven
drying at 40 ◦C) [89–91]. Figure 2 illustrates the basic steps involved in protein extraction
from seaweed.
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Physical cell disruption methods include grinding followed by aqueous treatment,
osmotic shock, or high shear force, and the extraction is carried out based on the hy-
drophilic property of most proteins. Chemical methods include acidic (HCl) and alkaline
(NaOH) treatment, which significantly improves the solubility and extraction of highly
water-insoluble proteins from seaweeds. However, these two methods are relatively time-
consuming, and the efficiency of extraction (29–59% of protein content) is limited [1,93].
Proteins in seaweed species are bound to non-protein components such as polysaccha-
rides and polyphenols [79]. Therefore, cell disruption techniques are required to enhance
the efficiency, extraction rate, and yield. Enzymes such as polysaccharidases (cellulase,
hemicellulose, xylanase, k-carrageenase, β-agarase, β-glucanase, amylases, arabinase) or
proteases can be applied before protein extraction in order to degrade polysaccharides, such
as carrageenans, alginates, ulvans, xylans, galactans, cellulose, fucoidan and laminarin,
and improve the protein yield by up to 67% [1,71,94].

Many non-conventional novel protein extraction techniques have been used for protein
extraction: microwave-assisted extraction, supercritical fluid extraction, ultra-high-pressure
extraction, pressurized liquid extraction, pulsed electric field, and ultrasound-assisted
extraction [1,71,95].

The amount of protein that can be extracted from seaweeds depends on various fac-
tors, such as the species, seasonal variation, pre-treatment, the combination of extraction
methods, preservation method, extraction method, and its processing parameters, such as
extraction temperature, time, and pH [3,71,96]. The most influencing factor in seaweed
protein extraction is the complex rigid cell wall, and its composition varies with species.
In addition, seaweed proteins are bound to non-protein components such as polysac-
charides (alginates, agar, carrageenan) and polyphenols that influence protein extraction
efficiency [91,97]. Seaweeds are seasonal, and fresh seaweeds can deteriorate quickly after
harvest. Therefore, seaweeds are preserved by freezing or freeze-, sun-, vacuum-, or air-
drying at different temperatures to ensure year-round availability [3]. The methods used
for protein extraction and the processing parameters also have an effect on the amino acid
profile [74,98].

Compared to the physical method (sonication), the pH-shift method (using NaOH
and HCl) recovered more protein from P. umbilicalis and Saccharina latissima, and a higher
EAA percentage (42.2–42.6%) from P. umbilicalis, S. latissima, and U. lactuca (formerly U.
fasciata) [99]. When compared to the high-pressure processing and autoclave method, the
classical method (cell lysis induced by osmotic shock and sonication) produced a higher
protein yield for C. crispus (35.2%), Fucus vesiculosis (35.1%), and A. esculenta (18.2%) with a
good EAA profile [52]. The brown seaweed Macrocystis pyrifera (74.6%) yielded significantly
more protein than the red seaweed Chondracanthus chamissoi (36.1%) when using enzyme-
assisted extraction with cellulase [91]. A combination of various protein extraction methods
has been used to obtain higher protein yields. Sequential extraction using acid treatment
followed by alkaline treatment has also increased protein extraction (59.76%) [71]. For P.
palmata, up to 90% of the protein was extracted using a combination of enzymes followed
by the N-acetyl-L-cysteine-assisted alkaline extraction method [31].

5. Functional Properties of Seaweed Proteins and Their Role in Health

Functional foods can be defined as foods and food components that provide a health-
promoting benefit beyond basic nutrition and energy [28]. “Let food be your medicine
and medicine be your food” is a popular quote by the father of medicine, Hippocrates.
Many studies have confirmed a direct relationship between diet and health, and the
regular inclusion of functional ingredients in has an impact on the quality of life [100].
Seaweeds contain several bioactive compounds, including polysaccharides, polyphenols,
lipids, polyunsaturated fatty acids (PUFAs), sterols, proteins, dietary fiber, pigments, and
vitamins [101,102]. Several studies have revealed that the seaweeds are an excellent source
of various proteins (amino acids, peptides, phycobiliproteins, and lectins) with interesting
biological properties, such as antihypertensive, antioxidant, antidiabetic, anti-inflammatory,
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antitumoral, antiviral, and antimicrobial [20,32,103]. Table 6 summarizes the bioactive
compounds and their functional properties for selected seaweeds.

Table 6. Seaweed protein exhibits potential bioactivities.

Seaweed Bioactive Compounds Properties References

Bryopsis spp. (green) Cyclic
depsipeptide

Antimicrobial activity against
Mycobacterium tuberculosis [104]

Gracilariopsis lemaneiformis
(red) TGAPCR, FQIN [M(O)] CILR Angiotensin-I-converting enzyme

(ACE) inhibitory activity [105]

Mazzaella japonica (red)

YRD, VSEGLD,
TIMPHPR, GGPAT, SSNDYPI,

SRIYNVKSNG, VDAHY, CPYDWV,
YGDPDHY, NLGN, DFGVPGHEP

ACE inhibitory activity [106]

YRD, LDY, LRY, VY, LF, FY ACE inhibitory activity [107]

Neopyropia yezoensis (formerly
Porphyra yezoensis) (red)

Di- and tripeptides
TPDSEAL

ACE inhibition/antihypertensive
activity

Antimicrobial activity against
Staphylococcus aureus

[108]

[109]

P. palmata (dulse) (red)

Peptides derived from
phycobiliproteins:

YRD, AGGEY, VYRT, VDHY, IKGHY,
LKNPG, LDY, LRY, FEQDWAS

ACE inhibition, antioxidant, [110]

Alcalase, bromelain,
and Promod-derived hydrolysates

dipeptidyl peptidase IV (DPP-IV)
inhibitory activities, [111]

Alcalase/Flavourzyme hydrolysates Antihyperglycemic/antidiabetic
potential [112]

Peptides: ILAP,
LLAP, MAGVDHI DPP-IV inhibitory activities [113]

Papain hydrolysates: NIGK
Platelet-activating factor

acetyl-hydrolase (PAF-AH) inhibitory
peptides

[114]

IRLIIVLMPILMA Renin inhibitory activity [115]
SDITRPGGQM Antioxidant [116]

P. dioica (red) Peptides
DYYKR, YLVA

Antioxidant, ACE inhibition, DPP-IV
inhibitory activities [117]

P. columbina (formerly
P. columbina) (red) Peptides ACE inhibitory, immunosuppressive,

antioxidant properties [118]

Saccharina longicruris (formerly
Laminaria longicruris) (brown)

TITLDVEPSDTIDGVK, ISGLIYEETR,
MALSSLPR,

ILVLQSNQIR, ISAILPSR,
IGNGGELPR, LPDAALNR,

EAESSLTGGNGCAK, QVHPDTGISK

Antibacterial activities [119]

Sargassum pallidum (brown)
Dipeptides

(aurantiamide, aurantiamideacetate,
dia-aurantiamide)

Antibiotic activity in vitro against S.
aureus, Staphylococcus epidermidis, and

Pseudomonas aeruginosa
[120]

Sargassum thunbergia (brown) Iodo-amino acids Possibly helps in human thyroid
metabolism [79]

U. rigida (green) Peptides ACE inhibition [121]

U. pinnatifida (brown)
Di-, tri-, and tetrapeptides
VYIY, AWFY, VW, IW, LW,

YNKLKFYG, YKYY

ACE inhibition/ antihypertensive
activity, antioxidant [122,123]

Boodlea coacta (green),
Griffithsia spp. (red)

Lectins
griffithsin

Antiviral effects against human
immunodeficiency virus (HIV),

Hepatitis C virus and SARS-CoV/ e
SARS-CoV-2 by preventing the entry

into the host cells

[124,125]

Caulerpa cupressoides (green) Lectins Antinociceptive and
anti-inflammatory activities [126]
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Table 6. Cont.

Seaweed Bioactive Compounds Properties References

C. fragile (green),
Eucheuma serra (red) Lectins Mitogenic activities, lipogenic activity [127]

Mimica amakusaensis (formerly
Eucheuma amakusaense) (red),

Ulva spp. (formerly
Enteromorpha spp.) (green)

Lectins

Induce apoptosis, metastasis, and cell
differentiation in cancer cells,
antibiotic, anti-inflammatory,

anti-HIV activity, and human platelet
aggregation inhibition

[128]

N. yezoensis (formerly
P. yezoensis) (red) Taurine Antioxidant [129,130]

Saccharina angustata (formerly
Laminaria angustata) (brown),

Chondria armata (red)
Laminine Hypertensive effect, depress

contraction of smooth muscles [131]

C. crispus, Gelidium pusillum,
Dasysiphonia japonica (formerly

Heterosiphonia japonica),
P. palmata (red)

Phycobiliproteins
Antioxidant, antidiabetic, antitumor,
anti-inflammatory, neuro-protective,

and hepato-protective properties
[132]

Gracilaria tikvahiae,
P. palmata (red)

Phycobilliproteins
(phycocyanins and allphycocyanins)

Anti-inflammatory, liver-protecting,
antiviral, antitumor,

antiatherosclerosis, lipase activity
inhibitor, serum lipid reducing agent,

and antioxidant

[128]

Abbreviation of amino acids as per Jones, 1999 [133]: A, Ala; R, Arg; N, Asn; D, Asp; C, Cys; Q, Gln; E, Glu; G,
Gly; H, His; I, Ile; L, Leu; K, Lys; M, Met; F, Phe; P, Pro; S, Ser; T, Thr; W, Trp; Y, Tyr; V, Val.

5.1. Amino Acids

Amino acids are building blocks of polypeptides and proteins, and the amino acid
composition varies with seaweed species. Amino acids serve as essential precursors for the
synthesis of low molecular-weight substances (e.g., NO, polyamines, glutathione, creatine,
carnitine, carnosine, thyroid hormones, serotonin, melanin, melatonin, and heme) with
enormous physiological roles, including regulating nutrient transport and metabolism, cell-
to-cell communication, gene expression, protein phosphorylation, antioxidative defense,
immune function, reproduction, lactation, fetal and postnatal growth and development,
tissue regeneration, neurotransmission, acid-base balance, homeostasis, intestinal microbial
growth, and metabolism, among many others [134].

In general, glycine, alanine, arginine, proline, aspartic acid, and glutamic acid make
up a larger portion, and cysteine, methionine, and tyrosine are found in lower concen-
trations in seaweeds [58]. Supplementation with amino acids has a beneficial effect on
disease management, e.g., methionine for patients with multiple sclerosis; arginine has
a neuroprotective effect after brain ischemia injury and in infertility; histidine improves
insulin sensitivity in hyper-insulinemia; glycine alleviates liver and lung injury; tryptophan
improves sleep disorders and depression [29,134]. Glutamic acid plays an important role
in key physiological functions, including maintaining brain function and mental activ-
ity. Aspartic acid helps to initiate important metabolic pathways like the Krebs and urea
cycles [58]. However, elevated amino acid levels and their products, such as ammonia,
homocysteine, and asymmetric dimethylarginine, are pathogenic factors for neurological
disorders, oxidative stress, and cardiovascular disease. Therefore, it is vital to maintain an
optimal amino acid balance in the diet and circulation for whole-body homeostasis [134].

5.2. Peptides

Peptides that are 2–20 amino acids in length can be linear, cyclic, depsipeptides,
dipeptides (carnosine, almazole D), tripeptides (glutathione), pentapeptides (galaximide),
hexapeptides, oligopeptides, and phycobiliproteins [32,79]. These isolated bioactive pep-
tides have hormone-like properties that are inactive within the parental proteins, but
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become activated upon release during fermentation or hydrolysis [1,128]. Based on their
structural properties, amino acid composition, and sequences, they can display a wide
range of biological functions, including antihypertensive (ACE inhibitory), antioxidant,
antidiabetic (DPP-IV inhibitory, α-amylase inhibitory), appetite suppression, antitumoral,
antimicrobial, antiviral, opioid agonistic, immunomodulatory, prebiotic, opioid, mineral
binding, tyrosinase inhibitory, anticoagulatory, anti-thrombotic and hypocholesterolemic
effects [1,27,32,135,136].

Hypertension is one of the major risk factors for cardiovascular disease (CVD) [27,137].
Renin and ACE are the two key enzymes in the renin-angiotensin system (RAS), which reg-
ulates peripheral blood pressure. ACE catalyzes the conversion of angiotensin-I to a potent
vasoconstrictor, angiotensin-II, and degrades the vasodilator peptides bradykinin [121,138].
Thus, inhibition of ACE is one of the key therapeutic approaches in the management of
hypertension (Figure 3) [27].
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To date, a number of ACE inhibitory or antihypertensive macroalgal peptide hy-
drolysates have been identified [137]. Paiva et al. revealed that ACE inhibitory peptides
from U. rigida have potential therapeutic benefits for the prevention and/or treatment
of hypertension and its related diseases [121]. ACE inhibitory peptides have also been
reported in P. columbina (formerly P. columbina), P. palmata, N. tenera (formerly P. tenera), N.
yezoensis (formerly P. yezoensis, S. chordalis, M. japonica (Rhodophyta), S. fusiforme (formerly
H. fusiformis), U. pinnatifida (Phaeophyceae), Ulva prolifera (formerly Enteromorpha prolifera),
and U. intestinalis (formerly E. intestinalis) (Chlorophyta) [27,107,118,119,122,137,139].

Furthermore, the recent outbreak of SARS-CoV-2 (or 2019-nCoV) responsible for the
COVID-19 pandemic, enters host cells through an interaction between the spike viral
protein and angiotensin-converting enzyme 2 (ACE 2) [140]. ACE inhibitory peptides with
antiviral activity in edible seaweeds (U. pinnatifida, S. fusiforme, Porphyra spp.) could exert a
protective effect against COVID-19 by reducing the dominance of the ACE/Ang II/ATR1
axis [141].

A few studies have reported the antidiabetic potential of seaweed protein/peptides
that inhibit the α-amylase, α-glucosidase, and DPP-IV [112,113]. One therapeutic approach
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for type 2 diabetes mellitus (T2DM) management is to lower blood glucose levels by in-
hibiting the key enzymes involved in intestinal carbohydrate digestion (α-amylase and
α-glucosidase). Two α-amylase inhibitory peptides have been identified in proteolytic
enzyme hydrolysates of seaweed laver (Porphyra spp.) that can prevent postprandial hy-
perglycemia [142]. Another, newer, therapeutic approach for T2DM is to inhibit DPP IV as
an insulin regulatory strategy. Glucagon-like peptide-1 (GLP-1) and glucose-dependent
insulinotropic polypeptide (GIP) are the two incretin hormones that stimulate glucose-
induced insulin secretion, inhibit postprandial glucagon release, and delay gastric empty-
ing, which results in lower blood glucose level. DPP-IV inactivates GLP-1 and GIP, resulting
in the loss of their insulinotropic potential in vivo. Hence, DPP-IV inhibitors prevent the
degradation of GLP-1 and GIP and enhance its insulinotropic effects, and thus, can be used
in the management of T2DM [113,143]. Figure 4 illustrates the simplified mechanism of
DPP-IV inhibitors and antidiabetic activity.
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Seaweeds can be a natural source of DPP-IV inhibitors. Studies have reported that
protein hydrolysates of P. palmata have DPP-IV inhibitory activities that are useful for the
management of T2DM [111,144] and obesity [111]. Oral administration of P. palmata protein
hydrolysate derived from Alcalase and Flavourzyme reduced food intake by streptozotocin-
induced diabetic mice and showed antihyperglycemic effects [112].

Reactive oxygen species (ROS) contribute to the development of chronic diseases, in-
cluding cardiovascular diseases, cancer, diabetes mellitus, cataracts, and neurodegenerative
disorders [116]. ROS includes free radical species, such as superoxide anions, hydroxyl
radicals, and singlet oxygen, and non-radical species, such as hydrogen peroxide (H2O2),
generated during the metabolic process [145]. The antioxidant activity of bioactive pep-
tides is attributed to the hydrophobicity of valine, leucine, isoleucine, glycine, methionine,
proline, and alanine and some aromatic amino acids (tyrosine, histidine, tryptophan, and
phenylalanine) [116]. They exert a protective effect on the body by binding free radicals
and other reactive oxygen compounds. Furthermore, the regulation of oxidative stress is an
essential factor in tumor development and anticancer therapies [146]. Protein hydrolysates
or peptides and amino acids exhibit multiple antioxidant properties. Two antioxidant pep-
tides, such as carnosine and glutathione, generally present in high concentrations in animal
muscle, have been found in seaweed [116]. Antioxidant peptides have been isolated from
several species of macroalgae, including Scytosiphon lomentaria [147], Ecklonia cava, Sargas-
sum coreanum (Phaeophyceae) [148], P. palmata [49], and P. columbina (formerly P. columbina)
(Rhodophyta) [118]. Antioxidant and anticancer bioactivity have also been reported in
Sri Lankan seaweed, and the highest value was reported for Caulerpa racemose [149]. N.
yezoensis (formerly P. yezoensis), G. pusillum, and many other seaweed species have been
studied for their antioxidant properties [130].

Antimicrobial peptides have been identified in S. longicruris (formerly L. longicruris)
against S. aureus, and cyclic depsipeptide from Bryopsis spp. demonstrated activity against
M. tuberculosis [104,119]. Protein hydrolysates from P. columbina (formerly P. columbina) also
have immunosuppressive, antihypertensive, and antioxidant capacities [50].
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Furthermore, inhibition of platelet-activating factor acetyl-hydrolase (PAF-AH) has
been reported for peptides derived from P. palmata that could prevent high blood pressure
and atherosclerosis [114]. PAF-AH plays an active role in atherosclerotic development and
progression [114]. PAF-AH is thought to be involved in the generation of pro-inflammatory
mediators, such as lysophosphatidylcholine (LPC) and oxidized non-esterified fatty acids
(NEFA) [144,146]. In addition, macroalgae peptides from different species display many
other biological activities (Table 6).

5.3. Lectins

Lectins and phycobiliproteins are two groups of functionally active proteins in sea-
weeds [150]. Lectins are proteins, glycoproteins, or hemagglutinin proteins that reversibly
bind specific mono- or oligo-saccharides [126,128]. Lectins have been found in red and
green algae, such as Eucheuma spp., Solieria filiformis, Enantiocladia duperreyi, Pterocladiella
capillacea, Gracilaria cornea, Gracilaria ornate, Bryothamnion spp., M. amakusaensis (formerly E.
amakusaense) (Rhodophyta), Ulva spp. (formerly Enteromorpha spp.), and C. fragile (Chloro-
phyta) [32,60,128]. Lectins are involved in numerous biological processes, such as host-
pathogen interactions, intercellular communication, recognizing and binding carbohy-
drates, induction of apoptosis, metastasis, and cell differentiation in cancer cells [128,131].
These proteins also have other bioactive properties, including antibiotic, antibacterial, an-
tifungal, anti-inflammatory, mitogenic, cytotoxic, antinociceptive, anticancer, fibroblast,
human platelet aggregation inhibition, antiviral, and anti-human immunodeficiency virus
(anti-HIV) activities [30,38,60,128,151].

Lectins from red algae Alsidium triquetrum (formerly Bryothamnion triquetrum), P. capil-
lacea, Hypnea cervicornis, S. filiformis, and green seaweed C. cupressoides have demonstrated
anti-inflammatory activities in different studies [152]. Lectin is the only seaweed protein
reported as an antibacterial in the literature [119,150]. The lectins found in Alsidium seafor-
thii (formerly Bryothamnion seaforthii) and Hypnea musciformis show bactericidal activity,
especially inhibiting the growth of S. aureus and P. aeruginosa [153]. Lectin extracted from
red seaweed showed antibacterial activity against six pathogenic Gram-negative species,
including Serratia marcescens, Salmonella typhi, Klebsiella pneumoniae, Enterobacter aerogenes,
Proteus spp., and P. aeruginosa [60]. The lectin isolated from B. seaforthii has a pro-healing
property responsible for accelerating the healing of skin wounds [154]. Because of these
antimicrobial properties, lectins are used to treat many pathologies such as cancer and
chronic bacterial diseases, chronic otitis, tonsillitis, cystic fibrosis, periodontal diseases, and
urinary tract infections [153].

Lectins have the ability to precipitate glycoprotein and agglutinate red blood cells [30,60].
Further, lectins have displayed antiviral effects against human immunodeficiency, hepatitis
C, and SARS-CoV viruses, mainly by preventing entry of the virus into host cells, and
thereby, their propagation [125]. Griffithsin, a highly potent broad-spectrum antiviral
lectin from Griffithsia spp. has an antiviral effect against HIV [155], SARS-CoV, and Middle
East respiratory syndrome coronavirus (MERS-CoV) [156]. Lectins have also been widely
studied for their antiviral activity against SARS-CoV-2 (or 2019-nCoV)since they can inhibit
coronavirus infectivity by specifically binding to the spike glycoprotein. Glycoproteins,
especially the spike protein of SARS-CoV-2, are involved in cell adhesion and invasion, mor-
phogenesis, and modulation of immune response processes. This spike protein mediates
viral adhesion through human ACE 2. Lectins that bind SARS-CoV-2 spike protein via their
ability to recognize glycans can inhibit the adhesion of coronavirus and impair the initial
steps of viral pathogenesis [157]. Many studies have highlighted lectins from seaweeds and
their potential antiviral therapeutic activity against SARS-CoV and SARS-CoV-2 (COVID
19) [124,158]. Thus, seaweed lectins should be considered when developing new antiviral
approaches because of their antiviral properties.
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5.4. Phycobilliproteins

Phycobiliproteins are the only water-soluble algal pigments in red seaweeds [32].
Phycobiliproteins are the most abundant proteins in red seaweeds, representing nearly
50% of the total protein content [159]. Phycobiliproteins are grouped into the following
four groups: phycoerythrin (purple), phycocyanin (blue), phycoerythrocyanins (purple),
and allophycocyanin (bluish-green), whereas phycoerythrin is the main pigment [30,160].
Phycobiliproteins have been reported in many species, including Porphyra spp. [160],
Gracilaria canaliculate (formerly Gracilaria crassa) [161], P. palmata [162], and G. tikvahiae [131].
Phycoerythrin has been reported in G. gracilis [163], Grateloupia turuturu [164], G. pusillum,
and Rhodymenia pseudopalmata [30]. Furthermore, extraction of phycocyanin has been
reported for C. crispus, G. gracilis, and Gelidium amansii with many bioactivities, including
anticancer activity, anti-inflammatory effect, antioxidative, and anti-irradiative effects [165].

Phycobiliprotein has become popular for its biological activities, including antioxidant,
ACE inhibitory, antitumoral, antidiabetic, immunomodulating, anti-inflammatory, liver-
protecting, antiviral, anticancer, antiatherosclerosis, antihyperlipidemic activities, lipase
activity inhibitor, serum lipid reducing agent, and obstructing absorption of environmental
pollutants into the body [110,128,164,166]. Other than these, it is also beneficial for prevent-
ing or treating gastric ulcers and neurodegenerative diseases caused by oxidative stress
(Alzheimer’s and Parkinson’s) due to their antioxidant effects [20,32].

Phycocyanin improves the immune system and has several other bioactivities, in-
cluding in vitro anticancer activity, chemotherapy sensitiveness, photosensitized tumor
suppressor activity, anti-inflammatory effects, antioxidative, anti-irradiative, and neuropro-
tective effects [165].

5.5. Free Amino Acids

The free amino acid fraction in seaweeds mainly consists of taurine, alanine, ornithine,
citrulline, hydroxyproline, and aminobutyric acid [131]. Taurine content varies with the
species. Red algae contains taurine in high concentrations, however it is rarely found
in green and brown algae [40,167]. Seaweeds such as N. yezoensis (formerly P. yezoen-
sis), N. tenera (formerly P. tenera), Gloiopeltis tenax, Gloiopeltis furcate, Gracilaria textorii, A.
vermiculophyllum (formerly G. vermiculophylla) (Rhodophyta), U. pinnatifida, S. japonica
(formerly L. japonica), and Sargassum confusum (Phaeophyceae) contain a high amount of
taurine [10,129,167,168] and can be used in functional foods that contain naturally occurring
taurine [40,167,169]. Taurine plays an important role in physiological functions such as
bile-acid conjugation, retinal and neurological development, osmoregulation, antioxidant,
a modulator of intracellular calcium level, and immune function [169]. In addition, taurine
acts as an antioxidant and protects against the toxicity of various heavy metals, including
lead and cadmium, by preventing their absorption in the stomach [128]. Taurine also has
antihypertensive and hypocholesterolemic activities by reducing the secretion of serum
lipids and apolipoprotein (very low-density lipoprotein, VLDL, and intermediate-density
lipoproteins, IDL) [38,170].

In addition to taurine, macroalgae contain unusual amino acids, such as laminine,
kanoids (kainic and domoic acid), and mycosporine-like amino acids with bioactivity [38,131].
Many macroalgae species, including Digenea simplex, C. armata, P. palmata, among others,
contain kanoid amino acids (kainic and domoic acids), and extraction from D. simplex
has been commercialized [127,131]. Kanoid amino acids are reported to have insecticidal,
neuroexcitatory and anthelmintic properties [131]. In Japan, D. simplex and C. armata
extracts contain kanoids and have been used for centuries as anthelmintic agents to treat
ascariasis (a disease in humans caused by the parasitic roundworm). They also act as central
nervous system stimulants and assist in neurophysiological disorders such as Alzheimer’s
disease, Parkinson’s disease, and epilepsy. However, they become neurotoxins when safe
levels are exceeded [38]. Laminine, a choline-like basic amino acid, has been isolated from
S. angustata (formerly L. angustata) and C. armata, and can depress the contraction of excited
smooth muscles and exert a transitory hypotensive effect [131].
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6. Applications

Nowadays, consumers are more health-conscious, and as a result, they seek more and
more natural sources to treat or prevent health issues. The functional food market has been
growing over the years and can be categorized as fortified, enriched, altered, or enhanced
commodities (naturally enhancing one of the components) [171–173]. In this context, the
food industry has emerged to develop and market a diverse group of functional food
products using natural ingredients [128].

Over the last few decades, seaweeds have been widely studied for their bioactive
compounds. Hydrocolloids like agar, alginates and carrageenan, and alkaloids, carotenoids,
polyphenols, terpenes, tocopherols, laminarin, and fucoidan, among many others, have
all been used as functional ingredients in bakery, dairy, fish, meat, and vegetable-based
products [11,32]. Seaweed contains a considerable amount of protein that can be used to
fulfil nutritional requirements or to treat malnutrition [9]. N. tenera (formerly P. tenera),
N. yezoensis (formerly P. yezoensis), P. columbina (formerly P. columbina), and P. umbilicalis,
Gracilaria spp., Sargassum wightii, Eucheuma spp., and many other species have been used
in different varieties of seaweed-based foods and beverages such as wine, instant soup,
noodles, jam, jelly, tea, porridge, soft cheese, sausages, among others, to enhance their
nutritional value [32,174].

Wheat flour used for making pasta and noodles has relatively low protein content
(10% to 15%) and lacks some EAA, such as lysine, threonine, and methionine [175]. In
such cases, seaweed or macroalgal supplementation can improve the protein quality of
the bakery foods, pasta, and cereals due to their essential amino acid content. Bakery,
pasta, and cereal products are widely consumed food products, which can be used as food
vehicles for the delivery of bioactive compounds. In Wales, United Kingdom, Porphyra
species are traditionally used to make a dish known as laverbread. Wakame (U. pinnatifida)-
incorporated pasta was reported to have improved bio-functional properties and enhanced
interactions between starch granules and the protein matrix [176]. Seaweeds such as
Caulerpa racemosa, U. lactuca (formerly U. fasciata), Chnoospora minima, P. gymnospora, and A.
spicifera have an excellent amino acid profile rich in lysine and methionine. Hence, they are
utilized in highly nutritive food formulations with cereals and legumes (seaweed-based
bread, biscuits, and idly) to balance the amino acid profile and provide a balanced diet to
the individual [174]. However, consumer acceptance of seaweed-containing foods in the
Western world is limited due to undesirable sensory characteristics. Whole-wheat bread
containing C. crispus and A. nodosum was acceptable at lower concentrations (2% and 4%,
respectively) with no significant changes in protein content [12].

Few studies mention the application of seaweed protein in the development of func-
tional food. Proteins, peptides, and amino acids derived from seaweeds are used as
nutraceuticals but are best utilized during the dietary consumption of seaweeds [177]. Food
applications of seaweed-derived proteins, peptides, and amino acids have become popular
in the last few decades since most of these components have anti-inflammatory, antioxidant,
antitumor, anti-aging, and protective activity [60], although at present, macroalgal proteins
or purified protein fractions are rarely used as ingredients in the food industry [10].

S. japonica (formerly L. japonica) has been used as a flavor enhancer in Japanese cooking
for many years [40]. The high content of free amino acids such as glutamic acid, aspartic
acid, alanine, and glycine has been described as responsible for the unique flavor of sea-
weeds [29]. Free glutamic acid and aspartic acid (to some extent) are the main components
in the taste sensation of ‘umami’ [178], whereas glycine and alanine give a sweet flavor [77].
The enzymatic (bromelain) hydrolysis of protein from Gracilaria fisheri yields a roasted
seafood-like flavor that can be used as a flavoring agent in the food industry [179].

Mainly in Japan, several seaweed-derived peptides containing functional foods are
currently commercialized and approved as Foods for Specified Health Uses (FOSHU).
Foods containing peptides from nori and wakame are approved for antihypertensive
claims [146]. Peptides derived from P. palmata protein can be incorporated into bread to
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enrich its renin-inhibitory capacity without affecting the texture or sensory properties of
the bread to a large degree [180].

Currently, considerable interest has been mounting for finding alternative sources of
synthetic antioxidants for application in food [148]. Synthetic antioxidants/preservatives
and other bioactive additives are highly used in processed food. These can oxidize func-
tional components in the food, resulting in increased oxidative stress that can lead to
hypertension and cardiovascular diseases. Natural bioactive compounds extracted from
natural commodities like seaweeds can be used to replace these synthetic additives [174]. P.
palmata-derived peptides have potential applications as health-promoting ingredients and
food preservatives because of their antioxidant activity [116].

Various polysaccharides are present on cell surfaces, and as a result, many cells,
including microbes, lymphocytes, tumor cells, and erythrocytes, are selectively agglutinated
by lectins. Lectins have been used as specific probes in immunological, cell biology,
membrane structure, biomarker, drug delivery/targeting, mitogenic, antitumor, and cancer
studies. Lectins specifically agglutinate human blood groups, which has led to their use in
assays for blood typing [127,151].

The phycobiliproteins are an interesting group of high-value (approximately $5000/g)
macroalgal products [181]. Despite their lower stability in heat and light, phycobiliproteins
are used as natural colorants for food (phycocyanin) and cosmetics (phycocyanin and
phycoerythrin) [60,182]. Phycobiliproteins are used as colorants in many food products,
including fermented milk, ice creams, desserts, milkshakes, jelly gum, and coated soft
candies [60,183].

R-phycoerythrin is currently derived from a species of Porphyra [181] and can be
used as a food colorant [159]. Phycobiliproteins from G. longissima (formerly G. verrucosa),
U. lactuca (formerly U. fasciata), and S. wightii can be used as natural food colorants for
jelly without a change in color for more than three months [184]. Phycoerythrin, the
most abundant phycobiliprotein in G. turuturu, has many applications, such as natural
colorant, fluorescent probe, antioxidant, antitumoral, and antidiabetic compounds [164]. In
general, phycobiliproteins are used as labels or markers in immunolabeling experiments,
fluorescence microscopy, and diagnostics. R-phycoerythrin is a powerful and highly
sensitive fluorescent reagent used as labels or markers for antibodies, receptors, and other
biological molecules in a fluorescence-activated cell sorter [60,183,185].

Only a few studies mention the applications of protein derived from seaweeds in
functional food products, due in part to the fact that acceptability, toxicity, allergenicity,
and microbial studies are required before they can be safely utilized.

7. Safety

Although seaweeds have gained much interest in food industrial applications based on
their nutritive values, several factors limit their widespread usage, including the accumula-
tion of toxic heavy metals, allergenicity (phycobiliprotein and phycolectins in red seaweeds),
contamination with pathogens, and toxic synthetic compounds such as cyanotoxins (neuro-
toxin and hepatotoxin), amino acids (kainic acid), and radioisotopes [28]. Therefore, it is
essential to determine their toxicological profile for the safety of the consumers.

Heavy metals such as arsenic, cadmium, and mercury, and microorganisms such as
Salmonella have been identified as major hazards associated with seaweeds [169,186]. Sea-
weed absorbs heavy metals from seawater depending on various factors, such as species,
location, season, wave exposure, temperature, salinity, light intensity, pH, nitrogen avail-
ability, and the age of the plant [187]. Chen et al. identified ten metals and metalloids—Al,
Mn, As, Cu, Cr, Ni, Cd, Se, Pb, and Hg—in 295 dried brown and red seaweeds [188]. Gen-
erally, heavy metal concentrations in seaweeds are found below the toxic level. However,
bioaccumulation of arsenic, lead, and cadmium beyond a hazardous level is the main
risk for seaweed harvested from the wild and can result in allergies, hyperpigmentation,
and cancer. Arsenic is a known carcinogen, and commonly consumed seaweeds were
reported to contain high levels of arsenic, primarily in organic forms [189]. Iodine, a
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component of thyroid hormones, plays a role in metabolism, and iodine deficiency causes
goiter and hypothyroidism. Seaweeds such as L. digitata and S. japonica (formerly L. japon-
ica) are a good source of iodine and can be used to prevent goiter. However, iodine-rich
products such as dried seaweed can cause excessive iodine intake and induce hyper- or
hypothyroidism [186,189].

Microplastics have become an emerging environmental pollutant because of their
persistence, ubiquity, toxic potential, and distribution in various environments, including
soil, lakes, rivers, sea surface water, and marine sediments. Microplastics have been re-
ported to attach to marine macroalgae, which can be transferred and accumulated between
organisms of different trophic levels in the marine food web, and consequently, affect
human health [190,191].

Apart from the bioactive properties of lectins, the hemagglutinating mechanism is a
reason for toxicity. The hemagglutination by lectins leads to growth retardation in animals,
probably because of their ability to bind with specific receptor sites on the surface of the
intestinal epithelial cells, resulting in impairment of nutrient absorption [192].

Though seaweed peptides are predicted as non-toxic, several sequences have been
reported as allergenic [193]. Gammaridean amphipods and caprellid amphipods inhabit
Porphyra spp. (nori) and can mix with nori sheets during harvesting and are consequently
found in dried nori sheets, resembling small stones. Hence, dried Porphyra spp. (nori)
products may contain amphipod allergens that can cause severe allergic reactions, partic-
ularly in crustacean-allergic people [169,194]. Amino acids such as kainic acid in dulse
(P. palmata) and some other red algae (D. simplex) are structurally similar to glutamate (a
neurotransmitter in the brain) and become neurotoxins at excessive levels. Food allergy is
one of the main concerns for food safety; however, the potential allergenicity of proteins
from macroalgae has not yet been fully explored [186,195].

8. Future Perspectives

Currently, exploitation of seaweed protein for human consumption is rare. Many
studies have stated that seaweed has many biological properties such as antioxidant, anti-
hypertensive, antioxidant, antidiabetic, antiviral, antimicrobial, among others. Although
several publications are available on the quality of seaweed protein and its potential func-
tional properties, only a few clinical studies have reached logical conclusions about actual
functional food products [100].

Applications of new technologies need to be focused on identifying useful health-
promoting compounds and eliminating chemical/microbiological risks and other current
issues [196].

Since conventional protein extraction methods may require the use of non-negligible
amounts of solvents, other environmentally friendly reagents or nonthermal techniques
(membrane technologies such as ultrafiltration or nanofiltration) and economically viable
processes should be investigated to produce, extract, and purify algal protein [1,95].

In addition, about half of all oxygen production on the planet comes from algae, which
is another reason for saying “our lives depend on algae” [197]. Therefore, sustainable
seaweed production should be carried out. Policies supporting seaweed production in
aquaculture as a replacement for wild harvest and repopulation of natural sites are required
to avoid an environmental crisis caused by the overexploitation of wild seaweed [18].

9. Conclusions

Seaweeds, also known as macroalgae or marine algae, are rich in protein, containing
up to 40% protein with an excellent AA profile and high digestibility that is comparable,
or even superior, to animal protein sources. More than 50% of the total amino acids are
EAA in most seaweeds. Seaweed protein contains a number of bioactive components,
including amino acids, free amino acids (especially taurine, laminine, kainic and domoic
acids), peptides, phycobiliproteins (phycoerythrin and phycocyanin), and lectins. These
bioactive compounds have many health benefits, including antihypertensive, antioxidant,
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antidiabetic, antiatherosclerosis, anti-inflammatory, antitumoral, antimicrobial, antiviral,
and neuroprotective effects, among others. More than ever, people are concerned about
their diet and health, resulting in a huge demand for high value functional foods that
have been developed using natural sources instead of synthetic compounds. Developing
functional foods using proteins derived from seaweeds has become more popular in the
last decade. Seaweeds are a source of natural food additives include colorants, flavoring
agents, antioxidants or preservatives, and many other compounds with health claims.
Currently, protein derived from seaweed is rarely used as ingredients in the food industry,
and acceptability, toxicity, allergenicity, and microbial studies have yet to be conducted
for seaweed.
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AA Amino acid(s)
ACE Angiotensin-I-converting enzyme
Ang II Angiotensin II
DPP-IV Dipeptidyl peptidase IV
EAA Essential amino acid(s)
FAO Food and Agriculture Organization of the United Nations
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