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Abstract

We show that a simple model with a maintenance term can satisfactorily reproduce
the simulations of several existing models of wine fermentation from the literature,
as well as experimental data. The maintenance describes a consumption of the
nitrogen that is not entirely converted into biomass. We show also that considering
a maintenance term in the model is equivalent to write a model with a variable
yield that can be estimated from data.
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1 Introduction

The overall principle of wine fermentation consists in the conversion of sugar
into ethanol by yeast. It has been observed from a long time that nitrogen con-
sumed during the yeast growth is also playing an important role. The fermen-
tation can be indeed modeled by a two-steps process where the yeast first grows
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on nitrogen as a limiting resource and then degrade the non-limiting sugar into
ethanol and carbon dioxide. However, experimental observations have shown
that the consumed nitrogen was not entirely converted into biomass. Several
mathematical models have been proposed to take into consideration this char-
acteristics. For instance, in [9, 15], the biomass growth follows a logistic law
whose carrying capacity depends on the initial quantity of nitrogen. In [6], a
model that distinguishes part of nitrogen used for yeast growth from another
part responsible of the synthesis of proteins (hexose transporters [8]) has been
developed. Both models have been calibrated with different sets of experimen-
tal data and provide satisfactory fitting. However, both models present some
drawbacks. The dependency of the dynamics on the initial condition of the
first model makes it sensitive to the precise knowledge of the initial quantity
of nitrogen (that needs to be ”memorized” in the dynamical equations of the
model). Moreover it does not allow to consider non-batch operations or contin-
uous addition of nitrogen, such as in [3] for instance. The second model relies
on the knowledge of the time-varying concentration of transporters, which is
in general not easily accessible to experimental measurements, and several
assumptions have been necessary to estimate it from biomass measurements.

The objective of the present work is to propose a new model that reconciles
both approaches in a single one.

The observation of the ratio of produced biomass over nitrogen consumption
along the whole fermentation, determined on experimental database or nu-
merical simulations of models [6, 15], shows that this ratio is non-constant
and depends on the initial quantities. This highlights that the conversion of
nitrogen into biomass can be viewed as a variable yield process. The experi-
mental evidence that nitrogen is not entirely converted into biomass therefore
advocates for the consideration of a maintenance term in the modeling (see
for instance [10]), without necessarily requiring a detailed representation of
the internal mechanism or cells.

Indeed, different mechanisms in the internal functioning of the cells have been
investigated in the literature, in particular the role of carboxylate accumu-
lation [21, 23, 24] that could explain that the growth dynamics of yeast in
wine fermentation does not follow the classical mass-balanced models [12, 13].
However, the measurements of these biochemical compounds is experimentally
very difficult and almost impossible in an industrial framework.

The rationale of the results presented here is to test if the introduction of a
maintenance term (see [17, 18, 19] or [1, 11, 26]) can improve the wine fermen-
tation modeling. One of the originality of the proposed approach is to view
the nitrogen consumption as a global consumption for growth by considering
a variable yield. This allows to avoid to consider a specific structure to model
the maintenance. The purpose of the present work is thus to investigate the

2



ability of a simpler model with a maintenance term to reproduce and predict
wine fermentation kinetics.

We hereafter propose a new modeling approach based on a maintenance term
(which gives rise to a variable yield), a feature that has not been yet considered
in the wine fermentation literature, to the best of our knowledge.

It focuses mainly on the new modeling of the growth of yeast on nitrogen.

This new model has been validated both on data generated by existing models
(Section 4) and on experimental data (Section 5).

2 The proposed model

We denote by N , S, E, CO2 and X the concentrations of (total) nitrogen,
sugar, ethanol, dioxide carbon and biomass, respectively. For simplicity, we
derive here a model under isothermal conditions.

For the first step N → X (yeast growth on nitrogen), we propose the following
equations

dX

dt
=µN(N,X)X (1)

dN

dt
=− µN(N,X)X

Y
−m(N,X)X (2)

where Y is the growth yield, µ the Contois growth function

µN(N,X) =
µmax
N N

N +KNX

and m a maintenance function, which is positive for N > 0 and X > 0. We
choose here a ratio-dependent kinetics function µN to reproduce the observa-
tion that the growth is slowing down under an excess of yeast, with a Contois
expression as in [6]. In the literature, the maintenance m is often considered as
constant [17, 18], which has been validated in continuous culture (chemostat).
In general, continuous culture are intended to be operated at a stationary
phase, very differently to batch operating mode. However, as already inves-
tigated in [26], maintenance terms have to depend on the level of available
resources, say R (N here). In particular, a constant maintenance in a batch
model would imply dR

dt
< 0 when the resource is exhausted i.e. R = 0, and

thus R could take unrealistic negative values, as underlined in [19]. In [1, 11],
the maintenance is directly related to the microbial activity which is stopped
in absence of nutrients. This is why here we consider a maintenance function
proportional to the growth activity, with a factor that might depend on the
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nitrogen concentration (one may expect that it decreases when the substrate
N becomes rare)

m(N,X) = α(N)µN(N,X)

where α is a positive function equal to zero for N = 0. Then one can consider
the function y defined as follows

y(N) :=
Y

1 + α(N)Y
, N ≥ 0

Formally, model (1)-(2) can be rewritten equivalently as

dX

dt
=µN(N,X)X (3)

dN

dt
=− µN(N,X)X

y(N)
(4)

where the function y is playing the role of a variable yield. Identifying the
function m or the function y is thus formally equivalent. However, we shall
see in the next section that identifying the function y instead of m presents
some practical advantages.

For the second step S → E + CO2, we follow the model proposed in the
literature [6]

dE

dt
=
dCO2

dt
=
[
µN(N,X) + βνE(E)

]
µS(S)X (5)

dS

dt
=− k

dE

dt
(6)

where µS is a Monod function and νE a function inhibited by the ethanol

µS(S) =
µmax
S S

KS + S
, νE(E) =

1

1 +KEE
(7)

The inhibition by the consumption of sugar S by ethanol E has been reported
many times in the literature [2, 5, 14, 20, 25]. The constant yield of pro-
duction k of CO2 and consumption of S follows a mass balance assumption,
verified experimentally [7] and that can be determined with thermodynamics
considerations [22].

Note that this model can be extended to anisothermal conditions, considering
that the maximal specific rate parameters µmax

N , µmax
S and affinity constants

KS, KE are temperature-dependent, as in [6].
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3 Calibration of the model

From model equation (1), the parameters of the function µN can be identified
independently of the yield and maintenance terms. To validate the hypothesis
of ratio-dependency of the function µN , one can first plot from experimental
data the slope of the logarithm of X versus the ratio r = N/X and check if it
follows qualitatively a function of the form

µ(r) =
µmax
N r

KN + r

Then, a classical least-square method can be applied to fit parameters µmax
N ,

KN on the data. Alternatively, one can plot the inverse of the slope of the log-
arithm of X versus the inverse of the ratio r to check if it follows qualitatively
a linear dependency, as one get from equation (1)(

d logX

dt

)−1

=
1

µmax
N

+
KN

µmax
N

(
N

X

)−1

(8)

However, for the accurate identification of the parameters µmax
N , KN , a linear

regression on equation (8) is expected to be less reliable than a nonlinear least

square optimization on the solutionX(·) of (3), because
((

d
dt
logX

)−1
,
(
N
X

)−1
)

data might be far to be uniformly distributed.

Note from equations (1)-(2) that one has

lim
t→+∞

N(t) = 0

(because the derivative of N cannot vanish when N is not exhausted). In
absence of the maintenance term m, one gets dX

dt
+ Y dN

dt
= 0 which implies

that one should have

Y =
X(+∞)−X(0)

N(0)−N(+∞)
=

X(+∞)−X(0)

N(0)

To test the validity of the model with maintenance, one can plot from experi-
mental data the ratio X(+∞)−X(0)

N(0)
for different values of N(0) to check that it is

not constant. If it is the case, one can then look for identifying a non-constant
function y. For this purpose, we write from equations (3)-(4)

X(+∞)−X(0) = −
∫ +∞

0
y(N(t))

dN

dt
(t) dt

and as t 7→ N(t) is a monotone decreasing function, one can make the change
of variable n = N(t) in this last integral to obtain

X(+∞)−X(0) =
∫ N(0)

0
y(n) dn
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Therefore, if one fits a differential function f such that f(0) = 0 that satisfies

X(+∞)−X(0) = f(N(0))

for experimental data with different values ofN(0), then one simply get y = f ′.

Let us underline that identifying the function y in this way can be done in-
dependently to the knowledge of the kinetics µN , differently to the function
m, what clearly presents some robustness advantages. Once the function µN

is identified, the maintenance function can then be determined as

m(N,X) =

(
1

y(N)
− 1

Y

)
µN(N,X)

where Y = y(0) (to fulfill α(0) = 0).

For model equations (5)-(6), the coefficient k is kept from the literature, and
the parameters β, µmax

S , KS, KE are identified (with a least-square method)
from experimental data of CO2 production rate.

4 Validation of the model on synthetic data

We have used synthetic data generated by models of the literature that have
been previously validated on experimental data [6, 15] for a range of initial
conditions and operating conditions.

Fitting comparisons of the proposed model with the different data sets are
reported in Section 6.

4.1 Validation on simulations of a model with transporter

We have considered the model with transporters developed in [6], which is
more complex with two additional state variables: the concentrations of hex-
ose transporters and the nitrogen dedicated to these transporters. Data have
been generated by simulating this model with the parameters given in [6] and
operating conditions given in Table 1.

This model distinguishes explicitly two forms of nitrogen, one available for
the yeast NX and the other one Ntr for the transporters. To compare with the
variable N of our model, we have considered the total nitrogen N = NX+Ntr.

6



X(0) 0.02 g.l−1

N(0) 0.071− 0.57 g.l−1

S(0) 200 g.l−1

time horizon 350 hours

temperature constant equal to 24◦

others no initial transporter

no nitrogen addition

Table 1
Operating conditions for the simulation of the model with transporters

4.1.1 Estimation of the Contois function

We have used a nonlinear least square method based on a Newton algo-
rithm with a finite difference approximation of the Jacobian matrix (function
leastsq of scilab). Figure 1 shows a good fitting of the Contois function µN

on data
(

N
X
,

dX
dt

X

)
of the transporter model, with parameters given in Table 2.

Fig. 1. Result of the fitting of the Contois function on data from the model with
transporters

µmax
N 0.103 h−1

KN 0.0381 g.l−1

Table 2
Parameters of the Contois function µN

7



4.1.2 Estimation of the variable yield function

On Figure 2, data X(T )−X(0) versus N(0) from the model with transporters
have been plotted for T = 350 hours (we have checked that N is quasi-null at
T and that X does no longer increase after T ). One can see that the points
are aligned but the line that passes through these points does not touch 0,
which is not possible for a constant yield (for a constant yield, the points have
to be aligned on a line that passes through 0 because when N(0) = 0 there is
no biomass production).

Fig. 2. Result of the fitting of the function f on data from the model with trans-
porters

Then we have fitted a C2 function f such that f(0) = 0 with the following
expression

f(N) =

aN + b
(
1−

(
N†−N

N†

)3)
, N < N†

aN + b, N ≥ N†

whose parameters are given in Table 3.

The calibration of the parameters a, b of the function f has been performed
with a linear regression (function reglin of scilab).

a 7.55

b 0.808 g.l−1

N† 0.176 g.l−1

Table 3
Parameters of the variable yield function y
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Then, we obtain the variable yield function y as the C1 function

y(N) = f ′(N) =

a+ b
3(N†−N)2

N†
3 , N < N†

a, N ≥ N†

and the function α which describes the maintenance as

α(N) =
1

y(N)
− 1

y(0)
=


N3

†
aN3

†+3b(N†−N)3
− N†

3b+aN†
, N < N†

3b
a(3b+aN†)

, N ≥ N†

that are both depicted on Figure 3.

Fig. 3. Graphs of the obtained variable yield function y and of the function α

Note that the model with transporters has been validated only for N(0) in the
interval [0.071, 0.57] g.l−1, and that we have no a priori information about the
behavior of the yield for values of N(0) smaller than 0.071 g.l−1. The threshold
parameter N† has been simply chosen so that the simulations of the variables
X and N of the model (3)-(4) were the closest from the ones of the transporter
model.

4.1.3 Estimation of the other parameters and comparison of the models

For the model of the second step S → E+CO2, the stoichiometric parameter k
has been taken from the literature, while the other parameters β, µmax

S ,KS,KE

have been estimated with a least-square optimization on the CO2 chronicles
only (the CO2 production rate being a variable that is usually measured in
experiments), starting from values in [6]. Values are given in Table 4.

Here also, we have used a nonlinear least square method based on a Newton
algorithm with a finite difference approximation of the Jacobian matrix (func-
tion leastsq of scilab). All data have been re-normalized to 1 (i.e. for each
variable, the figures have been divided by the largest one).

Finally, we present on Figures 4, 5, 6 simulations of the new model for three
largely different initial values of nitrogen from 0.170 g.l−1 to 0.567 g.l−1. The
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k 2.17

β 2.41

µmax
S 0.197 h−1

KS 21.1 g.l−1

KE 72.7 g.l−1

Table 4
Parameters for the second step S → E + CO2 model

evolution of the ethanol concentration E has not been reproduced as it is
proportional to the CO2 concentration.

These simulations shows the ability of the new model to reproduce, with a
single set of parameters, close simulations to the model with transporters, in
terms of production of biomass and dioxide carbon, estimation of the peak of
the CO2 production rate and depletion of (total) nitrogen and sugar.

Fig. 4. Comparison with the model with transporters (in dashed) for
N(0) = 0.170 g.l−1 (constant temperature of 24◦C)
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Fig. 5. Comparison with the model with transporters (in dashed) for
N(0) = 0.283 g.l−1 (constant temperature of 24◦C)

Fig. 6. Comparison with the model with transporters (in dashed) for
N(0) = 0.567 g.l−1 (constant temperature of 24◦C)
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4.2 Validation on the SOFA model

The model proposed in [15] does not consider explicitly transporters with an
additional state variable as the previous model, and present instead a more
sophisticated expression of the dynamics that depend on the initial condition,
with an additional latency term at the beginning of the simulations.

Differently to the previous model which is built as a ”mass-balanced” model,
this one relies on an empirical dynamics of logistic shape for the biomass
growth, with some parameters that depend on the initial concentration of
nitrogen N(0), instead of the two-dimensional model (3)-(4).

Therefore, this is not a Markovian model. It has been validated on different
operating conditions, and has been encoded into the SOFA software exploited
for decision making [9]. We have launched simulations of this model for the
same operating conditions than for the previous model (Table 1). Although
simulations look qualitatively similar, they do not overlap, especially for the
biomass chronicle. This could be explained by the fact that this model is
intended to predict a number of cells and not precisely a biomass (an average
number of 4.15 109 cells for one g of biomass has been used to haveX expressed
in g.l−1 as for the previous model). We have proceeded to a new validation of
our model on these data.

4.2.1 Estimation of the Contois function

Figure 7 shows that the data
(

N
X
,

dX
dt

X

)
do not follow precisely the graph of a

function (this is most probably due to the fact that the model is not Marko-
vian). Indeed, this happens mainly for large value N0 of the initial nitrogen.
We believe that this could be explained by the dynamics of the biomass X
of this model, which is a logistic law with a carrying capacity given by an
heuristic expression that depends on N0, and not a dynamics coupled with
the dynamics of N (indeed the interval of tested values of N0 might be larger
than the validity of this model). However, we have fitted the graph of a Con-
tois function to these data with the parameters given in Table 5, which has
been able to reproduce satisfactorily the trajectories of the model for a large
amplitude of values of N0, as we shall see later on.

As for the previous model, we have used a nonlinear least square method based
on a Newton algorithm with a finite difference approximation of the Jacobian
matrix (function leastsq of scilab). As one can see on Table 5, the values of
µmax
N and KN are significantly larger and smaller (respectively) than in Table

2, which is consistent with the observation that this model predict a faster
convergence of the biomass to its maximal value, despite the latency term
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(compare Figures 4, 5, 6 with Figures 10, 11, 12).

Fig. 7. Result of the fitting of the Contois function on data from the SOFA model

µmax
N 0.270 h−1

KN 0.00952 g.l−1

Table 5
Parameters of the Contois function µN

4.2.2 Estimation of the variable yield function

Data X(T )−X(0) from the simulation of the SOFA model have been plotted
on Figure 8 at T = 350 hours, for different values of N(0) in the interval
[0.071, 0.57] g.l−1 (here also we have checked that the fermentation was quasi-
ended at T ). On can see that the points follows an increasing concave curve and
further increase very slowly, quite differently to the model with transporters
(see Figure 2).

We have then fitted a C2 function f with f(0) = 0 for the expression

f(N) =

bN − aN2, N < N†

bN − aN2 + bN + A
B

(
e−BN† − e−BN

)
N < N†

with

A = (b− 2aN†)e
BN† , B =

2a

b− 2aN†
and parameters a, b, N† given in Table 6.

Parameters a and b have been determined with a linear regression (function
reglin of scilab).
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Fig. 8. Result of the fitting of the function f on data from the SOFA model

a 15.1 l.g−1

b 15.2

N† 0.465 g.l−1

Table 6
Parameters of the variable yield function y

Then, we obtain the expression of the variable yield function

y(N) = f ′(N) =

b− 2aN, N < N†

Ae−BN , N ≥ N†

as well as the function α

α(N) =
1

y(N)
− 1

y(0)
=


1

b−2aN
− 1

b
, N < N†

e
b(N−N†)

b−2aN†
− 1

b
, N ≥ N†

whose graphs are drawn on Figure 9.

4.2.3 Estimation of the other parameters and comparison of the models

For the second step, the same stochiometric parameter k has been taken for the
literature, and the other parameters β, µmax

S ,KS,KE have been estimated with
a least-square optimization on the CO2 chronicles only, as for data generated
by the model with transporters (see Table 7).

Figures 10, 11, 12 show the comparison between the SOFA model and our
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Fig. 9. Graphs of the obtained variable yield function y and of the function α

k 2.17

β 3.22

µmax
S 0.197 h−1

KS 17.6 g.l−1

KE 36.4 g.l−1

Table 7
Parameters for the second step S → E + CO2 model

calibrated model for the same initial condition than for the former compar-
ison with the model with transporters. Here also, we see that the proposed
model reproduces quite faithfully the simulations of the SOFA model, with
the advantage of being a simpler Markovian model. Indeed, the difference be-
tween the model with transporters and the SOFA model can be translated
into different maintenance terms (see Figures 3 and 9): for large values of
nitrogen, the model with transporters behaves like a model with a mainte-
nance proportional to the growth, while the SOFA model amounts to have a
strongly increasing maintenance. Recall that the simulations for the largest
value of N(0) showed the most differences between these two models (for
N(0) = 0.567 g.l−1, the model with transporters predicts a biomass produc-
tion of 5.11 g.l−1, while the SOFA model predicts 3.88 g.l−1; see Figures 6 and
12). While the model with transporters has been validated experimentally for
N(0) in the interval [0.170, 0.567] g.l−1, we believe the validation of the SOFA
model for initial concentrations of nitrogen larger than 0.4 g.l−1 might need
to be revisited (although our model once calibrated is able to reproduce the
SOFA simulations).

15



Fig. 10. Comparison with the SOFA model (in dashed) for N(0) = 0.170 g.l−1

(constant temperature of 24◦C)

Fig. 11. Comparison with the SOFA model (in dashed) for N(0) = 0.283 g.l−1

(constant temperature of 24◦C)
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Fig. 12. Comparison with the SOFA model (in dashed) for N(0) = 0.567 g.l−1

(constant temperature of 24◦C)
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5 Calibration of the model on real data

We have considered data from experiments conducted at SPO Lab (INRAE,
Montpellier, France) in 2004, that have been used to calibrate the model with
transporters and the SOFA model (see [6, 15]). The data consist in a set of
three experiments with the same operating conditions given in Table 1 and
different initial concentrations N(0) of nitrogen, exactly as for the simulations
of Sections 4.1 and 4.2. For each experiment, one has

- height measurement points for X,
- no measurement point for N , S or E,
- about 400 measurement points for CO2 and dCO2/dt,

We have first calibrated a function f(·) to the data (N(0), X(T )−X(0)), with
the same expression than in Section 4.2, to determine a yield function y(·)
(see Figure 13), using a linear regression to estimate parameters a and b.

Fig. 13. Results of the fitting of the function f on the experimental data (left) and
of the corresponding variable yield function y (right)

As we not have measurements of N over the time, we cannot estimate the
Contois parameters independently of the CO2 measurements, as we did with
the synthetic data. All the parameters of the model have been fitted simulta-
neously with a least square method (values are given in Table 8), excepted for
the sugar conversion yield for which we have used the value of the literature
k = 2.17, as before.

The nonlinear least square method uses a Newton algorithm with a finite dif-
ference approximation of the Jacobian matrix (function leastsq of scilab),
and the data set has been re-normalized to the maximal value of 1. Figures
14, 15, 16, show the results of the fitting for the three experiments. One can
appreciate the goodness of fit for a unique set of parameters. In particular, the
production of biomass and CO2, as well as the height and date of the peak of
dCO2/dt are well predicted with this model.
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µmax
N 0.175 h−1

KN 0.0133 g.l−1

β 1.622

µmax
S 0.393 h−1

KS 19.2 g.l−1

KE 71.9 g.l−1

Table 8
Parameters fitted on the experimental data

Fig. 14. Simulation for N(0) = 0.170 gl−1 (experimental data in blue)
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Fig. 15. Simulation for N(0) = 0.283 gl−1 (experimental data in blue)

Fig. 16. Simulation for N(0) = 0.567 gl−1 (experimental data in blue)
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6 Fitting comparisons

For the calibration of the variable yield function on both synthetic and ex-
perimental data (Sections 4 and 5), we have used a linear regression (function
reglin of scilab) for the determination of parameters a, b of the function f
(for the model with transporter) and f ′ (for the SOFA model and experimen-
tal data). The residual error is given in Table 9. This shows that the model

data Tr model SOFA model exp.

RSE 2.21 10−10 0.199 0.225

Table 9
Residual standard error (RSE) for the determination of a and b

with transporters behave very closely to a variable yield model. The fitting
performances for the SOFA model and experimental data are more difficult to
interpret, because the validity of the SOFA model for the large range of initial
concentrations of nitrogen we considered is questionable, and the quantity of
experimental data is quite poor compared to the synthetic data.

For the synthetic data, the calibration of the growth characteristics (parame-
ters µmax

N , KN of the Contois function) has been done first independently to
the CO2 data. Then, parameters for the second step (parameters k, β, µmax

S ,
KS, KE for the CO2 production) have been calibrated. In both cases, a nonlin-
ear least square method based on a Newton algorithm with a finite difference
approximation of the Jacobian matrix (function leastsq of scilab) has been
used. Table 10 shows a good fitting quality.

data Tr model SOFA model exp.

RMSE(µ) 0.0414 0.292 -

RMSE(CO2) 0.0543 0.0895 0.0519

Table 10
Root Mean Square Error (RMSE) for the calibration of the growth function µ and
the CO2 chronicles

We recall that for experimental data, we do not have measurement of N over
time, so that it was not possible to estimate the growth function independently
of the CO2 measurements. The estimation of all the parameters has been made
on the CO2 measurements only. We have used the same nonlinear least square
method, with data re-normalized to 1 (i.e. the figures have been divided by the
largest one), so that all points have equal weight in the criterion. The errors
shows a good fitting of the CO2 curves with the model with maintenance.
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7 Conclusion

In this work, we have demonstrated that the consideration of a maintenance
term, or equivalently a variable yield, in wine fermenting modeling can satis-
factorily replace more sophisticated models with a simpler structure. Indeed,
the effects of the underlying mechanisms of transporters or carbohydrate accu-
mulation, which are difficult to capture experimentally, are somehow encoded
into a maintenance term, and are translated into a variable yield between
biomass and nitrogen. We have shown that this variable yield, as a function
of the nitrogen concentration, can be estimated from experimental data of
biomass growth and nitrogen depletion, without the need to measure internal
compounds. This consideration brings a flexibility to suit to different kind of
models or experimental data (once calibrated) with a single common struc-
ture, that could correspond to different operating conditions or hypotheses in
wine fermentation. This new approach opens new perspectives of control of
fermentation with nitrogen addition, based on a simple Markovian model, as
well as model extensions with aromatic compounds [16] or multi-strains [4].

References

[1] H. Beeftink, R. van der Heijden, and J. Heijnen. Maintenance require-
ments: energy supply from simultaneous endogenous respiration and sub-
strate consumption. FEMS Microbiology Letters, 73(3):203–209, 1990.
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