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Abstract: Grassland represents more than half of the agricultural land. Numerous metrics (biomass,
functional trait, species composition) can be used to describe grassland vegetation and its multiple
functions. The measures of these metrics are generally destructive and laborious. Indirect mea-
surements using optical tools are a possible alternative. Some tools have high spatial resolutions
(digital camera), and others have high spectral resolutions (Near Infrared Spectrometry NIRS). A
plenoptic camera is a multifocal camera that produces clear images at different depths in an image.
The objective of this study was to test the interest of combining plenoptic images and NIRS data to
characterize different descriptors of two Mediterranean legumes mixtures. On these mixtures, we
measured biomass, species biomass, and functional trait diversity. NIRS and plenoptic images were
acquired just before the field measurements. The plenoptic images were analyzed using Trainable
Weka Segmentation ImageJ to evaluate the percentage of each species in the image. We calculated the
average and standard deviation of the different colors (red, green, blue reflectance) in the image. We
assessed the percentage of explanation of outputs of the images and NIRS analyses using variance
partition and partial least squares. The biomass Trifolium michelianum and Vicia sativa were predicted
with more than 50% variability explained. For the other descriptors, the variability explained was
lower but nevertheless significant. The percentage variance explained was nevertheless quite low,
and further work is required to produce a useable tool, but this work already demonstrates the
interest in combining image analysis and NIRS.

Keywords: image segmentation; legumes; Mediterranean grassland; Trifolium; Vicia; Medicago; Avena

1. Introduction

Grazing land represents a large part of the worldwide agricultural areas [1]. Grassland
vegetation is diverse within or between plots. Grassland vegetation is characterized using
different descriptors depending on the research area. In grassland agronomy and animal
sciences, biomass is generally the main used descriptor. The quality of the forage for animal
nutrition is assessed by a set of descriptors that include the digestibility of the forage and its
protein content [2] and fiber content [3]. Other chemical components such as tannins, lipids,
and micronutrients are sometimes also evaluated for forage quality [4]. In grassland ecology,
the presence and abundance of plant species is usually characterized. The functional trait
approach has started to be used [5] to produce a more mechanistic understanding. A
functional trait is any morphological, physiological, or phenological feature measurable
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at the individual scale that is linked with its functions [6]. Many functional diversity
indices can be calculated from functional traits [7]. They help understand community
assemblage rules [8] and the impacts of vegetation on ecosystem functions and services [9].
Each descriptor provides interesting complementary information on the different functions
of grasslands.

However, measuring all these descriptors is laborious, for example, counting the
number of individual plants belonging to each species in sample quadrats, measuring leaf
area and mass. As many vegetation descriptors can only be measured using destructive
techniques, they cannot be used to monitor vegetation dynamics over a growing season
without affecting the plant cover. The destructive method is generally limited to subplots.
Indirect methods can be used on a larger scale.

Alternative tools have been developed to enable indirect measurement using optical
tools [10]. Some rely on the spectral properties, i.e., the infrared reflectance of the green
vegetation. Infrared reflectance combined with red and sometimes blue reflectance is the
inputs of many vegetation indices, including the Normalized Difference Vegetation Index
(NDVI) [11]. NDVI is generally used from images obtained by remote sensing but also
directly in the field with specific captors [12,13]. However, NDVI has to be calibrated with
the field measures. In each case, the calibration with NDVI requires field measurements.

Spectral proprieties are also used with Near InfraRed Spectrometry (NIRS), which
has a higher spectral resolution than the limited number of wavelengths used for NDVI.
NIRS technology is now widely used to assess the nutritional quality of livestock feed
(including forage) in terms of protein, dry matter, fiber, lignin content, digestibility, and
crude energy [14]. The NIRS is also used to assess the ratio between two species or
functional groups [15] and the evaluation of the mean value of the functional trait [16].
However, all these works were performed on dry samples inside the lab and are, therefore,
destructive. Field applications of NIRS have been tested [17].

Digital cameras are also used to study the plant cover. Photography has often been
used to identify and quantify the presence of weeds in a crop cover [18,19] or undesirable
species such as Rumex sp. in grasslands [20,21]. Photography has been used to evaluate the
contribution of legumes in a grass-legume mixture [22,23]. However, the focus is one of the
problems with photography. Indeed, grassland vegetation, particularly natural grassland,
is generally highly heterogeneous with a combination of tall and short species. With a
standard camera, it is difficult to obtain a clear image of the different vegetation layers.
One option is to shoot from a spot that is sufficiently high to obtain hyperfocal conditions,
but this could be difficult to apply in the field, particularly in a tall and heterogeneous
grassland cover.

Another option is a multifocal camera such as a plenoptic camera, also known as a
light field camera, which captures the light field of a scene, i.e., the intensity of light in
a scene and the direction of the light rays [24]. The resulting image can subsequently be
refocused [25] to create a series of pictures with a different focus from only one shoot. The
Lytro Desktop software produced by the maker of one plenoptic camera included an option
to produce a clear image from the set of images by combining the different pictures.

The main aim of the study was to test the plenoptic camera and NIRS for the evaluation
of several features of grassland vegetation (biomass, species composition and functional
diversity). The goal was also to evaluate the complementarity between the camera and
the NIRS.

We made the hypothesis that the multifocal camera (plenoptic) can produce clearer
images than a classical digital camera. Furthermore, the plenoptic can produce a digital
surface model that can be useful for the evaluation of vegetation metrics.
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2. Material and Methods
2.1. Experimental Sites and Design

(a) Experimental sites and pedoclimatic conditions

The experimental site was the INRA Diascope experimental station in Mauguio near
Montpellier, in the South of France. The climate was Mediterranean (mild winters and
hot, dry summers). The average annual rainfall was 680 mm, with high variability in the
quantity and distribution of rainfall [26].

The average temperature throughout the field experiment (April to July 2016) was
17.1 ◦C (maximum 27.2 ◦C, minimum 11.2 ◦C). Rainfall during the period of the experiment
was 52 mm, and potential evapotranspiration was estimated at 343.7 mm (obtained from
the meteorological station on the experimental site).

(b) Design of the plant mixtures and technical itinerary

Four 210 m2 plots (each 70 m by 3 m), with 2 mixtures of grasses and legumes, were cre-
ated at the beginning of April 2017. The first plot contained a mixture of Trifolium alexandrinum,
Medicago truncatula, Vicia sativa, and Avena sativa (M1); the second plot contained the same
species but with Trifolium michelianum instead of Vicia sativa (M2). The sowing density in
each plot is detailed in Table 1.

Table 1. Composition and sowing density of the two mixtures used for the test.

Species Mix1 in kg·ha−1 Mix2 in kg·ha−1

Grass Avena sativa 10 10

Legumes

Vicia sativa 15 0
Trifolium alexandrinum, 5 5

Medicago truncatula 2.5 2.5
Trifolium michelianum 0 5

To facilitate the establishment of the plant mixtures, we applied irrigation at a rate of
10 mm 3 times at the beginning of the experiment. No fertilizer was applied to the plots.

Two plots (1 for each mixture) were mown for the measurements on 16 June 2016. The
2 other plots were mown on 29 June 2016.

2.2. Field Measurements

The 2 measurements, one on 16 June and the second on 29 June 2016 were made in
10 0.5 mx:0.5 m quadrats each containing 1 of the 2 mixtures. The quadrats were regularly
distributed in the plots.

(a) Plenoptic images

The pictures were taken with a Lytro Illum. The Lytro company (Lytro inc Mountain
View, CA, USA) no longer exists, but some cameras are still available, and a new plenoptic
camera may be available for sale in the future. The Lytro Illum has 40 Megarays and
produces images with a resolution of 1936 × 1290 pixels. The Lytro was positioned at a
height of 1 m above the ground, with the lens aimed downward at the plant cover. The
camera was fixed on a post inside the quadrat. The zoom was set at the minimum (30 mm).

In the Lytro Illum, a specific button (Lytro Button) can be used to select the different
focus for the different objects in the picture. We used the Lytro Button to set the depth
of image that adjusted the focused area; thus that the plant cover and the soil were each
focused separately. The images were then exported to the Lytro desktop software (5.0 Lytro,
inc, Mountain View, CA, USA) where they were processed to make net images (for each
pixel, one focus was chosen, this focus was assumed by the software to be the one with the
clearest images).

(b) Measurement of functional traits
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In each quadrat, we randomly selected 2 individual representatives of all the sowed
species and all the individuals of all the weed species. Three different functional traits
were measured in each individual: plant height (H), leaf dry matter content (LDMC), and
specific leaf area (SLA). Plant height is an indicator of the ability of the species to compete
for light and of its seed dispersal ability [27]. H is the distance in m from the ground to the
highest mature leaf stretched along with the steam of the individuals.

Leaf dry matter content (LDMC) is the ratio of leaf dry mass to fresh leaf mass
expressed in mg·g−1. Specific leaf area (SLA) is the ratio of fresh leaf area to dry mass
expressed in cm2·g−1. Both traits are linked to the leaf economic spectrum (physiological
and nutrient balance) [28]; both traits are linked to the growth strategy and the impact
of the vegetation on the biogeochemical cycles. Following the standard protocol [29], we
measured both traits using the uppermost mature leaf on the selected individual. The
leaves were collected in the field in the morning and stored in cold, wet conditions, and
scanned and weighed in the lab at the latest a few hours later. The leaves were then dried
at 55 ◦C for 48 h to measure dry mass. The scan of the leaves was subsequently analyzed
using WinFolia software [30].

(c) Biomass NIRS measurements and species composition

After these traits were measured, all the vegetation in the quadrat was mowed to a
height of 5 cm.

NIRS measurements were taken with a LabSpec Pro (serial number 28,007). The lab
specters had a spectral range of 350 to 2500 nm with a gap of 1 nm. The size of the captors
was 3 cm. We acquired 40 different spectra of the fresh mass in each quadrat. Between
each quadrat, we used a spectralon to calibrate the tools. We measured the fresh mass in
each quadrat and then sorted the biomass per species. All the species that were not sown
were classified as weed species. The fresh mass of the different groups was measured after
which all the samples were dried at 55 ◦C for 48 h to determine their dry mass.

2.3. Images and NIRS Processing

The raw images from the Lytro Illum camera were processed to produce the totally
clean images using the Lytro desktop software. We exported the images in tiff format. We
also exported the depth map of the images. The depth map shows the focal points used to
create clean images. For each pixel, the number of focal points used to produce the clean
images is given on the image. Figure 1 is an example of a depth map together with the
picture at the origin of this depth map.
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Figure 1. Examples of Lytro photographs. (center) the fully focused image. (left) the depth map.
(right) one example of segmentation (the soil is in yellow, Trifolium alexandrinum, is in red, Viscia sativa
is in green).

We used 2 different approaches for the images:
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- A segmentation approach to separate the images into different categories based on
plant species. This enabled us to evaluate the extent of the cover of each species;

- A color approach to evaluate the greenness of the cover.

(a) Image segmentation

The aim of image segmentation was to separate the image into multiple sets of pixels
based on one species. The first step in segmentation was to calculate a set of descriptors
based on color, shape, and proximity on each pixel. The second step was to identify several
pixels or groups of pixels for each species to use to train the algorithm. Finally, the algorithm
was used on the remaining image to segment the images based on the training set.

We used the plug-in Trainable Weka Segmentation (TWS) of ImageJ software [31]. The
algorithm used in TWS was a TreeForest classifier.

Regarding the different parameters in TWS software, we chose to use only the maxi-
mum and minimum among the possible descriptors. The training set in the image was a
small square in the field that contained only one species.

First, we cropped the image thus that only the inside of the quadrat remained in the
image. We masked the dark part of the image to remove images of the soil. There was one
training set for each mixture. The algorithm trained on these 2 images was then applied to
the other 19 images of the same mixtures.

However, we did not undertake segmentation of all the species; indeed, Avena sativa
and Medicago truncatula did not grow well in the plots and were consequently not present
in every quadrat. We carried out only one segmentation with the dominant species (i.e.,
T. alexandrinum for both mixtures, V. sativa for mixture 1 and T. michelianum for mixture 2)
and the soil. The resulting classification enabled us to estimate the cover ratio between the
different species for each studied plot that was used to predict field descriptors.

(b) Color Analysis

We calculated the mean value and the standard deviation for the different colors in
the image (blue, red, and green canal) using the perfectly clean images and the cropped
images, the different colors were coded from 0 to 255. We did the same with the depth map
t, and the depths were also coded from 0 to 255. These variables were used to predict field
descriptors. We did not correct the colors based on the light conditions but used the direct
outputs from the camera.

(c) NIRS Analysis

The raw spectra were transformed using an SNV (standard normal variation) transfor-
mation followed by a linear DETREND.

For NIRS, for each wavelength between 1000 and 2500 nm, we calculated the average
and the standard deviation of the 40 spectra per quadrat. With both these variables, we
calculated the coefficient of variation as the ratio between the standard deviation and the
mean value. To reduce these variables, we performed a Principal component analysis (PCA)
of the average value per nm of the 40 quadrats, a PCA of the standard deviation per nm,
and the coefficient of variation per nm. We used the two axes of each PCA as predictors.

2.4. Statistical Analysis

(a) Calculation of vegetation descriptors

We calculated different descriptors for field measurements: total fresh biomass, the
biomass of each species, and the biomass of the unsown species (weeds). Functional diver-
sity indices, CWM (community-weighted mean value), functional (FRic) and functional
diversity (FD) using the Rao index was calculated for each trait separately. The indices
were calculated using the FD package in Rcore Software [32].

Table 2 shows the distribution of the values of these vegetation descriptors across the
40 quadrats.
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Table 2. Average value of the different vegetation characteristics. This table presents the overall
average of the different variables of the vegetation and the average per plot (mix and cutting date).

16 June 29 June

General Average Mix1 Mix2 Mix1 Mix2

CWM. H in cm 42.67 40.84 32.29 48.07 49.49
CWM.LDMC in mg·g−1 336.68 322.32 287.05 345.51 391.83
CWM.SLA in cm2·g−1 21.01 21.13 25.36 19.73 17.84

FRicH 1.70 1.82 2.06 1.45 1.45
FRicLDMC 1.68 2.66 1.41 0.97 1.69

FRicSLA 2.09 2.43 2.70 1.34 1.88
RaoQH 0.34 0.26 0.55 0.27 0.30

RaoQLDMC 0.41 0.51 0.26 0.21 0.68
RaoQSLA 0.53 0.49 0.66 0.25 0.70

Biomass in g 200.31 206.53 217.69 227.50 149.50
Ta biomass in g 120.95 100.56 129.23 153.00 101.00
Tm biomass in g 17.79 0.00 53.65 0.00 17.50
Mg biomass in g 0.04 0.05 0.10 0.00 0.00
Av biomass in g 8.30 4.28 5.91 9.50 13.50
Vc biomass in g 34.06 80.22 0.00 56.00 0.00

Weed biomass in g 23.91 13.75 25.89 21.50 34.50

(b) Correlation between the different variables 2 by 2 using the maximum
information coefficients

The first step was to analyze the correlation between the different descriptors of the
vegetation and the different variables obtained from the plenoptic images and the NIRS.
The links between these variables were not necessarily linear and were not necessarily well
assessed using the standard Pearson correlation coefficient. The maximum information
coefficient (MIC) is a correlation method that can be used to assess all types of relationships
between two variables [33,34]. We calculated the MIC coefficient between all the vegetation
descriptors and the images and NIRS variables using the Minerva package in R [35].

(c) Evaluating the complementarity and redundancy between the variables using vari-
ance partitioning

We used variance partitioning [36] to evaluate complementarity between segmentation,
color analysis, and NIRS. We assigned the different explanatory variables into three groups
(variables resulting from the PCA on the NIRS, variables from color analysis, and variables
from the segmentation). We performed variance partitioning for each of the field descriptors.
We ran the variance partitioning using the varpart function in the vegan package [37].

(d) Predicting capacity using partial least squares regression

We used a Partial Least Square (PLS) regression to quantify how much variance of
the different vegetation descriptors can be predicted from the plenoptic images and NIRS
variables. PLS regression was used to find relationships between 2 sets of variables. The
2 sets of variables were transformed into latent variables like in a PCA, except that the latent
variables were not made to maximize the variances within the 2 sets but to maximize the
relationships between the two sets of variables. PLS was thus appropriate for our dataset
that contained numerous variables but a limited number of individuals (in this case only
40). The PLS was run with all the field descriptors combined. We used the function plsreg2
in the plsdepot package in R.

3. Results
3.1. MIC Correlation

Table 3 lists the MIC correlation coefficients between the vegetation descriptors and
the variables obtained using the plenoptic camera and the NIRS.
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Table 3. Maximum correlation coefficient (MIC) between the vegetation descriptors and the NIRS variables (the color analysis of the image and the percentage
extracted from the segmentation). The correlation coefficients in bold represent a significant correlation.

NIRS Colors Segmentation

NIRSM1 NIRSM2 NIRSS1 NIRSS2 NIRSCV1 NIRSCV2 Vmdeep Sddeep VmR SDR VmB SDB VmG SDG TA TM VC Soil

CWM. H 0.33 0.59 0.40 0.37 0.29 0.38 0.31 0.32 0.59 0.69 0.28 0.34 0.31 0.39 0.31 0.36 0.34 0.48
FRicH 0.27 0.28 0.32 0.33 0.22 0.21 0.37 0.25 0.34 0.41 0.24 0.46 0.25 0.37 0.39 0.25 0.26 0.39

RaoQH 0.26 0.33 0.25 0.34 0.18 0.31 0.30 0.33 0.31 0.41 0.24 0.26 0.22 0.21 0.31 0.28 0.28 0.49
CWM.LDMC 0.23 0.48 0.29 0.31 0.40 0.29 0.20 0.33 0.45 0.50 0.36 0.26 0.48 0.28 0.27 0.27 0.24 0.38
FRicLDMC 0.37 0.18 0.43 0.23 0.39 0.23 0.41 0.23 0.20 0.25 0.30 0.33 0.36 0.31 0.20 0.24 0.24 0.24

RaoQLDMC 0.33 0.20 0.29 0.23 0.48 0.22 0.61 0.32 0.28 0.31 0.26 0.24 0.32 0.31 0.25 0.19 0.19 0.26
CWM.SLA 0.25 0.36 0.36 0.28 0.30 0.28 0.27 0.17 0.38 0.37 0.39 0.26 0.30 0.28 0.31 0.28 0.28 0.28
FRicSLA 0.23 0.34 0.23 0.24 0.32 0.26 0.29 0.31 0.32 0.35 0.23 0.28 0.25 0.43 0.31 0.21 0.26 0.25

RaoQSLA 0.35 0.29 0.35 0.32 0.55 0.31 0.29 0.21 0.40 0.31 0.28 0.26 0.27 0.36 0.24 0.33 0.33 0.31
Biomass in g 0.55 0.30 0.20 0.36 0.37 0.30 0.31 0.21 0.45 0.43 0.22 0.23 0.24 0.22 0.57 0.48 0.35 0.39

Ta biomass in g 0.35 0.29 0.41 0.33 0.34 0.30 0.33 0.26 0.28 0.38 0.29 0.23 0.34 0.21 0.27 0.28 0.18 0.23
Tm biomass in g 0.31 0.46 0.32 0.28 0.32 0.28 0.21 0.29 0.53 0.50 0.30 0.32 0.22 0.34 0.53 1.00 1.00 0.78
Mg biomass in g 0.28 0.20 0.23 0.22 0.26 0.19 0.23 0.38 0.32 0.30 0.26 0.25 0.29 0.32 0.16 0.24 0.15 0.22
Av biomass in g 0.23 0.25 0.58 0.33 0.29 0.25 0.27 0.49 0.30 0.33 0.43 0.27 0.34 0.30 0.33 0.29 0.20 0.22
Vc biomass in g 0.28 0.35 0.32 0.31 0.22 0.34 0.22 0.29 0.53 0.41 0.20 0.32 0.30 0.34 0.41 1.00 1.00 0.77

Weed biomass in g 0.37 0.34 0.38 0.44 0.25 0.39 0.22 0.19 0.53 0.44 0.27 0.24 0.29 0.34 0.30 0.22 0.24 0.31



Agriculture 2022, 12, 704 8 of 16

(a) Vegetation height descriptors

For the descriptors calculated with plant height, correlations were found with the
standard deviation of the red canal obtained from the plenoptic images (0.69 for the CWMH
and 0.41 for the FRiC and the Rao, respectively).

The CWM H was also linked with the average red canal (0.59), the second axis of
the PCA on the NIRS average reflectance (0.59), and the percentage of soil extracted from
the segmentation (0.48). FRicH was linked with the standard deviation of the blue color
in the plenoptic image (0.46). The Rao H was also linked with the evaluation of the soil
percentage (0.49).

(b) Descriptors of leaf dry matter content

For the descriptors calculated with the LDMC, correlations were found between the
CWM LDMC with the second axis of the PCA on the NIRS average reflectance (0.48) and
with the first axis of the NIRS reflectance coefficient of variation (0.40), the average red
value (0.45) and the standard deviation (0.50) of the red canal obtained from the plenoptic
images. The CWM LDMC was also linked with the average green value obtained from the
plenoptic images (0.48).

Both FRiC and Rao of LDMC were linked to the average deepness value (respectively,
0.41 and 0.61). Both descriptors were also linked with NIRS dimensions, with the first axis
obtained from the standard deviation for the FRiC LDMC (0.43) and with the first axis
obtained from the CV for the RaoLDMC (0.48).

(c) Descriptors of specific leaf area

The community weighted mean value of SLA was not linked to any variable. The
FRiC SLA was linked with the standard deviation of the green color obtained from the
plenoptic images only (0.43). The Rao SLA was linked with the first axis of the PCA for the
coefficient of variation from the NIRS (0.55) and the average red value from the plenoptic
images (0.40).

(d) Biomass and species composition

Total biomass was linked to the first axis of the PCA made with the average NIRS
value (0.55), the average value, and the standard deviation of the red image (respectively
0.45 and 0.43). Total biomass was linked to the estimation of the biomass of T. alexandrinum
and T. michelianum (0.57 and 0.48).

The biomass of T. alexandrinum was linked with the first axis of the PCA on the
standard deviation of the NIRS spectra (0.41).

The biomass of T. michelianum was linked with the second axis of the average NIRS
value (0.46), the average and the standard deviation of the red canal on the plenoptic images
(0.53 and 0.50). The T. michelianum biomass was linked with all the variables obtained from
the segmentation (estimation of soil cover, TM cover, TA cover).

The biomass of Avena sativa was linked with the first axis of the PCA on the standard
deviation of the NIRS spectra (0.58), the standard deviation of the depth map (0.49), and
the average value of the blue canal (0.43).

The V. sativa biomass was linked with the average and the standard deviation of the
red canal from the plenoptic image (0.53 and 0.41) and with all the segmentation variables.

The weed biomass was linked with the second axis of the PCA on the standard
deviation of NIRS (0.44 and the average and the standard deviation of the red canal from
the plenoptic image (0.53 and 0.44).

3.2. Variance Partition

Table 4 presents the results of the variance partition. The first presented descriptors
are those with the lowest residuals (highest variance), followed by the descriptors with the
lowest explained variance.
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Table 4. Results of variance partition. C corresponds to the variance explained by color analysis
alone, S corresponds to the variance explained by segmentation alone, N corresponds to the variance
explained by NIRS variables alone, CS corresponds to the joint variance between the colors and
segmentation, SN corresponds to the joint variance between NIRS and segmentation, CN corresponds
to the joint variance between NIRS and segmentation, and CSN is the variances explained by the
three different groups combined. R corresponds to the unexplained variances (Residuals).

Field Variable C S N CS SN CN CSN R

CWM. H in cm 0.02 −0.05 0.07 0.01 0.06 0.08 0.19 0.63
CWM.LDMC in mg·g−1 0.00 −0.14 −0.15 0.05 0.09 0.17 0.03 0.96
CWM.SLA in cm2·g−1 0.15 −0.07 0.09 0.00 0.03 0.10 0.06 0.63

FRicH 0.23 −0.01 0.13 −0.03 −0.10 −0.17 0.13 0.81
FRicLDMC −0.02 −0.09 −0.10 0.01 0.08 0.09 −0.01 1.05

FRicSLA 0.00 0.02 0.05 0.05 −0.03 0.08 0.13 0.69
RaoQH 0.33 0.16 0.26 0.01 −0.19 −0.26 0.18 0.51

RaoQLDMC 0.08 −0.05 0.28 0.02 0.12 0.05 −0.15 0.65
RaoQSLA −0.08 −0.02 0.06 0.07 0.04 0.03 −0.03 0.92

Biomass in g 0.07 0.04 −0.05 0.11 0.08 0.02 0.15 0.57
Ta biomass in g −0.03 0.21 0.22 0.00 −0.09 0.06 −0.04 0.67
Tm biomass in g 0.19 0.29 0.08 −0.04 0.07 −0.09 0.27 0.25
Mg biomass in g −0.05 0.06 0.01 −0.02 −0.03 0.19 −0.10 0.94
Av biomass in g −0.21 −0.09 −0.11 0.05 0.11 0.10 0.06 1.08
Vc biomass in g −0.07 0.29 0.07 −0.05 0.32 0.06 −0.02 0.41

Weed biomass in g 0.00 0.03 0.46 −0.02 0.03 0.15 −0.06 0.40

T. michelianum biomass was the descriptor with the lowest residuals (unexplained
variance) with a value of 25%. The segmentation variables alone explained 29% of the
variance of the T. michelianum biomass, 27% was explained by the combination of the three
groups of variables (CSN), and 19% was explained by the color variables.

The second descriptor with lower residuals was weed biomass (residual 40%). The
weed biomass was mostly explained by the NIRS variables (46%), thus by the combination
of color analysis and NIRS (15%).

Vicia sativa biomass had 41% of residuals. The variance was explained by the segmen-
tation variables (29%) and by the combination of segmentation and NIRS (32%).

RaoQH had 51% of residuals. The RaoQH was explained by color variables alone
(33%), NIRS alone (26%), the combination of the three groups of variables (18%) and
segmentation alone (16%).

Total biomass had 57% of residuals. The combination of the three groups of variables
explained 15% of the variance (CSN), and 11% was explained by the combination of color
analysis and segmentation.

A total of 63% of CWM H variance f remained unexplained in the variance partition;
19% of the variance was explained by the combination of the three groups of variables.

A total of 37% of CWM SLA variance was explained, 15% of the variance was explained
by the color variables alone, and 10% of the variance by the combination of the color analysis
and the NIRS variables.

A total of 35% pf RaoQLDMC variance was explained by the different variables. The
NIRS variables alone explained 28% of the variance.

A total of 33% of Trifolium alexandrium biomass variance was explained by the set of
variables. NIRS only explained 22% of the variance of Trifolium alexandrium biomass.

The FriCSLA had 69% of residuals. The combination of the three groups of variables
explained 13% of the variance.

The other vegetation descriptors had more than 80% of residuals.

3.3. Partial Least Squares (PLS) Regressions

Figure 2 presents the results of the PLS. The first axis t1 was positively defined by the
standard deviation of the three colors obtained from the image and the average red color.
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The first axis was also linked with the PCA obtained from the NIRS spectra (positively
with the first axis of the PCA on the standard deviation and the first axis on the coefficient
of variation, the second on the average spectrum; negatively with the second axis made
on the coefficient of variation and the standard deviation). The second axis t2 was mainly
defined by the segmentation variable (positively with the soil and Vicia sativa percentage
evaluation) and negatively with the percentage evaluation of T. michelianum.
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Table 5 presents the Q2 for each vegetation descriptor. The CWM variables were
linked with the first axis, positively for the H (Q2 = 0.24) and the LDMC (Q2 = 0.20) and
negatively for the SLA (Q2 = 0.24). The FRiC SLA was also negatively linked with the first
axis (Q2 = 0.16).
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Table 5. Results of the PLS.Q2 on the two first latent variables for the different vegetation descriptors.

t1 t2

CWM. H in cm 0.244 0.014
CWM.LDMC in mg·g−1 0.200 −0.064
CWM.SLA in cm2·g−1 0.242 −0.049

FRicH 0.071 −0.039
FRicLDMC −0.019 0.050

FRicSLA −0.012 −0.054
RaoQH −0.011 −0.115

RaoQLDMC 0.155 0.007
RaoQSLA −0.053 0.012

Biomass in g −0.046 0.035
Ta biomass in g −0.083 −0.044
Tm biomass in g 0.022 0.512
Mg biomass in g 0.010 −0.090
Av biomass in g 0.063 −0.029
Vc biomass in g −0.020 0.511

Weed biomass in g −0.018 −0.024
Q2 0.047 0.043

T. michelianum biomass was negatively linked with the second axis of the PLS (Q2 = 0.51)
and Vicia sativa biomass was positively linked with the same axis (Q2 = 0.51).

4. Discussion
4.1. Limits of This First Attempt

This original work is a first attempt to combine the use of plenoptic cameras and
NIRS to monitor grassland vegetation. This study has some serious limits and cannot yet
be generalized.

Our mixtures were not as successful as planned, which limited our results. Our main
problem was the establishment of the grassland: only three of the five sowed species
grew in our plots and only two species were present in each mixture (T. alexandrinum and
V. sativia in the first mixture and T. alexandrinum and T. michelianum in the second one). One
of the reasons was the delayed establishment of the grassland (middle of April). In fact, we
sowed the mixtures in October of the previous year of the measurements (2015) but all the
seeds were removed by a flood just after sowing. We consequently had to sow a second
batch in April. This late sowing also shortened the period in which measurements were
possible. In such Mediterranean mixtures, the vegetation is usually green from March to
June. Due to late sowing, the mixtures were only green in May and June. Our original plan
was to mow twice to increase the number of measurements. However, none of the species
grew after the first cut. Since our budget only covered a one-year experiment we were not
able to continue in the following year. As a result, we only had data from 40 quadrats to
work with.

As we are well aware of the limits of this first study, we do not present this work as a
tool ready to be used but to pave the way for further research on the development of this
new tool. We think that this work has several originalities and that the research community
will be interested in these preliminary results.

4.2. Evaluating Functional Traits and Diversity Using Optical Captors

Until today, very few studies have attempted to assess functional traits using optical
tools [16,38]. These traits have been directly linked with the different plant functions,
including reproduction, growth, and survival of the plant [6]. For example, the SLA and
the LNC (leaf nitrogen content) are soft trait indicators of photosynthesis [28]. Functional
traits are generally used as indicators of more complex functions. However, collecting and
measuring functional traits are laborious: for most traits, at least five individuals of each
species have to be collected, but at least 10 individuals are recommended (or even 25 for
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some traits) per species (see the first appendix of standard protocols [29] for more details).
In highly diverse ecosystems, the collection of all these individuals is quite an undertaking.
Some authors suggest only collecting the dominant species, i.e., those that represent up
to 80% of the biomass [39]. Others propose using a random individuals approach instead
of the species approach by sampling only 20 individuals in the field irrespective of the
species [40]. In both cases, low abundance species are not sampled. The absence of these
species could be problematic in the calculation of functional diversity [41] and for the
studies of ecosystem functions [42–44]. Instead of field measurements, it is possible to use
a functional trait database, but this is also problematic [45].

Another limitation of measuring functional traits is that it is destructive, meaning it is
difficult to complete monitoring in only one season.

Our work, which is only based on three functional traits and on three different func-
tional diversity indices, did reveal some correlations (Table 3) between these indices and
outputs from the camera and the NIRS. These weighted mean values of the SLA and the
LDMC of these communities were linked with the colors obtained from the plenoptic
camera and with the NIRS PCA variables. SLA and LDMC are two traits linked to the
leaf-economic spectrum. [28]. Species with a high SLA and low LDMC are generally associ-
ated with high photosynthesis rates and high nitrogen content (due to the high Rubisco
content) [28,46,47]. Conversely, plants with a low SLA and high LDMC are associated with
low nitrogen content and low photosynthetic activity but also with hard tissues and more
secondary metabolites, especially for defense against herbivory. Nitrogen content, dry
matter content, some secondary metabolites, and hard tissues are generally well assessed
by NIRS [48].

Our work also shows that the standard deviation (and the coefficient of variation) of
the 40 spectra per quadrat can be used for the assessment of vegetation descriptors and not
only the mean value.

Based on variance partition, we saw that the colors obtained from the plenoptic image
were equivalent to the information obtained with the NIRS.

The community weighed mean value of plant height (CWMH) was also linked with
the NIRS data and with the red canal obtained from the plenoptic images. Similar results
were also found for the leaf economic spectrum traits. The CWM H is known to be linked
with the leaf economic spectrum [49]. The link between NIRS and height may thus be
indirect via leaf physiology. Moreover, we harvested on two dates in our experiment. At
the date of the second and last harvest (29 June), the plants were taller but had a lower
SLA and higher LDMC. These differences could be due to the difference in phenological
stages, which might mean that NIRS and color analysis could also be used to evaluate the
phenology of the grassland. Our work show interest in using optical tools for the evaluation
of functional trait and diversity.

4.3. Future Outlook on the Use of Plenoptic Images

In this work, we used a plenoptic camera to take advantage of the clean images and
the associated depth map only. In our plots, the grass was not very tall (maximum 50 cm);
hence, the interest of using plenoptic was less than it would be with taller species with
different vegetative strata. Indeed, in the case of a plant cover less than 50 cm tall, it may
be possible to obtain a clean picture with a classical digital camera.

The potential advantage of using a depth map is to evaluate the vertical heterogeneity
of the cover. However, we found no correlation between the average value and the standard
deviation of the depth map and any vegetation descriptors. The depth map could be more
useful for more heterogeneous vegetation.

One of our hypotheses in this work was that a clean image would enable a better
image analysis. However, blurring the images can help image analysis. Indeed, blurring
could provide information about the distance between the objects and the camera; some
objects, such as the soil as well as small species, may only be in the background. One
could imagine a segmentation algorithm using not only the clean image but also the depth
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map such as a digital surface model (DSM) and possibly all the pictures obtained at all
the different focuses [50]. Indeed, some authors have used the numerical surface model to
improve segmentation [51]. We compared the results of the segmentations made with a
clean picture, a picture with a focus on the background, and another picture with the focus
on the aboveground part of the vegetation. The results of the segmentations were quite
different (results not shown). It may be interesting to use different images with different
focuses for image analysis.

Thanks to the presence of multiple captors in the camera lens, plenoptic cameras can
also produce a 3D image. The difference in the views taken from these lenses are used to
produce a 3D image. This 3D image is not complete and does not cover all the directions,
but 3D imaging is a promising tool for evaluating vegetation [52]. A 3D image could be
produced by a 3D camera but also based on the structure of motion [53]. Structure from
motion is generally used from UAV but some studies have shown that the same process
could be used for grass with a simple digital camera [54].

4.4. Combination of Several Tools

One part of the information captured by the color analysis was also captured by the
NIRS (Table 4 and Figure 2) for most of the vegetation descriptors. However, the informa-
tion captured by the two approaches differs in some criteria (e.g., RaoQH). Nevertheless,
the two tools can be used for different purposes. The camera is easier to use in the field and
less costly; it could be used to obtain a rapid but less accurate assessment in the field. NIRS
tools (in our case, the ASD LabSpec) could evaluate functional traits more accurately, but
for the moment, this approach is more expensive and less field-friendly.

Furthermore, unlike the camera, NIRS does not produce spatial information. Hy-
perspectral imagery is one possible way to obtain both spectral and spatial details [55].
Hyperspectral information could also be useful for segmentation.

The segmentation approach complemented NIRS and color analysis (Figure 2) and
explained more variability for some vegetation descriptors, particularly to estimate the
biomass of the different species. Combining the two types of procedures and images
could be an advantage when evaluating a large panel of descriptors (the camera with
segmentation for the species composition, NIRS, and color analysis for the functional traits
and diversity descriptors).

Other tools can also be used to obtain a better grasp of grassland (Laser, LIDAR,
Ultrasound) [10]. A recent study shows that a combination of several captors is more
accurate than only one captor [56].

5. Conclusions

This work was the first attempt to use plenoptic cameras for the evaluation of grassland
vegetation descriptors. It is one of the first assessments using a plenoptic camera for
grassland studies. Plenoptic cameras could be very useful for producing clean images
and a set of images with different focuses. However, our work was limited by the low
diversity in our mixtures (only two main species per mixture). The height of the vegetation
resulting from the mixture was not sufficient to allow the evaluation of the full potential of
the plenoptic camera. We were not able to evaluate more than 50% of the field variability
only for three variables. These tools cannot be, for the moment, used for prediction.

We also tested the interest of combining NIRS data with camera pictures. NIRS can
produce similar information to that obtained from color analysis of the plenoptic images.
Not only the average value of the NIRS spectrum but also the standard deviation could be
useful for the assessment of the plant cover. Different combinations of tools now need to
be tested.
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