David Bauman 
email: david.bauman@oxfordecosystems.co.uk
  
Claire Fortunel 
  
Guillaume Delhaye 
  
Yadvinder Malhi 
  
Lucas A Cernusak 
  
Lisa P Bentley 
  
Sami W Rifai 
  
Jesús Aguirre-Gutiérrez 
  
Imma Oliveras Menor 
  
Oliver L Phillips 
  
Brandon E Mcnellis 
  
Matt Bradford 
  
Susan G W Laurance 
  
Michael F Hutchinson 
  
Raymond Dempsey 
  
Paul E Santos-Andrade 
  
Hugo R Ninantay-Rivera 
  
Jimmy R Chambi Paucar 
  
Sean M Mcmahon 
  
Tropical tree mortality has increased with rising atmospheric water stress Authors

 . We analyse a 49-year record of tree dynamics from 24 old-growth forest plots encompassing a broad climatic gradient across the Australian moist tropics and find that annual tree mortality risk has, on average, doubled across all plots and species over the last 35 years, indicating a potential halving in life expectancy and carbon residence time. Associated biomass losses were not offset by gains from growth and recruitment. Plots in less moist local climates presented higher average mortality risk, but local mean climate did not predict the pace of temporal increase in mortality risk. Species varied in the trajectories of their mortality risk, with the highest average risk found nearer the upper end of species' atmospheric vapour pressure deficit niches. A long-term increase in vapour pressure deficit was evident across the region, suggesting thresholds involving atmospheric water stress, driven by global warming, may be a primary cause of increasing tree mortality in moist tropical forests.

Tropical forests are critical to the global carbon cycle, and shifts in their long-term dynamics can influence the pace of climate change. There are indications of slowing carbon accumulation in some tropical forests primarily due to changes in mortality [START_REF] Brienen | Long-term decline of the Amazon carbon sink[END_REF][START_REF] Hubau | Asynchronous carbon sink saturation in African and Amazonian tropical forests[END_REF] , but uncertainty remains in the scope, severity, and mechanisms that might result in global tropical forest structure and dynamics changes [START_REF] Zuleta | Drought-induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon[END_REF][START_REF] Phillips | Drought sensitivity of the Amazon rainforest[END_REF][START_REF] Powers | A catastrophic tropical drought kills hydraulically vulnerable tree species[END_REF][START_REF] Bennett | Resistance of African tropical forests to an extreme climate anomaly[END_REF][START_REF] Brodribb | Hanging by a thread? Forests and drought[END_REF][START_REF] Mcdowell | Pervasive shifts in forest dynamics in a changing world[END_REF] . If the tropical forest carbon sink (estimated at 1.2 Pg C year -1 for recent decades [START_REF] Pan | A large and persistent carbon sink in the world's forests[END_REF] ) declines rapidly to zero, the available anthropogenic emissions "carbon budget" to stay below 1.5 o C by mid-century declines from 120 Pg C to about 100 Pg C, and to stay below 2 o C by 2100 it declines from 374 Pg C to about 320 Pg C [START_REF] Matthews | An integrated approach to quantifying uncertainties in the remaining carbon budget[END_REF][START_REF] Girardin | Nature-based solutions can help cool the planet -if we act now[END_REF] . Hence, the causes and future of tropical forest tree mortality have important consequences for our prospects to stabilise global climate within safe limits.

Predicting tree mortality is especially challenging given the multiple pathways through which climate can induce mortality and the ways in which different species respond to climate change.

Specifically, mortality due to water limitation can result from long-term shifts in climate, specific extreme events, or their interaction [START_REF] Hubau | Asynchronous carbon sink saturation in African and Amazonian tropical forests[END_REF][START_REF] Phillips | Drought sensitivity of the Amazon rainforest[END_REF][START_REF] Choat | Triggers of tree mortality under drought[END_REF]13 . For example, temperature could increase tree mortality directly by increasing physiological thermal stress [START_REF] Lloyd | Effects of rising temperatures and [CO2] on the physiology of tropical forest trees[END_REF][START_REF] O'sullivan | Thermal limits of leaf metabolism across biomes[END_REF] or indirectly by increasing atmospheric evaporative demand (i.e. vapour pressure deficit, VPD) [START_REF] Brodribb | Hanging by a thread? Forests and drought[END_REF][START_REF] Grossiord | Plant responses to rising vapor pressure deficit[END_REF][START_REF] Rifai | Coupling of El Niño events and long-term warming leads to pervasive climate extremes in the terrestrial tropics[END_REF][START_REF] Rifai | ENSO Drives interannual variation of forest woody growth across the tropics[END_REF][START_REF] Smith | Empirical evidence for resilience of tropical forest photosynthesis in a warmer world[END_REF] , while increasing seasonality in the tropics and subtropics would increase soil water stress and decrease dry season water supply [START_REF] Malhi | Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest[END_REF] .

These processes increase the probability of death through a series of potential mechanisms (e.g., hydraulic failure, carbon starvation [START_REF] Brodribb | Hanging by a thread? Forests and drought[END_REF][START_REF] Choat | Triggers of tree mortality under drought[END_REF]13,[START_REF] Mcdowell | Drivers and mechanisms of tree mortality in moist tropical forests[END_REF][START_REF] Mcdowell | Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?[END_REF] ). In particular, some studies suggest that tropical forests on the drier edge of the biome's range may be closer to a tolerance threshold and hence more vulnerable to water stress as revealed by reductions of growth [START_REF] Bauman | Tropical tree growth sensitivity to climate is driven by species intrinsic growth rate and leaf traits[END_REF] , increases in mortality [START_REF] Esquivel-Muelbert | Tree mode of death and mortality risk factors across Amazon forests[END_REF][START_REF] Anderegg | Widespread droughtinduced tree mortality at dry range edges indicates that climate stress exceeds species' compensating mechanisms[END_REF] , and decreases in population size [START_REF] Aguirre-Gutiérrez | Drier tropical forests are susceptible to functional changes in response to a long-term drought[END_REF][START_REF] Aguirre-Gutiérrez | Long-term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity[END_REF] . However, other work suggests that compositional diversity in forests near this dry edge might provide buffers against forest dieback, with some taxa or regions suffering less from water stress [START_REF] Zuleta | Drought-induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon[END_REF][START_REF] Bennett | Resistance of African tropical forests to an extreme climate anomaly[END_REF] . Improving our understanding of mortality dynamics requires quantifying mortality patterns along climatic gradients with an explicit consideration of taxon-level vulnerability to environmental constraints. As such, long-term demographic datasets along these gradients are uniquely capable of disentangling patterns in mortality from their potential mechanisms in a way that can inform predictions [START_REF] Meir | Drought-related tree mortality: addressing the gaps in understanding and prediction[END_REF] . However, analyses of the infrequent and stochastic nature of mortality require sustained, long-term monitoring, which is rare, especially in the tropics.

Using tropical forest demographic data spanning 49 years, we analysed temporal patterns of tree mortality for 81 dominant tree species encompassing 74,135 observations of stems above 10 cm diameter across 24 tropical moist forest plots along an elevation gradient in North Queensland, Australia (Tables S1,S2). We estimated the probability of mortality (hereafter, 'mortality risk') across stems, species, plots and years (eqs. 1 in Methods; Figs. S1,S2). Analysing the yearly distribution of mortality risk across all plots and species from 1971 through 2019 (model M1; see Methods), we show that after a period of slight mortality risk decline, the baseline risk increased, with several years standing out as high-risk years. A change-point analysis on these data confirmed a transition from moderately decreasing to increasing mortality risk occurring in the mid-1980's (the analysis indicating 1984) (model M2; Tables S3,S4). This modelled shift is also evident in the observed mortality rates across plots and census intervals (Fig. 1b). The mechanisms responsible for the increase in mortality risk are associated with secular long-term climate change (notably an increase in temperature and atmospheric water vapour pressure deficit, VPD) (Fig. 1c) and wind-disturbance events due to cyclones (black triangles in Fig. 1b). S3). Circles and intervals are median and 95%-highest posterior density intervals of the year-level mortality risk (see M2, Table S4). b: Annualised percentage of tree death per plot and census interval, indicating a temporal increase across all plots, partly but not only related to wind damage from cyclones (black triangles). c: Predicted temporal increase of maximum annual vapour pressure deficit (VPD) across all 24 plots. Line and shaded areas are median and 95%-highest posterior density intervals (HPDI) for VPD predicted from the model fit (see Methods).

The mortality risk estimated per stem and year from the census data were used as response variables in a series of Bayesian multilevel analyses (models M1-M6; Table S4) to test temporal patterns of mortality risk after 1984 across plots and species and investigate potential underlying mechanisms associated with those patterns. We focused on the effect of VPD and maximum daily air temperature (Tmax) to explain differences in both average mortality risk and its rates of change over time among plots, as both VPD and temperature have increased in all 24 plots in the past 49 years and have reduced tree growth (Fig. 1c; Bauman et al. [START_REF] Bauman | Tropical tree growth sensitivity to climate is driven by species intrinsic growth rate and leaf traits[END_REF] ), and are candidates in increasing forest stress globally [START_REF] Hubau | Asynchronous carbon sink saturation in African and Amazonian tropical forests[END_REF][START_REF] Sullivan | Long-term thermal sensitivity of Earth's tropical forests[END_REF][START_REF] Yuan | Increased atmospheric vapor pressure deficit reduces global vegetation growth[END_REF] . To capture the potential influence of soil water supply on tree water stress and rainfall seasonality, we also used maximum climatological water deficit (MCWD) as an additional predictor. Specifically, we used Tmax and VPD of the year's driest quarter, and MCWD, averaged over 35 years (1984-2019; M3, see Table S4).

We found an increase in plot-level average mortality risk between 1984 and 2019 in 21 of the 22 plots with at least three censuses (Figs. 2, 3a, Table S5; grand 'year' slope (eqs. 3): b0 = 0.23 [0.29, 0.17], median and 95%-highest posterior density interval (HPDI)) with a five-fold difference in the rate of mortality risk change over time along the climate gradient ('among-plot' variation in 'year' slope: sb = 0.16 [0.12, 0.21]; Fig. 3a; see eqs. 3 in Supp. Methods S1). Model predictions indicated a doubling in average mortality risk across plots between the 1980s and 2010s (model M3; Fig. 3a), corresponding to a potential halving of tree life expectancy and carbon residence time [START_REF] Mcmahon | The importance and challenges of detecting changes in forest mortality rates[END_REF] . None of the mean climate predictors explained the variation in the slope of temporal change of mortality risk among plots (Table S5, Fig. S3); drier plots were no more vulnerable to increased mortality risk than more moist plots. The overall plot-specific average mortality risk (ak, eqs. 3), however, was higher in warmer and drier plots (Fig. 2, Fig. S3; a1 (VPD): 0.30 [0.49, 0.12], and a1 (Tmax): 0.37 [0.52, 0.23]). Plot average MCWD showed no evidence of an association with mortality risk (Table S5). Cyclones occurred in a subset of plots (triangles in Fig. 1b), so we tested whether the mortality risk increase could be due to cyclone occurrence alone. We performed two re-analyses of the full model construction using a) all plots, but with any census interval with observed cyclone occurrence removed, and b) only plots with no cyclone disturbances in the past 50 years. In both cases, there remained a marked increase in mortality risk across years following 1984 (Fig. S4, Table S6), suggesting that another mortality cause was driving, and possibly interacting with wind disturbance events, to increase mortality risk across the plots. S4).

Red and blue arrows represent clear negative and positive effects on mortality risk, respectively, while grey arrows indicate that no clear effect was detected (i.e. slope coefficients whose posterior 95%-highest posterior density intervals, HPDI, encompasses zero). Plain and dashed arrows illustrate direct and indirect effects on tree mortality risk respectively, where indirect effects affect mortality risk by accentuating or attenuating the direct effect of 'year' (details in Supp. Methods S1). VPD: vapour pressure deficit. MCWD: Maximum climatological water deficit. Tmax: Maximum daily air temperature. WD: Wood density.

Coefficients from different models cannot be directly compared, as they arise from models using different subsets of the dataset (see Methods; Table S4). Palm vector created by kjpargeter -www.freepik.com.

To evaluate whether some taxa were particularly vulnerable to changing climate, we tested how species mortality risks changed after 1984 in model M4, and examined how their local distributions related to their total geographic range (model M5), and if some traits correlated with their average mortality risk or rate of mortality risk increase (model M6). Model M4 confirmed a general increase in mortality risk over time across species (b0 = 0.17 [0.21, 0.14]; Fig. 4a,b, Table S4), with 70% of the species presenting the trend (Fig. 3b) and substantial variability across species (sb: 0.19 [0.16, 0.21], see eqs. 4) (Fig. 3b). Species average annual mortality risk varied between 0.007 and 0.051 (mean of 0.021; Table S2).

Although the increasing mortality trend across species and plots in our analysis is clear, attributing this trend to specific causes is challenging. Mortality can lag its cause by months to years [START_REF] Trugman | Tree carbon allocation explains forest drought-kill and recovery patterns[END_REF][START_REF] Trugman | Why is Tree Drought Mortality so Hard to Predict?[END_REF][START_REF] Phillips | Drought-mortality relationships for tropical forests[END_REF][START_REF] Aleixo | Amazonian rainforest tree mortality driven by climate and functional traits[END_REF][START_REF] Lingenfelder | On the detection of dynamic responses in a droughtperturbed tropical rainforest in Borneo[END_REF] and any single mortality event can be due to multiple interacting causes [START_REF] Trugman | Why is Tree Drought Mortality so Hard to Predict?[END_REF][START_REF] Aleixo | Amazonian rainforest tree mortality driven by climate and functional traits[END_REF][START_REF] Mcdowell | The interdependence of mechanisms underlying climate-driven vegetation mortality[END_REF][START_REF] Zuleta | Individual tree damage dominates mortality risk factors across six tropical forests[END_REF][START_REF] Fontes | Dry and hot: the hydraulic consequences of a climate change-type drought for Amazonian trees[END_REF] . Available meteorological data cannot perfectly capture the mortality mechanisms due to spatial and temporal precision, or accurate representation of the driving mechanism (i.e., the disconnect between high VPD, embolism, vascular failure, and crown death). Finally, observations of mortality in censuses do not represent the exact year of death. We attempted to extend our inference from the observed mortality risk pattern to possible attribution in three ways: (1) linking geographical ranges to plot-level patterns among species, (2) testing trait relationships to the mortality shift, and (3) investigating cyclone occurrence and the plot-and species-specific mortality risk trends.

Many of the species in our plots are widespread across tropical southeast Asia, offering a robust assessment of climate niche. Climate niches were approximated for 56 of the 81 species that occurred in at least four of the 24 plots, using a projection of presences across climate space built by combining all recorded species occurrences with a 30-year climatology of maximum VPD, temperature, and MCWD. We then expressed each of our plot mean climate metrics in terms of quantiles on each species' total univariate climatic niche, yielding variables of study species position on their broader geographical climate niche (VPDniche, Tmaxniche, MCWDniche; Fig. 4).

Model M5 regressed mortality risk after 1984 on these three niche-related covariates, with 'year' to control for the temporal increase and with species-level slopes for all covariates (see eqs. 5). The average mortality risk was higher the closer species were to the drier edge of their range (i.e. upper limit of their VPD niche; b3,0: 0.40 [0.27, 0.52]; Figs. 2,4, Table S5). This increase of average mortality risk with VPDniche affected 79% of the 56 species (Fig. 4). A similar, though-less-marked, increase in average mortality risk occurred closer to the upper edge of the Tmaxniche when considering a 90%-HPDI (b2,0: 0.13 [0.01, 0.24]; eqs. 5). This Tmaxniche effect increased when removing VPDniche from the model, indicating that Tmaxniche is associated with mortality risk indirectly through VPDniche (see sensitivity analysis in Supp. Methods S1 and Table S5). The position on the MCWD niche had no clear effect across species (Table S4).

Functional traits may indicate distinct mortality vulnerabilities among species. Forty of our study's species had functional trait measurements, including morpho-anatomical features such as leaf mass per area and wood density, chemical traits such as leaf C stable isotope ratio, leaf nitrogen and phosphorus, and gas exchange traits such as stomatal conductance and maximum photosynthetic capacity (Table S7, Fig. S5). To test for physiological mechanisms potentially underlying interspecific differences in the pace of mortality risk change over time, we used the subset of 40 species with trait data in a modified version of M4 to see if species mean trait values predicted a species' average risk and the temporal change in that risk post 1984 (models M6, Table S4). Wood density (a proxy for mechanical strength and embolism resistance [START_REF] Chave | Towards a worldwide wood economics spectrum[END_REF][START_REF] Peters | Living on the edge: A continental-scale assessment of forest vulnerability to drought[END_REF] ) showed a clear negative relationship with average mortality risk (a1: -0.21 [-0.38, -0.05]; eqs. 6). No traits, however, predicted the variation among species in the temporal change (i.e. the slope) of the mortality risk (Fig. 2, Fig. S6). This lack of a signal could be due to using species average traits or limited sample sizes in focusing on species across plots as well as the potential for a null or minor effect [START_REF] Trugman | Why is Tree Drought Mortality so Hard to Predict?[END_REF][START_REF] Yang | Why Functional Traits Do Not Predict Tree Demographic Rates[END_REF] .

Wind damage contributes to tree mortality and carbon cycling in other tropical forests [START_REF] Espírito-Santo | Size and frequency of natural forest disturbances and the Amazon forest carbon balance[END_REF][START_REF] Chambers | The steady-state mosaic of disturbance and succession across an old-growth Central Amazon forest landscape[END_REF][START_REF] Rifai | Landscape-scale consequences of differential tree mortality from catastrophic wind disturbance in the Amazon[END_REF] , and the prevalence of cyclone impacts recorded in a number of plots here indicate that wind may have contributed to the increase in mortality risk directly or indirectly. Whereas wind-related events often determine the moment of tree death, other abiotic and biotic risk factors are key in determining tree vulnerability to storms, highlighting the importance of interactions among multiple risk factors in determining tree death [START_REF] Mcdowell | Drivers and mechanisms of tree mortality in moist tropical forests[END_REF][START_REF] Trugman | Why is Tree Drought Mortality so Hard to Predict?[END_REF][START_REF] Aleixo | Amazonian rainforest tree mortality driven by climate and functional traits[END_REF][START_REF] Fontes | Dry and hot: the hydraulic consequences of a climate change-type drought for Amazonian trees[END_REF] . In particular, VPD is likely to increase tree vulnerability to wind damage, as well as to other risk factors such as biotic agents [START_REF] Trugman | Why is Tree Drought Mortality so Hard to Predict?[END_REF][START_REF] Aleixo | Amazonian rainforest tree mortality driven by climate and functional traits[END_REF] , in addition to its direct water-related stress [START_REF] Grossiord | Plant responses to rising vapor pressure deficit[END_REF][START_REF] López | Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity[END_REF] .

Mortality changes in tropical forests have been associated with climate events such as droughts, which will impact long-term forest dynamics if they become more pervasive [START_REF] Brienen | Long-term decline of the Amazon carbon sink[END_REF][START_REF] Brando | Abrupt increases in Amazonian tree mortality due to drought\textendashfire interactions[END_REF][START_REF] Phillips | Pattern and process in Amazon tree turnover, 1976-2001[END_REF] . Here, MCWD did not explain average mortality risk across plots nor showed any clear temporal trend associated with mortality risk (Fig. S11, Bauman et al. [START_REF] Bauman | Tropical tree growth sensitivity to climate is driven by species intrinsic growth rate and leaf traits[END_REF] ). Further exploring how chronically increasing VPD (presses [START_REF] Harris | Biological responses to the press and pulse of climate trends and extreme events[END_REF] ) interacts with heat waves, drought events and more frequent extreme VPD anomalies (pulses [START_REF] Harris | Biological responses to the press and pulse of climate trends and extreme events[END_REF] ) to affect long-term mortality trends will be important to better quantify a causal link between climate change and tree mortality. Our study indicates, whether due to particular events or accumulated vulnerability, a consistent increase in mortality. When compounded over large areas for long periods of time, this mortality increase can result in changes in forest dynamics, structure, composition, and carbon residence time [START_REF] Mcmahon | The importance and challenges of detecting changes in forest mortality rates[END_REF][START_REF] Andrus | Increasing rates of subalpine tree mortality linked to warmer and drier summers[END_REF] . Increasing a typical tree mortality rate from 1% to 2% per year, for instance, halves tree life expectancy, carbon residence time and, in the absence of increases in forest-wide productivity, long-term biomass stocks 31 .

To test potential impacts of the mortality increase on stand structure, we tested whether decreases in plot-level basal area (BA; as a proxy for above-ground biomass) were offset by subsequent BA increases due to growth and recruitment into the census. We found a clear decline in BA over the monitoring period, in line with Murphy et al. [START_REF] Murphy | No evidence for long-term increases in biomass and stem density in the tropical rain forests of Australia[END_REF] (Fig. 3c,d; Fig. S7). The change in BA between censuses (i.e., drops or gains) showed an increasing number and extent of drops (Fig. 3c), and these were not offset by gains (Fig. 3c,d). Over the period studied, plots lost ~230.2 m 2 ha -1 but gained only 113.7 m 2 ha -1 , a 12.2% decline from the BA of the first census of each plot, converting these forests into biomass carbon sources. Although some studies have suggested that large trees are more vulnerable to water stress due to height-driven hydraulic extension, which could have disproportionate consequences for biomass change 13,52 , we found no evidence of this here (Fig. S8), in line with recent works [START_REF] Trugman | Why is Tree Drought Mortality so Hard to Predict?[END_REF] . Our study shows that (1) mortality risk increased across plots and species, (2) tropical cyclones alone cannot explain the pattern, (3) average mortality risk is higher in drier plots and at the drier edge of most species geographical ranges, (4) VPD displays a temporal increase in all plots that corresponds to the mortality risk increase (unlike MCWD), and is a known physiological stressor and mortality risk factor [START_REF] Mcdowell | Pervasive shifts in forest dynamics in a changing world[END_REF][START_REF] Grossiord | Plant responses to rising vapor pressure deficit[END_REF] , and (5) there is no evidence that the mortality risk increase is driven by increases in growth rates (see Supp. Methods S1; Fig. S9). Tree growth was also recently shown to be reduced by positive VPD anomalies in the region, with fast-growing species as well as drier plots being more suppressed [START_REF] Bauman | Tropical tree growth sensitivity to climate is driven by species intrinsic growth rate and leaf traits[END_REF] . While acknowledging the contribution of wind disturbances and other unaccounted for mortality risk factors such as lightning, the above elements provide evidence that a chronic long-term increase in atmospheric evaporative demand may increase mortality risk in moist tropical forests of Australia. This is supported by similar findings in the Amazon and African tropical forests 1,2 and when comparing key climate variables across our plots to the climate of moist tropical forest globally: VPD, Tmax, annual precipitation and climatic water deficit at our plots encompassed 53%, 18%, 78%, and 31% of global-scale tropical moist forest climatic space, respectively (Fig. S10). The near ubiquitous nature of temperature and VPD rise across the tropics suggests that this phenomenon may be responsible for, and may in the future drive, an acceleration of tree mortality and concomitant decrease of living biomass across the tropics. (red circles), on the basis of its total biogeographic distribution (sum of black and red circles), its climatic niche calculated based on 30-year climatology (map background) of the locations where the species was observed (density plot), and the mean VPDmax in the studied plots where the species is (red bars at bottom of density plot). The lower part of Fig. 4 shows the effect of VPDniche on average mortality risk per species and across species (vertical solid and dashed lines; see legend of Fig. 3 for circles and bars, and eqs. 5 in Supp. Methods S1 for model details). Species at the upper end of their VPD niche are more likely to experience increased mortality risk.

One potential buffer to climate change impacts on diverse forests could be the variety of ways different species tolerate shifts in the conditions that lead to water [START_REF] Chitra-Tarak | Hydraulically-vulnerable trees survive on deep-water access during droughts in a tropical forest[END_REF][START_REF] Anderegg | Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe[END_REF] or temperature stress [START_REF] Taylor | The capacity to emit isoprene differentiates the photosynthetic temperature responses of tropical plant species[END_REF] . These strategies may be represented by species functional traits 13,41,54 . Higher wood density correlated with reduced average annual mortality risk, indicating potential roles for enhanced wood strength or resistance to embolism [START_REF] Chave | Towards a worldwide wood economics spectrum[END_REF][START_REF] Peters | Living on the edge: A continental-scale assessment of forest vulnerability to drought[END_REF] . Here, none of the measured traits explained the interspecific variation in the temporal increase in mortality risk. However, we cannot rule out that other traits (e.g., hydraulic safety margin and xylem vulnerability to embolism [START_REF] Powers | A catastrophic tropical drought kills hydraulically vulnerable tree species[END_REF][START_REF] Trugman | Why is Tree Drought Mortality so Hard to Predict?[END_REF][START_REF] Anderegg | Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe[END_REF] ) might better explain mortality risk changes across species. Australian moist tropical forest species, in particular, have been shown to have narrower hydraulic safety margin than species growing in drier forests [START_REF] Peters | Living on the edge: A continental-scale assessment of forest vulnerability to drought[END_REF] . Some of the challenges in attributing mechanisms to mortality observations are unavoidable, such as the lag between cause and consequence of death, but intensified monitoring protocols and new technologies should improve attribution [START_REF] Aleixo | Amazonian rainforest tree mortality driven by climate and functional traits[END_REF][START_REF] Zuleta | Individual tree damage dominates mortality risk factors across six tropical forests[END_REF][START_REF] Arellano | Methods Site and species data: The dataset encompasses 49 years of inventory data from 24 tropical rainforest plots distributed along an elevation[END_REF] . In addition to long-term plot monitoring, mortality attribution can be improved with focused collections of environmental stressors at high frequency (e.g., micrometeorology, soil moisture at depth), as well as higher-frequency monitoring individual tree death (e.g., annual or even seasonal mortality surveys [START_REF] Aleixo | Amazonian rainforest tree mortality driven by climate and functional traits[END_REF][START_REF] Zuleta | Individual tree damage dominates mortality risk factors across six tropical forests[END_REF][START_REF] Arellano | Methods Site and species data: The dataset encompasses 49 years of inventory data from 24 tropical rainforest plots distributed along an elevation[END_REF] ). Better assessment of tree health through methods as focused as sap flux or as broad as remote sensing of leaf function, could also improve our ability to assign cause to individual mortality events. Such intensified monitoring programs should improve representation of mortality risk in vegetation models, a crucial advance to better predict the future pathway of the tropical forest carbon sink, and hence the remaining anthropogenic carbon budget available to stay well below 2 °C peak global warming.

EP38 showed localised evidence of disturbance due to selective logging at least 20 years prior [START_REF] Bradford | Long-term stem inventory data from tropical rain forest plots in Australia[END_REF] . Cyclonic disturbance contributes to the dynamics of the forests [START_REF] Murphy | No evidence for long-term increases in biomass and stem density in the tropical rain forests of Australia[END_REF] , with at least one plot affected by cyclones in 1986, 1989, 1999, 2006, 2011, 2014, 2017, and 2019 (Fig. 1b). The gradient covers a wide range of mean annual temperatures (19°C to 26.1°C), precipitation (1213 to 3563 mm), and mean vapour pressure deficit (6.5 to 11.8 hPa) (Table S1). All trees with stems ≥ 10 cm diameter at breast height (DBH) were mapped, identified to species level and measured for diameter. The 20 long-term plots were re-measured every two years for ten years, and then at three-to four-year intervals, with diameter, recruits and deaths recorded, summing up to 11 to 17 censuses per plot. The remaining four plots were established more recently, between 2001 and 2012, and were resampled one to three times (Table S1).

The initial dataset comprised 110,551 observations, from 13,513 individual stems from 535 species, in 54 genera, and 79 families (details in Table S2 of Bauman et al. [START_REF] Bauman | Tropical tree growth sensitivity to climate is driven by species intrinsic growth rate and leaf traits[END_REF] ). We used a cutoff of a minimum of 400 observations per species to model the functional size-dependence of survival of a species (see Data analysis), to ensure sufficient statistical power (species list and sampling features in Table S2). This resulted in a dataset of 81 tree species, 8,314 individual stems, 74,135 observations, and 492 death events over the 49 years across the 24 forest plots. Species were found in between 1 to 16 plots, with a mean of 6.1, and individual stems were censused two to 17 times (mean 10.4) over periods of two to 44 years (mean: 13 years) (Table S2).

Estimating tree survival across size, space, and time: The basis of all downstream analyses was the estimation of the yearly probability of survival (a latent, or unobserved, variable) from fitting a survival function to each species separately in a multilevel model framework, with 'plot' and 'year' as varying effects (also often referred to as 'random effects'). The first step of our approach consisted of estimating size-dependent tree survival by fitting a functional form to every species separately, across the multiple censuses and forest plots where it occurred. The model we developed to characterise tree survival built upon recent work by Johnson et al. [START_REF] Johnson | Climate sensitive size-dependent survival in tropical trees[END_REF] and Needham et al. [START_REF] Needham | Inferring forest fate from demographic data: from vital rates to population dynamic models[END_REF] , combining the same five survival parameters into an S-and inverse S-shaped logistic function of survival probability (Fig. S1; eqs. 1.4, 1.5; see model details in Supp. Methods S1). These correspond to the baseline survival probability per year (K; survival probability for most of the adult life of an individual), the rate of survival increase until reaching the arbitrary size where the survival probability becomes K (r1), the size corresponding to the inflexion point of the first Sshaped portion of the functional form (p1), and the corresponding r2 and p2 parameters for the inverse-S-shaped portion of the functional form, corresponding to the yearly rate of survival decrease when the species approaches its maximum size, and the inflexion point corresponding to the size at which the yearly survival probability is 50% (species stature), respectively (Fig. S1; illustration for four species in Fig. S2).

In this study, we sought to investigate temporal changes in the survival probability per year (K) over the past 50 years, whether they vary across space (forest plots along a climatic gradient) and species, and test whether long-term climate, species' biogeographic range, and species traits mediate these temporal patterns.

For each species separately, we modelled the logit-scaled K as a function of a species-specific mean K (K_µ) from which deviations arise from different plots (K_P) and years (K_T) (Fig. S1; eq. 1.2). Instead of modelling the survival rate over the actual census period (mostly between two to five years, see [START_REF] Bauman | Tropical tree growth sensitivity to climate is driven by species intrinsic growth rate and leaf traits[END_REF] ), we took advantage of having different plots whose starting and ending census years differed and partly overlapped (Fig. 1b) to generate a latent variable of logit-scaled probability of survival K per plot and year (hereafter K_lat, Fig. 1; eq. 1.2). The real observations of binary survival outcomes (eq. 1.1) per stem per census t were thus used to generate latent probabilities of survival for every year encompassed by the period between consecutive censuses. Our Bayesian framework allowed estimating a posterior distribution of K_lat for each latent observation (i.e. stem per plot per year; Fig. S9), as: where survival outcomes were modelled through either one of the logistic functions corresponding to the S-shaped or inverse S-shaped functions (eqs. 1.4 and 1.5, respectively), depending on whether the corresponding individual presented a DBH smaller or bigger than a threshold, here set as the mean DBH of the species (see Supp. Methods S1 for prior specifications).
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We extracted the median of the K_lat posterior distribution per latent observation (i.e. survival probability of a given stem on a given year). The resulting distribution of median K_lat values combined across all 81 species and 24 plots was used as the main response variable in the following models to investigate temporal patterns of survival.

We focus on the variation across groupings (species, plot and year) with K_lat as it best summarises mortality of trees through most of their lives (Figs. S7,S8). Although the other parameters that offer insights into early and late mortality are very powerful for certain questions, allowing that the data are available, we decided against focusing on differential mortality of small individuals due to the minimum size threshold of 10 cm DBH, a size above which most stems function similarly (i.e., seedling and sapling drought vulnerability would fall well below this threshold). We do, however, acknowledge that non emergent trees above 10 cm DBH may experience buffered variations in VPD and other variables related to their below canopy position, which we do not account for here.

All following analyses were performed on the latent logit-survivorship (K_lat), model results and coefficients are reported in terms of mortality probability (hereafter "mortality risk"), where annual mortality risk is defined as 1 -survival probability, and the coefficient signs from the models presented below had their sign inverted (e.g. a negative effect on survivorship becomes a positive effect on mortality risk). Note that as our approach focuses on linking mortality to ontogeny through size, it precludes accounting for census-interval length biases that emerge when longer intervals miss mortality events of individuals that grow into the census diameter and die before being recorded [START_REF] Lewis | Tropical forest tree mortality, recruitment and turnover rates: calculation, interpretation and comparison when census intervals vary[END_REF] . As these biases will tend to increase mortality estimates for shorter census interval lengths and become more pronounced for smaller size classes, our study has, if anything, underestimated mortality after the census interval increased in the early 1980's (see Fig. 1b).

Statistical analyses

Our statistical analyses followed from our initial hypotheses about tropical forest survival patterns, but also from our initial findings as related to those patterns. Therefore, our analysis proceeded through different models that relied on different subsets of the data depending on the questions asked. We began by investigating trends in mortality risk across plots and species and then focused on aspects that included species subsets occurring in multiple plots, plot communities independent of species, and biogeographic inference about the species across the plots. The six models used are summarised in Table S4 and the next section (detailed model explanations and all equations are in Supp. Methods S1). Because mortality events are rare and stochastic, requiring a lot of data for inference, and because the six models have different requirements (see below), we settled on maximising inference from each model over reducing the data set to the smallest common dataset allowing model comparison at the cost of statistical power. Different subsets of the data were therefore used for models M3 to M6 (see Tables S2,S4).

Temporal trends in survival:

We first generated an unconditional multilevel model of K_lat across all 81 species (model M1 in Table S4), for a visual assessment of a temporal trend in the average survivorship per year (see eqs. 2 for model details in Suppl. Methods S1). M1 used varying intercepts (also known as "random" intercepts) to model mortality risk (K_lat; i.e. overall intercept, or grand mean) and species-level, plot-level and year-level deviations from the grand mean. Because an increasing trend in tree mortality risk was apparent in the 1980s (Fig. 1a), we tested for a changepoint year.

Changepoint:

We used a changepoint analysis to statistically test whether our time series of latent logit-survival probabilities (K_lat) has shifted in mean value and, if so, to identify the most likely year when this change occurred [START_REF] Mcmahon | The importance and challenges of detecting changes in forest mortality rates[END_REF][START_REF] Reeves | A Review and Comparison of Changepoint Detection Techniques for Climate Data[END_REF] (model M2, Table S4). A change point from slightly negative to clearly positive temporal trend in mortality risk was identified in 1984, across all plots and species (Fig. 1a). All further analyses focused on the structure and potential causes of the increase in tree mortality risk in the 1984-2019 35-year period.

Explaining the 'post-change point' survivorship decline: Causes of individual tree mortality are difficult to assess directly due to time lags between mortality and its cause, tree deaths being most often attributable to multiple mechanisms [START_REF] Trugman | Why is Tree Drought Mortality so Hard to Predict?[END_REF][START_REF] Fontes | Dry and hot: the hydraulic consequences of a climate change-type drought for Amazonian trees[END_REF][START_REF] Clark | Competition-interaction landscapes for the joint response of forests to climate change[END_REF][START_REF] Oliva | The effect of fungal pathogens on the water and carbon economy of trees: implications for drought-induced mortality[END_REF][START_REF] Franklin | Tree Death as an Ecological Process[END_REF] , and delays between the mortality event and its detection [START_REF] Aleixo | Amazonian rainforest tree mortality driven by climate and functional traits[END_REF][START_REF] Yanoviak | Lightning is a major cause of large tree mortality in a lowland neotropical forest[END_REF][START_REF] Preisler | Seeking the 'point of no return' in the sequence of events leading to mortality of mature trees[END_REF] . Because of this, direct causal relationships between tree mortality and specific weather events or average climatic conditions of a census interval are not possible.

Instead, we use different datasets and approaches in order to best attribute known potential drivers of tree mortality with the patterns identified in the long-term data.

Plot-level changes and local mean climate:

We built a Bayesian hierarchical model exploring the post-1984 mortality risk increase within and across plots to test the proportion of plots showing an increase in mortality risk through time, and to test whether average mortality risk and mortality risk changes over time depended on the local mean climate (model M3 in Table S4; details in eqs. 3, Supp. Methods S1). To do so, we used plot mean climate, defined as a 35-year local average per climatic variable (1984-2019, to match the main period of interest). We specifically considered the effect of the 30-year average of the VPD of the year driest quarter and maximum temperature of the year warmest quarter (Tmax) as both VPD and temperature have markedly increased in all 24 plots during the past 49 years and are important drivers of tree growth in these plots [START_REF] Bauman | Tropical tree growth sensitivity to climate is driven by species intrinsic growth rate and leaf traits[END_REF] . Additionally, we examined the effect of maximum climatological water deficit (MCWD), a metric that serves as a proxy for the annual accumulated water stress over the dry season estimated as the cumulative deficit between precipitation and evapotranspiration [START_REF] Malhi | Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest[END_REF][START_REF] Aragão | Spatial patterns and fire response of recent Amazonian droughts[END_REF][START_REF] Malhi | The linkages between photosynthesis, productivity, growth and biomass in lowland Amazonian forests[END_REF] . These variables can all have an impact on survival through water stress or heat-related impairment of biochemical reactions (which are not captured explicitly in this study). The VPD and temperature data were collected from ANUClimate v.2.0 between 1971 and 2019 69 , and the MCWD was calculated using precipitation data from ANUClimate v.2.0 and evapotranspiration data from TerraClimate [START_REF] Abatzoglou | a highresolution global dataset of monthly climate and climatic water balance from 1958-2015[END_REF] .

Species-level changes and biogeographic expectations:

We used a similar Bayesian multilevel model specification as the previous one, without climate variables, to focus on speciesspecific mortality risk change trajectories and test the proportion of species showing an increase in mortality risk over time (model M4; Table S4).

We then used a space-for-time substitution to test whether the temporal increase in mortality risk could be driven by the marked temporal increase of temperature and VPD (see Results).

Specifically, we tested whether species had lower average survival rates in plots closer to the drier edge of their geographical range (upper limit of their total VPD niche). Similarly, MCWD was used to approximate species' rainfall seasonality niche. This approach takes into account general eco-physiological constraints as well as the evolutionary history of each species, as captured through the biogeographic range of conditions where they occur 71,72 . For example, a difference of 2°C in the mean temperature of two plots could be associated with a higher baseline mortality for one species for which the warmer plot falls close to the edge of its temperature niche, whereas baseline mortality would remain the same for a species for which both plots are near the species' niche center. This biogeographic niche approach allowed us to investigate potential mechanisms underlying temporal trends [START_REF] Morueta-Holme | Habitat area and climate stability determine geographical variation in plant species range sizes[END_REF] , while also providing potential eco-physiological mechanisms underlying the temporal and spatial pattern [START_REF] Swenson | A Reframing of Trait-Demographic Rate Analyses for Ecology and Evolutionary Biology[END_REF][START_REF] Brum | Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest[END_REF][START_REF] Chitra-Tarak | The roots of the drought: Hydrology and water uptake strategies mediate forest-wide demographic response to precipitation[END_REF] .

To generate approximate univariate climate niches for each species and define the relative location of the studied plots in these niches, we first extracted all known occurrences of 78 species (see next section) from the Global Biodiversity Information Facility (GBIF) online database (Table S8). Our goal was to balance the simplicity of a presence-only analysis while avoiding biases that might underestimate niche breadth. We therefore first filtered out multiple occurrences of a species to keep only one sample per radius of 1 km, to reduce the risk of oversampling 76 (a 3 km radius filter yielded very similar results; results not shown). The filtered spatial locations of the 78 species occurrences were matched to a 1/24° map of the 30-year climatology (average over 1981-2010) of maximum annual VPD, maximum daily air temperature (Tmax), and MCWD, obtained from TerraClimate 70 . Species' univariate climate niches were defined separately for Tmax, VPD and MCWD as the distribution of 30-year mean values from the pixels corresponding to each species' biogeographic distribution (including our plots) (see upper part of Fig. 4). The local 30year average climate of our 24 plots were then expressed in terms of quantiles for each species separately, based on the species-specific climatic niches generated, yielding Tmaxniche, VPDniche, and MCWDniche, that is, species' position on their total niche for the corresponding variable. The resulting quantiles are species-specific expressions of how close the 30-year mean climate variables in our plots are from the upper limit of species' total climatic niche. We tested the robustness of our quantile approach with respect to potential imperfect sampling in part of the biogeographic area by rerunning the M5 model using a coarser index of the distance from the niche maximum expected to show little sensitivity to uneven sampling effort across species' total distribution area (details in Supp. Methods S1). S4), instead of all 81 species. Model M6 allowed testing whether the differences in both average mortality risk and the pace of risk change over time could be explained by species traits (model details in Supp. Methods S1).

Species-level changes and functional traits:

The functional traits were measured between July and September 2015 on 81 dominant, canopy trees in seven of the 24 plots (Table S7; Table S1 and S2 for plots and species with trait data).

For each plot, species were chosen with the aim of sampling those that made up 80% of the standing biomass for the most recent census. The details of trait data collection and measurements are presented in Bauman et al. [START_REF] Bauman | Tropical tree growth sensitivity to climate is driven by species intrinsic growth rate and leaf traits[END_REF] and are summarised here. Measured traits and their functions are presented in Table S3 and Fig. S5. The traits were measured on three individuals per species, and included leaf photosynthesis and stomatal conductance at a reference CO2 concentration of 400 µmol mol -1 and irradiance of 1500 µmol photons m -2 s -1 (Asat and gsat, respectively), dark respiration (Rd) at the same CO2 concentration, the CO2-saturated photosynthesis and stomatal conductance (Amax and gmax), measured at 1200 µmol mol -1 CO2.

Estimates of leaf maximum carboxylation rate (Vcmax) and maximum light-driven electron flux (Jmax) normalized to 25°C were obtained from the photosynthesis model of Farquhar et al. [START_REF] Farquhar | A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[END_REF] fitted to the A-ci curves ('plantecophys' R package [START_REF] Duursma | Plantecophys--An R Package for Analysing and Modelling Leaf Gas Exchange Data[END_REF] ). The one-point method [START_REF] De Kauwe | A test of the 'one-point method' for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis[END_REF] was used to estimate Vcmax for each individual from net photosynthesis measured at 400 µmol mol -1 CO2, and Jmax from net photosynthesis measured at 1200 µmol mol -1 CO2 80 . We also measured leaf area, leaf mass per area (LMA), leaf thickness, wood density (from branches, after bark removal), leaf nutrient concentrations, and stable carbon isotope ratio (d 13 C). All traits were averaged at the species level for the analyses.

Sensitivity analyses for the risk trend:

We ran four sensitivity analyses to test the robustness of the temporal trend in mortality risk increase after removing major influences of wind damagerelated disturbances from cyclones. To do so, we created two subsets of the initial raw survival dataset by filtering out (1) any census interval affected by a cyclone (see black triangles in Fig. 1b), or (2) any plot having had at least one cyclone disturbance, even minor, since 1971. The resulting datasets had respectively 23 and five plots, and 69 and 15 species presenting over 400 observations. We generated the latent survival probabilities per stem per year (K_lat) for each species separately, on the basis of these two datasets (see eqs. 1), and ran models M3 and M4

to test for plot-level and species-level temporal trends in mortality risk. All four resulting sensitivity analyses indicated the mortality risk trend remained clear across plots and species, even after removing the main impact of major wind-related disturbances (Fig. S4, Table S6).

Modelling climate over time:

To explore the implications of the differences in mortality risk with long-term mean climate and species' position on their climatic niche, we built a separate set of models to investigate temporal trends in Tmax, VPD, and MCWD from 1971 to 2019. To do so, we used Bayesian generalised additive models, modeled the monthly values of the three climate variables separately with B-splines and a maximum of four basis functions to constrain the wiggliness of the relation 81 , and added varying intercepts for the different plots. The resulting trends indicated a strong increase of Tmax and VPD over time across all plots (consistent with results from Bauman et al. [START_REF] Bauman | Tropical tree growth sensitivity to climate is driven by species intrinsic growth rate and leaf traits[END_REF] ), but no directional increase in MCWD (Fig. 1c, Fig. S11).

Bayesian updating of the parameters:

The parameter probability posteriors of the sizedependent survival models were fitted separately for each species in Stan, using the No-U-Turn-Sampler (NUTS; 5000 iterations on three chains), with the 'rstan' R package [START_REF] Development | RStan: the R interface to Stan[END_REF] . For the models M1 and M3 to M6, Bayesian updating of the parameter probability distributions were fitted with the NUTS in Stan, by running 6000 iterations on four chains, with 1000 'warmup' steps, using the R package 'brms' [START_REF] Bürkner | An R Package for Bayesian Multilevel Models Using Stan[END_REF] (R code in Supplementary Methods S2). Chain convergence was checked through Rhat values, ensuring they all were within 0.01 from 1, and mixing of all chains was assessed visually. Coefficient posteriors were summarised through their median and 95%-highest posterior density interval (HPDI) (i.e. the narrowest posterior interval encompassing 95% of the probability mass, corresponding to the coefficient values most consistent with the data; 81 ). Model covariates were considered important when their coefficient 95%-HPDI did not encompass zero, indicating a strong-enough level of confidence to report the effect as positive or negative. All analyses were carried out in the R statistical environment [START_REF] Core | R: A language and environment for statistical computing[END_REF] with R code available in Supp.

Methods S2.

plots allowed us to infer a latent survival probability per year, between 1971 and 2019 (K_lat). K_lat, the latent logit-survival probability per year, generated separately for each species through this survival model, was used as the response variable of all subsequent analyses (M1 to M6, see Table S4) to study how species' mortality risk (i.e. 1 -survivorship, or 1 -K) changed through the years, whether this change varied among species and sites, and how climate, species' climatic niche, and species functional traits related to mortality risk changes through time. Examples of the above theoretical curve from some of the studied species are presented in Fig. S2. S3 for trait abbreviations). Circles and intervals are median and 95%-highest posterior density intervals (HPDI) for slope coefficients a1 (trait effect on average mortality risk) and b1 (trait mediation of 'year' effect on mortality risk) (see eqs. 'year' slope mean; b2,0 in eqs. 7, Supp. Methods S1). Overall, AGR did not clearly increase or decrease across species (unlike mortality risk; Fig. 3). AGR increased for 14 species and decreased for 19 species, while remaining mostly unchanged (95%-HPDI encompassing zero) for 48 species (semi-transparent circles and horizontal bars). 

Figure 1 :

 1 Figure 1: Temporal increase of modelled annual mortality risk, annualised observed percentage of tree death, and atmospheric vapour pressure deficit across the 24 studied plots. a: Temporal

Figure 2 :

 2 Figure 2: Temporal increase of tree mortality risk and influence of plots' mean climate, species' position on their climatic niche, and functional traits on mortality risk. Results displayed from the Bayesian multilevel models M3 to M6 investigating different aspects of the mortality risk pattern (TableS4).

Figure 3 :

 3 Figure 3: Plot-and species-level temporal changes of annual mortality risk (1984-2019) and change of plot basal area between consecutive censuses. a,b: Circles and intervals are median and 95%highest posterior density intervals (HPDI) of plot-level (a) and species-level (b) 'year' slope coefficient posteriors (bk and bj, respectively; see eqs. 3 and 4), from models M3 and M4, respectively. Plots and species whose 95%-HPDI encompassed zero are half-transparent. Blue and red circles indicate clear temporal increases and decreases in mortality risk, respectively, at a 95% level of confidence (HPDI). The black vertical solid and dashed lines are the median and 95%-HPDI of the grand 'year' slope (i.e. 'year' effect across plots (a) and species (b); b0 in eqs. 3 and 4). Insets: Model prediction of mortality risk per year for the period 1984-2019, showing the median (line) and 95%-HPDI (shaded area) of the posterior distributions for the grand effect. Model posterior predictions show ca. a doubling of mortality risk between 1984 and 2019 (2.1-fold and 1.7-fold increases at plot-and species level, respectively). c: Variation of ΔBA per plot over time, where ΔBA is the change of basal area between consecutive censuses in a given plot (ΔBAt = BAt -BAt -1), such that positive values indicate an increase in BA from census t -1 to census t, and negative values indicate a decrease. Each circle is the ΔBA of a plot at the beginning of a census period, and lines connect consecutive observations for each plot. d: Density distribution of the annualised ΔBA based on consecutive plot censuses, before and after the change-point of 1984. Figs. c and d show that BA losses due to mortality were not offset by BA gains related to growth and recruitment into the census.

Figure 4 :

 4 Figure 4: Spatial effect of species' proximity from the upper limit of their VPD niche on average mortality risk (model M5). The upper part of the figure illustrates for one species (Cryptocarya densiflora Blume) the calculation of species' VPD niche quantiles (VPDniche) in the study plots where the species occur
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  To investigate potential eco-physiological mechanisms underlying the species-level variability in the post-1984 change of survivorship through time, we used a modified version of model M4 only considering the 40 species with measured functional trait data (M6, Table

Fig. S2 :

 S2 Fig. S2: Illustration of the interspecific variability of survival probability as a function of tree diameter. The figures represent species-specific survival probability predictions between 10 and 160 cm DBH for four of the 80 species of the study, across forest plots and years, based on the species-specific Bayesian multilevel models of survival (eqs. 1; Fig. S1). The red line is the posterior survival probability per year median, and the dark and light grey shaded areas are the 50%-and 90% posterior credibility intervals, respectively. Vertical dashed lines correspond to the observed maximum DBH for the corresponding species (Acacia celsa Tindale, Acronychia laevis J.G.Forest & G.Forst, Cardwellia sublimis F.Muell., and Flindersia bourjotiana F.Muell.).

Fig. S3 :

 S3 Fig. S3: Effects of local climate on average mortality risk and mortality risk temporal change across plots (models M3). Model M3 tests the effect of 'year', and either Tmax and MCWD, or VPD and MCWD on mortality risk (see eqs. 3; Tmax and VPD tested in separate models to limit collinearity, see Supp. Methods S1). Climate variables influence the model grand intercept (average mortality risk across plots, a0) and grand 'year' slope (mortality risk increase over time, b0), through coefficients a1-2 and b1-2, respectively. Average mortality risk is higher in plots presenting on higher long-term mean monthly Tmax and VPD during the warmest/driest quarter (95%-HPDI of a1 encompass positive values only). Mean climate does not clearly predict how steep the temporal increase in mortality risk is among the plots (95%-HPDI encompass zero).

Fig. S4 :

 S4 Fig. S4: Sensitivity analyses of the mortality risk increase over time: Species-level and plot-level slopes of change of mortality risk per year (1984-2019) without influence of cyclones. a, c: Plotlevel (a) and species-level (c) slopes of mortality risk change per year (bk and bj, respectively; eqs. 3 and4), obtained with models M3 and M4 on the basis of the subset of survival data obtained from the first approach to remove the effect of cyclones: Any census interval in a plot damaged by a cyclone was removed from the initial dataset, and the Bayesian size-dependent survival model (eqs. 1) was run for the species that presented > 400 observations in the reduced dataset. Models M3 and M4 were then run on the resulting latent survival probabilities K_lat (see eqs. 1, 3, 4) to test for temporal changes in mortality risk across plots and species, with plot-level and species-level slopes. b, d: The second approach to remove the influence of cyclones consisted of only keeping the plots that remained totally unaffected by cyclones in the last 49 years (see Suppl. Methods S1), then selecting the species that had > 400 observations in the remaining plots, generating the latent survival probability per year (K_lat; eqs. 1), and running models M3 and M4 as for the first approach. a-d: Species and plots whose 95%-highest posterior density interval (HPDI) encompassed zero are half-transparent. Blue and red circles indicate clear mortality increase and decrease through time, respectively (intervals not encompassing zero). The black

Fig. S5 :

 S5 Fig. S5: Illustration of functional trait relationships among the 40 species with trait data, used in the M6 models of mortality risk over time. The figures represent the functional space occupied by the 40 tree species on the first four ordination axes of a correlation PCA, together describing 71.4% of the trait values (see TableS3for trait abbreviations).

Fig. S6 :

 S6 Fig. S6: Effects of species functional traits on average mortality risk and mortality risk change through time. a,b: Trait mediation of species-level intercept and 'year' slopes (a1 and b1, respectively,

Fig. S7 :

 S7 Fig. S7: Change of stand-level basal area per hectare (BA) over time. Change of BA per forest plot between 1971 and 2019 (a). Each circle is a plot BA on the year beginning a census period. The smooth curve and shaded area are the mean and 95% confidence interval of a generalised additive model (GAM), showing a decrease in plot BA across plots, and within most plots. The circle colour is proportional to the BA value (yellow to blue for low to high BA).

Fig. S8 :

 S8 Fig. S8: Living and dead tree DBH distributions for the time period 1984-2019. The histogram bins are 1 cm-wide. We explored the relation between increased mortality risk and tree DBH visually and did not detect any clear size association. A Pearson's Chi-squared test with simulated p-value confirmed that no

Fig. S9 :

 S9 Fig. S9: Changes of log-transformed absolute diameter growth rate (AGR) over time across and within species, for the 81 studied species. The main figure shows the species-level coefficients of AGR change per year, between 1971 and 2019 (species-specific 'year' slope; b2j in eqs. 7, Supp. Methods S1). Circles and horizontal bars are posterior median and 95% highest posterior density intervals (HPDI). Plain black circles and bars are species whose posterior 95%-HPDI did not encompass zero; semi-transparent circles and bars are species whose HPDI encompassed zero (no clear AGR increase or decrease). The red dashed line marks zero, that is, the separation between coefficient values indicating an increase of AGR over time (positive values) and a decrease of AGR over time (negative values). The vertical plain and dashed blue lines are the median and 95%-HPDI of the grand year slope (see inset). The inset shows the posterior probability distribution of the coefficient of AGR change per year across all species (i.e. grand

Fig. S11 :

 S11 Fig. S11: Overall temporal trends in climate across the environmental gradient. Three Bayesian Bspline models with varying plot intercept and four basis functions were used to model monthly VPD, Tmax and MCWD over time across all 24 plots (see Methods). Both temperature and VPD showed a strong increase across all plots. MCWD did not show any clear directional trend across plots (more details in Bauman et al. 2021).
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The authors do not have any competing interest to declare. Survival probability per year (theta) for a given species is defined by either one of two similar logistic functions, depending on a DBH threshold, only changing in the sign of r (r1 > 0, r2 < 0), yielding two Sshaped logistic function related through their common plateau K. This size-dependent model of survivorship was fitted separately for each of the 81 studied species. p1 and p2 are the inflection points of the two curves, with p2 characterising the species DBH at 50% survival per year. r1 and r2 are rates of survival change per year in the corresponding portions of the survival curve. While K was initially the background survival rate of the species during most of the tree live [START_REF] Johnson | Climate sensitive size-dependent survival in tropical trees[END_REF][START_REF] Needham | Inferring forest fate from demographic data: from vital rates to population dynamic models[END_REF] , our model decomposes K into a species-specific average survival rate per year across all the sites and years (K_µ), a site-specific deviation from the average (K_P), a year-specific deviation from the average (K_T), and an error term (not represented, here). Because nearly all species occurred in multiple plots, and because different plots were recensused on different years, every two to five years mostly, the overlap of census years across 
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