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Patrick Lonergan6, Hélène Kiefer2,3 and Sean Fair1 

Abstract 

Background: Despite a multifactorial approach being taken for the evaluation of bull semen quality in many animal 
breeding centres worldwide, reliable prediction of bull fertility is still a challenge. Recently, attention has turned to 
molecular mechanisms, which could uncover potential biomarkers of fertility. One of these mechanisms is DNA 
methylation, which together with other epigenetic mechanisms is essential for the fertilising sperm to drive normal 
embryo development and establish a viable pregnancy. In this study, we hypothesised that bull sperm DNA meth‑
ylation patterns are related to bull fertility. We therefore investigated DNA methylation patterns from bulls used in 
artificial insemination with contrasting fertility scores.

Results: The DNA methylation patterns were obtained by reduced representative bisulphite sequencing from 10 
high‑fertility bulls and 10 low‑fertility bulls, having average fertility scores of − 6.6 and + 6.5%, respectively (mean of 
the population was zero). Hierarchical clustering analysis did not distinguish bulls based on fertility but did highlight 
individual differences. Despite this, using stringent criteria (DNA methylation difference ≥ 35% and a q‑value < 0.001), 
we identified 661 differently methylated cytosines (DMCs). DMCs were preferentially located in intergenic regions, 
introns, gene downstream regions, repetitive elements, open sea, shores and shelves of CpG islands. We also identi‑
fied 10 differently methylated regions, covered by 7 unique genes (SFRP1, STXBP4, BCR, PSMG4, ARSG, ATP11A, RXRA), 
which are involved in spermatogenesis and early embryonic development.

Conclusion: This study demonstrated that at specific CpG sites, sperm DNA methylation status is related to bull 
fertility, and identified seven differently methylated genes in sperm of subfertile bulls that may lead to altered gene 
expression and potentially influence embryo development.
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Background
Artificial insemination (AI) using the semen of elite 
sires is core to the genetic progress achieved in the dairy 
industry over the last number of decades. One of the 

long-standing challenges for the AI industry is the vari-
ation in bull field fertility where individual bulls can vary 
by over 20% points in pregnancy rate despite their semen 
passing stringent quality control checks prior to release 
into the field [1]. These checks are mainly based on the 
assessment of post-thaw sperm motility and morphol-
ogy using subjective methods or more objective methods 
such as computer-assisted sperm analysis (CASA) [2, 3]. 
There is added value to the evaluation of bull semen by 
flow cytometric techniques that assess various sperm 
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functional parameters such as membrane and acrosome 
integrity, oxidative stress and DNA fragmentation [4, 
5]. However, reliable prediction of bull fertility based on 
in  vitro sperm quality functional parameters is still not 
possible. The challenge has increased in recent years with 
the advent of genomics, as young bulls, with unproven 
field fertility, are now extensively used in their first sea-
son [6]. Although oocyte fertilisation rates following 
insemination in cattle are quite high (> 85%), pregnancy 
failures during early embryo development and implan-
tation still occur [7–9]. While much of this embryo loss 
is likely attributable to issues associated with the female 
(oocyte quality, uterine receptivity), the sire also makes a 
significant contribution [10, 11].

More recently, there has been an increased focus on 
‘Omics’-based techniques that could uncover hitherto 
unidentified causes of bull infertility [12–15]. It is well 
established that sperm are transcriptionally and transla-
tionally inactive with limited mechanisms for the regula-
tion of gene expression [16]. Despite that, sperm can alter 
early embryo development through DNA methylation 
[17, 18], posttranslational modifications of histones [19–
21] and non-coding RNAs [22, 23], which modify gene 
expression without actual changes in the DNA sequence.

The DNA methylation pattern of mature, ejaculated 
sperm essentially results from two major waves of epi-
genetic reprogramming, occurring after fertilisation and 
during germ cell differentiation [24, 25]. Both are incred-
ibly sensitive to various internal and external factors that 
may modulate DNA methylation and affect the ability 
of sperm to establish a pregnancy [26, 27] as well as the 
health of the offspring [18, 28].

While there is no consensus about what level of global 
DNA methylation is beneficial for sperm or embryos, 
studies are focused on detailed investigation of DNA 
methylation and its association with various regions 
across the genome. Human studies have shown a rela-
tionship between DNA methylation patterns and sperm 
quality, represented by motility, morphology and DNA 
fragmentation [29–31]. Differential DNA methylation 
patterns were observed in sperm of men with idiopathic 
infertility and in men whose partners suffered recurrent 
pregnancy failures [26, 32, 33]. However, there are only 
a limited number of studies focusing on the relation-
ship between bull fertility and DNA methylation. Kropp 
et al. [34] analysed the methylome of sperm from pools 
of low and high-fertility bulls by Methyl-CpG-binding 
domain sequencing and showed that DNA was hypo-
methylated in sperm from low-fertility bulls; moreover, 
they identified 98 differentially expressed genes in blas-
tocysts derived from sperm of those bulls. Takeda et al. 
[35] used a human methylation microarray and reported 
a relationship between sire conception rate and DNA 

methylation with 147 differently methylated cytosines 
(DMCs) and 10 differently methylated regions (DMRs) 
between low- and high-fertility Japanese Black bulls. The 
relationship of bull sperm quality and DNA methylation 
was reported by Capra et al. [36], who showed that sperm 
with low and high motility differed in DNA methylation 
of genes involved in the maintenance of chromatin struc-
ture. To analyse the DNA methylome the aforementioned 
study used reduced representative bisulphite sequenc-
ing (RRBS), which target specific regions of the genome. 
The same method was applied in a recent study, which 
reported a link between bull sperm DNA fragmentation, 
low-fertility and DNA hypermethylation [37]. Gross et al. 
[38] utilised whole-genome bisulphite sequencing and 
identified 1765 DMCs in sperm from low- compared to 
high-fertility bulls and highlighted 10 genes which may 
serve as predictors of bull fertility. However, even though 
these studies suggest that DNA methylation patterns reg-
ulate sperm function and the establishment of pregnancy, 
the association of DNA methylation and bull fertility is 
not consistent and calls for additional investigations.

Hence, we established a robust AI bull fertility model 
with bulls of divergent fertility based on a minimum of 
500 inseminations per bull and tested the hypothesis that 
sperm derived from sires of distinct field fertility exhibit 
different sperm DNA methylation patterns.

Results
Sequencing quality controls
Reduced representation bisulphite sequencing gener-
ated an average of 30.3 (± 1.9) million reads per sam-
ple (Table 1). Furthermore, we identified 34.0 (± 0.21)% 
uniquely mapped reads. Bisulphite conversion rate, 
monitored using the conversion rate of the unmethyl-
ated cytosines added in vitro during the end-repair step 
of library preparation, was 99.62 (± 0.05)%. There was no 
difference for any of the parameters related to the qual-
ity of RRBS library between low- and high-fertility bulls 
(p > 0.05; Table 1). The remainder of the analysis focused 
on the 57.2 (± 1.43)% CpGs that were covered by at least 
10 uniquely mapped reads, named as CpGs10, whose 
average methylation was comparable between both 
groups.

Relation between bulls fertility and overall sperm DNA 
methylation profiles
To assess the contribution of bull fertility to variations 
in the DNA methylation pattern, we performed princi-
pal component analysis (PCA) (Fig.  1A) and hierarchi-
cal clustering (Fig.  1B). Although we could distinguish 
three major clusters using a dendrogram (Fig. 1B), inter-
individual variability in terms of DNA methylation was 
larger than intergroup resulting in no obvious clustering 
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according to bull fertility status. To explore known effects 
of age on DNA methylation [39, 40], we analysed the 
PCA and hierarchical clustering results also with respect 
to age at ejaculate collection (Additional  file  1: Fig. S1). 
These analyses demonstrate that in our dataset, neither 
fertility nor age of the bulls were major determinants of 
sperm DNA methylation patterns.

Differentially methylated CpGs in the group of low‑ 
versus high‑fertility bulls
Thereafter, differential analysis between fertility groups 
was conducted using methylKit with commonly used 
thresholds (DNA methylation difference ≥ 25% and 

q-value < 0.05) and we obtained 2805 DMCs and 72 
DMRs (Additional file 2: Table S1). Spearman rank cor-
relation test revealed a positive correlation (r = 0.53, 
p  = 0.02) of average DNA methylation percentage at 
DMCs with bull age, suggesting that the age confounded 
the effect of fertility at these 2805 DMCs. Thus, we 
applied a stricter threshold. We filtered approximately 
25% of the best-ranked DMCs and these were charac-
terised by a DNA methylation difference ≥ 35% and a 
q-value < 0.001. These criteria were used for repeated dif-
ferential analysis and resulted in the identification of 661 
DMCs and 10 DMRs (Fig. 2A, Additional file 3: Table S2). 
The correlation between average DNA methylation 

Table 1 Library characterisation, mapping efficiency on the bovine genome (ARS‑UCD1.2), coverage and average methylation in 
reduced representative bisulphite sequencing (RRBS) libraries

Values are presented as mean ± standard error. CpGs10 are CpGs covered by at least 10 uniquely mapped reads. There was no difference between fertility groups in 
any of the parameters investigated (t-test, p > 0.05)

Low‑fertility bulls
(n = 10)

High‑fertility bulls
(n = 10)

Sequence pairs analysed  (106) 28.5 ± 2.52 32.2 ± 2.93

All maps (%) 88.0 ± 0.51 88.0 ± 0.61

Unique maps (%) 34.0 ± 0.30 34.0 ± 0.32

Ambiguous maps (%) 54.0 ± 0.32 54.0 ± 0.48

Total number of CpGs analysed  (106) 3.3 ± 0.04 3.4 ± 0.05

Percentage of CpGs covered by ≥10 sequences (CpGs10) 55.9 ± 2.25 58.5 ± 1.78

Mean genomic coverage by CpGs 19.7 ± 1.67 21.6 ± 1.80

Average DNA methylation of CpGs10 (%) 46.9 ± 0.41 47.6 ± 0.29

Average DNA methylation of CpGs without filter (%) 50.0 ± 0.35 50.4 ± 0.20

Bisulphite conversion rate (%) 99.6 ± 0.06 99.6 ± 0.09

Fig. 1 The relationship between bull fertility and sperm DNA methylation profile. (A) Principal component analysis (low‑fertility bulls are displayed 
as green dots, high‑fertility bulls as red dots) (B) Dendrogram clustering based on DNA methylation in sperm from all bulls (applied method: Ward 
method with Euclidean distance; L1 to L10, low‑fertility bulls; H1 to H10, high‑fertility bulls)
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percentage at DMCs with bull age was no longer signifi-
cant (r = 0.33; p = 0.16), suggesting that the confounding 
effect of age was mostly eliminated. As the aim of this 
study was to examine the effect of bull fertility on the 
DNA methylation of sperm, DMCs, which were excluded 
after applying of more stringent criteria because of age 
correlation, were not considered further.

When the hierarchical clustering was performed 
on these 661 DMCs, the bulls were clearly segregated 
according to fertility (Fig. 2B). The ratio of hypomethyl-
ated (53%) and hypermethylated (47%) DMCs in low-
fertility bulls was relatively balanced when compared to 
high-fertility bulls (Fig.  2C). All DMCs were annotated 
relative to genes and other genome features (Addi-
tional  file  3: Table  S2). We then investigated whether 
DMCs were enriched for specific genome features com-
pared to the background, which included all the CpGs10 
covered by RRBS in at least 5 bulls per group (Fig.  3). 
While the DMCs were depleted in most gene features 
with the exception of introns and gene downstream 
regions, repetitive elements, such as long interspersed 
elements (LINEs), short interspersed nuclear elements 
(SINEs), long terminal repeat elements (LTRs) and 
Type II Transposons were found to be enriched among 

DMCs. Regarding the regions distinguished based on 
the CpG density, CpG shelves, shores and open sea were 
overrepresented within DMCs when compared to the 
background. Gene ontology analysis using the DAVID 
bioinformatics tool was performed on the 363 genes con-
taining at least one DMC and only the clusters with EASE 
enrichment score more than 1.3 [41] were considered as 
significant (Fig.  4). Based on these criteria, 78 unique 
genes with average methylation difference 41 ± 0.7% and 
q-value < 0.001 were classified into different categories 
related to “pleckstrin homology-like domain”, “Rho gua-
nine nucleotide exchange factor”, “ATP and nucleotide 
binding”, “lipid metabolism” as well as “polymorphisms” 
and “splicing”.

Fertility‑related differentially methylated regions
Regarding identified 10 DMRs (Additional  file  3: 
Table S2), there was a similar trend to the DMCs and the 
ratio of hypo- to hyper-methylation was quite balanced. 
Indeed 6 of the 10 DMRs were hypomethylated in low-
fertility bulls when compared with high-fertility bulls. 
In relation to various annotated regions, 90% were over-
lapped with regions linked to genes, especially introns, 
and 60% were overlapped with repetitive elements 

Fig. 2 Differentially methylated cytosines (DMCs) in sperm from low‑ versus high‑fertility bulls. (A) Volcano plot of DNA methylation difference 
between sperm from low‑ and high‑fertility bulls. DMCs with DNA methylation difference > 35% and q‑value < 0.001 (661 in total) are indicated in 
blue. (B) Heatmap clustering at the 661 DMCs. Rows correspond to individual DMCs and each column represents one bull (L1 to L10, low‑fertility 
bulls; H1 to H10, high‑fertility bulls). (C) Methylation status of DMCs in low‑fertility bulls
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(SINEs, LINEs, Tandem repeats). Based on CpG density, 
the same percentage of DMRs were mapped in open sea 
(40%) and islands (40%) with the remainder in shore and 
shelve regions. Within DMRs, 7 unique genes were iden-
tified (SFRP1, ATP11A, ARSG, PSMG4, BCR, STXBP4, 
RXRA) (Fig.  5). While ATP11A, ARSG, PSMG4 and 
RXRA were hypermethylated, BCR, STXBP4 and SFRP1 
were hypomethylated in the low-fertility bulls. Although, 
most of the DMRs occurred within introns of these 
genes, the DMR related to RXRA was localised in an exon 
and the DMR related to PSMG4 in a downstream gene 
region.

Discussion
Reprogramming of the gamete epigenome after ferti-
lisation plays a central role in the acquisition of totipo-
tency and in embryonic genome activation. A plethora 
of studies have described the relationship of the sperm 
epigenome to the success of pregnancy establishment. 
Completed protamination, post-translational modifi-
cations of histones as well as non-coding RNAs have 
undeniable impact on the progression of early embryo 
development [19–23]. Alterations to the sperm methyl-
ome may also impact these processes with consequences 
for pregnancy establishment and post-natal live [28, 42]. 

Fig. 3 Enrichment of gene features, repetitive elements and CpG‑rich regions within DMCs in sperm from low‑versus high‑fertility bulls compared 
to the background (all CpGs10 covered in at least five samples per group). Bar charts represent relative percent enrichment (pink) or depletion 
(blue) in DMCs compared to the background (5’untranslated regions (UTR5); 3’untranslated regions (UTR3); transcriptional termination site (TTS); 
transcriptional start site (TSS); long interspersed elements (LINEs); short interspersed nuclear elements (SINEs); long terminal repeat elements (LTRs))

(See figure on next page.)
Fig. 4 Enrichment analysis using the DAVID bioinformatics tool was focused on genes differentially methylated in sperm from low‑ versus 
high‑fertility bulls. As a reference, the list of all genes covered by reduced representative bisulphite sequencing (19,962 genes) was used. (A) 
The first diagram (EASE score 2.07) represents genes clustering across categories related to Pleckstrin homology‑like domain and Rho guanine 
nucleotide exchange factor (B) The second diagram (EASE score = 1.89) represents a cluster of genes in categories related to ATP and nucleotide 
binding activity. (C) The third diagram (EASE score = 1.85) represents a cluster of genes in categories related to lipid metabolism and degradation 
(D) The fourth diagram (EASE score = 1.78) represents a cluster of genes in categories polymorphisms and splicing. Default settings of the DAVID 
bioinformatics tool were applied and clusters of genes with EASE enrichment score > 1.3 were considered as significant. The blue colour illustrates 
that the listed gene occurred within each category
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Fig. 4 (See legend on previous page.)
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Methylation pattern has previously been related to sperm 
quality in various species and has been proposed to be 
a promising predictor of fertility [34, 43, 44]. However, 
the role of sperm DNA methylation in bull field fertility 
is poorly understood. This study focused on identifying 

differences in DNA methylation pattern using RRBS 
between low- and high-fertility bulls. Using stringent cri-
teria, (DNA methylation > 35% and q-value < 0.001), we 
showed that sperm DNA methylation at certain CpGs 
is related to bull fertility. We identified 661 DMCs, 10 

Fig. 5 Graphically displayed differently methylated regions (DMRs) related to seven unique genes. These captures were performed by Integrative 
Genomic Viewer software. The bar charts represent the methylation percentages at each CpG10 position for high‑fertility (red) and low‑fertility 
(green) bulls. The position of the DMRs is highlighted by the red rectangles
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DMRs and highlighted seven differently methylated 
genes in sperm from low versus high-fertility bulls.

Despite this, hierarchical clustering did not reveal 
obvious discrimination based on fertility status with 
high levels of inter-individual variance. Similar trends 
were previously reported in boar and bull sperm [43, 
45]. Within identified DMCs, hypomethylation and 
hypermethylation were represented almost equally (53 
and 47%, respectively). This is in agreement with other 
studies that found quite a balanced ratio between hypo-
methylated and hypermethylated DMCs [34, 38, 45] and 
suggest that the level of methylation itself does not reflect 
fertility in cattle. In contrary, studies in human reported 
DNA hypermethylation in sperm of males with clinically 
proven infertility [46–48]. Thus, it must be noted that 
while the most of studies on sperm DNA methylation 
were done in infertile males, this study worked with sub-
fertile bulls, but not infertile. This means that while the 
bulls were divergent in fertility, all bulls passed post-thaw 
sperm quality assessments.

Regarding the distribution of detected DMCs across 
the genome, 25.6% were intergenic and 67.8% occurred in 
open sea. This is in agreement with other studies in bulls, 
boars and humans [43, 48, 49]. In contrary, Narud et al. 
[37] found the majority of DMCs in intergenic regions. 
This could potentially be explained by different breeds 
with Norwegian Red bulls being used in this study com-
pared with Holstein Friesians used in the current study. 
Indeed, animal breeds effect on DNA methylation was 
recently found in pigs [50, 51]. Furthermore, repetitive 
elements, such as SINEs, LINEs and LTRs were over-rep-
resented within DMCs. Distinct methylation of repetitive 
elements was observed in infertile males [52]. Interest-
ingly LINE1 and SINEs preserve their nucleosome struc-
ture within sperm chromatin and because it is known 
that nucleosome distribution in sperm genome is not 
random [53, 54], their involvement in embryo devel-
opment is likely [55], especially when we consider that 
some of them escape demethylation in early embryos 
[24, 56]. More recently, SINEs and LINEs were found 
to contribute in the transition in embryos from the 
2-cell to the 4 cell stage as well as in embryonic genome 
activation [57, 58].

Enrichment analysis for DMCs was performed using 
the DAVID bioinformatics tool. We identified four gene 
categories covering 78 genes, namely “pleckstrin homol-
ogy-like domain” and “Rho guanine nucleotide exchange 
factor”, “ATP and nucleotide binding”, “lipid metabo-
lisms”, “polymorphisms” and “splicing”. Genes involved in 
categories “pleckstrin homology-like domain” and “Rho 
guanine nucleotide exchange factor”, are involved in the 
organisation of cytoskeleton and intracellular signal-
ling [59, 60], which is especially important during early 

embryo development [61, 62]. In contrast, genes involved 
in “ATP and nucleotide binding” are more general and 
represent those encoding proteins that are depend-
ent on ATP synthesis. Within this category, there are 
genes coding for sperm cytoskeletal proteins (DNAH1, 
DNAH17) [63–65] but also various enzymes that are 
indispensable for spermatogenesis and embryo devel-
opment (IGF1R, UBE2E2, MAPK1) [66–69]. Genes 
involved in “lipid metabolism” code proteins that are 
likely to be involved in capacitation and embryonic 
development [70, 71].

We identified 10 DMRs, which correspond with seven 
genes (SFRP1, RXRA, ATP11A, STXBP4, BCR, ARSG, 
PSMG4) that may contribute to the variation in bull fer-
tility. While ATP11A, ARSG, RXRA and PSMG4 were 
found to be hypermethylated, BCR, SFRP1 and SRXBP4 
were hypomethylated in sperm from low-fertility bulls. 
Glycoprotein SFRP1 modulates the Wnt signalling path-
way, which is involved in spermatogenesis and epididy-
mal sperm maturation, but also embryonic sexual 
development [72–75]. In mice, SFRP1 regulates sper-
matid adhesion as well as their release during spermia-
tion in the testes [76]. Moreover, this protein was also 
detected in embryonic testes and a mouse knock-out 
model showed malformation in development of the testes 
and impaired maturation of the reproductive tract [75]. 
The expression of SFRP1 was also found in the tropho-
blast, and through Wnt signalling it is possibly involved 
in placental development [77]. This is further supported 
by Partl et al. [78] who detected overexpression of SFRP1 
in abnormal human placentas compared to healthy con-
trols. During spermatogenesis, embryonic development 
and placentation, RXRA acts as a transcription factor. 
Through interaction with retinoic acid receptors, RXRA 
regulates various biological functions, such as cell devel-
opment, differentiation and apoptosis [79, 80]. RXRA was 
detected in Sertoli cells and germ cells within the testes, 
with under-expression found in infertile men [81]. Simi-
larly, depletion of RXRA leads to infertility in male mice 
[82] indicating a crucial role of RXRA for healthy sperm 
development. RXRA regulates embryonal development 
too [79, 83] and mRNA of RXRA was detected at all 
stages of bovine embryos in both the inner cell mass and 
trophectoderm [84].

Similarly, BCR and STXBP4 are expressed in bovine 
8-cell embryos and blastocysts [85]. Even though the 
role of these genes is unknown in the context of sperm 
influence on embryonic development, they are involved 
in basic cell functions. While BCR contributes to cell 
division and migration [62], STXBP4 regulates glucose 
metabolism through binding to syntaxin 4 [86] and is a 
negative regulator of the Hippo signalling pathway that 
is involved in cell proliferation and apoptosis [87, 88]. 
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Therefore, a role during spermatogenesis or early embry-
onic development is likely.

The gene ATP11A, which was hypermethylated in 
sperm from low-fertility bulls, encodes a protein that 
is an integral part of the cell membrane and facilitates 
translocation of phosphatidylserine from the outer 
to the inner layer of the membrane. Accordingly, it is 
responsible for membrane stability, cholesterol homeo-
stasis, cell proliferation and apoptosis [89, 90]. Expres-
sion of this gene was detected in mouse testes [90] and 
16-cell bovine embryos [85]. Embryos generated from 
conditional knockout mice of ATP11A have abnor-
malities in neurological development and delays in 
development. A similar impact on impaired embryonic 
development has pointed to a mutation of this gene in 
humans [91, 92].

ARSG, also hypermethylated in sperm from low-fer-
tility bulls, codes for a sulfatase that is responsible for 
the degradation of 3-O-sulfated N-sulfoglucosamine 
residues of heparan sulfate glycosaminoglycans [93, 
94], which occurs in the endometrium and regulates 
signalling, leading to receptiveness of the uterus to the 
blastocyst [95]. PSMG4 codes for one of chaperones 
responsible for proteasome assembly [96]. Proteasome 
as part of ubiquitin-proteasome system is involved in 
degradation and recycling of proteins during spermato-
genesis, epididymal maturation, capacitation, but also 
during fertilisation and embryonic development [97–
100]. Therefore, an aberration of PSMG4 expression 
may lead to defects in the ubiquitin-proteasome system 
and result in subfertility.

A mutual feature of all these genes is that their role 
is most likely during early embryonic development. 
Although the paternal methylome is substantially repro-
grammed after fertilisation, specific CpGs preserve their 
methylation pattern from sperm to the blastocyst [101, 
102]. Hence, it is reasonable to hypothesise that the 
altered methylation we observed in sperm of subfertile 
bulls leads to differences in the expression of these genes, 
with potential impacts on early development. To test 
this, it would be interesting to track these genes and their 
expression in embryos to demonstrate the effect of the 
differential methylation pattern in sperm on embryonic 
development.

Conclusion
To conclude, results of the current study demonstrate 
that sperm DNA methylation at certain CpGs is related 
to bull fertility and seven differently methylated genes 
occurred within DMRs have been reported to regulate 
spermatogenesis and embryonic development and thus 
may contribute to varying bull fertility.

Methods
Animals and semen collection
Mature Holstein-Friesian bulls with high (n = 10) or low 
(n = 10) fertility were selected from a population of 1665 
AI bulls (Additional  file  4: Table  S3). Bull fertility was 
assessed based on adjusted fertility scores [103], calcu-
lated based on calving rates by the Irish Cattle Breeding 
Federation from a record of at least 500 inseminations 
(mean = 13,292, min = 519, max = 100,288). The sire fer-
tility model used in Ireland is an animal adjusted model 
[103], typical of the model used in many other countries. 
This is a multiple regression mixed model that considers 
numerous fixed effects such as number of inseminations, 
year and month of service, days since calving and cow 
parity, non-additive effects such as heterosis, semen type 
(fresh or frozen) and random effects such as cow breed, 
cow genotype, AI technician, herd and service bull. High-
fertility bulls had an average adjusted fertility score of 
+ 6.5%, whereas low-fertility bulls had an average fertil-
ity score of − 6.6%. The mean of the population was zero. 
Semen was collected via an artificial vagina, frozen in 
0.25-ml French straws using a programmable freezer and 
stored in liquid nitrogen pending further analysis.

DNA isolation
Three frozen semen straws representing three ejacu-
lates (1 straw per ejaculate) per bull were used for DNA 
extraction. After thawing at 37 °C, the thawed semen 
was first washed with phosphate-buffered saline (PBS) 
to remove the semen extender and then with deionised 
 H2O to eliminate somatic cells. Prior to lysis, the absence 
of somatic cells was confirmed by visualising a sample 
under a phase contrast microscope. Subsequently, the 
sperm pellet was resuspended in 200 μl lysis buffer [49] 
in the presence of 0.2 mg/ml proteinase K, and incu-
bated overnight at 55 °C. After incubation with 25 μg/ml 
RNAse A for 1 h at 37 °C, genomic DNA was extracted 
twice using phenol and phenol:chloroform (1:1), then 
ethanol-precipitated and washed. The dried pellet was 
resuspended in TE buffer (10 mM Tris HCl pH 7.5, 2 mM 
EDTA) and the DNA concentration was measured using 
a Qubit 2.0 Fluorometer with the dsDNA BR Assay kit 
(Invitrogen, Renfrew, UK).

Reduced representative bisulphite sequencing
RRBS libraries from the 10 low- and 10 high-fertility bulls 
were prepared from 200 ng of genomic DNA digested 
with MspI (Fermentas, Schlangen, Germany) using a 
semi-automated procedure [49]. Briefly, after ligation 
to 55 bp methylated Illumina adapters for paired-end 
sequencing, deionised  H2O was added up to 50 μl, which 
was followed by size selection using SPRI select magnetic 
beads (Beckman Coulter) in order to obtain fragments 
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ranging from 150 to 400 bp (40–290 bp genomic DNA 
fragments + adapters). The DNA was then converted 
twice with sodium bisulphite using the EpiTect bisulphite 
kit (Qiagen, Manchester, UK) following the manufac-
turer’s instructions. Converted DNA was amplified with 
Pfu Turbo Cx hotstart DNA polymerase (Agilent, CA, 
US) using 14 PCR cycles. The libraries were finally puri-
fied using AMPure XP beads (Beckman-Coulter, Mary-
fort, Ireland) and sequenced on an Illumina Novaseq6000 
sequencer to produce 100 bp paired-end reads (Integra-
gen SA, Évry, France).

Bioinformatic analysis
The sequences displayed the expected nucleotide compo-
sition based on MspI digestion and bisulphite conversion 
according to FastQC quality control. Subsequent quality 
checks and trimming were carried out using Trim Galore 
v0.4.5, which removed adapter sequences, poor quality 
bases and reads (Phred score below 20) and reads shorter 
than 20 nucleotides. High quality reads were aligned to 
the bovine reference genome (ARS-UCD1.2) in which the 
sequence of the Y chromosome has been incorporated 
(GenBank: CM011803.1) using Bismark v0.20.0 in the 
default mode with Bowtie 1 [104, 105]. The sequence of Y 
chromosome was extracted from the paternal haplotype 
from a Bos taurus x Bos indicus hybrid (UOA_Angus_1 
assembly). The bisulphite conversion rate was estimated 
from the unmethylated cytosine added in  vitro during 
the end-repair step and was on average 99.6%. The CpGs 
were then selected based on their coverage by uniquely 
mapped reads. Only CpGs covered by at least 10 uniquely 
mapped reads (termed as CpGs10) were retained for 
subsequent analyses. Each CpG10 was assigned a meth-
ylation percentage per sample calculated from Bis-
mark methylation calling: [(reads with “C”)/(reads with 
“C” + reads with “T”)] × 100, which could be visualised 
using the Integrative Genome Viewer (IGV) genome 
browser [106]. The groups of low- and high-fertility bulls 
were compared for the mapping efficiency, coverage, and 
average methylation at CpGs10 using t-test. For Fig.  1, 
euclidean hierarchical clustering was computed on the 
matrix of methylation percentages for each CpG10 cov-
ered in at least five bulls per group (background, which 
represents 1,880,513 CpGs10). For each comparison, 
DMCs were identified from the background using meth-
ylKit v1.0.0 software in the default mode [107]. Initially 
the threshold was set at an adjusted p-value (q-value) 
less than 0.05, and the methylation difference between 
two groups of at least 25% (Additional  file  2: Table  S1). 
However, because of the significant correlation of bull 
age and DNA methylation difference, more stringent cri-
teria were then applied. Final analysis was done with the 
q-value less than 0.001 and the methylation difference at 

least 35% (Additional file 3: Table S2). A DMR was con-
stituted by a minimum of three DMCs with a maximum 
inter-DMC distance of 100 bp.

The annotation of the DMCs, DMRs, and the 
1,880,513 background CpGs10 was performed as 
described by Perrier et  al .[49] relative to gene fea-
tures, CpG density and repetitive elements using an 
in-house pipeline. The reference files were uploaded 
from Ensembl (ftp:// ftp. ensem bl. org/ pub, release 102). 
The following criteria were applied: TSS, − 100 to 
+ 100 bp relative to the transcription start site (TSS); 
promoter, − 2000 to − 100 bp relative to the TSS; TTS: 
− 100 to + 100 bp relative to the transcription termina-
tion site (TTS); upstream gene region, − 10 to − 2 kb 
from the TSS; downstream gene regions, + 100 bp 
to + 10 kb from the TTS; shore, up to 2000 bp from 
a CpG island (CGI); and shelf, up to 2000 bp from a 
shore. A site/fragment was considered to belong to 
a CGI (respective shore and shelf ) if an overlap of at 
least 75% was observed between the site/fragment and 
the CGI (respective shore and shelf ). A site/fragment 
was considered as being overlapped by a repetitive ele-
ment whatever the extent of this overlapping. The list 
of annotated DMCs and DMRs is available in Addi-
tional  file  2: Table  S1 and Additional  file  3: Table  S2. 
Genes containing DMCs at a maximal distance of 
10 kb were subjected to enrichment analyses with 
the Database for Annotation, Visualization, and Inte-
grated Discovery (DAVID) using default parameters 
[41], and using the gene list covered by the 1,880,513 
background CpGs10 as the reference. Clusters of terms 
showing EASE enrichment scores above 1.3 were con-
sidered significant. All other statistical analysis related 
to graphs plotting were computing using MATLAB 
software v.R2021a (The MathWorks Inc., Natick, MA, 
USA).
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