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A B S T R A C T

The nervous system is today recognized to play an important role in the development of cancer. Indeed,
neurons extend long processes (axons) that grow and infiltrate tumors in order to regulate the progression
of the disease in a positive or negative way, depending on the type of neuron considered. Mathematical
modeling of this biological process allows to formalize the nerve–tumor interactions and to test hypotheses
in silico to better understand this phenomenon. In this work, we introduce a system of differential equations
modeling the progression of pancreatic ductal adenocarcinoma (PDAC) coupled with associated changes in
axonal innervation. The study of the asymptotic behavior of the model confirms the experimental observations
that PDAC development is correlated with the type and densities of axons in the tissue. We study then
the identifiability and the sensitivity of the model parameters. The identifiability analysis informs on the
adequacy between the parameters of the model and the experimental data and the sensitivity analysis on the
most contributing factors on the development of cancer. It leads to significant insights on the main neural
checkpoints and mechanisms controlling the progression of pancreatic cancer. Finally, we give an example of
a simulation of the effects of partial or complete denervation that sheds lights on complex correlation between
the healthy, pre-cancerous and cancerous cell densities and axons with opposite functions.
1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of can-
cer death in men and women. Late detection of this cancer, due to the
near absence of symptoms in the early stages, is associated with a poor
prognosis and an overall 5-year survival rate of less than 5% (Bengtsson
et al., 2020). In recent decades, the impact of the microenvironment on
tumor progression has become widely recognized, which has led to the
development of new therapies such as immunotherapies. More recently,
it has been shown that fibers of the nervous system infiltrate the tumor
microenvironment where they also participate in the regulation of can-
cer development and progression (Guillot et al., 2022). It is therefore
relevant to study the neurobiology of cancers through mathematical
modeling in order to better understand the responses of cancer cells to
innervation and predict at long term the effects of therapies targeting
neuron-tumor interactions.

Mathematical modeling of the impact of the microenvironment on
tumor progression has been widely investigated for many types of can-
cers. In the case of pancreatic cancer, a model of the interplay between
the immune system and tumor progression has been proposed (Louzoun
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et al., 2014). As far as we know, mathematical modeling of the neural
regulation of tumor progression has only be performed for prostate
cancer (Lolas et al., 2016). This model confirmed experimental obser-
vations that a tumor is able to recruit nerves that, in turn, promote
tumor development and metastatic spread. However, this initial model
did not take into account the full functional diversity of neurons of the
peripheral nervous system (PNS) and in particular their potential tumor
suppressive effect discovered more recently in PDAC. To our knowl-
edge, no mathematical model integrating the antitumor and pro-tumor
activities of the PNS currently exists.

In this article, we developed an ordinary differential equation (ODE)
model that describes and simulates the relationship between the PNS
and pancreatic cancer development. The model is based on and cali-
brated with experimental data obtained from a genetically engineered
mouse model of PDAC, in which the innervation of early pre-cancerous
lesions and cancer have been characterized by three-dimensional (3D)
histology (c.f Guillot et al., 2022). This model aims to investigate how
dynamic changes in the neuronal composition of the microenvironment
influence tumor progression.
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The paper is organized as follows. In Section 2, we review the
biological background behind the mechanisms of the PDAC progres-
sion. We introduce the mathematical model and detail the assumptions
made. In Section 3, we study the mathematical properties of the model.
We prove its well-posedness and the convergence toward the patholog-
ical equilibrium under some assumptions. We extract some exponential
convergence estimators which allow us to reduce the system and per-
formed the asymptotic analysis on the limit system. In Section 4, we
study the identifiability of the parameters when the model is confronted
to the experimental data. We perform a sensitivity analysis which sheds
lights on the effect of the axons on the PDAC progression.

2. Modeling the evolution of cell populations and axons

2.1. Biological background

The PNS is a vast network of nerves and ganglia that connect the
brain to the other organs of the body. It consists of both afferent
(sensory) nerves and efferent (motor) nerves that carry information in
and out of the brain, respectively. While essential for internal body
communication and proper regulation of physiological functions, the
PNS also plays a newly-identified and pivotal role in the control of
tumorigenesis. For example, denervation experiments in animal models
of prostate and gastric cancers demonstrated a role of the visceral
efferent motor system (also known as the autonomic nervous system)
in promoting tumor progression and metastasis (Magnon et al., 2013;
Zhao et al., 2014). These findings have led to the emerging concept
of ‘‘nerve dependence in tumorigenesis’’ and a growing interest in
repositioning inhibitors of nerve signaling for cancer treatment (Boilly
et al., 2017; Zahalka and Frenette, 2020).

The bifunctional role of the PNS in pancreatic tumorigenesis.
The impact of the PNS varies considerably depending on the tumor
site. This has been highlighted by studies in animal models of PDAC.
Indeed, and in contrast to its promoting role in prostate cancer, the
autonomic nervous system has appeared to exert tumor suppressive
effects in PDAC. The autonomic nervous system is divided functionally
and anatomically into the sympathetic and parasympathetic nervous
systems, which work together synergistically to regulate pancreatic
functions (Love et al., 2007). In PDAC, several studies reported that
transection of the vagus nerve, which provides parasympathetic inputs
to the pancreas, promotes pancreatic cancer progression (Partecke
et al., 2017; Renz et al., 2018). A similar acceleration of PDAC de-
velopment and increased metastasis have been reported after selective
depletion of pancreatic sympathetic innervation (Guillot et al., 2022),
further supporting a protective function of the autonomic nervous
system in this type of cancer. Conversely, the pro-tumoral influence
of the PNS on PDAC is exerted by sensory neurons, whose selective
ablation or functional silencing slows tumor progression and improves
survival (Bai et al., 2011; Saloman et al., 2016; Sinha et al., 2017).
Finally, when both sympathetic and sensory innervation of the pancreas
are diminished (Guillot et al., 2022), this leads to an acceleration
of PDAC development, suggesting a preponderant influence of the
autonomic nervous system during tumor initiation. Thus, taking into
account the functional specializations of nerve subtypes and their in-
tegration is crucial for understanding and predicting the trajectory of
innervated tumors.

Neuroplastic changes associated with tumorigenesis. The PNS
control over tumorigenesis is based on its ability to innervate develop-
ing tumors and release neurotransmitters, or other factors, in the cancer
cell environment. Precise mapping of pancreatic tissue innervation and
its evolution during PDAC development has been performed on his-
tological sections and more recently using 3D light-sheet fluorescence
microscopy (LSFM) on murine and human pancreas (Chien et al., 2019;
Makhmutova and Caicedo, 2021). The results revealed striking differ-
ences in the autonomic and sensory innervation patterns of the healthy

pancreas, with a dense meshwork of autonomic nerve fibers (both
sympathetic and parasympathetic) throughout the exocrine pancreas,
from which PDAC arises, and an absence of sensory fibers in these
same regions, the latter residing along the arteries and innervating the
pancreatic islets (Guillot et al., 2022; Lindsay et al., 2006).

An initiating event for the development of PDAC is the transdifferen-
tiation of acinar cells (the functional unit of the exocrine pancreas) into
progenitor-like cells with ductal characteristics, a process called acinar-
to-ductal metaplasia (ADM). ADM can progress to form premalignant
pancreatic intraepithelial neoplasia (PanIN) and eventually pancreatic
cancer (Storz, 2017). A substantial innervation of the early pancreatic
lesions by autonomic axons has been reported, with PanINs appearing
as hotspots of sympathetic hyperinnervation (Guillot et al., 2022).
While some sensory fibers can also be detected around PanINs, their
density remains relatively low compared to autonomic fibers (Sinha
et al., 2017; Stopczynski et al., 2014). In invasive PDAC tumors, how-
ever, this picture is completely reversed: a high density of sensory
fibers deeply infiltrates the center of the tumors, while a moderate
sympathetic innervation limited to the peripheral regions of the tumors
was reported (Ceyhan et al., 2009; Guillot et al., 2022). In conclusion,
the data revealed stage-specific remodeling of PNS networks during
tumorigenesis that may have an important function by shifting an
initially protective neural environment (autonomic > sensory) into a
milieu favorable for cancer cell growth (sensory > autonomic).

2.2. Mathematical model

We will focus on the pancreas as the main domain of our model,
thus including both the pancreatic cells and the nerve fibers (or axons).
In this model, the variables for pancreatic cells densities are denoted
𝑄𝑖 for 𝑖 ∈ {0, 1, 2, 3}, to take into account normal exocrine cells of the
pancreas with Acini 𝑄0 and the different steps of tumorigenesis ADM
𝑄1, PanIN 𝑄2 and PDAC 𝑄3. The variables corresponding to PNS axons
are denoted 𝐴1, 𝐴2. 𝐴1 is the variation of the density of autonomic
xons with respect to its equilibrium at initial state (denoted 𝐴𝑒𝑞1 ). The

model does not distinguish between sympathetic and parasympathetic
axons since they both have the same pro-tumoral function. Hence, we
consider the following

𝐴1 = density of autonomic axons − initial equilibrium density.

This formalism allows 𝐴1 to take negative values. One can justify it
by the fact that neuroplastic changes of autonomic axons are non-
monotonous: the density increases in PanIN and decreases in PDAC
compared to the initial equilibrium density, i.e., the density in acini
(Ceyhan et al., 2009; Guillot et al., 2022). Finally, 𝐴2 is the density of
sensory axons.

We propose multi-compartmental model in which the growth of
the PNS is coupled to the transfer from acini to PDAC, and to the
proliferation of pre-cancerous (PanIN) and cancerous (PDAC) cells. A
schematic of the model, showing the variables and their interactions,
can be found in Fig. 1.

Transfer between compartments. We consider that Acini progress
in ADM with a transfer rate 𝜋0. The transfer term is up-regulated by the
presence of PanIN and PDAC through a Michaelis–Menten term with
maximal amplitude 𝛿0 and 1 as the Michaelis constant. This assumption
eads to the following interpretation: the PanIN and the PDAC are able
o self-promote and consequently decrease the density of Acini in the
ystem. However the increasing influence of PanIN and PDAC on the
ransfer term is saturated. This transfer drives the dynamics of Acini
nd is described by the following equation:

𝑑
𝑑𝑡
𝑄0(𝑡) = −𝜋0

[

1 + 𝛿0
𝑄2(𝑡) +𝑄3(𝑡)

1 +𝑄2(𝑡) +𝑄3(𝑡)

]

𝑄0(𝑡).

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
transfer from Acini to ADM up regulated by the PanIN
and PDAC

(1)

Next, ADM become PanIN with a transfer rate 𝜋1. Moreover, the appear-
ance of PanIN is positively correlated with a high density of autonomic



S. Chauvet et al.

t
t
a

𝜌

Fig. 1. Schematic representation of the interactions among the model variables. Each variable corresponds to a rectangular box; note that cell populations are in gray while axons
are in red. Solid thin black arrows denote regulation of either proliferation of cells or transfer rates and solid thick black arrows denote enhancement of the transfer rate. Dashed
black arrows denote enhancement of the axon growth, dashed black lines with a vertical end denote inhibition of the axon growth. Solid red arrows denote enhancement of the
proliferation, dashed red arrows denote enhancement of the transfer rate and dashed red lines with a vertical end denote inhibition of the transfer rate.
t
a
n
i
s
c

a
o

axons that have an inhibitory effect on cancer progression. We model
this phenomenon by adding the dependency of amplitude −𝛽1 on 𝐴1
o the transfer term. Moreover, we add a multiplicative regularization
erm 𝜌(𝐴1) which ensures that if 𝐴1 takes negative values, 𝜌(𝐴1) is
lmost equal to 0 e.g.

(𝑥) = 1
2

(

1 + 𝑥
√

𝑥2+𝜖

)

, 0 < 𝜖 ≪ 1.

It implies that if the density of autonomic axons in the system is low,
the regulatory impact of axons is also low or non-existent. Hence, the
dynamics of ADM is described by the following equation:

𝑑
𝑑𝑡
𝑄1(𝑡) =𝜋0

[

1 + 𝛿0
𝑄2(𝑡) +𝑄3(𝑡)

1 +𝑄2(𝑡) +𝑄3(𝑡)

]

𝑄0(𝑡)

− 𝜋1
[

1 − 𝛽1𝐴1(𝑡)𝜌
(

𝐴1(𝑡)
)]

𝑄1(𝑡)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

transfer from ADM to PanIN down
regulated by the autonomic axons

. (2)

Finally, PanIN progress to PDAC with a transfer rate 𝜋2. This process
coincides with the increase of sensory axons that enhance PDAC growth
and a decrease of autonomic axons that have the opposite effect.
We model this mixed effect in the transfer term by adding a linear
dependencies of amplitude 𝛿2 on 𝐴2 and of amplitude −𝛽2 on 𝐴1. In
addition, we still introduce the regularization term on the inhibiting
effect of the autonomic axons which ensures that there is no effect
on the transfer in case the density of autonomic axons 𝐴1 is negative.
It leads to the following mathematical formulation of the dynamics
transfer:
𝑑
𝑑𝑡
𝑄2(𝑡) =𝑝𝑟𝑜𝑙𝑖𝑓𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚 + 𝜋1

[

1 − 𝛽1𝐴1(𝑡)𝜌
(

𝐴1(𝑡)
)]

𝑄1(𝑡)

− 𝜋2
[

1 − 𝛽2𝐴1(𝑡)𝜌
(

𝐴1(𝑡)
)

+ 𝛿2𝐴2(𝑡)
]

𝑄2(𝑡).
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

transfer from PanIN to PDAC down regulated by the
autonomic axons and up regulated by the sensory axons

Proliferation terms. We model cell proliferation in PanIN and
PDAC by adding a logistic-like growth term for 𝑄2 and 𝑄3 of respective
rate 𝛾2 and 𝛾3. The saturation term 𝜏𝐶 is applied to the total density of
proliferating cells which corresponds to 𝑄2 + 𝑄3. We model the PNS
effect in the growth process by incorporating the axons in the logistic
law. We assume that the sensory axons promote the self-renewing
growth of (pre)cancerous cells until the population attains a certain
threshold. Furthermore, we assume that the autonomic axons have a
mixed effect on this growth term. When the autonomic axons density
is above its initial equilibrium state 𝐴𝑒𝑞1 , the growth of (pre)cancerous
cells is promoted. Once the density is lower than its equilibrium state,
the cancerous cells still proliferate but attain a lower carrying capacity.
The effects of 𝐴1 and 𝐴2 in the logistic law can be interpreted as tumor
growth factors or inhibition of tumor growth factors and these effects
are limited by the thresholds 𝜏𝐶𝐴1

and 𝜏𝐶𝐴2
. The dynamics of PanIN and

PDAC are then described by the following equations:

𝑑
𝑑𝑡
𝑄2(𝑡) = 𝛾2𝑄2(𝑡)

(

1 − 𝑄2(𝑡)+𝑄3(𝑡)
𝜏𝐶

+ 𝐴1(𝑡)
𝜏𝐶𝐴1

+ 𝐴2(𝑡)
𝜏𝐶𝐴2

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
proliferation regulated by the axons

+ 𝜋1
[

1 − 𝛽1𝐴1(𝑡)𝜌
(

𝐴1(𝑡)
)]

𝑄1(𝑡)

− 𝜋2
[

1 − 𝛽2𝐴1(𝑡)𝜌
(

𝐴1(𝑡)
)

+ 𝛿2𝐴2(𝑡)
]

𝑄2(𝑡) (3)
𝑑
𝑑𝑡
𝑄3(𝑡) = 𝛾3𝑄3(𝑡)

(

1 − 𝑄2(𝑡)+𝑄3(𝑡)
𝜏𝐶

+ 𝐴1(𝑡)
𝜏𝐶𝐴1

+ 𝐴2(𝑡)
𝜏𝐶𝐴2

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
proliferation regulated by the axons

+ 𝜋2
[

1 − 𝛽2𝐴1(𝑡)𝜌
(

𝐴1(𝑡)
)

+ 𝛿2𝐴2(𝑡)
]

𝑄2(𝑡) (4)

Axon growth dynamics. Neuroplastic changes occur during the
umorigenesis and are closely linked to the presence of pre-cancerous
nd cancerous cells. Modeling innervation with a logistic law seems the
atural way to describe this phenomenon if no spatial representation
s taken into account. However, we do not take constant growth rates
ince the innervation is clearly induced by precancerous and cancerous
ells.

We assume from the experimental data that the growth rate of
utonomic axons is increased by ADM and PanIN, whereas PDAC has an
pposite effect. The coefficients 𝛼1, 𝛼2 and 𝛼3 are associated respectively

to 𝑄1, 𝑄2 and 𝑄3 in the growth term in order to specify the effect of
each cells on the innervation. Also, the PanIN and PDAC cells promote
sensory axon growth in a similar way with coefficients �̄�2 and �̄�3. One
can reasonably consider that growth in a biological phenomenon is
saturated because of various biophysical constraints. We introduced the
threshold 𝜏𝐴2

which is an upper bound for the density of sensory axons
in the system. Similarly, we denote 𝜏𝐴1

the threshold on autonomic
axons. Note that 𝐴1 is a difference quantity and this quantity is non-
monotonous throughout the PDAC development process. Hence, we
model the dynamic of 𝐴1 by a modified logistic growth where the
variable is bounded in

[

−𝜏𝐴1
, 𝜏𝐴1

]

. If its growth term is non-negative,
𝐴1 is tending to its upper bound and if the reverse is true, 𝐴1 tends to
its lower bound. To conclude, the growth dynamics of the axons are
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𝑑
𝑑𝑡
𝐴1(𝑡) =

(

𝛼1𝑄1(𝑡) + 𝛼2𝑄2(𝑡) − 𝛼3𝑄3(𝑡)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
stimulus effect from ADM and PanIN and
inhibiting effect from PDAC

(

1 + 𝐴1(𝑡)
𝜏𝐴1

)(

1 − 𝐴1(𝑡)
𝜏𝐴1

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
logistic-like growth

(5)
𝑑
𝑑𝑡
𝐴2(𝑡) =

(

�̄�2𝑄2(𝑡) + �̄�3𝑄3(𝑡)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
stimulus effect from PanIN and PDAC

𝐴2(𝑡)
(

1 − 𝐴2(𝑡)
𝜏𝐴2

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
logistic growth

(6)

A priori conditions and assumptions on parameters. The in-
eraction between cells and axons and the transition between cell
opulations are modeled by a dynamical system driven by the set of
arameters {𝜋, 𝛿, 𝛽, 𝜏, 𝛾, 𝛼}. In order to sum up, we recall that the
ransition rates are denoted by 𝜋, the saturation rates by 𝜏, the growth
ates by 𝛾. The parameters 𝛽 and 𝛿 appear in the transition terms. The
parameters are coefficients which translate the inhibiting effect on the

ransition rates whereas the 𝛿 parameters translate a stimulating effect
n the transition rates. The last category of parameters is assimilated
o the growth term of the axons. The parameters 𝛼 and �̄� are associated

to the impact of the cell populations on the growth rate of axons. All
these parameters are assumed to be non-negative. In the following, we
assume the hypotheses :

Hypothesis 1. the transfer terms cannot become negative, it implies
the following sufficient conditions :

1 > 𝛽1𝜏𝐴1
, 1 > 𝛽2𝜏𝐴1

. (H1)

Hypothesis 2. the growth rate of the cells in the logistic law gives rise
to a competition between the PanIN cells and the PDAC cells for the
same resource. However, the PDAC cells are considered to be dominant
in the system and in the reality. It is translated by the following order
relation on the parameters :

𝛾2 < 𝛾3. (H2)

Hypothesis 3. the autonomic axons 𝐴1 have a mixed effect on the
proliferation term of PanIN and PDAC: it can either increase or decrease
the resource in the logistic law. It is therefore unrealistic to consider
that this mixed effect is the one that governs the dynamics of growth.
This implies that the proliferation term cannot be of negative sign in
the Eqs. (3) and (4). The following assumptions is assumed :

𝜏𝐴1
< 𝜏𝐶𝐴1

. (H3)

Initial conditions. We assume that at time 0, there are only Acini,
utonomic axons and a very little amount of sensory axons. Hence, we
ave the following initial conditions :

0(0) > 0, 𝑄1(0) = 𝑄2(0) = 𝑄3(0) = 0, 𝐴1(0) = 0, 0 < 𝐴2(0)≪ 1.

(7)

Eqs. (1)–(6) form a non-linear dynamical system. The mathematical
nalysis of the system, such as the well-posedness, the positivity and the
ong-term behavior, assesses theoretically the legitimacy of modeling
hoices and improves the understanding of the interaction between
xons and cancer.

. Main results on the mathematical model

For the sake of clarity, we introduce an abstract formulation of the
qs. (1)–(6). The main change is that the transition terms are now

epresented by the nonnegative functions 𝑓𝑖 for 𝑖 = 0, 1, 2. Hence,
e obtain the following system :

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑑
𝑑𝑡𝑄0 =−𝑓0

(

𝑄2, 𝑄3
)

𝑄0
𝑑
𝑑𝑡𝑄1 =𝑓0

(

𝑄2, 𝑄3
)

𝑄0 − 𝑓1
(

𝐴1
)

𝑄1

𝑑
𝑑𝑡𝑄2 =𝛾2𝑄2

(

1 − 𝑄2+𝑄3
𝜏𝐶

+ 𝐴1
𝜏𝐶𝐴1

+ 𝐴2
𝜏𝐶𝐴2

)

+ 𝑓1
(

𝐴1
)

𝑄1 − 𝑓2
(

𝐴1, 𝐴2
)

𝑄2

𝑑
𝑑𝑡𝑄3 =𝛾3𝑄3

(

1 − 𝑄2+𝑄3
𝜏𝐶

+ 𝐴1
𝜏𝐶𝐴1

+ 𝐴2
𝜏𝐶𝐴2

)

+ 𝑓2
(

𝐴1, 𝐴2
)

𝑄2

𝑑
𝑑𝑡𝐴1 =

(

𝛼1𝑄1 + 𝛼2𝑄2 − 𝛼3𝑄3
)

(

1 + 𝐴1
𝜏𝐴1

)(

1 − 𝐴1
𝜏𝐴1

)

𝑑
𝑑𝑡𝐴2 =(�̄�2𝑄2 + �̄�3𝑄3)𝐴2

(

1 − 𝐴2
𝜏𝐴2

)

(8)

One assumption of our model is that the transfer from healthy to
cancerous cells is not reversible (H1). In this section, we further assume
that the transfer is upper bounded (i.e. the progression from healthy to
cancerous cells cannot be instantaneous). Therefore, this assumption
can be conveniently phrased in terms of the above transition rates as :

∀(𝑥, 𝑦) ∈ R2 ∃𝑀0 > 𝑚0 > 0 ⟹ 𝑚0 ≤ 𝑓0(𝑥, 𝑦) ≤𝑀0,

∃𝐿0 > 0 such that ∀𝑢 ∈ R2, ∀𝑣 ∈ R2
‖𝑓0(𝑢) − 𝑓0(𝑣)‖ ≤ 𝐿0‖𝑢 − 𝑣‖,

(9)

and
∀𝑥 ∈ R ∃𝑀1 > 𝑚1 > 0 ⟹ 𝑚1 ≤ 𝑓1(𝑥) ≤𝑀1,

∃𝐿1 > 0 such that ∀(𝑢, 𝑣) ∈ R2
‖𝑓1(𝑢) − 𝑓1(𝑣)‖ ≤ 𝐿1‖𝑢 − 𝑣‖,

(10)

and

∀(𝑥, 𝑦) ∈ R2 ∃𝑀2 > 𝑚2 > 0 ⟹ 𝑚2 ≤ 𝑓2(𝑥, 𝑦) ≤𝑀2,

∃𝐿2 > 0 such that ∀𝑢 ∈ R2, ∀𝑣 ∈ R2
‖𝑓2(𝑢) − 𝑓2(𝑣)‖ ≤ 𝐿2‖𝑢 − 𝑣‖.

(11)

The first step in understanding the interactions between axons and
the cancer progression is to establish properties of the model such as
positiveness, well-posedness, etc. and to study its asymptotic behavior.
The proofs of this section’s results are postponed in Appendix A.

3.1. Well-posedness

In the following section, we establish preliminary results on the
model. Besides the well-posedness and the global existence of the
solution, the cells densities are nonnegative. Moreover, the healthy cells
densities (Acini and ADM) vanish at equilibrium. These results comfort
the modeling since the simplistic but realistic outcome of the pancreatic
cancer is the proliferation PDAC cells in the pancreas to the detriment
of healthy cells.

Theorem 1 (Well-Posedness). Suppose the assumptions (9), (10) and (11)
hold. Consider 𝑋 =

(

𝑄0, 𝑄1, 𝑄2, 𝑄3, 𝐴1, 𝐴2
)

and 𝑋0 =
(

𝑄0(0), 𝑄1(0),
𝑄2(0), 𝑄3(0), 𝐴1(0), 𝐴2(0)

)

such that

𝑄𝑖(0) ≥ 0, for 𝑖 = 0, 1, 2, 3

and

−𝜏𝐴1
≤ 𝐴1(0) ≤ 𝜏𝐴1

and 0 ≤ 𝐴2(0) ≤ 𝜏𝐴2
.

Then there exists a unique global solution for the system (8) with the initial
condition 𝑋0 on R+, moreover the following properties holds:

• Nonnegativity ∀𝑡 ∈ R+ 𝑄𝑖(𝑡) ≥ 0, for 𝑖 = 0, 1, 2, 3,
• Boundedness of the axons
∀𝑡 ∈ R+ − 𝜏𝐴1
≤ 𝐴1(𝑡) ≤ 𝜏𝐴1

and 0 ≤ 𝐴2(𝑡) ≤ 𝜏𝐴2
.
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Sketch of the proof: The proof of Theorem 1 is detailed in Ap-
pendix A.1. It relies on the proof of the existence and uniqueness of a
maximal solution. This result can be found in Proposition 1. Moreover,
this result implies that the cell densities of the Acinii 𝑄0 and the ADM
𝑄1 decay exponentially fast toward 0 (c.f. Proposition 2). Hence, these
decays shows that the time evolution of the cell densities of the PanIN
𝑄2 and the PDAC 𝑄3 are bounded and that there exists a unique global
solution (c.f Proposition 2).

3.2. Asymptotic behavior

In this section, the long time behavior of the solution of (8) is given
by the following theorem.

Theorem 2 (Convergence Toward the Pathological Steady State). Suppose
the assumptions (9), (10) and (11) hold. Assume that the initial conditions
of (8) are such that (7) is verified. Assume that (H2) and (H3) hold. Then

𝑋(𝑡) =
(

𝑄0(𝑡), 𝑄1(𝑡), 𝑄2(𝑡), 𝑄3(𝑡), 𝐴1(𝑡), 𝐴2(𝑡)
)

⟶
(

0, 0, 0, 𝜏𝐶𝐶(−𝜏𝐴1
), −𝜏𝐴1

, 𝜏𝐴2

)

for 𝑡→ +∞

where 𝐶(−𝜏𝐴1
) = 1 −

𝜏𝐴1
𝜏𝐶𝐴1

+
𝜏𝐴2
𝜏𝐶𝐴2
.

Sketch of the proof : The proof of Theorem 2 is detailed in Ap-
pendix A.2. As stated in Proposition 1, the Acini and ADM populations
are reduced exponentially. It implies that once the proliferating PanIN
and PDAC cells appears, the competition between the cells densities
is in favor of the development of PanIN and PDAC. Moreover, since
the growth term of the sensory axons only depends on the PanIN
and PDAC, then the sensory axons tend to their threshold 𝜏𝐴2

(c.f.
Proposition 3). Hence, we show that the long-time dynamics of the
system (8) are governed and completely determined by the asymptotic
of the following ‘‘reduced’’ system :

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑑
𝑑𝑡𝑄2(𝑡) =𝛾2𝑄2(𝑡)

(

1 − 𝑄2(𝑡)+𝑄3(𝑡)
𝜏𝐶

+ 𝐴1(𝑡)
𝜏𝐶𝐴1

+
𝜏𝐴2
𝜏𝐶𝐴2

)

− 𝑓2
(

𝐴1(𝑡), 𝜏𝐴2

)

𝑄2(𝑡)

𝑑
𝑑𝑡𝑄3(𝑡) =𝛾3𝑄3(𝑡)

(

1 − 𝑄2(𝑡)+𝑄3(𝑡)
𝜏𝐶

+ 𝐴1(𝑡)
𝜏𝐶𝐴1

+
𝜏𝐴2
𝜏𝐶𝐴2

)

+ 𝑓2
(

𝐴1(𝑡), 𝜏𝐴2

)

𝑄2(𝑡)

𝑑
𝑑𝑡𝐴1(𝑡) =

(

𝛼2𝑄2(𝑡) − 𝛼3𝑄3(𝑡)
)

(

1 + 𝐴1(𝑡)
𝜏𝐴1

)(

1 − 𝐴1(𝑡)
𝜏𝐴1

)

(12)

he steady states and their local stabilities are studied (c.f. Proposi-
ion 4) and Theorem 3 shows that the solution of the reduced system
12) converges globally to the pathological stationary state. Once the
onvergence is established on the limit system, the global asymptotic
ehavior of the complete system is given by Theorem 4 and relies on
he properties of asymptotically autonomous differential systems (c.f.
ppendix B).

emark 1. The asymptotic behavior of the system corresponds to the
athological case: the tumor cells are proliferating and it remains only
ensory axons in the domain. This steady-state is corroborated in the
bservation. Furthermore, the maximum amount of PDAC cells is given
y

𝐶𝐶(−𝜏𝐴1
) = 𝜏𝐶

(

1 −
𝜏𝐴1

𝜏𝐶𝐴1

+
𝜏𝐴2

𝜏𝐶𝐴2

)

.

his quantity corresponds to the maximum carrying capacity of the
omain and depends positively on the amount of sensory axons and
egatively on the amount of autonomic axons. This result resonates
ith the fact that the sensory axons have a pro-tumoral effect and a

elatively high density in PDAC tumors whereas the autonomic axons
ave an anti-tumoral effects and a relatively low density in the tumoral
issues during the late stages of the cancer development.
4. Calibration of the system and results

Next, we calibrated the model with biological information captured
in the data. The calibration seems to be in general a subjective ap-
proach. In our case, the large number of input parameters renders
it challenging and highly time-consuming. We use an optimization
method in order to reduce the user intervention and obtain a more
objective selection of parameters.

We first introduce and study the biological information aggregated
in the data. Then, we construct an objective function that integrates
the biological assumptions and the experimental data. We study the
identifiability of the parameters in regard to this objective function.
Finally, we obtain sets of parameters which calibrate reasonably well
the model and we discuss the sensitivity of these parameters.

4.1. Biological assumptions and observation

The observation aggregates experimental data and empirical knowl-
edge such as experimentally validated hypotheses (time of appearances,
etc.). We gather all the biological information available on the process
and formalize into the vector of observation denoted 𝑦∗ and the vector
of chronological parameters (𝑡𝑖)𝑖=1…5.

4.1.1. Experimental data 1
The observation used as referential in order to calibrate the model

is represented in Fig. 2. Data were obtained from the KIC (LSL-
KrasG12D/+; Cdkn2a (Ink4a/Arf)lox/lox; Pdx1-Cre) transgenic mouse
model of PDAC and describe the percentage of acinar tissue, ADM,
PanIN and PDAC in histological sections through the pancreas of a 6.5
weeks-old mouse (45 days). Quantification data have been published
and are available in the source data file of Guillot et al. (2022). Because
of the variability between samples, we choose to aggregate all the
information contained in each section of the same mouse. We consider
the observation as the proportion of each compartment averaged over
all samples of the same mouse and denote these experimental data 𝑦∗1
or the Acini, 𝑦∗2 for the ADM, 𝑦∗3 for the PanIN and 𝑦∗4 for the PDAC. In

addition, the time of tissue harvest is 45 days and is denoted 𝑡𝑓 in the
following.

Remark 2. One can reasonably object that considering a larger number
of tissue sections is consistent with the fact that the domain in the math-
ematical model is the whole pancreas and its immediate environment.
However, one of the purpose of this work is to be able to use human
biopsies as data. In the case of human data, the number of biopsies
is limited and it becomes interesting to develop generic models and
methods that make up for the lack of information.

4.1.2. Experimental data 2
Data on axonal density were obtained by quantifying innervation

in the pancreas of control and KIC mice. Whole pancreases were
immunostained with antibodies specific to each PNS neuron subtype.
Sympathetic axons were immunolabeled with an antibody against tyro-
sine hydroxylase (TH), parasympathetic axons with an antibody against
vesicular acetylcholine transporter (VAChT) and sensory fibers with an
antibody against calcitonin gene-related peptide (CGRP). The tissues
were then imaged using LSFM to allow 3D visualization of the neuronal
networks. LSFM images were processed with Imaris software. Regions
of Interest (ROIs: Acini, ADM, PanIN or PDAC) were segmented based
on the autofluorescence signal of the tissue and their volumes were
measured. Axonal networks were manually reconstructed using the
Imaris ‘‘Filament tracer’’ tool. The ‘‘dendrite length sum’’ was collected
for each ROI. The axon density was calculated as follows: dendrite
length sum (nm) / volume of ROI (μm3). The full protocol and the quan-
tification data for the sympathetic axons are available in the source data
file of Guillot et al. (2022). The quantification data for parasympathetic

and sensory fibers are performed using the same protocol. To obtained
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Fig. 2. Proportion of cell densities in the pancreas of a KIC mouse at 45 days. The proportions of acini, ADM, PanIN and PDAC lesions was calculated on 3 sections. Each column
epresents the data assimilated to one section.
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he density of autonomic axon, we sum the density of sympathetic and
arasympathetic axons in each ROI. . Experimental data were measured
t day 45 and denoted 𝑦∗5 for the autonomic axons, 𝑦∗6 for the sensory
xons and 𝐴𝑒𝑞1 the density of autonomic axons of the control mouse.
he experimental data expressed in nm(μm)−3 are as follows :
∗
5 = 0.1077, 𝑦∗6 = 0.1468, 𝐴𝑒𝑞1 = 0.0099.

.1.3. Biological assumptions on the chronological process
Initial conditions : there are only healthy cells (Acini) at initial

ime and there is a negligible amount of sensory axons in the pancreas
nd a small amount of autonomic axons at initial time. These conditions
re formalized by (7). In addition, the neuroplastic changes and the
ancer progression are relatively negligible at early stages (before two
eeks of age in the KIC model). We denote 𝑡0 the parameter (in days)

orresponding to the initial time for the model simulations. Without
oss of generality, we consider 𝑡0 = 10 days.
Chronological appearances : Based on the previous characteriza-

ion of the KIC model (Aguirre et al., 2003 and our personal observa-
ions), the first appearance of ADM is around time 𝑡1 = 17 days, of
anIN around time 𝑡2 = 21 days and PDAC around time 𝑡3 = 35 days.
he density of autonomic axons increases in ADM regions, peaks in
anIN and decreases in PDAC, while sensory axons are rarely observed
n PanIN, but have a high density in PDAC. We therefore empirically
et the time of appearance of 𝐴1 and 𝐴2 at 𝑡4 = 18 days and 𝑡5 = 30
ays, respectively.

.2. Parameters calibration with an optimization procedure

The dynamics of the system depends very strongly on the choice
f parameters. This choice is based on the calibration of the model.
n other words, it is first necessary to quantify the distance between
he outputs of the model and the biological data and then to find the
arameters that minimize this distance in an objective way. That is
he reason why, testing the goodness of fit through an optimization
rocedure impose itself as a rigorous method. The following section
escribes a data-driven process which minimizes the deviation between
he observation and the model and which gives an objective calibration
f the parameters.

.2.1. Objective function
The measurement of this deviation is made possible by the objective

unction or also called the cost function which is denoted as . The
nputs of  are the parameters of (1)–(6) (see Table 2) denoted as
he vector 𝜃. This cost function integrates the biological assumptions
nd the comparison to the experimental data. The further away from
he experimental data the trajectories are, the higher the cost function
s. Hence, finding the parameters which minimize the cost function is
quivalent to the calibration of the model. We recall that 𝑦∗ are the
bservation used to calibrate the model. Hence, 𝑦∗ ∈  where  is

6 ∗
compact set in R . The vectors of parameters 𝜃 which minimize
he function  give the optimal calibration of the system where the
iological constraints and hypothesis are taken into accounts. The cost
unction is described by the following equation :

(𝜃) =
3
∑

𝑘=0

(

𝑎𝑘 ∫

𝑡𝑓+3

𝑡𝑓−3

(

𝑄𝑘(𝑠|𝜃)
(𝑄0 +𝑄1 +𝑄2 +𝑄3)(𝑠|𝜃)

− 𝑦∗𝑘+1

)2

𝑑𝑠

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Measure of the deviation between the numerical simulation

and the experimental data 1

+ 𝑎4 ∫

𝑡𝑓+3

𝑡𝑓−3

(

𝐴1(𝑠|𝜃) + 𝐴
𝑒𝑞
1 − 𝑦∗5

)2 𝑑𝑠 + 𝑎5 ∫

𝑡𝑓+3

𝑡𝑓−3

(

𝐴2(𝑠|𝜃) − 𝑦∗6
)2 𝑑𝑠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Measure of the deviation between the numerical simulation and the

experimental data 2

+
3
∑

𝑘=1

(

𝑏𝑘 ∫

𝑡𝑘

𝑡0
(𝑄𝑘(𝑠|𝜃))2𝑑𝑠

)

+ 𝑏4 ∫

𝑡4

𝑡0
(𝐴1(𝑠|𝜃))2𝑑𝑠 + 𝑏5 ∫

𝑡5

𝑡0
(𝐴2(𝑠|𝜃))2𝑑𝑠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Penalization term ensuring the chronological assumptions

.

(13)

he parameter 𝑡𝑓 corresponds to the time in days of data extraction
rom in vivo experimentations (see Fig. 2), hence 𝑡𝑓 = 45. The definition
f (13) also includes the interval of days [𝑡𝑓 − 3; 𝑡𝑓 + 3] and the
arameters (𝑎𝑘)𝑘=0,…,5, (𝑏𝑘)𝑘=1,…,5. The time interval [𝑡𝑓−3; 𝑡𝑓+3] allows
s to use the 𝐿2-norm squared to compare the simulated trajectories
o the observation. However, it implies that the experimental data
re supposed to be true on a six days interval around 𝑡𝑓 . One can
easonably justify this assumptions by the fact that this non-local norm
egularizes the observation from its inherent biological chaos. Chaos
eans that biological phenomenon, processes or experiments are ex-

remely sensitive to small perturbations. In our case, it is translated by
he variability of chronological appearances of phenomenon between
ice. The 𝐿2-norm smooths the variability in time in the objective

unction and is less sensitive to the observation variability.

emark 3. We introduce 𝑎𝑘 and 𝑏𝑘 as normalization parameters in .
he objective function  is a sum of positive terms where each of these
erms have a contribution to the final cost. These contributions are in-
ividually linked to a specific part of the information on the biological
rocess. However, there are discrepancies between the different parts,
or instance, 𝑦∗2 ≪ 𝑦∗3 (cf. Fig. 2) or 𝑡1 ≪ 𝑡3. Some data can be falsely
ssimilated as outliers. Hence, we consider the following:

𝑘 =
1
6𝑦∗𝑘

, 𝑏𝑘 = 𝑓𝑘(𝑦∗𝑘)
1

𝑡𝑘 − 𝑡0
,

where 𝑓𝑘 adjusts the coefficient 𝑏𝑘 in regard to 𝑦∗𝑘. Ultimately, the
normalization coefficients make all contributions to the cost function
equal.

4.3. Identifiability and sensitivity of the parameters

We study the identifiability of the model to understand the degree
to which the parameters can be constrained to a unique value or a rea-

sonable range of values given the data available. Since multiple model
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Fig. 3. Evolution of cell populations and axons in the pancreas for 7 different sets of parameters. The 𝑥-axis is the time in days. For the top four graphs, the 𝑦-axis corresponds to
percentage of a specific population in the pancreas. The vertical red lines correspond to the time of appearance within a tolerance of six days. The red dots at day 45 correspond
to the observation 𝑦∗ for the mouse 1 (see Fig. 2) and the confidence intervals of the data are represented by the red segments. Each curve on the same graph is associated to
its set of parameters (see Table 3). All sets of parameters have almost the same optimization score (under 10), however the dynamics are different. .
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parametrizations produce similar behavior (see Section 4.3.1), we use
profile likelihood methods (cf. Kreutz et al., 2013; Roosa and Chowell,
2019) to refine the interpretation of the estimators (see Section 4.3.4).

4.3.1. Optimization challenges
The optimization problem leads to mathematical and numerical

challenges. With such experimental data and such a large set of pa-
rameters, we cannot expect to calibrate the model uniquely. It leads
to multiple local minimizers and convergence issues. We use the Co-
variance Matrix Adaptation Evolution Strategy (CMA-ES see Hansen
2006, Jastrebski and Arnold 2006) which is based on a derivative-free
evolution algorithm in order to overcome the obstacles linked to the
size of the optimization problem and to the non-trivial dependence of
the cost function on the parameters. The results of the optimization
procedure give a set of acceptable parameters. The evolution of cell
populations can be simulated for each of these parameters’ vector (cf.
Fig. 3). It is interesting to note that the trajectories in the numerical
simulation show different behaviors for the same cost (see Fig. 3).

Recall that the expected asymptotic behavior corresponds to the
depletion of all healthy and precancerous cells and the saturation of
PDAC. Furthermore, the autonomic axons density is supposed to vanish
whereas the sensory axons density converges to a threshold (see Section
??). The numerical simulations confirm that the time near the steady
state and the time of the experimental data 1 are not on the same time
frame. Moreover, some trajectories tend faster to the equilibrium with
the same cost function values than others. For instance, we observe in
Fig. 3 that some sets of parameters correspond to a faster convergence
rate:

• We see that one trajectory of 𝑄1 is decreasing after time 𝑡𝑓 .
• Two trajectories of 𝑄2 are increasing then decreasing with a peak

values between the range of the appearance time of the PDAC.
• We distinguish that two trajectories of 𝐴1 are increasing, reach

their maximum value around 35 days and then are decreasing
relatively fast after 45 days.

urther analysis are needed in order to classify which parameters tuples
re relevant.

.3.2. Discrete formulation of the objective function and link with the
ikelihood function

Consider the continuous solution 𝑋(𝑡) of the system formed by the
Eqs. (1)–(6)

𝑋(𝑡) = (𝑄 (𝑡), 𝑄 (𝑡), 𝑄 (𝑡), 𝑄 (𝑡), 𝐴 (𝑡), 𝐴 (𝑡)) = (𝑋 (𝑡)) .
0 1 2 3 1 2 𝑘 𝑘=1…6
Recall that 𝑋(𝑡) is included in a compact subset of R6 denoted  (see
Section ??). Moreover, the time interval of interest is finite and we
denote 𝑇 its upper bound and 𝐼 = [0, 𝑇 ). We denote (𝑠𝑖)0,…,𝑁−1 the
inite sequence of length 𝑁 used to discretize the time interval [0, 𝑇 ).
n order to calibrate the parameters of the system (1)–(6), we introduce
he model function 𝑔 ∶  ↦ R6

+. It allows us to confront the simulations
o the measurement values and to the biological assumptions. In the
irst hand, we denote 𝑔𝑘 as the 𝑘th coordinate of the model function
enoted:

𝑘
(

𝑠𝑖|𝜃
)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎧

⎪

⎨

⎪

⎩

𝑋𝑘
∑

𝑗 𝑄𝑗
(𝑠𝑖) if 𝑘 = 1,… , 4

𝑋4(𝑠𝑖) + 𝐴
𝑒𝑞
1 if 𝑘 = 5

𝑋5(𝑠𝑖) if 𝑘 = 6

if 𝑠𝑖 ∈ [𝑡𝑓 − 3; 𝑡𝑓 + 3]

𝑋𝑘(𝑠𝑖) if 𝑠𝑖 ∈ [0; 𝑡𝑘]

here 𝐴𝑒𝑞1 is the initial equilibrium state of autonomic axons. In the
econd hand, we denote �̃�𝑘 the 𝑘th coordinate of the statistical obser-
ation (i.e. the quantitative value gathering the measurement values
nd the biological assumptions):

�̃�𝑘,𝑖 =

{

𝑦∗𝑘 if 𝑠𝑖 ∈ [𝑡𝑓 − 3; 𝑡𝑓 + 3]
0 if 𝑠𝑖 ∈ [0, 𝑡𝑘]

(14)

here 𝑖 = 0,… , 𝑁 − 1, 𝑦∗ is the vector of the experimental measure-
ents and 𝑡𝑘 is the time of appearance of the 𝑘th variable of X. Finally,
e denote the observables as following :

𝑖(𝜃) = 𝑔
(

𝑠𝑖|𝜃
)

+ 𝜖𝑖 for 𝑖 = 0,… , 𝑁 − 1, (15)

here 𝜃 is the vector of parameters of the model and 𝜖𝑖 is the indepen-
ent noise.

Finally, we denote 𝜒 2 the objective function which measures the
greement of experimental data with the observables predicted by the
odel :

2(𝜃) =
𝑁−1
∑

𝑖=0

1
𝑐𝑖
‖𝑦𝑖(𝜃) − �̃�𝑖‖22, (16)

where �̃�𝑖 is the vector composed by the �̃�𝑘,𝑖 (see (14)) and 𝑐𝑖 are
coefficients gathering the corresponding measurements errors and nor-
malization terms coming from the discrepancy of the data. The objec-
tive function described in (16) corresponds to the objective function
 given in (13) in a discrete time frame and considering the exper-
imental noise. This function is also assimilated to −2𝐿𝐿, where 𝐿𝐿
is the log-likelihood. Hence, the minimization problem is equivalent to
the maximum likelihood estimation problem. It is a widely documented
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Fig. 4. Numerical results of the identifiability problem using the profile likelihood. Each plot corresponds to a specific identifiable parameter (𝜋0, 𝜋1, 𝜋2, 𝛾2, 𝛾3, 𝜏𝐶 , 𝛿0). The 𝑥-axis
describes the values taken by the fixed parameter 𝜃𝑗 . The 𝑦-axis denotes the corresponding fitting error defined in (17). The gray area represents 75% of the results between the
first and last quartile (see Appendix C). The median (in blue) and the mean (in orange) for 50 iterations of the minimization problem show that each parameters admits a distinct
minimum value under 10 for the fitting error.
problem in the literature and has beneficial properties like efficiency
and consistency (Van der Vaart, 2000).

4.3.3. Profile likelihood to identify the parameters
The issue remains the large number of parameters and the ‘‘small’’

amount of data at our disposal. Therefore, the study of the identifia-
bility of the parameters gives further knowledge about the fit between
the model and the observation and helps to interpret the outputs given
by the model. Since the optimization problem is linked to the maxi-
mization of the likelihood, the profile likelihood solves the identifiability
problem (Murphy and Van der Vaart, 2000). This one-dimensional
projection is performed to visually evaluate whether different values
of the same parameter give similar outputs. We recall that the vector
𝜃 denotes the parameters of the model . Hence, using the objective
function (16), the impact of the value of the specific parameter 𝜃𝑗 for
fitting the model to the observation is assessed by the following profile
likelihood :

𝑗 (𝑝) = min
𝜃∈{𝜃∣𝜃𝑗=𝑝}

𝜒 2(𝜃), (17)

where the objective function (16) is evaluated as a function of the
values 𝑝𝑗 taken by the parameter 𝜃𝑗 while all others parameters 𝜃𝑖, 𝑖 ≠
𝑗 are reoptimized. This one-dimensional representation of the like-
lihood (17) can be geometrically interpreted in order to assess the
identifiability of the parameter 𝜃𝑗 (Kreutz et al., 2013; Raue et al.,
2009). For instance, a flat profile for 𝑗 corresponds to a structural
non-identifiability for the parameter 𝜃𝑗 . It implies that the parameter is
non-unique for the minimization of the objective function. Eliminating
the non-uniqueness requires more data or additional data on different
quantities. If 𝑗 has a minimum but is flat on one side then the
parameter 𝜃𝑗 is considered as a practically non-identifiable parameter.
It implies that the data do not contain significant enough information
about the parameter. The parameter value cannot be restricted to a
precise value. Similarly, new experiments leading to additional data
are required in order to rigorously estimate the parameters. However,
if 𝑗 describes a curve with unique minimum in a realistic range of
values then the parameters 𝜃𝑗 is identifiable. Also, if some knowledge is
assumed on the experimental noise 𝜖𝑗 , a finite confidence interval can

be computed and gives an asymptotic validation of the identifiability
of the parameter 𝜃𝑗 (see Murphy and Van der Vaart 2000, Kreutz et al.
2013, Raue et al. 2009).

An implementation of the profile likelihood has been performed
where 𝜃𝑗 takes 20 distinct values denoted

{

𝑝𝑗𝑖 |𝑖 = 1…20
}

which cover
its range (see Table 2). For each 𝑝𝑗𝑖 , the minimization problem (17)
has been solved numerically with 50 different initial conditions on the
parameters 𝜃𝑖, 𝑖 ≠ 𝑗 in order to fully explore the optimization domain
(see Appendix C). This Monte-Carlo approach allows to obtain several
sets of admissible parameters for each 𝑝𝑗𝑖 . It gives a qualitative criterium
to validate the identifiability of a parameter : if the median of the costs
𝑗 admits a distinct minimum at 𝑝𝑗,∗ then we consider the parameter
to be identifiable and its value to be 𝑝𝑗,∗. It is reasonable to consider
as estimator the identifiable parameters 𝑝𝑗,∗, however these values are
highly dependent on the choice of the discretization of the

(

𝑝𝑗𝑖
)

𝑖
. This

uncertainty related to this choice is significantly reduced when we focus
on the confidence range obtained through the procedure, i.e. the range
where the identifiable parameters give reasonable results concerning
the deviation between the observations and the model.

As a result, we clearly distinguished seven identifiable parameters
in our model (see Fig. 4): the progression transfer rates 𝜋0, 𝜋1 and 𝜋2,
the proliferation rates of the PanIN and the PDAC respectively 𝛾2 and
𝛾3, the saturation term for the proliferation of the PanIN and PDAC 𝜏𝐶
and finally the amplitude of the Michaelis–Menten term describing the
effect of the PanIN and the PDAC on the progression of the Acini into
ADM 𝛿0. These parameters and their estimated values are gathered in
the Table 1.

The identifiability of these seven parameters is further verified
by comparing the cost distribution of the objective function in two
cases: when we fix the identifiable parameters and minimize on all the
remaining parameters and when all the parameters are free during the
optimization. In the first case, the cost distribution is located around
4 (close to the minimal value obtained in the numerical simulation).
In the second case, the cost distribution is much more spread (see
Fig. 10 in the Appendix). It confirms that the parameters are correctly
estimated thanks to the data available since the distribution of fitting
errors is concentrated on small values. Further details about the nu-
merical methods are postponed in Appendix C. In the end, this method

allows to obtain a data-driven identifiability criterion without making
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Table 1
Values of the identifiable parameters.

𝜋0 𝜋1 𝜋2 𝛾2 𝛾3 𝜏𝐶 𝛿0
Estimated value 0.0025 0.00942 0.176 0.229 0.31 100 3.65
Confidence range (10−4 , 10−2) (10−3 , 10−1) (10−1 , 0.5) (10−1 , 0.3) (0.2, 0.4) (50, 200) (3, 5)
Fig. 5. Indices of the sensitivity analysis of the parameters linked to the axons on the PDAC cells. The color blue correspond to the first-order-effect indices (S1) of the Sobol
sensitivity analysis and the color orange correspond to the total-effect indices (ST). The black segment corresponds to the confidence interval for the associated sensitivity index. .
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assumptions on the experimental noise. It also gives estimators and
their confidence range (see Table 1) for the identifiable parameters of
the model.

4.3.4. Mathematical and biological interpretations
What can we infer about pancreatic cancer progression from

the biological data ? This numerical study around the identifiability
f the parameters of the model gives interesting insights about the
xperimental data and the biological processes behind it. First, we
bserved that the transfer rates from Acini to ADM 𝜋0, ADM to PanIN
𝜋1 and PanIN to PDAC 𝜋2 are identifiable. Moreover, the estimates for
the transfer rates respect the following order relation

𝜋2 > 𝜋𝑖, 𝑖 = 0, 1.

It implies that the progression process appears to go faster at the late
stage of the PDAC development. This is consistent with the rapid tumor
development reported in the KIC mice used for model calibration.
Indeed, KIC mice carry a deletion mutation in the tumor suppressor
gene Ink4 A, which has been shown to accelerate the progression from
precancerous lesions to PDAC, when compared to other Kras-based
genetic models of PDAC.

We also obtain estimates for the proliferation rates of the PanIN 𝛾2
and the PDAC 𝛾3. It implies that the data combining the proportion
of cell populations at 45 days and the knowledge of the first time of
appearance of each cell population give a sufficient amount of knowl-
edge in order to calibrate the speed of the proliferation mechanism
in the model. However, the threshold parameters 𝜏𝑐 is likely to be
underestimated in regards to the data at our disposal. The value of this
threshold is of a different order of magnitude compared to the other
parameters. Therefore, its range of acceptable estimates is also wider
compared to the other parameters and additional data are needed in
order to compute a finer estimate.
What is the impact of the axons regulation on the tumor pro-
gression ? A variance-based sensitivity analysis (see Sobol’ 1990, Sobol
2001) allowed us to investigate this issue. In order to perform this
analysis, we restrict ourselves to the parameters linked to the effect
of the axons on the cell population densities: the parameters in the
transition rates 𝛽1, 𝛽2 and 𝛿2, the parameters in the proliferation terms
𝜏𝐶𝐴1

and 𝜏𝐶𝐴2
(c.f. Table 2). The other parameters are fixed and are given

y the last set of parameters in the Table 3. The choice of this specific
et of parameters is based on qualitative considerations such as its
ssociated cost given by (13), the fact that the associated trajectories
re similar to the expected behavior (e.g. the decay of 𝐴1, etc.). Hence,
he inputs are these five parameters, which are denoted

=
(

𝛽1, 𝛽2, 𝛿2, 𝜏
𝐶
𝐴1
, 𝜏𝐶𝐴2

)

.

oncerning the output of the sensitivity analysis, our focus is on the
DAC cells. We introduce the following indicator of the variation of
he PDAC cells:

= 1 −
∫ 𝑡𝐹𝑡0 𝑄3(𝑠; 𝜗)𝑑𝑠

∫ 𝑡𝐹𝑡0 𝑄3(𝑠)𝑑𝑠
, (18)

where 𝑄3(⋅) denotes the PDACs density for the control parameters set
given by the whole last set of parameters in the Table 3), 𝑄3(⋅; 𝜗)

denotes the PDAC cells density for the input parameters 𝜗, 𝑡0 = 10 and
𝑡𝐹 = 70 correspond to the initial time and the finite time for the model
simulations. The interpretation of the output  in (18) is the following:

• if || ≤ 𝜖 for 𝜖 arbitrary small, then axons have almost no effect
on the appearance of PDACs between days 𝑡0 and 𝑡𝐹 .

• If  > 𝜖, the inputs in 𝜗 have an inhibiting effect on the PDACs
between days 𝑡 and 𝑡 .
0 𝐹



S. Chauvet et al.

t
S
t
f
o
e
o
s
o

t

T
s
e
N
m
t

5

o
c
m
m
e
s
t
p
a
c
c
p
t
a
o
r
I
d
a
c

t
d
a
e
m
m
e
r
r

o
t
e
t
p
p
m
p

o
i

• Conversely, if  < −𝜖, the inputs in 𝜗 have a positive impact on
the PDACs between days 10 and 70 which can also be interpreted
as a pro-tumoral effect of the axons.

The results of the variance-based sensitivity analysis are given by
he first-order indices and the total-effect indices respectively S1 an
T in the Fig. 5 (see Saltelli et al. 2000). Both types of index measure
he contribution of the effect 𝜗𝑖 to the output variance. However, the
irst-order index measure the effect of varying 𝜃𝑖 alone and is averaged
ver the variations of the other input parameters. Whereas, the total-
ffect index gives the contribution of 𝜗𝑖 and its interactions with any
ther inputs or tuple of inputs. This approach is also called the global
ensitivity analysis because it also measures the sensitivity of any tuple
f inputs.

Ultimately, the following conclusions can be drawn from the sensi-
ivity analysis (see Fig. 5).

• The two main contributors to the variability of the PDACs are the
parameters 𝛽1 and 𝜏𝐶𝐴2

. Both parameters have an inhibiting effect
on the PDACs when their values are growing. This means that
PDAC progression is mainly regulated by the effect of autonomic
axons on the ADM to PanIN transition and by the effect of sensory
axons on cell proliferation.

• By definition, we have that 𝑆𝑇 (𝜗𝑖) ≥ 𝑆1(𝜗𝑖) and the equality
holds when the model is additive. One interesting remark is
that the first-order index and the total-effect index of 𝜏𝐶𝐴2

are
almost equivalent. This implies that the contribution of cross-
effects between 𝜏𝐶𝐴2

and the other parameters is small. Thus, PDAC
proliferation is under the near exclusive control of sensory axons,
with other axonal populations having little or no contribution.

• The first-order indices of 𝛽2, 𝛿2 and 𝜏𝐶𝐴1
are significantly smaller

than the indices of the two other parameters. This implies that the
variation of these parameters, taken one by one, has a relatively
negligible effect on the variations of PDACs. Moreover, since the
total-effect index of 𝛽2 is small, this implies that the inhibitory
impact of autonomous axons on the transfer of PanIN cells to
PDACs does not have much impact on the overall amount of
PDACs in the model.

• Concerning 𝛿2 and 𝜏𝐶𝐴1
, the discrepancy between the first-order

indices and the total-effect indices indicates that the parameters
still have an effect on the overall amount of PDACs. However, the
significance of the effect is primarily seen through the interactions
between one of these two parameters and the others (i.e., when
measuring the impact of varying pairs or tuples of parameters
simultaneously).

What is the impact of denervation on the tumor progression ?
o address this issue, we consider the dynamics associated to the last
et of parameters in Table 3 and define as a control the corresponding
volution of PDACs between days 10 and 70 (the blue curve in Fig. 6).
ow, a more qualitative approach of model validation is considered by
aking denervation in silico. This model validation step is based on

hree types of denervation and corresponding observations:

• in Guillot et al. (2022) and Renz et al. (2018), it has been
observed that the denervation of the autonomic axons has a pro-
tumoral effect. The pro-tumoral effect of the denervation is also
observed in the numerical simulation in Fig. 6. The orange curve
corresponds to the amount of PDACs (𝑄3) when the parameters
in front of the autonomic axons in the transfer rates are negligible
(𝛽1 = 𝛽2 = 0) and when the parameters dividing the autonomic
axons in the proliferation terms is large

(

𝜏𝐶𝐴1
= 100 and 𝐴1∕𝜏𝐶𝐴1

≈
10−3

)

. Hence, we see that the PDACs appear earlier and converge
toward a bigger plateau compared to the control curve (blue).

• The denervation of the sensory axons alone corresponding to the
red curve in Fig. 6 shows that the denervation has an anti-tumoral

effect by delaying the PDACs arrival. This can be performed by m
taking 𝛿2 = 0 and 𝜏𝐶𝐴2
= 100 in the model. The immediate

conclusion is that the sensory axons have a pro-tumoral role in
the PDAC progression which is corroborated by the experimental
conclusions in Saloman et al. (2016).

• In Guillot et al. (2022), a pro-tumoral effect has been observed
when a denervation of both autonomic and sensory axons has
been performed. The same effect is also observed in the numerical
simulation (green curve in Fig. 6). In order to simulate this addi-
tional denervation, we take the same values for the parameters
linked to the autonomic axons. We set to 0 the parameter of the
sensory axons in the transfer rate (𝛿2 = 0) and to a large value
the parameter linked to the effect of the sensory axons in the
proliferation terms (𝜏𝐶𝐴2

= 100). One can note that compared to
the autonomic denervation case, the pro-tumoral effect is not as
strong when the sensory axons are also denervated.
Finally, the three types of denervation performed in vivo are also
performed in silico and the in vivo and in silico conclusions are
analogous.

. Conclusion

In this paper, we develop an original model to investigate the role
f peripheral axons in pancreatic cancer progression. The study of the
alibration to the experimental data highlights the genericity of the
odel and the fine analysis of the data informs on the underlying
echanisms. For example, the model recapitulates the drastic accel-

ration of tumorigenesis observed in KIC mice, and attributes it to the
hort latency in the transition from neoplasms to invasive cancer. Fur-
hermore, our data highlight two major ‘‘neural checkpoints’’ in PDAC
rogression: an early phase during which progression is restrained by
utonomic axons at the ADM-PanIN transition, and a later window of
ontrol of PDAC growth by the promoter action of sensory axons on
ell proliferation. These results suggest that cancer-induced neuronal
lasticity may promote a shift from a protective to a harmful role of
he peripheral nervous system on pancreatic cancer. Finally, our model
lso allowed us to simulate the effect of partial or complete denervation
f autonomic and/or sensory axons and to recapitulate the different
esults observed on tumor progression in experimental in vivo models.
n particular, the acceleration of PDAC growth observed after joint
enervation of pro- and anti-tumor fibers (i.e., complete autonomic
nd sensory denervation) underscores the predominant effect of the
heckpoint by autonomic axons on subsequent tumor progression.

A first step for expansion and improvement is to investigate further
he acquisition of the experimental data in order to obtain quantitative
ata reducing the predictive uncertainty of the model. As an example,
dditional measurements are needed to quantify more precisely the
volution of sensory and autonomic axon density over time. These
easurements would be related to the speeds of axon density in the
odel. Moreover, these speeds aggregate into a coefficient various

ffects coming from different cell populations. This uncertainty can be
educed by studying and building an optimal experimental design in
elation to the mathematical model.

The model could be further improved by considering the phenotype
f the cell as a continuous variable. In particular, this approach leads
o a coupled model with a partial differential equation and differential
quations. This formalism would allow a more precise description of the
umor progression and the neuroplastic changes occurring during this
rocess. In particular, this would allow the incorporation of neglected
re-malignant stages (e.g. PanIN 1, PanIN 2, PanIN 3, etc.) into the
odel and it would lead to a finer representation of the progression of
ancreatic cancer in human patients.

An additional extension step would be to more accurately include
ther component of the tumor microenvironment (as example the
mmune system) in the modeling. However, the precision gained in the

odeling automatically leads to an increase in the data required for
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Fig. 6. Numerical simulations of the time evolution of PDAC cells. The 𝑥-axis describes the time in day. Each curves corresponds to the simulation of the quantity 𝑄3 in different
cases: when there is no denervation (blue), when the effect of the autonomic axons is off (orange), when the effect of the sensory axons is off (red) and when the effect of the
autonomic and sensory axons is off (green). The set of parameters for the simulation is given in the Table 3 (last set of parameters).
calibration and an increase in the complexity of the predictions that
can be made by this new model.

The present model of neural regulation of pancreatic cancer may
have clinical applications. Indeed, the discovery of the role of neuronal
signaling in pancreatic cancer progression has made therapeutic target-
ing of neuronal pathways a new area of clinical interest. For example,
a randomized placebo-controlled trial showed a survival benefit of
denervation in pancreatic cancer patients with high sensory nerve
activity (Lillemoe et al., 1993). However, peripheral denervation is not
permanent, and reinnervation and eventual tumor progression occur
with time. Our mathematical model could serve as a basis to help de-
termine the frequency, dosage and duration of temporary denervation
treatments. In addition, it has been suggested that pharmacological in-
hibition of neural signaling may act synergistically with chemotherapy
to inhibit pancreatic tumor growth (Renz et al., 2018). An extension
of our mathematical model that include cell response to chemotherapy
could in principle be used to identify neural drug delivery strategies
and combination schedules with maximal inhibitory effect on PDAC.
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Appendix A. Mathematical results

This section is devoted to the proof of Theorems 1 and 2.
A.1. Properties of the system (8)

Proposition 1. Let 𝑇 > 0 be arbitrary and consider 𝑋 =
(

𝑄0, 𝑄1, 𝑄2, 𝑄3,
𝐴1, 𝐴2

)

and 𝑋0 =
(

𝑄0(0), 𝑄1(0), 𝑄2(0), 𝑄3(0), 𝐴1(0), 𝐴2(0)
)

such that

𝑄𝑖(0) ≥ 0, for 𝑖 = 0, 1, 2, 3

and

−𝜏𝐴1
≤ 𝐴1(0) ≤ 𝜏𝐴1

and 0 ≤ 𝐴2(0) ≤ 𝜏𝐴2
.

Moreover assume that

∀(𝑥, 𝑦) ∈ R2 ∃𝑀0 > 𝑚0 > 0 ⟹ 𝑚0 ≤ 𝑓0(𝑥, 𝑦) ≤𝑀0,

∃𝐿0 > 0 such that ∀𝑢 ∈ R2, ∀𝑣 ∈ R2
‖𝑓0(𝑢) − 𝑓0(𝑣)‖ ≤ 𝐿0‖𝑢 − 𝑣‖,

and

∀𝑥 ∈ R ∃𝑀1 > 𝑚1 > 0 ⟹ 𝑚1 ≤ 𝑓1(𝑥) ≤𝑀1,

∃𝐿1 > 0 such that ∀(𝑢, 𝑣) ∈ R2
‖𝑓1(𝑢) − 𝑓1(𝑣)‖ ≤ 𝐿1‖𝑢 − 𝑣‖,

and

∀(𝑥, 𝑦) ∈ R2 ∃𝑀2 > 𝑚2 > 0 ⟹ 𝑚2 ≤ 𝑓2(𝑥, 𝑦) ≤𝑀2,

∃𝐿2 > 0 such that ∀𝑢 ∈ R2, ∀𝑣 ∈ R2
‖𝑓2(𝑢) − 𝑓2(𝑣)‖ ≤ 𝐿2‖𝑢 − 𝑣‖.

Then there exists a unique maximal solution for the system (8) with the
initial condition 𝑋0 on 𝐼 = [0, 𝑇 ). The following properties holds:

• Nonnegativity ∀𝑡 ∈ 𝐼 𝑄𝑖(𝑡) ≥ 0, for 𝑖 = 0, 1, 2, 3,
• Boundedness of the axons ∀𝑡 ∈ 𝐼 − 𝜏𝐴1

≤ 𝐴1(𝑡) ≤
𝜏 and 0 ≤ 𝐴 (𝑡) ≤ 𝜏 .
𝐴1 2 𝐴2
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Proof. The well-posedness is a direct consequence of the Cauchy–
Lipschitz theorem and the Lipschitz bound on 𝑓𝑖. Moreover,
𝑑
𝑑𝑡
𝑄0(𝑡) = −𝑓0(𝑄2(𝑡), 𝑄3(𝑡))𝑄0(𝑡) = −𝜓(𝑡)𝑄0(𝑡)

for a positive function 𝜓 , then {0} is an invariant set for 𝑑
𝑑𝑡𝑄0 and we

ave 𝑄0(𝑡) ≥ 0. Similarly, we obtain that

𝑡 ∈ 𝐼 − 𝜏𝐴1
≤ 𝐴1(𝑡) ≤ 𝜏𝐴1

and 0 ≤ 𝐴2(𝑡) ≤ 𝜏𝐴2
.

hen, using the boundedness of 𝑓0 and 𝑓1 and the nonnegativity of 𝑄0,
e obtain
𝑑
𝑑𝑡
𝑄1(𝑡) ≥ −𝑀1𝑄1(𝑡).

ence by Gronwall’s lemma, we have

𝑡 > 0 0 ≤ 𝑄1(0)𝑒−𝑀1𝑡 ≤ 𝑄1(𝑡).

Similarly, using the boundedness of 𝑓1 and the nonnegativity of 𝑄1, we
obtain

∀𝑡 > 0, 0 ≤ 𝑄2(0)𝑒�̄�(𝑡) ≤ 𝑄2(𝑡),

where

�̄�(𝑡) = ∫

𝑡

0
𝛾2

(

1 − 𝑄2+𝑄3
𝜏𝐶

+ 𝐴1
𝜏𝐶𝐴1

+ 𝐴2
𝜏𝐶𝐴2

)

−𝑀2𝑑𝑠.

gain, using the boundedness of 𝑓2 and the nonnegativity of 𝑄2, we
btain

𝑡 > 0, 0 ≤ 𝑄3(0)𝑒�̃�(𝑡) ≤ 𝑄3(𝑡),

where

�̃�(𝑡) = ∫

𝑡

0
𝛾3

(

1 − 𝑄2+𝑄3
𝜏𝐶

+ 𝐴1
𝜏𝐶𝐴1

+ 𝐴2
𝜏𝐶𝐴2

)

𝑑𝑠. ■

Proposition 2. Suppose the same hypotheses as in Proposition 1, then the
following properties holds:

1. Exponential decays The solutions 𝑄0 and 𝑄1 decay exponentially
fast toward 0 as 𝑡 tends to infinity. Moreover,

∀𝑡 ∈ 𝐼 𝑄0(0)𝑒−𝑀0𝑡 ≤ 𝑄0(𝑡) ≤ 𝑄0(0)𝑒−𝑚0𝑡,

and it exists a constant 𝐶(𝑄0(0), 𝑄1(0)) ≥ 0 such that

∀𝑡 ∈ 𝐼 0 ≤ 𝑄1(𝑡) ≤ 𝐶(𝑄0(0), 𝑄1(0))𝑒−(𝑚1−𝑜(1))𝑡.

2. Global existence There exists a unique solution for the system (8)
with initial condition 𝑋0 on R+

Proof. 1. (Exponential decays) Using the Gronwall’s lemma, we get the
following from the boundedness of 𝑓0

∀𝑡 > 0 𝑄0(0)𝑒−𝑀0𝑡 ≤ 𝑄0(𝑡) ≤ 𝑄0(0)𝑒−𝑚0𝑡.

From the proof of nonnegativity, we obtain a lower bound on 𝑄1 which
decays exponentially fast

∀𝑡 > 0 𝑄1(0)𝑒−𝑀1𝑡 ≤ 𝑄1(𝑡).

We are now interested in the upper bound of 𝑄1. Using the bound on
𝑓1 and the Gronwall’s lemma, we obtain
𝑑
𝑑𝑡
𝑄1(𝑡) ≤𝑀0𝑒

−𝑚0𝑡𝑄0(0) − 𝑚1𝑄1(𝑡),

𝑄1(𝑡) ≤ 𝑒−𝑚1𝑡𝑄1(0) + 𝑒−𝑚1𝑡𝑀0𝑄0(0)∫

𝑡

0
𝑒(𝑚1−𝑚0)𝑠𝑑𝑠.

We first consider the case where 𝑚1 = 𝑚0, thus we get

𝑄1(𝑡) ≤ 𝑒−𝑚1𝑡𝑄1(0) + 𝑒−𝑚1𝑡𝑀0𝑄0(0)𝑡,

𝑄1(𝑡) ≤ 𝑒−𝑚1𝑡𝑄1(0) + 𝑒−𝑚1𝑡+𝑙𝑛(𝑡)𝑀0𝑄0(0),

𝑄1(𝑡) ≤
(

𝑒−𝑙𝑛(𝑡)𝑄1(0) +𝑀0𝑄0(0)
)

𝑒−𝑚1𝑡+𝑙𝑛(𝑡).
 u
We finally get

𝑄1(𝑡) ≤
[

𝑄1(0)𝑜(1) +𝑀0𝑄0(0)
]

𝑒(−𝑚1+𝑜(1))𝑡.

Let us now consider the case where 𝑚1 ≠ 𝑚0.

𝑄1(𝑡) ≤ 𝑒−𝑚1𝑡𝑄1(0) + 𝑒−𝑚1𝑡𝑀0𝑄0(0)
𝑒(𝑚1−𝑚0)𝑡−1

𝑚1 − 𝑚0
,

𝑄1(𝑡) ≤ 𝑒−𝑚1𝑡𝑄1(0) +𝑀0𝑄0(0)
𝑒−𝑚0𝑡 − 𝑒−𝑚1𝑡

𝑚1 − 𝑚0
.

e denote 𝑚 = min(𝑚0, 𝑚1), we also obtain an exponential decay :

𝑄1(𝑡) ≤
[

𝑒−(𝑚1−𝑚)𝑡𝑄1(0) +𝑀0𝑄0(0)
𝑒−(𝑚0−𝑚)𝑡 − 𝑒−(𝑚1−𝑚)𝑡

𝑚1 − 𝑚0

]

𝑒−𝑚𝑡.

2. (Global existence) Now, we prove that 𝑄2 and 𝑄3 are bounded for
𝑡 ∈ 𝐼 . Using the bounds on 𝐴1, 𝐴2, 𝑓1, 𝑓2, the positivity of 𝑄2, 𝑄3 and
the fact that 𝑄1 is bounded by an exponential function, we get
𝑑
𝑑𝑡
𝑄2(𝑡) ≤ 𝛾2𝑄2(𝑡)

(

𝐶 − 𝑄2(𝑡)
𝜏𝐶

)

+𝑀1𝑒
−𝑚𝑡,

where 𝐶 = 1+
𝜏𝐴1
𝜏𝐶𝐴1

+
𝜏𝐴2
𝜏𝐶𝐴2

. Moreover, the function 𝑓 ∶ 𝑥↦ 𝑎𝑥(𝑏−𝑥) with

> 0 and 𝑏 ∈ R is uniformly bounded from above for 𝑥 ∈ R+, hence
e obtain that 𝑄2 is bounded for 𝑡 ∈ 𝐼 . Similarly, using the bounds on
1, 𝐴2, 𝑓2, the positivity of 𝑄2, 𝑄3 and the fact that 𝑄2 is bounded by
constant denoted 𝐶2(𝑇 ) on [0, 𝑇 ], we get
𝑑
𝑑𝑡
𝑄3(𝑡) ≤ 𝛾3𝑄3(𝑡)

(

𝐶 − 𝑄3(𝑡)
𝜏𝐶

)

+𝑀2𝐶2(𝑇 ),

nd that 𝑄3 is bounded for 𝑡 ∈ 𝐼 . Then the solution is global. ■

A.2. Limit system and asymptotic behavior

A.2.1. Exponential convergence of the sensory axons
We first state an additional property of the solution.

Lemma 1 (Bounds on the Cancerous Cells).
Let 𝑄0(0) > 0, 𝑄1(0) = 𝑄2(0) = 𝑄3(0) = 0, 𝐴1(0) ∈ (−𝜏𝐴1

, 𝜏𝐴1
) and

𝐴2(0) ∈ (0, 𝜏𝐴2
). Let 𝜏𝐴1

< 𝜏𝐶𝐴1
. Then it exist 𝑡∗ > 0 and two constants

0 < 𝑐𝑦 < 𝐶𝑦 such that

∀𝑡 > 𝑡∗, 𝑐𝑦 ≤ 𝑄2(𝑡) +𝑄3(𝑡) ≤ 𝐶𝑦.

Proof (Lemma 1). We introduce the following notations : 𝑦(𝑡) = 𝑄2(𝑡) +
𝑄3(𝑡) and 𝐶(𝐴1(𝑡), 𝐴2(𝑡)) = 1 + 𝐴1(𝑡)

𝜏𝐶𝐴1
+ 𝐴2(𝑡)

𝜏𝐶𝐴2
. We recall that

𝑑
𝑑𝑡
𝑦(𝑡) = (𝛾2𝑄2(𝑡) + 𝛾3𝑄3(𝑡))

(

𝐶(𝐴1(𝑡), 𝐴2(𝑡)) −
𝑦(𝑡)
𝜏𝐶

)

+ 𝑓1(𝐴1(𝑡))𝑄1(𝑡).

Since 𝐴2(𝑡) ≤ 𝜏𝐴2
and 𝜏𝐴1

< 𝜏𝐶𝐴1
there exists a constant 𝐶𝑎 such that

0 < 𝐶(𝐴1(𝑡), 𝐴2(𝑡)) < 𝐶𝑎, ∀𝑡 > 0.

Now, we assume there exists 𝑡0 > 0 such that

𝑦(𝑡0) > 𝜏𝐶𝐶𝑎 + 𝐶

where 𝐶 > 0 is a constant which will be discussed later and we denote
𝑉0 a neighborhood of 𝑡0. Using the bounds on 𝑄1 and 𝑓1, we obtain

𝑑
𝑑𝑡
𝑦(𝑡) ≤ 𝛾𝑦(𝑡)

(

𝐶𝑎 −
𝑦(𝑡)
𝜏𝐶

)

+𝑀1𝐶(𝑄0, 𝑄1),

here 𝛾 ∈ [𝛾2, 𝛾3]. The function 𝑃 ∶ 𝑥 ∈ R+ ↦ 𝛾𝑥(𝐶𝑎 − 𝑥∕𝜏𝐶 ) +
1𝐶(𝑄0, 𝑄1) is polynomial which admits two roots: a negative and a

ositive one. We denote 𝑦+ the positive root of 𝑃 and we assume 𝐶
arge enough such that 𝑦+ < 𝑦(𝑡0). Then, for 𝑡 ∈ 𝑉0, we have
𝑑
𝑑𝑡
𝑦(𝑡) < 0 ⟹ 𝑦(𝑡) ≤ 𝑦(𝑡0).

oreover, since the solutions of (8) are nonnegative, we obtain a
niform upper bound for 𝑄 and 𝑄 .
2 3
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Now, we focus on the proof of the lower bound of 𝑦. First, we prove
that it exists 𝑡1 ≥ 0 such that 𝑦(𝑡1) > 0. Let us assume that ∀𝑡 ≥ 0,
𝑦(𝑡) = 0. It implies that 𝑑

𝑑𝑡 𝑦(𝑡) = 0 and that 𝑄1 is uniformly equal to 0.
oreover, 𝑑

𝑑𝑡𝑄1 must be equal to 0 and then ∀𝑡 ≥ 0 𝑄0(𝑡) = 0. It leads
o a contradiction since 𝑄0(0) > 0.

Hence, let us assume that 0 < 𝑦(𝑡1) < 𝑐𝑎 where 𝑐𝑎 = 1−
𝜏𝐴1
𝜏𝐶𝐴1

and then

𝑐𝑎 ≤ 𝐶(𝐴1(𝑡), 𝐴2(𝑡)). Moreover, we denote 𝑉1 a neighborhood of 𝑡1 and
e have
𝑑
𝑑𝑡
𝑦(𝑡) = (𝛾2𝑄2(𝑡) + 𝛾3𝑄3(𝑡))

(

𝐶(𝐴1(𝑡), 𝐴2(𝑡)) −
𝑦(𝑡)
𝜏𝐶

)

+ 𝑓1(𝐴1(𝑡))𝑄1(𝑡),

≥ 𝛾𝑦(𝑡)
(

𝑐𝑎 −
𝑦(𝑡)
𝜏𝐶

)

.

Then, for 𝑡 ∈ 𝑉1, we have

𝑑
𝑑𝑡
𝑦(𝑡) > 0 ⟹ 𝑦(𝑡) ≥ 𝑦(𝑡1). ■

Proposition 3 (Exponential Convergence of the Sensory Axons).
Let 𝑄0(0) > 0, 𝑄1(0) = 𝑄2(0) = 𝑄3(0) = 0, 𝐴1(0) ∈ (−𝜏𝐴1

, 𝜏𝐴1
) and

2(0) ∈ (0, 𝜏𝐴2
). We assume (H3) holds. Then 𝐴2 tends exponentially fast

o 𝜏𝐴2
and for 𝑡∗ > 0 large enough, there exist a constant 𝐶 > 0 and a rate

> 0 such that

𝑡 > 𝑡∗, |𝐴2(𝑡) − 𝜏𝐴2
| ≤ 𝐶|𝐴2(0) − 𝜏𝐴2

|𝑒−𝑟𝑡.

Proof. Since the growth term of the sensory axons depends on the
quantity of proliferating cells, the bounds on the cells populations
𝑄2 and 𝑄3 are one of the main information in order to deduce the
exponential convergence of 𝐴2. The following inequality gives us the
bounds on the proliferating cells (PanIN and PDAC). Hence, Lemma 1
states that it exists 𝑡∗ > 0 and two constants 0 < 𝑐𝑦 < 𝐶𝑦 such that

∀𝑡 > 𝑡∗, 𝑐𝑦 ≤ 𝑄2(𝑡) +𝑄3(𝑡) ≤ 𝐶𝑦.

We recall that
𝑑
𝑑𝑡

|𝐴2(𝑡) − 𝜏𝐴2
| = sign(𝐴2(𝑡) − 𝜏𝐴2

)(�̄�2𝑄2(𝑡) + �̄�3𝑄3(𝑡))𝐴2(𝑡)
(

1 − 𝐴2(𝑡)
𝜏𝐴2

)

= −(�̄�2𝑄2(𝑡) + �̄�3𝑄3(𝑡))
𝐴2(𝑡)

|𝐴2(𝑡) − 𝜏𝐴2
|,
𝜏𝐴2
≤ −min(�̄�2, �̄�3)(𝑄2(𝑡) +𝑄3(𝑡))
𝐴2(0)
𝜏𝐴2

|𝐴2(𝑡) − 𝜏𝐴2
|.

The last inequality stands since for all time 𝑡 > 0 𝐴2(𝑡) ∈ (0, 𝜏𝐴2
)

(Proposition 1) and one can easily verify that for 𝐴2 cannot decrease
for 𝐴2(0) ∈ (0, 𝜏𝐴2

). We denote 𝑦(𝑡) = 𝑄1(𝑡) + 𝑄2(𝑡) and we obtain by
sing its lower bound 𝑐𝑦 (Lemma 1) that for 𝑡∗ > 0 large enough and
or all 𝑡 > 𝑡∗

𝑑
𝑑𝑡

|𝐴2(𝑡) − 𝜏𝐴2
| ≤ −𝐶(𝑐𝑦, 𝐴2(0))|𝐴2(𝑡) − 𝜏𝐴2

|,

here 𝐶(𝑐𝑦, 𝐴2(0)) > 0. Finally, we obtain the exponential convergence
f 𝐴2 toward 𝜏𝐴2

using the Gronwall’s Lemma. ■

A.2.2. Reduced system and its asymptotic behavior
The system (12) constitutes the starting point in order to study the

asymptotic behavior of the model (1)–(6). We first focus on the steady
states (given by 𝑑𝑄2

𝑑𝑡 = 𝑑𝑄3
𝑑𝑡 = 𝑑𝐴2

𝑑𝑡 = 0) and their local stability.

Proposition 4 (Steady States of the System (12)).
Let (H2) and (H3) be true. We denote 𝐶(𝑥) = 1 + 𝑥

𝜏𝐶𝐴1
+

𝜏𝐴2
𝜏𝐶𝐴2
. Then the

dmissible steady states of the system are the following:

• 𝑄∞
2 = 0, 𝑄∞

3 = 0, 𝐴∞
1 = 𝑐 where 𝑐 ∈

(

−𝜏𝐴1
; 𝜏𝐴1

)

, which is linearly
unstable,

• 𝑄∞
2 = 0, 𝑄∞

3 = 𝜏𝐶 × 𝐶(𝜏𝐴1
), 𝐴∞

1 = 𝜏𝐴1
, which is linearly unstable,

• 𝑄∞
2 = 0, 𝑄∞

3 = 𝜏𝐶 × 𝐶(−𝜏𝐴1
), 𝐴∞

1 = −𝜏𝐴1
, which is linearly stable.

Proof. The condition 𝜏𝐴1
< 𝜏𝐶𝐴1

implies that 𝐶(𝐴1(𝑡)) = 1+ 𝐴1(𝑡)
𝜏𝐶𝐴1

+
𝜏𝐴2
𝜏𝐶𝐴2

> 0

or all time 𝑡 ≥ 0. Hence, the steady states must fulfill the following
quations:

2𝑄
∞
2

(

𝐶(𝐴∞
1 ) −

𝑓∞
2
𝛾2

−
𝑄∞

2 +𝑄∞
3

𝜏𝑐

)

= 0,

here 𝑓∞
2 = 𝑓2(𝐴∞

1 , 𝜏2). There are two cases, either 𝑄∞
2 = 0 or 𝑄∞

2 =

𝑐

(

𝐶(𝐴∞
1 ) −

𝑓∞2
𝛾2

−
𝑄∞
3
𝜏𝐶

)

. First, we study the case where 𝑄∞
2 ≠ 0. It

mplies by the positiveness of the solution (Proposition 1)

(𝐴∞) −
𝑓∞
2 −

𝑄∞
3 > 0
1 𝛾2 𝜏𝐶
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and then

𝐶(𝐴∞
1 ) −

𝑓∞
2
𝛾2

> 0.

ence, we have

= 𝛾3𝑄
∞
3

(

𝐶(𝐴∞
1 ) −

𝑄∞
2 +𝑄∞

3
𝜏𝑐

)

+ 𝑓∞
2 𝑄

∞
2

=
𝛾3
𝛾2
𝑓∞
2 𝑄

∞
3 + 𝑓∞

2 𝜏𝐶

(

𝐶(𝐴∞
1 ) −

𝑓∞
2
𝛾2

−
𝑄∞

3
𝜏𝐶

)

and then

𝑄∞
3 =

𝛾2
𝛾2 − 𝛾3

𝜏𝐶

(

𝐶(𝐴∞
1 ) −

𝑓∞
2
𝛾2

)

.

ince 𝛾2 < 𝛾3, we have that 𝑄∞
3 < 0 which contradicts the positive-

ness property. Finally, we obtain that 𝑄∞
2 = 0 and the steady states

f Proposition 4 are then determined by simple computations.
Hence, the linearization around the steady states 𝑄∞

2 = 0, 𝑄∞
3 and

∞
1 give the following Jacobian matrix:

𝛾2(𝐶(𝐴∞
1 ) −𝑄∞

3 ∕𝜏𝐶 ) − 𝑓∞
2 0 0

−𝛾3
𝑄∞
3
𝜏𝐶

+ 𝑓∞
2 𝛾3(𝐶(𝐴∞

1 ) − 2𝑄∞
3 ∕𝜏𝐶 ) 𝛾3𝑄∞

3 ∕𝜏𝐶𝐴1

𝛼2

(

1 −
(

𝐴∞
1

𝜏𝐴1

)2
)

−𝛼3

(

1 −
(

𝐴∞
1

𝜏𝐴1

)2
)

2𝛼3𝑄∞
3

𝐴∞
1

(𝜏𝐴1 )
2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

n the case 𝑄∞
2 = 𝑄∞

3 = 0 and 𝐴∞
1 = 𝑐, the eigenvalues of the Jacobian

atrix are:

1 = 𝛾2𝐶(𝐴∞
1 ) − 𝑓∞

2 , 𝜆2 = 𝛾3𝐶(𝐴∞
1 ), 𝜆3 = 0.

n the last case, since 𝑄∞
3 = 𝜏𝐶𝐶(𝐴∞

1 ) and 𝐴∞
1 = −𝜏𝐴1

, the eigenvalues
of the Jacobian matrix are:

𝜆1 = −𝑓∞
2 , 𝜆2 = −𝛾3𝐶(𝐴∞

1 ), 𝜆3 = 2𝛼3𝜏𝐶𝐶(𝐴∞
1 )

𝐴∞
1

(𝜏𝐴1
)2
.

We conclude that the only linearly stable steady state is 𝑄∞
2 = 0, 𝑄∞

3 =
𝜏𝐶𝐶(−𝜏𝐴1

), 𝐴∞
1 = −𝜏𝐴1

. ■

Now, we study the global behavior of the limit system looking at
the trajectories in the vector field. The system (12) is a modification of
a competitive Lotka–Volterra system (Hofbauer et al., 1998) for 𝑄2 and
𝑄3 coupled to a modified logistic equation for 𝐴1. The following result
is established.

Theorem 3 (Long Time Behavior of the Limit System (12)). Let (H2) and
(H3) be true. Let 𝑄2(0) > 0, 𝑄3(0) ≥ 0 and 𝐴1(0) ∈

(

−𝜏𝐴1
, 𝜏𝐴1

)

. Then

𝑋(𝑡) =
(

𝑄2(𝑡), 𝑄3(𝑡), 𝐴1(𝑡)
)

⟶ 𝑋∞ =
(

0, 𝜏𝐶𝐶(−𝜏𝐴1
), −𝜏𝐴1

)

for 𝑡→ +∞

where 𝐶(−𝜏𝐴1
) = 1 −

𝜏𝐴1
𝜏𝐶𝐴1

+
𝜏𝐴2
𝜏𝐶𝐴2
.

Proof. First, we introduce the following functions:

• 𝑧(𝐴1, 𝑄2, 𝑄3) = 𝐶(𝐴1)−
𝑄2+𝑄3
𝜏𝐶

, we also denote 𝑧(𝑡) = 𝑧(𝐴1(𝑡), 𝑄2(𝑡),
𝑄3(𝑡)) for the sake of simplicity,

• 𝑤(𝑄2, 𝑄3) = 𝛼2𝑄2−𝛼3𝑄3, we also denote 𝑤(𝑡) = 𝑤(𝑄2(𝑡), 𝑄3(𝑡)) for
the sake of simplicity.

Moreover, we introduce the following subdomains of R+ × R+ ×
[−𝜏𝐴1

, 𝜏𝐴1
] (see Fig. 7) :

• the domain 0a such that 𝑧 − 𝑓2∕𝛾2 ≥ 0, 𝑤 ≥ 0 and 𝑄3 ≥ 0
• the domain I such that 𝑧 − 𝑓2∕𝛾2 ≤ 0, 𝑤 ≥ 0, 𝑄3 ≥ 0 and 𝑧 ≥ 0
• the domain II such that 𝑧 ≤ 0, 𝑤 ≥ 0 and 𝑄3 ≥ 0
• the domain III such that 𝑧 − 𝑓2∕𝛾2 ≤ 0, 𝑤 ≤ 0, 𝑄2 ≥ 0 and 𝑧 ≥ 0
• the domain IV such that 𝑧 ≤ 0, 𝑤 ≤ 0 and 𝑄2 ≥ 0
• the domain 0b such that 𝑧 − 𝑓2∕𝛾2 ≥ 0, 𝑤 ≤ 0 and 𝑄2 ≥ 0

In Fig. 7, the red dots are the admissible steady states. In order to
∞
prove the convergence of 𝑋(𝑡) toward 𝑋 , we look at the trajectories t
in the different subdomains. We recall that it exists 𝑚, 𝑀 such that
0 < 𝑚 < 𝑓2(𝑡) < 𝑀 for 𝑡 ≥ 0.

Now, let us suppose that it exists 𝑡0 > 0 such that 𝑋(𝑡0) ∈ 𝟎𝐚◦. Then
∃𝛿 > 0 such that for 𝑡 ∈ [𝑡0, 𝑡0 + 𝛿),

𝑑
𝑑𝑡
𝑄2(𝑡) > 0, 𝑑

𝑑𝑡
𝑄3(𝑡) > 0, 𝑑

𝑑𝑡
𝐴1(𝑡) > 0.

lso,

𝑑
𝑑𝑡
𝑄3(𝑡) = 𝛾3𝑄3(𝑡)𝑧(𝑡) + 𝑓2(𝑡)𝑄2(𝑡),

≥ 𝑚𝑄2(𝑡0).

hen, the trajectories cannot stay in 𝟎𝐚◦, since 𝑄3 is bounded
Lemma 1), and either the trajectories go to 𝟎𝐛 or to I. In addition,
f the trajectories go from 0a to I, it cannot go back again in 0a. This
esult comes from the fact that 𝑑

𝑑𝑡𝑄3 > 0 for 𝑋 ∈ 𝟎𝐚 ∪ 𝐈 and the fact
that if the vector field points toward I on {𝑧 − 𝑓2∕𝛾2 = 0} when 𝑄3 = 𝜏
where 𝜏 > 0 then it points toward I on {𝑧 − 𝑓2∕𝛾2 = 0} ∩ {𝑄3 ≥ 𝜏}
(Lemma 2).

Let us suppose that it exists 𝑡1 > 0 such that 𝑋(𝑡1) ∈ 𝐈◦. Then ∃𝛿 > 0
such that for 𝑡 ∈ [𝑡1, 𝑡1 + 𝛿),

𝑑
𝑑𝑡
𝑄2(𝑡) < 0, 𝑑

𝑑𝑡
𝑄3(𝑡) > 0, 𝑑

𝑑𝑡
𝐴1(𝑡) > 0.

he trajectories cannot stay I since 𝑄2, 𝑄3 and 𝐴1 are monotonous,
ounded and there is no steady-states in the subdomain I. The vector
ield points inward on the surface 𝐈 ∩ {𝑧 = 0} and it points outward on
he surface 𝐈 ∩ {𝑤 = 0}. The trajectories can only go into the domain
II.

Let us suppose ∃𝑡2 > 0 such that 𝑋(𝑡2) ∈ (𝟎𝐛 ∪ 𝐈𝐈𝐈)◦. If 𝑋(𝑡1) ∈ 𝟎𝐛◦
hen ∃𝛿 > 0 such that for 𝑡 ∈ [𝑡2, 𝑡2 + 𝛿),

𝑑
𝑑𝑡
𝑄2(𝑡) > 0, 𝑑

𝑑𝑡
𝑄3(𝑡) > 0, 𝑑

𝑑𝑡
𝐴1(𝑡) < 0.

he trajectories cannot stay in 0b and go to III since the null steady
tate is locally unstable (Proposition 4) and 𝑄2 and 𝑄3 are nonde-

creasing. Moreover, the vector field points toward III on {𝑧 − 𝑓2∕𝛾2 =
0}.

If 𝑋(𝑡1) ∈ 𝐈𝐈𝐈◦ then ∃𝛿 > 0 such that for 𝑡 ∈ [𝑡2, 𝑡2 + 𝛿),

𝑑
𝑑𝑡
𝑄2(𝑡) < 0, 𝑑

𝑑𝑡
𝑄3(𝑡) > 0, 𝑑

𝑑𝑡
𝐴1(𝑡) < 0.

he vector field points outward on the surface 𝐈𝐈𝐈∩{𝑧 = 0} and inward
n the surface 𝐈𝐈𝐈 ∩ {𝑤 = 0} (cf. Lemma 2). Either, the trajectories stay
n III and converge toward 𝑋∞ or the trajectories go to IV.

If it exists 𝑡3 > 0 such that 𝑋(𝑡3) ∈ 𝐈𝐕◦, then ∀𝑡 > 𝑡3
𝑑
𝑑𝑡𝑄2(𝑡) < 0

then 𝑄2(𝑡) < 𝑄2(𝑡3). Moreover, since 𝑤(𝑡) < 0 then 𝑑
𝑑𝑡𝐴1(𝑡) < 0 hence 𝐴1

tends to −𝜏𝐴1
. Also 𝑧(𝑡) < 0, it implies that

𝑑
𝑑𝑡
𝑄2(𝑡) = 𝛾2𝑄2(𝑡)

(

𝑧(𝑡) −
𝑓2(𝑡)
𝛾2

)

,

≤ −𝛾2
𝑓2(𝑡)
𝛾2

𝑄2(𝑡),

≤ −𝑚𝑄2(𝑡),

nd that 𝑄2(𝑡) + 𝑄3(𝑡) ≥ 𝜏𝐶𝐶(𝐴1(𝑡)) ≥ 𝜏𝐶𝐶(−𝜏𝐴1
) hence 𝑄2 + 𝑄3 is

ecreasing and bounded below by 𝜏𝐶𝐶(−𝜏𝐴1
) and 𝑄2 tends to 0. Finally,

e conclude that once the trajectories enter IV they tend to 𝑋∞.
In addition, if there exists 𝑡4 > 0 such that 𝑋(𝑡4) ∈ 𝐈𝐈◦ then ∃𝛿 > 0

uch that for 𝑡 ∈ [𝑡4, 𝑡4 + 𝛿),

𝑑
𝑑𝑡
𝑄2(𝑡) < 0, 𝑑

𝑑𝑡
𝑄3(𝑡) < 0, 𝑑

𝑑𝑡
𝐴1(𝑡) > 0.

et us suppose that the trajectories remains in II. Since 𝑄2, 𝑄3 and 𝐴1
re monotonous and bounded, 𝑋 converge to a point in II. However,
t is absurd since there is no steady state in II. It implies that the
rajectories leave the space II and enter either I, III or IV. ■
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Lemma 2 (Study of the Vector Field of (12)). Let 𝑧 = 0, 𝑤 = 0 and
𝑧 − 𝑓2(𝐴1)

𝛾2
= 0 be the three surfaces of interest in order to study the vector

ield of the system (12).

• 𝑤 = 𝛼2𝑄2 − 𝛼3𝑄3, ⃖⃗𝑛 =
(

𝛼2, −𝛼3, 0
)

then

⃖⃗𝑛 ⋅ 𝑓 (𝑄2, 𝑄3, 𝐴1) = 𝛼2𝑄2

[

𝑧(𝛾2 − 𝛾3) −
(

1 +
𝛼3
𝛼2

)

𝑓2(𝐴1)
]

.

• 𝑧 = 1 − 𝑄2+𝑄3
𝜏𝐶

+ 𝐴1
𝜏𝐶𝐴1

+
𝜏𝐴2
𝜏𝐶𝐴2
, ⃖⃗𝑛 =

(

− 1
𝜏𝐶
, − 1

𝜏𝐶
, 1
𝜏𝐶𝐴1

)

then

⃖⃗𝑛 ⋅ 𝑓 (𝑄2, 𝑄3, 𝐴1) =
1
𝜏𝐶𝐴1

𝑤
⎛

⎜

⎜

⎝

1 −

(

𝐴1
𝜏𝐴1

)2
⎞

⎟

⎟

⎠

.

• 𝑧 − 𝑓2(𝐴1)
𝛾2

= 1 − 𝑄2+𝑄3
𝜏𝐶

+ 𝐴1
𝜏𝐶𝐴1

+
𝜏𝐴2
𝜏𝐶𝐴2

− 𝑓2(𝐴1)
𝛾2

,

⃖⃗𝑛 =
(

− 1
𝜏𝐶
, − 1

𝜏𝐶
, 1
𝜏𝐶𝐴1

−
𝑓 ′2(𝐴1)
𝛾2

)

then

⃖⃗𝑛 ⋅ 𝑓 (𝑄2, 𝑄3, 𝐴1) = − 1
𝜏𝐶
𝑓2(𝐴1)

(

𝛾3
𝛾2
𝑄3 +𝑄2

)

+

(

1
𝜏𝐶𝐴1

−
𝑓 ′
2(𝐴1)
𝛾2

)

𝑤
⎛

⎜

⎜

⎝

1 −

(

𝐴1
𝜏𝐴1

)2
⎞

⎟

⎟

⎠

.

.2.3. Asymptotic behavior of the complete system
Once the convergence is established on the limit system, the global

symptotic behavior of the complete system is given by the following
heorem.

heorem 4 (Long Time Behavior of the System (8)).
Let 𝑄0(0) > 0, 𝑄𝑖(0) ≥ 0 for 𝑖 = 1, 2, 3, 𝐴1(0) ∈ (−𝜏𝐴1

, 𝜏𝐴1
) and

𝐴2(0) ∈ (0, 𝜏𝐴2
). Let (H2) and (H3) be true. Then

𝑋(𝑡) =
(

𝑄0(𝑡), 𝑄1(𝑡), 𝑄2(𝑡), 𝑄3(𝑡), 𝐴1(𝑡), 𝐴2(𝑡)
)

⟶
(

0, 0, 0, 𝜏𝐶𝐶(−𝜏𝐴1
), −𝜏𝐴1

, 𝜏𝐴2

)

for 𝑡 → +∞

where 𝐶(−𝜏𝐴1
) = 1 −

𝜏𝐴1
𝜏𝐶𝐴1

+
𝜏𝐴2
𝜏𝐶𝐴2
.

Proof. We introduce the function 𝐹 ∶ (0,∞) × R3 ↦ R such that for
𝑌 = (𝑄2, 𝑄3, 𝐴1):

𝐹 (𝑡, 𝑌 )

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛾2𝑄2

(

1 − 𝑄2+𝑄3

𝜏𝐶
+ 𝐴1

𝜏𝐶𝐴1
+ 𝐴2(𝑡)

𝜏𝐶𝐴2

)

+ 𝑓1
(

𝐴1
)

𝑄1(𝑡) − 𝑓2
(

𝐴1, 𝐴2(𝑡)
)

𝑄2

𝛾3𝑄3

(

1 − 𝑄2+𝑄3

𝜏𝐶
+ 𝐴1

𝜏𝐶𝐴1
+ 𝐴2(𝑡)

𝜏𝐶𝐴2

)

+ 𝑓2
(

𝐴1, 𝐴2(𝑡)
)

𝑄2

(

𝛼1𝑄1(𝑡) + 𝛼2𝑄2 − 𝛼3𝑄3
)

(

1 + 𝐴1

𝜏𝐴1

)(

1 − 𝐴1

𝜏𝐴1

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

oreover, Proposition 1 gives the exponential convergence of 𝑄0 and
1 toward 0 and Proposition 3 gives the exponential convergence of
2 toward 𝜏𝐴2

. Hence, we obtain that

(𝑡, 𝑌 ) → 𝐺(𝑌 ) as 𝑡 → ∞ uniformly locally in 𝑌 ∈ R3,

where

𝐺(𝑌 ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛾2𝑄2

(

1 − 𝑄2+𝑄3
𝜏𝐶

+ 𝐴1
𝜏𝐶𝐴1

+
𝜏𝐴2
𝜏𝐶𝐴2

)

− 𝑓2
(

𝐴1, 𝜏𝐴2

)

𝑄2

𝛾3𝑄3

(

1 − 𝑄2+𝑄3
𝜏𝐶

+ 𝐴1
𝜏𝐶𝐴1

+
𝜏𝐴2
𝜏𝐶𝐴2

)

+ 𝑓2
(

𝐴1, 𝜏𝐴2

)

𝑄2

(

𝛼2𝑄2 − 𝛼3𝑄3
)

(

1 + 𝐴1
𝜏𝐴1

)(

1 − 𝐴1
𝜏𝐴1

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

sing the results of Theorem 3, we have that the 𝜔-limit set (see
ppendix B, Eq. (21)) of the limit system (12) is restricted to

(0, 𝑌 ) = {(0, 𝜏 𝐶(−𝜏 ),−𝜏 )}.
0 𝐶 𝐴1 𝐴1
s

Then, using Theorem 6 on the asymptotically autonomous differential
equations (see Appendix B),we deduce the following results on the
solutions of system (8)
(

𝑄0(𝑡), 𝑄1(𝑡), 𝑄2(𝑡), 𝑄3(𝑡), 𝐴1(𝑡), 𝐴2(𝑡)
)

⟶
(

0, 0, 0, 𝜏𝐶𝐶(−𝜏𝐴1
), −𝜏𝐴1

, 𝜏𝐴2

)

for 𝑡→ +∞. ■

ppendix B. Results on asymptotically autonomous differential
ystems

In this section, we recall some results on asymptotically autonomous
ifferential equations. The proofs of the results and further details can
e found in Markus (2016), Thieme (1994, 1992).

efinition 1. Let 𝑓 ∶ R×R𝑛 ↦ R𝑛 and 𝑔 ∶ R𝑛 ↦ R𝑛 be continuous and
ocally Lipschitz on R𝑛. An ordinary differential equation in R𝑛

̇ = 𝑓 (𝑡, 𝑥), (19)

s called asymptotically autonomous with limit equation

�̇� = 𝑔(𝑦), (20)

f

(𝑡, 𝑥) ←←←←←←←←←←←←←←←←←←←→
𝑡→∞

𝑔(𝑥), locally uniformly in 𝑥 ∈ R𝑛.

We denote the 𝜔-limit set of 𝜔 of a forward bounded solution 𝑥 to
19) satisfying 𝑥(𝑡0) = 𝑥0 by 𝜔(𝑡0, 𝑥0):

(𝑡0, 𝑥0) =
⋂

𝑠>𝑡0

{𝑥(𝑡); 𝑡 ≥ 𝑠}. (21)

We recall the main theorems established by Markus in Markus
2016).

heorem 5. The 𝜔-limit set 𝜔 of a forward bounded solution 𝑥 to (19) is
onempty, compact, and connected. Moreover

𝑖𝑠𝑡(𝑥(𝑡), 𝜔) ←←←←←←←←←←←←←←←←←←←→
𝑡→∞

0.

inally 𝜔 is invariant under (20), i.e. if 𝑦(𝑡0) = 𝑦0 ∈ 𝜔 and 𝑦(𝑡, 𝑦0) its
rajectory with initial point 𝑦0 then 𝑦(𝑡, 𝑦0) ∈ 𝜔. In particular any point in
lies on a full orbit of (20) that is contained in 𝜔.

heorem 6. Let 𝑦∞ be a locally asymptotically stable equilibrium of (20)
nd 𝜔 the 𝜔-limit set of a forward bounded solution 𝑥 to (19). If 𝜔 contains
point 𝑦0 such that the solution of (20) though (0, 𝑦0) converges to 𝑦∞ for
→ ∞, then 𝜔 = {𝑦∞}, i.e.

(𝑡) ←←←←←←←←←←←←←←←←←←←→
𝑡→∞

𝑦∞.

These theorems have been used in population dynamics in order
o prove that asymptotically autonomous ODEs arising from the mod-
ls converge to equilibrium (e.g. Castillo-Chávez and Thieme 1994).
oreover, these theorems have been generalized in Thieme (1992) to

e applied for specific PDEs.

ppendix C. Methods for the identifiability analysis with the pro-
ile likelihood

.1. Parameters of the model

Table 2 describes the list of all parameters appearing in the model
quations. Each parameter is supplied with its range of values and a
hort description. The range of parameter values is chosen to be large
or two reasons. The first is not to impose too restrictive conditions
ince the model is completely original and very little information is
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Fig. 8. Numerical computation of the profile likelihood for nine parameters. Each row corresponds to a parameter. This parameter takes twenty distinct values represented
by the color gradient. The numerical method gives a cost distribution for each value of the parameter. This distribution is then visualized by a boxplot (the vertical
axis represents the cost). This method is iterative for the non-identifiable parameters and this leads to a new simulation on a reduced optimization domain. For
instance, 𝜋0, 𝜋1 and 𝛾2 are identifiable from the first iteration. The parameters 𝜋2 and 𝛿0 are identifiable from the second iteration and 𝛾3 from the third iteration.
The other parameters are non-identifiable after three iteration.
Fig. 9. Numerical computation of the profile likelihood for the other parameters. Each row corresponds to a parameter. This parameter takes twenty distinct values
represented by the color gradient. The numerical method gives a cost distribution for each value of the parameter. This distribution is then visualized by a
boxplot (the vertical axis represents the cost). This method is iterative for the non-identifiable parameters and this leads to a new simulation on a reduced
optimization domain. For instance, only 𝜏𝐶 is identifiable (from the second iteration). The other parameters are non-identifiable.
available. The second is to maximize the search space for reasonable
parameters in order to calibrate the model. It is then possible to divide
the parameters of the model to estimate into five categories:

1. The transfer rates 𝜋0, 𝜋1 and 𝜋2. These parameters describe the
main rates of cell transfer. More specifically, the time evolution
of cell and axon populations is simulated by a compartmental
model and these parameters quantify the speed of transfer from
one to another compartment.

2. The proliferation speeds 𝛾2 and 𝛾3. These parameters give the
growth speeds of the PanIN and PDAC cell populations.

3. The parameters of the regulations on the transfer rates 𝛽1,
𝛽2, 𝛿0 and 𝛿2. These parameters are multiplicative coefficients
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Table 2
List of the parameters for the model described by the Eqs. (1)-(6). Recall that units associated to the 𝑄𝑖 are cells(mm−3) and to 𝐴𝑖 nm(μm−3).
Description Symbol Units Range of value

Average density of autonomic axons in healthy pancreas 𝐴𝑒𝑞1 nm (μm−3) 0.0099
Saturation term of the logistic-like growth 𝜏𝐴1

nm (μm−3) 0.3

Transfer rate of the 𝑄0 to 𝑄1 𝜋0 day−1 (10−5 , 1)
Transfer rate of the 𝑄1 to 𝑄2 𝜋1 day−1 (10−5 , 1)
Transfer rate of the 𝑄2 to 𝑄3 𝜋2 day−1 (10−5 , 1)

Growth rate of 𝑄2 𝛾2 day−1 (10−6 , 1)
Growth rate of 𝑄3 𝛾3 day−1 (10−6 , 1)

Amplitude of the effect of 𝐴1 on the transfer rate 𝛽1 nm−1 μm3 (0, 𝜏−1𝐴1
)

Amplitude of the effect of 𝐴1 on the transfer rate 𝛽2 nm−1 μm3 (0, 𝜏−1𝐴1
)

Maximum amplitude of the Michaelis–Menten term 𝛿0 unitless (0, 10)
Amplitude of the effect of 𝐴2 on the transfer rate 𝛿2 nm−1 μm3 (0, 10)

Saturation term of the logistic growth 𝜏𝐶 cells (mm−3) (50, 103)
Saturation term of the logistic growth 𝜏𝐴2

nm (μm−3) (0, 2)
Threshold for the effect of 𝐴1 on the growth of 𝑄2 and 𝑄3 𝜏𝐶𝐴1

nm (μm−3) (0.3, 2)
Threshold for the effect of 𝐴2 on the growth of 𝑄2 and 𝑄3 𝜏𝐶𝐴2

nm (μm−3) (0, 2)

Amplitude of the effect of 𝑄1 on the growth of 𝐴1 𝛼1 mm3 cell−1 day−1 nm (μm−3) (10−5 , 1)
Amplitude of the effect of 𝑄2 on the growth of 𝐴1 𝛼2 mm3 cell−1 day−1 nm (μm−3) (10−5 , 1)
Amplitude of the effect of 𝑄3 on the growth of 𝐴1 𝛼3 mm3 cell−1 day−1 nm (μm−3) (10−5 , 1)
Amplitude of the effect of 𝑄2 on the growth of 𝐴2 �̄�2 mm3 cell−1 day−1 (10−5 , 1)
Amplitude of the effect of 𝑄3 on the growth of 𝐴2 �̄�3 mm3 cell−1 day−1 (10−5 , 1)
Table 3
Table of parameters for the numerical computations in Fig. 3.
𝜋0 𝛿0 𝜋1 𝛽1 𝛾2 𝜋2 𝛽2 𝛿2 𝛾3 𝜏𝐶 𝛼1 𝛼2 𝛼3 𝜏𝐶𝐴1

�̄�2 �̄�3 𝜏𝐴2
𝜏𝑐𝐴2

1.5e−3 8.4 1.9e−5 3.2 4.2e−1 1.1e−3 2.2 3.2 9.3e−1 8.5e+1 1.6e−5 8.4e−2 4.7e−4 3.6e−1 6.0e−1 1.6e−5 1.9 1.6
1.5e−3 7.8 6.4e−3 1.5e−1 1.2e−6 8.6e−2 6.0e−1 8.6 4.3e−1 1.0e+2 1.7e−3 2.2e−1 1.5e−3 1.8 7.2e−1 1.4e−5 2.0 1.4
1.3e−3 8.8 8.6e−3 2.9e−1 3.6e−1 2.7e−1 2.5e−1 2.6e−1 3.6e−1 1.0e+2 4.4e−5 1.3e−2 7.8e−5 2.0 3.5e−1 1.5e−5 1.9 1.6
1.3e−3 9.9 1.8e−5 3.3 6.9e−1 1.6e−1 3.3e−2 2.0e−1 6.9e−1 6.3e+1 3.4e−4 7.5e−3 8.6e−5 2.0 3.1e−1 3.8e−5 2.0 1.5e−1
1.4e−3 9.1 4.5e−3 6.5e−2 8.2e−2 5.5e−2 9.9e−2 9.7 4.3e−1 9.3e+1 1.2e−5 5.3e−2 3.0e−4 5.4e−1 6.6e−1 1.3e−5 1.7 2.0
1.7e−3 7.7 9.1e−3 3.2 2.1e−6 7.5e−2 1.5e−1 8.9 3.7e−1 1.0e+2 1.9e−5 3.8e−2 2.2e−4 7.7e−1 6.5e−1 2.3e−5 1.8 1.6
2.2e−3 4.9 5.6e−2 3.2 1.0e−2 4.9e−1 3.3 3.1e−1 2.0e−1 1.9e+2 1.0e−5 4.8e−1 6.0e−3 2.0 9.6e−1 1.0e−5 1.5e−1 2.0
C
h

o
c
s
t
p
o

S
a
s
𝛿

appearing in the transfer rates. They regulate either positively
or negatively the speed of transfer from one compartment to
another in the model.

4. The saturation rates 𝜏𝐶 , 𝜏𝐶𝐴1
, 𝜏𝐴2

and 𝜏𝐶𝐴2
. The saturation rates

are closely linked to bio-physical constraints such as the maxi-
mal volume of the model’s domain (i.e. the pancreas) and the
maximal axons densities in the domain. These two quantities
might vary from one individual to another, however one can
reasonably assume maximal bounds and implement it in the
model.

5. The parameters of the regulations on the proliferation
speeds of axons 𝛼1, 𝛼2, 𝛼3, �̄�2 and �̄�3. These parameters are
multiplicative coefficients appearing in the growth terms of the
axons. Their main effect is to modulate the rate of axon prolif-
eration depending on the amount of cell populations present at
the observed time.

oreover, the density of autonomic axons in a healthy pancreas 𝐴𝑒𝑞1
s given by the control experiments and amounts to 0.980 nm(μm−3).
he other parameter set in this model is 𝜏𝐴1

(i.e. the saturation rate
f 𝐴1). Since 𝐴1 is the variation of the density of autonomic axons
ith respect to 𝐴𝑒𝑞1 , setting the value of 𝜏𝐴1

to 0.3 implies that the
aximum variation of the density of autonomic axons does not exceed

ne third of its equilibrium state. This assumption can be justified in
he model by the fact that natural innervation and denervation in vivo
ppear to be phenomena at the margin during the development of the
ancreatic adenocarcinoma. In addition, autonomic axons appear to be
ushed to the periphery of the organ during the development of PDAC
ells and the domain of the model is the pancreas and its immediate
urroundings.
.2. Numerical method to assess the identifiability with the profile likeli-
ood

In this section, we detail the method used to study the identifiability
f the parameters. It is assimilated to an optimization problem and
an be considered as a one-at-a-time identifiability process since we
tudy the profile likelihood of each parameter independently. We recall
hat the parameters are denoted by the vector 𝜃 which include all the
arameters except for 𝜏𝐴1

and 𝐴𝑒𝑞1 fixed as in Table 2. The computation
f the profile likelihood is broken down as follows:

tep 1. For each component 𝜃𝑗 of the vector of parameters, we choose
sequence of 20 values which discretizes its range of values. The

equence discretize uniformly the range of values of the parameters
0, 𝛽1, 𝛽2, 𝛿2, 𝜏𝐶 , 𝜏𝐶𝐴1

, 𝜏𝐴2
and 𝜏𝐶𝐴2

. For the other parameters,
the sequence discretize uniformly the log10 transformation of their
respective ranges of value. This allows us to explore more precisely
the optimization domain by taking into account the differences in
the orders of magnitude between parameters. The sequence of values
chosen for the parameter 𝜃𝑗 is denoted

(

𝑝𝑗𝑖
)

𝑖=1…20
.

Step 2. For each 𝑝𝑗𝑖 , we minimize 𝜒 2 defined by (16) on 𝜃 ∈
{

𝜃 ∣ 𝜃𝑗 = 𝑝𝑗𝑖
}

. Since, the problem is non-linear, non-convex and high
dimensional, we choose to repeat 50 times the optimization procedure
using as the initialization step a random sets of parameters chosen
by the uniform distribution over their respective value range (or over
the log10 transformation of their value range). For this optimization
problem, we use the CMA evolution strategy algorithm (Hansen, 2016)
: at each step of the optimization loop, the algorithm picks a set
of parameters given by a specific random distribution over the opti-
mization domain. It evaluates the objective function value for this set
of parameters and iterate by updating the random distribution with
the barycenter of the ‘‘best’’ parameters (i.e. whose objective function
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Fig. 10. Distribution of the evaluations of the optimal objective function. The 𝑥-axis is the range of the cost function. The 𝑦-axis is the frequency over a sample of size 200.
values are the lowest). The algorithm stops if the distance between the
best evaluation of the objective function of the last 40 iterations of
the optimization loop and all the objective function values of the last
iteration is less than the tolerance threshold 10−3.

Step 3. For each 𝜃𝑗 , we plot the first quartile, the last quartile and the
median of the 50 optimal objective function values obtained in order
to visualize the results of step 2. It gives the following Figs. 8–9. If the
curves formed by the median describe a convex shape and a minimum
is clearly attained in a distinct value, we consider that the parameter
is identifiable and its estimate is this distinct values (for instance, in
Fig. 8, the top panel shows that median attains its minimal value at
𝜋0 = 0.0025.). Else, we iterate step 2 once or twice on a reduced domain
where the already identifiable parameters are fixed to their estimated
values.

The numerical results of this optimization process are summarized
in Figs. 8–9. We denote trial 1 the first iteration of step 2, trial 2 the
second and trial 3 the third. In total, seven parameters are identifiable
(see Fig. 4 and Table 1). We choose to stop iterating the identifiability
process after the third trial considering the amount of data at our
disposal and the over fitting issues coming from the high dimensionality
of our problem. One can reasonably justify this choice by looking at
the distribution of the objective function values in trial 3 (see Figs. 8–
9). The cost function values over the whole range for the remaining
parameters are concentrated under 10 and the median of the cost
distribution does not have a clearly distinguishable minimum value.
An extra iteration might not ensure a sufficient difference between the
minimum of the median and the rest of the median values.

As a final validation step, we perform the following numerical
experiments: we fix the seven identifiable parameters to their values
(see Table 1), we pick 200 sets of rescaled parameters (for the non
identifiable ones) from a uniform random distribution over their value
ranges and we compute the minimization problem

𝐶 = min
𝜃∣𝜃𝑗=𝑝𝑗,∗ , 𝑗∈𝐽

= 𝜒 2(𝜃)

where 𝜒 2 is defined by (16) and 𝐽 is the set of coordinates of the
indentifiable parameters denoted 𝑝𝑗,∗. It follows that the distribution
of the optimal objective function evaluations is concentrated on 3 (see
Fig. 10). For instance, the costs of the trajectories shown in Fig. 3 are
superior or equal to 3. This numerical experiments ensures that the
results on the identifiable parameters are satisfactory from a qualitative
point of view.
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