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Abstract
The nervous system is today recognized to play an important role in the development of cancer. Indeed, neu-

rons extend long processes (axons) that grow and infiltrate tumors in order to regulate the progression of the
disease in a positive or negative way, depending on the type of neuron considered. Mathematical modelling of
this biological process allows to formalize the nerve-tumor interactions and to test hypotheses in silico to better
understand this phenomenon. In this work, we introduce a system of differential equations modelling the pro-
gression of pancreatic ductal adenocarcinoma (PDAC) coupled with associated changes in axonal innervation.
The study of the asymptotic behavior of the model confirms the experimental observations that PDAC devel-
opment is correlated with the type and densities of axons in the tissue. In addition, we study the identifiability
of the model parameters. This informs on the adequacy between the parameters of the model and the experi-
mental data. It leads to significant insights such that the transdifferentiation phenomenon accelerates during the
development process of PDAC cells. Finally, we give an example of a simulation of the effects of partial or com-
plete denervation that sheds lights on complex correlation between the cell populations and axons with opposite
functions.

1 Introduction
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer death in men and women. Late detection of this
cancer, due to the near absence of symptoms in the early stages, is associated with a poor prognosis and an overall 5-year
survival rate of less than 5% [1]. In recent decades, the impact of the microenviroment on tumour progression has become
widely recognized, which has led to the development of new therapies such as immunotherapies. More recently, it has been
shown that fibers of the nervous system infiltrate the tumor microenvironment where they also participate in the regulation
of cancer development and progression [2]. It is therefore relevant to study the neurobiology of cancers through mathematical
modelling in order to simulate the responses of cancer cells to innervation and predict at long term the effects of therapies
targeting neuron-tumor interactions.

Mathematical modelling of the impact of the microenvironment on tumor progression has been widely investigated for
many types of cancers. In the case of pancreatic cancer, a model of the interplay between the immune system and tumor
progression has been proposed [3]. As far as we know, mathematical modeling of the neural regulation of tumor progression
has only be performed for prostate cancer [4]. This model confirmed experimental observations that a tumor is able to recruit
nerves that, in turn, promote tumor development and metastatic spread. However, this initial model did not take into account
the full functional diversity of neurons of the peripheral nervous system (PNS) and in particular their potential tumor
suppressive effect discovered more recently in PDAC. To our knowledge, no mathematical model integrating the antitumor
and protumor activities of the PNS currently exists.

In this article, we developed an ordinary differential equation (ODE) model that describes and simulates the relationship
between the PNS and pancreatic cancer development. The model is based on and calibrated with experimental data obtained
from a genetically engineered mouse model of PDAC, in which the innervation of early pre-cancerous lesions and cancer
have been characterized by three-dimensional (3D) histology (c.f [2]). This model aims to investigate how dynamic changes
in the neuronal composition of the microenvironment influence tumor progression.

The paper is organized as follows. In Section 2, we review the biological background behind the mechanisms of the PDAC
progression. We introduce the mathematical model and detail the assumptions made. In Section 3, we study the mathematical
properties of the model. We prove its well-posedness and the convergence towards the pathological equilibrium under some
assumptions. We extract some exponential convergence estimators which allow us to reduce the system and performed the
asymptotic analysis on the limit system. In Section 4, we study the identifiability of the parameters when the model is con-
fronted to the experimental data. We perform a sensitivity analysis which sheds lights on the effect of the axons on the PDAC
progression.
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2 Modeling the evolution of cell populations and axons

2.1 Biological background
The PNS is a vast network of nerves and ganglia that connect the brain to the other organs of the body. It consists of
both afferent (sensory) nerves and efferent (motor) nerves that carry information in and out of the brain, respectively.
While essential for internal body communication and proper regulation of physiological functions, the PNS also plays a
newly-identified and pivotal role in the control of tumorigenesis. For example, denervation experiments in animal models of
prostate and gastric cancers demonstrated a role of the visceral efferent motor system (also known as the autonomic nervous
system) in promoting tumor progression and metastasis [5, 6]. These findings have led to the emerging concept of “nerve
dependence in tumorigenesis” and a growing interest in repositioning inhibitors of nerve signaling for cancer treatment [7,8].

The bifunctionnal role of the PNS in pancreatic tumorigenesis. The impact of the PNS varies considerably depending on
the tumor site. This has been highlighted by studies in animal models of PDAC. Indeed, and in contrast to its promoting role
in prostate cancer, the autonomic nervous system has appeared to exert tumor suppressive effects in PDAC. The autonomic
nervous system is divided functionally and anatomically into the sympathetic and parasympathetic nervous systems, which
work together synergistically to regulate pancreatic functions [9]. In PDAC, several studies reported that transection of
the vagus nerve, which provides parasympathetic inputs to the pancreas, promotes pancreatic cancer progression [10, 11].
A similar acceleration of PDAC development and increased metastasis have been reported after selective depletion of
pancreatic sympathetic innervation [2], further supporting a protective function of the autonomic nervous system in this
type of cancer. Conversely, the pro-tumoral influence of the PNS on PDAC is exerted by sensory neurons, whose selective
ablation or functional silencing slows tumor progression and improves survival [12–14]. Finally, when both sympathetic and
sensory innervation of the pancreas are diminished [2], this leads to an acceleration of PDAC development, suggesting a
preponderant influence of the autonomic nervous system during tumor initiation. Thus, taking into account the functional
specializations of nerve subtypes and their integration is crucial for understanding and predicting the trajectory of innervated
tumors.

Neuroplastic changes associated with tumorigenesis. The PNS control over tumorigenesis is based on its ability to in-
nervate developing tumors and release neurotransmitters, or other factors, in the cancer cell environment. Precise mapping
of pancreatic tissue innervation and its evolution during PDAC development has been performed on histological sections
and more recently using 3D light-sheet fluorescence microscopy (LSFM) on murine and human pancreas [15, 16]. The re-
sults revealed striking differences in the autonomic and sensory innervation patterns of the healthy pancreas, with a dense
meshwork of autonomic nerve fibers (both sympathetic and parasympathetic) throughout the exocrine pancreas, from which
PDAC arises, and an absence of sensory fibers in these same regions, the latter residing along the arteries and innervating the
pancreatic islets [2, 17].

An initiating event for the development of PDAC is the trans-differentiation of acinar cells (the functionnal unit of the
exocrine pancreas) into progenitor-like cells with ductal characteristics, a process called acinar-to-ductal metaplasia (ADM).
ADM can progress to form premalignant pancreatic intraepithelial neoplasia (PanIN) and eventually pancreatic cancer [18].
A substantial innervation of the early pancreatic lesions by autonomic axons has been reported, with PanINs appearing
as hotspots of sympathetic hyperinnervation [2]. While some sensory fibers can also be detected around PanINs, their
density remains relatively low compared to autonomic fibers [14, 19]. In invasive PDAC tumors, however, this picture is
completely reversed: a high density of sensory fibers deeply infiltrates the center of the tumors, while a moderate sympathetic
innervation limited to the peripheral regions of the tumors was reported [2,20]. In conclusion, the data revealed stage-specific
remodeling of PNS networks during tumorigenesis that may have an important function by shifting an initially protective
neural environment (autonomic > sensory) into a milieu favorable for cancer cell growth (sensory > autonomic).

2.2 Mathematical model
We will focus on the pancreas as the main domain of our model, thus including both the pancreatic cells and the neighboring
nerve fibers (or axons). In this model, we distinguish between the cell concentrations denoted Qi for i ∈ {0, 1, 2, 3}, with: Acini
Q0, ADM Q1, PanIN Q2 and PDAC Q3. The variables corresponding to PNS axons are denoted A1, A2. A1 is the variation of
the density of autonomic axons with respect to its equilibrium at initial state (denoted Aeq

1 ). Hence, we consider the following

A1 = density of autonomic axons − initial equilibrium density.

This formalism allows A1 to take negative values. One can justify it by the fact that neuroplastic changes of autonomic axons
are non-monotonous: the density increases in PanIN and decreases in PDAC compared to the initial equilibrium density, ie.,
the density in acini [2, 20]. Finally, A2 is the density of sensory axons.

We propose multi-compartmental model in which the growth of the PNS is coupled to the transfer from healthy acini to
PDAC, and to the proliferation of pre-cancerous (PanIN) and cancerous (PDAC) cells. A schematic of the model, showing the
variables and their interactions, can be found in Figure 1.

Transfer between compartments. We consider that Acini progress in ADM with a transfer rate π0. The transfer term is
up-regulated by the presence of PanIN and PDAC through a Michaelis-Menten term with maximal amplitude δ0 and 1 as the
Michaelis constant. This assumption leads to the following interpretation: the PanIN and the PDAC are able to self-promote
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Acinus Q0 ADM Q1 PanIN Q2 PDAC Q3

autonomic axons A1

Sensory axons A2

Figure 1: Schematic representation of the interactions among the model variables. Each variable corresponds to
a rectangular box; note that cell populations are in gray while axons are in red. Solid thin black arrows denote regulation
of either proliferation of cells or transfer rates and solid thick black arrows denote enhancement of the transfer rate. Dashed
black arrows denote enhancement of the growth, dashed black lines with a vertical end denote inhibition of the growth. Solid
red arrows denote enhancement of the proliferation, dashed red arrows denote enhancement of the transfer rate and dashed
red lines with a vertical end denote inhibition of the transfer rate.

and consequently decrease the concentration of Acini in the system. However the increasing influence of PanIN and PDAC
on the transfer term is saturated. This transfer drives the dynamics of Acini and is described by the following equation:

d
dt

Q0(t) = −π0

[
1 + δ0

Q2(t) + Q3(t)
1 + Q2(t) + Q3(t)

]
Q0(t).︸ ︷︷ ︸

transfer from Acini to ADM up regulated by the PanIN

and PDAC

(1)

Next, ADM become PanIN with a transfer rate π1. Moreover, the appearance of PanIN is positively correlated with a high
concentration of autonomic axons that have an inhibitory effect on cancer progression. We model this phenomenon by adding
the dependency of amplitude −β1 on A1 to the transfer term. Moreover, we add a multiplicative regularization term ρ(A1)
which ensures that if A1 takes negative values, ρ(A1) is almost equal to 0 e.g.

ρ(x) = 1
2

(
1 + x√

x2+ϵ

)
, 0 < ϵ ≪ 1.

It implies that if the density of autonomic axons in the system is low, the regulatory impact of axons is also low or non-existent.
Hence, the dynamics of ADM is described by the following equation:

d
dt

Q1(t) =π0

[
1 + δ0

Q2(t) + Q3(t)
1 + Q2(t) + Q3(t)

]
Q0(t)− π1 [1 − β1 A1(t)ρ (A1(t))] Q1(t)︸ ︷︷ ︸

transfer from ADM to PanIN down

regulated by the autonomic axons

.
(2)

Finally, PanIN progress to PDAC with a transfer rate π2. This process coincides with the increase of sensory axons that enhance
PDAC growth and a decrease of autonomic axons that have the opposite effect. We model this mixed effect in the transfer
term by adding a linear dependencies of amplitude δ2 on A2 and of amplitude −β2 on A1. In addition, we still introduce the
regularization term on the inhibiting effect of the autonomic axons which ensures that there is no effect on the transfer in case
the density of autonomic axons A1 is negative. It leads to the following mathematical formulation of the dynamics transfert:

d
dt

Q2(t) = proliferation term + π1 [1 − β1 A1(t)ρ (A1(t))] Q1(t)− π2 [1 − β2 A1(t)ρ (A1(t)) + δ2 A2(t)] Q2(t).︸ ︷︷ ︸
transfer from PanIN to PDAC down regulated by the auto-

nomic axons and up regulated by the sensory axons

Proliferation terms. We model cell proliferation in PanIN and PDAC by adding a logistic-like growth term for Q2 and
Q3 of respective rate γ2 and γ3. The saturation term τC is applied to the total concentration of proliferating cells which corre-
sponds to Q2 + Q3. We model the PNS effect in the growth process by incorporating the axons in the logistic law. We assume
that the sensory axons promote the self-renewing growth of (pre)cancerous cells until the population attains a certain thresh-
old. Furthermore, we assume that the autonomic axons have a mixed effect on this growth term. When the autonomic axons
concentration is above its initial equilibrium state Aeq

1 , the growth of (pre)cancerous cells is promoted. Once the concentration
is lower than its equilibrium state, the cancerous cells still proliferate but attain a lower carrying capacity. The effects of A1
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and A2 in the logistic law can be interpreted as tumor growth factors or inhibition of tumor growth factors and these effects
are limited by the thresholds τC

A1
and τC

A2
. The dynamics of PanIN and PDAC are then described by the following equations:

d
dt

Q2(t) = γ2Q2(t)
(

1 − Q2(t)+Q3(t)
τC

+ A1(t)
τC

A1

+ A2(t)
τC

A2

)
︸ ︷︷ ︸

proliferation regulated by the axons

+π1 [1 − β1 A1(t)ρ (A1(t))] Q1(t)

− π2 [1 − β2 A1(t)ρ (A1(t)) + δ2 A2(t)] Q2(t)

(3)

d
dt

Q3(t) = γ3Q3(t)
(

1 − Q2(t)+Q3(t)
τC

+ A1(t)
τC

A1

+ A2(t)
τC

A2

)
︸ ︷︷ ︸

proliferation regulated by the axons

+π2 [1 − β2 A1(t)ρ (A1(t)) + δ2 A2(t)] Q2(t)
(4)

Axon growth dynamics. Neuroplastic changes occur during the tumorigenesis and are closely linked to the presence of pre-
cancerous and cancerous cells. Modeling innervation with a logistic law seems the natural way to describe this phenomenon if
no spatial representation is taken into account. However, we do not take constant growth rates since the innervation is clearly
induced by precancerous and cancerous cells.
We assume from the experimental data that the growth rate of autonomic axons is increased by ADM and PanIN, whereas
PDAC has an opposite effect. The coefficients α1, α2 and α3 are associated respectively to Q1, Q2 and Q3 in the growth term in
order to specify the effect of each cells on the innervation. Also, the PanIN and PDAC cells promote sensory axon growth in
a similar way with coefficients ᾱ2 and ᾱ3. One can reasonably consider that growth in a biological phenomenon is saturated
because of various biophysical constraints. We introduced the threshold τA2 which is an upper bound for the density of
sensory axons in the system. Similarly, we denote τA1 the threshold on autonomic axons. However, A1 is not a density but a
difference quantity and this quantity is non-monotonous throughout the PDAC development process. Hence, we model the
dynamic of A1 by a modified logistic growth where the variable is bounded in [−τA1 , τA1 ]. If its growth term is non-negative,
A1 is tending to its upper bound and if the reverse is true, A1 tends to its lower bound. To conclude, the growth dynamics of
the axons are describe by the following equations

d
dt

A1(t) = (α1Q1(t) + α2Q2(t)− α3Q3(t))︸ ︷︷ ︸
stimulus effect from ADM and PanIN and

inhibiting effect from PDAC

(
1 + A1(t)

τA1

) (
1 − A1(t)

τA1

)
︸ ︷︷ ︸

logistic-like growth
(5)

d
dt

A2(t) = (ᾱ2Q2(t) + ᾱ3Q3(t))︸ ︷︷ ︸
stimulus effect from PanIN and PDAC

A2(t)
(

1 − A2(t)
τA2

)
︸ ︷︷ ︸

logistic growth

(6)

A priori conditions and assumptions on parameters. The interaction between cells and axons and the transition between
cell populations are modeled by a dynamical system driven by the set of parameters {π, δ, β, τ, γ, α}. In order to sum up,
we recall that the transition rates are denoted by π, the saturation rates by τ , the growth rates by γ. The parameters β and δ
appear in the transition terms. The β parameters are coefficients which translate the inhibiting effect on the transition rates
whereas the δ parameters translate a stimulating effect on the transition rates. The last category of parameters is assimilated
to the growth term of the axons. The parameters α and ᾱ are associated to the impact of the cell populations on the growth rate
of axons. All these parameters are assumed to be non-negative. In the following, we assume the hypotheses :

Hypothesis 1 : the transfer terms cannot become negative, it implies the following sufficient conditions :

1 > β1τA1 , 1 > β2τA1 . (H1)

Hypothesis 2 : the growth rate of the cells in the logistic law gives rise to a competition between the PanIN cells and the
PDAC cells for the same resource. However, the PDAC cells are considered to be dominant in the system and in the reality. It
is translated by the following order relation on the parameters :

γ2 < γ3. (H2)

Hypothesis 3 : the autonomic axons A1 have a mixed effect on the proliferation term of PanIN and PDAC: it can either
increase or decrease the resource in the logistic law. It is therefore unrealistic to consider that this mixed effect is the one that
governs the dynamics of growth. This implies that the proliferation term cannot be of negative sign in the equations (3) and
(4). The following assumptions is assumed :

τA1 < τC
A1

. (H3)

Initial conditions. We assume that at time 0, there are only Acini, autonomic axons and a very little amount of sensory
axons. Hence, we have the following initial conditions :

Q0(0) > 0, Q1(0) = Q2(0) = Q3(0) = 0, A1(0) = 0, 0 < A2(0) ≪ 1. (7)

Equations (1)-(6) form a non-linear dynamical system. The mathematical analysis of the system, such as the well-
posedness, the positivity and the long-term behavior, assesses theoretically the legitimacy of modeling choices and improves
the understanding of the interaction between axons and cancer.
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3 Properties of the model: well-posedness and asymptotic behavior.
For the sake of clarity, we introduce an abstract formulation of the equations (1)-(6). The main change is that the transition
terms are now represented by the nonnegative functions fi for i = 0, 1, 2. Hence, we obtain the following system :

d
dt Q0 =− f0 (Q2, Q3) Q0

d
dt Q1 = f0 (Q2, Q3) Q0 − f1 (A1) Q1

d
dt Q2 =γ2Q2

(
1 − Q2+Q3

τC
+ A1

τC
A1

+ A2
τC

A2

)
+ f1 (A1) Q1 − f2 (A1, A2) Q2

d
dt Q3 =γ3Q3

(
1 − Q2+Q3

τC
+ A1

τC
A1

+ A2
τC

A2

)
+ f2 (A1, A2) Q2

d
dt A1 =(α1Q1 + α2Q2 − α3Q3)

(
1 + A1

τA1

) (
1 − A1

τA1

)
d
dt A2 =(ᾱ2Q2 + ᾱ3Q3)A2

(
1 − A2

τA2

)

(8)

The first step in understanding the interactions between axons and the cancer progression is to establish properties of the
model such as positiveness, well-posedness, etc. and to study its asymptotic behavior.

3.1 Properties of the system (8)
In the following section, we establish preliminary results on the model. Besides the well-posedness and the global existence
of the solution, the cells populations are nonnegative. Moreover, the healthy cells populations (Acini and ADM) vanish at
equilibrium. These results comfort the modeling since the simplistic but realistic outcome of the pancreatic cancer is the
proliferation PDAC cells in the pancreas to the detriment of healthy cells.

Proposition 1. Let T > 0 be arbitrary and consider X = (Q0, Q1, Q2, Q3, A1, A2) and X0 =
(Q0(0), Q1(0), Q2(0), Q3(0), A1(0), A2(0)) such that

Qi(0) ≥ 0, for i = 0, 1, 2, 3

and
−τA1 ≤ A1(0) ≤ τA1 and 0 ≤ A2(0) ≤ τA2 .

Moreover assume that
∀(x, y) ∈ R2 ∃ M0 > m0 > 0 =⇒ m0 ≤ f0(x, y) ≤ M0,

∃L0 > 0 such that ∀u ∈ R2, ∀v ∈ R2 ∥ f0(u)− f0(v)∥ ≤ L0∥u − v∥,

and
∀x ∈ R ∃ M1 > m1 > 0 =⇒ m1 ≤ f1(x) ≤ M1,

∃L1 > 0 such that ∀(u, v) ∈ R2 ∥ f1(u)− f1(v)∥ ≤ L1∥u − v∥,

and
∀(x, y) ∈ R2 ∃ M2 > m2 > 0 =⇒ m2 ≤ f2(x, y) ≤ M2,

∃L2 > 0 such that ∀u ∈ R2, ∀v ∈ R2 ∥ f2(u)− f2(v)∥ ≤ L2∥u − v∥.

Then there exists a unique maximal solution for the system (8) with the initial condition X0 on I = [0, T). The following properties
holds:

• Nonnegativity ∀t ∈ I Qi(t) ≥ 0, for i = 0, 1, 2, 3,

• Boundedness of the axons ∀t ∈ I − τA1 ≤ A1(t) ≤ τA1 and 0 ≤ A2(t) ≤ τA2 .

Proof.
The well-posedness is a direct consequence of the Cauchy-Lipschitz theorem and the Lipschitz bound on fi. Moreover,

d
dt

Q0(t) = − f0(Q2(t), Q3(t))Q0(t) = −ψ(t)Q0(t)

for a positive function ψ, then {0} is an invariant set for d
dt Q0 and we have Q0(t) ≥ 0. Similarly, we obtain that

∀t ∈ I − τA1 ≤ A1(t) ≤ τA1 and 0 ≤ A2(t) ≤ τA2 .

Then, using the boundedness of f0 and f1 and the nonnegativity of Q0, we obtain

d
dt

Q1(t) ≥ −M1Q1(t).
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Hence by Gronwall’s lemma, we have
∀t > 0 0 ≤ Q1(0)e−M1t ≤ Q1(t).

Similarly, using the boundedness of f1 and the nonnegativity of Q1, we obtain

∀t > 0, 0 ≤ Q2(0)eψ̄(t) ≤ Q2(t),

where

ψ̄(t) =
∫ t

0
γ2

(
1 − Q2+Q3

τC
+ A1

τC
A1

+ A2
τC

A2

)
− M2ds.

Again, using the boundedness of f2 and the nonnegativity of Q2, we obtain

∀t > 0, 0 ≤ Q3(0)eψ̃(t) ≤ Q3(t),

where

ψ̃(t) =
∫ t

0
γ3

(
1 − Q2+Q3

τC
+ A1

τC
A1

+ A2
τC

A2

)
ds.

■

Proposition 2. Suppose the same hypotheses as in Proposition 1, then the following properties holds:

1. Exponential decays The solutions Q0 and Q1 decay exponentially fast toward 0 as t tends to infinity. Moreover,

∀t ∈ I Q0(0)e−M0t ≤ Q0(t) ≤ Q0(0)e−m0t,

and it exists a constant C(Q0(0), Q1(0)) ≥ 0 such that

∀t ∈ I 0 ≤ Q1(t) ≤ C(Q0(0), Q1(0))e−(m1−o(1))t.

2. Global existence There exists a unique solution for the system (8) with initial condition X0 on R+

Proof.
1.(Exponential decays) Using the Gronwall’s lemma, we get the following from the boudedness of f0

∀t > 0 Q0(0)e−M0t ≤ Q0(t) ≤ Q0(0)e−m0t.

From the proof of nonnegativity, we obtain a lower bound on Q1 which decays exponentially fast

∀t > 0 Q1(0)e−M1t ≤ Q1(t).

We are now interested in the upper bound of Q1. Using the bound on f1 and the Gronwall’s lemma, we obtain

d
dt

Q1(t) ≤ M0e−m0tQ0(0)− m1Q1(t),

Q1(t) ≤ e−m1tQ1(0) + e−m1t M0Q0(0)
∫ t

0
e(m1−m0)sds.

We first consider the case where m1 = m0, thus we get

Q1(t) ≤ e−m1tQ1(0) + e−m1t M0Q0(0)t,

Q1(t) ≤ e−m1tQ1(0) + e−m1t+ln(t)M0Q0(0),

Q1(t) ≤
(

e−ln(t)Q1(0) + M0Q0(0)
)

e−m1t+ln(t).

We finally get
Q1(t) ≤

[
Q1(0)o(1) + M0Q0(0)

]
e(−m1+o(1))t.

Let us now consider the case where m1 ̸= m0.

Q1(t) ≤ e−m1tQ1(0) + e−m1t M0Q0(0)
e(m1−m0)t−1

m1 − m0
,

Q1(t) ≤ e−m1tQ1(0) + M0Q0(0)
e−m0t − e−m1t

m1 − m0
.

We denote m = min(m0, m1), we also obtain an exponential decay :

Q1(t) ≤
[

e−(m1−m)tQ1(0) + M0Q0(0)
e−(m0−m)t − e−(m1−m)t

m1 − m0

]
e−mt.
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2. (Global existence) Now, we prove that Q2 and Q3 are bounded for t ∈ I. Using the bounds on A1, A2, f1, f2, the
positivity of Q2, Q3 and the fact that Q1 is bounded by an exponential function, we get

d
dt

Q2(t) ≤ γ2Q2(t)
(

C − Q2(t)
τC

)
+ M1e−mt,

where C = 1 +
τA1
τC

A1

+
τA2
τC

A2

. Moreover, the function f : x 7→ ax(b − x) with a > 0 and b ∈ R is uniformly bounded from above

for x ∈ R+, hence we obtain that Q2 is bounded for t ∈ I. Similarly, using the bounds on A1, A2, f2, the positivity of Q2, Q3
and the fact that Q2 is bounded by a constant denoted C2(T) on [0, T], we get

d
dt

Q3(t) ≤ γ3Q3(t)
(

C − Q3(t)
τC

)
+ M2C2(T),

and that Q3 is bounded for t ∈ I. Then the solution is global. ■

3.2 Limit system and asymptotic behavior
3.2.1 Exponential convergence of the sensory axons

As stated in Proposition 1, the Acini and ADM populations are reduced exponentially. It implies that once the proliferating
PanIN and PDAC cells appears, the competition between the cells populations is in favour of the development of PanIN and
PDAC. Moreover, since the growth term of the sensory axons only depends on the PanIN and PDAC, then the sensory axons
tend to their threshold τA2 . This is stated in the following proposition.

Proposition 3. [Exponential convergence of the sensory axons]
Let Q0(0) > 0, Q1(0) = Q2(0) = Q3(0) = 0, A1(0) ∈ (−τA1 , τA1 ) and A2(0) ∈ (0, τA2 ). We assume (H3) holds. Then A2 tends
exponentially fast to τA2 and for t∗ > 0 large enough, there exist a constant C > 0 and a rate r > 0 such that

∀t > t∗, |A2(t)− τA2 | ≤ C|A2(0)− τA2 |e
−rt.

Proof.
Since the growth term of the sensory axons depends on the quantity of proliferating cells, the bounds on the cells populations
Q2 and Q3 are one of the main information in order to deduce the exponential convergence of A2. The following inequality
gives us the bounds on the proliferating cells (PanIN and PDAC). Hence, it exists t∗ > 0 and two constants 0 < cy < Cy such
that

∀t > t∗, cy ≤ Q2(t) + Q3(t) ≤ Cy.

This results is detailed in Lemma 1 and its proof is postponed on the appendix for the sake of clarity.
We recall that

d
dt
|A2(t)− τA2 | = sign(A2(t)− τA2 )(ᾱ2Q2(t) + ᾱ3Q3(t))A2(t)

(
1 − A2(t)

τA2

)
= −(ᾱ2Q2(t) + ᾱ3Q3(t))

A2(t)
τA2

|A2(t)− τA2 |,

≤ −min(ᾱ2, ᾱ3)(Q2(t) + Q3(t))
A2(0)

τA2

|A2(t)− τA2 |.

The last inequality stands since for all time t > 0 A2(t) ∈ (0, τA2 ) (Proposition 1) and one can easily verify that for A2 cannot
decrease for A2(0) ∈ (0, τA2 ). We denote y(t) = Q1(t) + Q2(t) and we obtain by using its lower bound cy (Lemma 1) that for
t∗ > 0 large enough and for all t > t∗

d
dt
|A2(t)− τA2 | ≤ −C(cy, A2(0))|A2(t)− τA2 |,

where C(cy, A2(0)) > 0. Finally, we obtain the exponential convergence of A2 toward τA2 using the Gronwall’s Lemma. ■

3.2.2 Reduced system and its asymptotic behavior

Under the conditions of Proposition 3, it can be shown that the long-time dynamics of the system (8) are governed and
completely determined by the asymptotic of the following "reduced" system :

d
dt Q2(t) =γ2Q2(t)

(
1 − Q2(t)+Q3(t)

τC
+ A1(t)

τC
A1

+
τA2
τC

A2

)
− f2 (A1(t), τA2 ) Q2(t)

d
dt Q3(t) =γ3Q3(t)

(
1 − Q2(t)+Q3(t)

τC
+ A1(t)

τC
A1

+
τA2
τC

A2

)
+ f2 (A1(t), τA2 ) Q2(t)

d
dt A1(t) =(α2Q2(t)− α3Q3(t))

(
1 + A1(t)

τA1

) (
1 − A1(t)

τA1

)
(9)

The system (9) constitutes the starting point in order to study the asymptotic behavior of the model (1)-(6). We first focus
on the steady states (given by dQ2

dt = dQ3
dt = dA2

dt = 0) and their local stability.

7



Proposition 4. [Steady states of the system (9)]
Let (H2) and (H3) be true. We denote C(x) = 1 + x

τC
A1

+
τA2
τC

A2

. Then the admissible steady states of the system are the following:

• Q∞
2 = 0, Q∞

3 = 0, A∞
1 = c where c ∈

(
− τA1 ; τA1

)
, which is linearly unstable,

• Q∞
2 = 0, Q∞

3 = τC × C(τA1 ), A∞
1 = τA1 , which is linearly unstable,

• Q∞
2 = 0, Q∞

3 = τC × C(−τA1 ), A∞
1 = −τA1 , which is linearly stable.

Proof.
The condition τA1 < τC

A1
implies that C(A1(t)) = 1 + A1(t)

τC
A1

+
τA2
τC

A2

> 0 for all time t ≥ 0. Hence, the steady states must fulfill

the following equations:

γ2Q∞
2

(
C(A∞

1 )−
f ∞
2

γ2
−

Q∞
2 + Q∞

3
τc

)
= 0,

where f ∞
2 = f2(A∞

1 , τ2). There are two cases, either Q∞
2 = 0 or Q∞

2 = τc

(
C(A∞

1 )− f ∞
2

γ2
− Q∞

3
τC

)
. First, we study the case where

Q∞
2 ̸= 0. It implies by the positiveness of the solution (Proposition 1)

C(A∞
1 )−

f ∞
2

γ2
−

Q∞
3

τC
> 0

and then

C(A∞
1 )−

f ∞
2

γ2
> 0.

Hence, we have

0 = γ3Q∞
3

(
C(A∞

1 )−
Q∞

2 + Q∞
3

τc

)
+ f ∞

2 Q∞
2

=
γ3
γ2

f ∞
2 Q∞

3 + f ∞
2 τC

(
C(A∞

1 )−
f ∞
2

γ2
−

Q∞
3

τC

)
and then

Q∞
3 =

γ2
γ2 − γ3

τC

(
C(A∞

1 )−
f ∞
2

γ2

)
.

Since γ2 < γ3, we have that Q∞
3 < 0 which contradicts the positiveness property. Finally, we obtain that Q∞

2 = 0 and the
steady states of the Proposition 4 are then determined by simple computations.
Hence, the linearization around the steady states Q∞

2 = 0, Q∞
3 and A∞

1 give the following Jacobian matrix:
γ2(C(A∞

1 )− Q∞
3 /τC)− f ∞

2 0 0
−γ3

Q∞
3

τC
+ f ∞

2 γ3(C(A∞
1 )− 2Q∞

3 /τC) γ3Q∞
3 /τC

A1

α2

(
1 −

(
A∞

1
τA1

)2
)

−α3

(
1 −

(
A∞

1
τA1

)2
)

2α3Q∞
3

A∞
1

(τA1 )
2

 .

In the case Q∞
2 = Q∞

3 = 0 and A∞
1 = c, the eigenvalues of the Jacobian matrix are:

λ1 = γ2C(A∞
1 )− f ∞

2 , λ2 = γ3C(A∞
1 ), λ3 = 0.

In the last case, since Q∞
3 = τCC(A∞

1 ) and A∞
1 = −τA1 , the eigenvalues of the Jacobian matrix are:

λ1 = − f ∞
2 , λ2 = −γ3C(A∞

1 ), λ3 = 2α3τCC(A∞
1 )

A∞
1

(τA1 )
2 .

We conclude that the only linearly stable steady state is Q∞
2 = 0, Q∞

3 = τCC(−τA1 ), A∞
1 = −τA1 . ■

Now, we study the global behavior of the limit system looking at the trajectories in the vector field. The system (9) is a
modification of a competitive Lotka-Voltera system [21] for Q2 and Q3 coupled to a modified logistic equation for A1. The
following result is established.

Theorem 1 (Long time behavior of the limit system (9)). Let (H2) and (H3) be true. Let Q2(0) > 0, Q3(0) ≥ 0 and A1(0) ∈(
− τA1 , τA1

)
. Then

X(t) =
(
Q2(t), Q3(t), A1(t)

)
−→ X∞ =

(
0, τCC(−τA1 ), −τA1

)
for t → +∞

where C(−τA1 ) = 1 − τA1
τC

A1

+
τA2
τC

A2

.

Proof.
First, we introduce the following functions:

• z(A1, Q2, Q3) = C(A1)− Q2+Q3
τC

, we also denote z(t) = z(A1(t), Q2(t), Q3(t)) for the sake of simplicity,

• w(Q2, Q3) = α2Q2 − α3Q3, we also denote w(t) = w(Q2(t), Q3(t)) for the sake of simplicity.

Moreover, we introduce the following subdomains of R+ ×R+ ×[−τA1 , τA1 ] (see Figure 2) :

• the domain 0a such that z − f2/γ2 ≥ 0, w ≥ 0 and Q3 ≥ 0
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Q2

Q3

w = 0

τC(C(A1)− f2/γ2)

z − f2/γ2 = 0

τCC(A1)

τCC(τA1 )

z = 0 Q2 + Q3 = τCC(τA1 )

0a

I

II

IV

III

0b

Figure 2: Scheme of the vector field projected on the Q2, Q3-plane.

• the domain I such that z − f2/γ2 ≤ 0, w ≥ 0, Q3 ≥ 0 and z ≥ 0

• the domain II such that z ≤ 0, w ≥ 0 and Q3 ≥ 0

• the domain III such that z − f2/γ2 ≤ 0, w ≤ 0, Q2 ≥ 0 and z ≥ 0

• the domain IV such that z ≤ 0, w ≤ 0 and Q2 ≥ 0

• the domain 0b such that z − f2/γ2 ≥ 0, w ≤ 0 and Q2 ≥ 0

In the Figure 2, the red dots are the admissible steady states. In order to prove the convergence of X(t) toward X∞, we look at
the trajectories in the different subdomains. We recall that it exists m, M such that 0 < m < f2(t) < M for t ≥ 0.
Now, let us suppose that it exists t0 > 0 such that X(t0) ∈ 0a◦. Then ∃δ > 0 such that for t ∈ [t0, t0 + δ),

d
dt

Q2(t) > 0,
d
dt

Q3(t) > 0,
d
dt

A1(t) > 0.

Also,

d
dt

Q3(t) = γ3Q3(t)z(t) + f2(t)Q2(t),

≥ mQ2(t0).

Then, the trajectories cannot stay in 0a◦, since Q3 is bounded (Lemma 1), and either the trajectories go to 0b or to I. In addition,
if the trajectories go from 0a to I, it cannot go back again in 0a. This result comes from the fact that d

dt Q3 > 0 for X ∈ 0a ∪ I
and the fact that if the vector field points toward I on {z − f2/γ2 = 0} when Q3 = τ where τ > 0 then it points toward I on
{z − f2/γ2 = 0} ∩ {Q3 ≥ τ} (Lemma 2).

Let us suppose that it exists t1 > 0 such that X(t1) ∈ I◦. Then ∃δ > 0 such that for t ∈ [t1, t1 + δ),

d
dt

Q2(t) < 0,
d
dt

Q3(t) > 0,
d
dt

A1(t) > 0.

The trajectories cannot stay I since Q2, Q3 and A1 are monotonous, bounded and there is no steady-states in the subdomain
I. The vector field points inward on the surface I ∩ {z = 0} and it points outward on the surface I ∩ {w = 0}. The trajectories
can only go into the domain III.

Let us suppose ∃t2 > 0 such that X(t2) ∈ (0b ∪ III)◦. If X(t1) ∈ 0b◦ then ∃δ > 0 such that for t ∈ [t2, t2 + δ),

d
dt

Q2(t) > 0,
d
dt

Q3(t) > 0,
d
dt

A1(t) < 0.

The trajectories cannot stay in 0b and go to III since the null steady state is locally unstable (Proposition 4) and Q2 and Q3 are
nondecreasing. Moreover, the vector field points toward III on {z − f2/γ2 = 0}.
If X(t1) ∈ III◦ then ∃δ > 0 such that for t ∈ [t2, t2 + δ),

d
dt

Q2(t) < 0,
d
dt

Q3(t) > 0,
d
dt

A1(t) < 0.
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The vector field points outward on the surface III ∩ {z = 0} and inward on the surface III ∩ {w = 0} (cf. Lemma 2). Either,
the trajectories stay in III and converge toward X∞ or the trajectories go to IV.

If it exists t3 > 0 such that X(t3) ∈ IV◦, then ∀t > t3
d
dt Q2(t) < 0 then Q2(t) < Q2(t3). Moreover, since w(t) < 0 then

d
dt A1(t) < 0 hence A1 tends to −τA1 . Also z(t) < 0, it implies that

d
dt

Q2(t) = γ2Q2(t)
(

z(t)− f2(t)
γ2

)
,

≤ −γ2
f2(t)
γ2

Q2(t),

≤ −mQ2(t),

and that Q2(t) + Q3(t) ≥ τCC(A1(t)) ≥ τCC(−τA1 ) hence Q2 + Q3 is decreasing and bounded below by τCC(−τA1 ) and Q2
tends to 0. Finally, we conclude that once the trajectories enter IV they tend to X∞.

In addition, if there exists t4 > 0 such that X(t4) ∈ II◦ then ∃δ > 0 such that for t ∈ [t4, t4 + δ),

d
dt

Q2(t) < 0,
d
dt

Q3(t) < 0,
d
dt

A1(t) > 0.

Let us suppose that the trajectories remains in II. Since Q2, Q3 and A1 are monotonous and bounded, X converge to a point
in II. However, it is absurd since there is no steady state in II. It implies that the trajectories leave the space II and enter either
I, III or IV.

■

3.2.3 Asymptotic behavior of the complete system

Once the convergence is established on the limit system, the global asymptotic behavior of the complete system is given by
the following theorem.

Theorem 2 (Long time behavior of the system (8)). Let Q0(0) > 0, Qi(0) ≥ 0 for i = 1, 2, 3, A1(0) ∈ (−τA1 , τA1 ) and
A2(0) ∈ (0, τA2 ). Let (H2) and (H3) be true. Then

X(t) =
(
Q0(t), Q1(t), Q2(t), Q3(t), A1(t), A2(t)

)
−→

(
0, 0, 0, τCC(−τA1 ), −τA1 , τA2

)
for t → +∞

where C(−τA1 ) = 1 − τA1
τC

A1

+
τA2
τC

A2

.

Proof.
We introduce the function F : (0, ∞)× R3 7→ R such that for Y = (Q2, Q3, A1):

F(t, Y) =


γ2Q2

(
1 − Q2+Q3

τC
+ A1

τC
A1

+ A2(t)
τC

A2

)
+ f1 (A1) Q1(t)− f2 (A1, A2(t)) Q2

γ3Q3

(
1 − Q2+Q3

τC
+ A1

τC
A1

+ A2(t)
τC

A2

)
+ f2 (A1, A2(t)) Q2

(α1Q1(t) + α2Q2 − α3Q3)
(

1 + A1
τA1

) (
1 − A1

τA1

)

 .

Moreover, Proposition 1 gives the exponential convergence of Q0 and Q1 toward 0 and Proposition 3 gives the exponential
convergence of A2 toward τA2 . Hence, we obtain that

F(t, Y) → G(Y) as t → ∞ uniformly locally in Y ∈ R3,

where

G(Y) =


γ2Q2

(
1 − Q2+Q3

τC
+ A1

τC
A1

+
τA2
τC

A2

)
− f2 (A1, τA2 ) Q2

γ3Q3

(
1 − Q2+Q3

τC
+ A1

τC
A1

+
τA2
τC

A2

)
+ f2 (A1, τA2 ) Q2

(α2Q2 − α3Q3)
(

1 + A1
τA1

) (
1 − A1

τA1

)

 .

Using the results of Theorem 1, we have that the ω-limit set (see Appendix B, equation (18)) of the limit system (9) is restricted
to

ω(0, Y0) = {(0, τCC(−τA1 ),−τA1 )}.

Then, using Theorem 4 on the asymptotically autonomic differential equations (see Appendix B),we deduce the following
results on the solutions of system 8(

Q0(t), Q1(t), Q2(t), Q3(t), A1(t), A2(t)
)
−→

(
0, 0, 0, τCC(−τA1 ), −τA1 , τA2

)
for t → +∞.

■
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3.3 Interpretation of the mathematical results.
The asymptotic behaviour of the system corresponds to the pathological case: the tumor cells are proliferating and it remains
only sensory axons in the domain. This steady-state is corroborated in the observation. Furthermore, the maximum amount
of PDAC cells is given by

τCC(−τA1 ) = τC

(
1 −

τA1

τC
A1

+
τA2

τC
A2

)
.

This quantity corresponds to the maximum carrying capacity of the domain and depends positively on the amount of sensory
axons and negatively on the amout of autonomic axons. This result resonates with the fact that the sensory axons have a
pro-tumoral effect and a relatively high density in PDAC tumors whereas the autonomic axons have an anti-tumoral effects
and a relatively low density in the tumoral tissues during the late stages of the cancer development.

4 Calibration of the system and results
Next, we calibrated the model with biological information captured in the data. The calibration seems to be in general a
subjective approach. In our case, the large number of input parameters renders it challenging and highly time-consuming. We
use an optimization method in order to reduce the user intervention and obtain a more objective selection of parameters.
We first introduce and study the biological information aggregated in the data. Then, we construct an objective function that
integrates the biological assumptions and the experimental data. We study the identifiability of the parameters in regard to
this objective function. Finally, we obtain sets of parameters which calibrate reasonably well the model and we discuss the
sensitivity of these parameters.

4.1 Biological assumptions and observation
The observation aggregates experimental data and empirical knowledge such as experimentally validated hypotheses (time
of appearances, etc.). We gather all the biological information available on the process and formalize into the vector of obser-
vation denoted y∗ and the vector of chronological parameters (ti)i=1...5.

4.1.1 Experimental data 1

The observation used as referential in order to calibrate the model is represented in Figure 3. Data were obtained from the KIC

Figure 3: Proportion of cell populations in the pancreas of a KIC mouse at 45 days. The proportions of acini,
ADM, PanIN and PDAC lesions was calculated on 3 sections. Each column represents the data assimilated to one
section.

(LSL-KrasG12D/+; Cdkn2a (Ink4a/Arf)lox/lox; Pdx1-Cre) transgenic mouse model of PDAC and describe the percentage of acinar
tissue, ADM, PanIN and PDAC in histological sections throuth the pancreas of a 6.5 weeks-old mouse (45 days). Quantification
data have been published and are available in the source data file of [2]. Because of the variability between samples, we choose
to aggregate all the information contained in each section of the same mouse. We consider the observation as the proportion
of each compartment averaged over all samples of the same mouse and denote these experimental data y∗1 for the Acini, y∗2
for the ADM, y∗3 for the PanIN and y∗4 for the PDAC. In addition, the time of tissue harvest is 45 days and is denoted t f in the
following.

Remark 1. One can reasonably object that considering a larger number of tissue sections is consistent with the fact that the domain in
the mathematical model is the whole pancreas and its immediate environment. However, one of the purpose of this work is to be able to use
human biopsies as data. In the case of human data, the number of biopsies is limited and it becomes interesting to develop generic models
and methods that make up for the lack of information.

4.1.2 Experimental data 2

Data on axonal density were obtained by quantifying innervation in the pancreas of control and KIC mice. Whole pancreases
were immunostained with antibodies specific to each PNS neuron subtype. Sympathetic axons were immunolabeled with an
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antibody against tyrosine hydroxylase (TH), parasympathetic axons with an antibody against vesicular acetylcholine trans-
porter (VAChT) and sensory fibers with an antibody against calcitonin gene-related peptide (CGRP). The tissues were then
imaged using LSFM to allow 3D visualisation of the neuronal networks. LSFM images were processed with Imaris software.
Regions of Interest (ROIs: Acini, ADM, PanIN or PDAC) were segmented based on the autofluorescence signal of the tissue
and their volumes were measured. Axonal networks were manually reconstructed using the Imaris “Filament tracer” tool.
The “dendrite length sum” was collected for each ROI. The axon density was calculated as follows: dendrite length sum (nm)
/ volume of ROI (µm3). The full protocol and the quantification data for the sympathetic axons are available in the source data
file of [2].The quantification data for parasympathetic and sensory fibers are performed using the same protocol. Densities of
autonomic axons are the sum of sympathetic and parasympathetic axons in each ROI. Axonal data are measured at day 45. We
consider the observation as density in the total tumor volume and denote these experimental data y∗5 for the autonomic axons,
y∗6 for the sensory axons and Aeq

1 the density of autonomic axons of the control mouse. The experimental data expressed in
nm(µm)−3 are as follows :

y∗5 = 0.1077, y∗6 = 0.1468, Aeq
1 = 0.0099.

4.1.3 Biological assumptions on the chronological process

Initial conditions : there are only healthy cells (Acini) at initial time and there is a negligible amount of sensory axons in
the pancreas and a small amount of autonomic axons at initial time. These conditions are formalized by (7). In addition, the
neuroplastic changes and the cancer progression are relatively negligeable at early stages (before two weeks of age in the KIC
model). We denote t0 the parameter (in days) corresponding to the initial time for the model simulations. Without loss of
generality, we consider t0 = 10 days.

Chronological appearances : Based on the previous characterisation of the KIC model ( [22] and our personal observa-
tions), the first appearance of ADM is around time t1 = 17 days, of PanIN around time t2 = 21 days and PDAC around
time t3 = 35 days. The density of autonomic axons increases in ADM regions, peaks in PanIN and decreases in PDAC,
while sensory axons are rarely observed in PanIN, but have a high density in PDAC. We therefore empirically set the time of
appearance of A1 and A2 at t4 = 18 days and t5 = 30 days, respectively.

4.2 Parameters calibration with an optimization procedure
The dynamics of the system depends very strongly on the choice of parameters. This choice is based on the calibration of the
model. In other words, it is first necessary to quantify the distance between the outputs of the model and the biological data
and then to find the parameters that minimize this distance in an objective way. That is the reason why, testing the goodness
of fit through an optimization procedure impose itself as a rigorous method. The following section describes a data-driven
process which minimizes the deviation between the observation and the model and which gives an objective calibration of
the parameters.

4.2.1 Objective function

The measurement of this deviation is made possible by the objective function or also called the cost function which is denoted
as G. The inputs of G are the parameters of (1)-(6) (see Table 2) denoted as the vector θ. This cost function integrates the biolog-
ical assumptions and the comparison to the experimental data. The further away from the experimental data the trajectories
are, the higher the cost function is. Hence, finding the parameters which minimize the cost function is equivalent to the cali-
bration of the model. We recall that y∗ are the observation used to calibrate the model. Hence, y∗ ∈ K where K is a compact
set in R6. The vectors of parameters θ∗ which minimize the function G give the optimal calibration of the system where the
biological constraints and hypothesis are taken into accounts. The cost function is described by the following equation :

G(θ) =
3

∑
k=0

(
ak

∫ t f +3

t f −3

(
Qk(s|θ)

(Q0 + Q1 + Q2 + Q3)(s|θ)
− y∗k+1

)2
ds

)
︸ ︷︷ ︸

Measure of the deviation between the numerical simulation

and the experimental data 1

+ a4

∫ t f +3

t f −3

(
A1(s|θ) + Aeq

1 − y∗5
)2

ds + a5

∫ t f +3

t f −3
(A2(s|θ)− y∗6)

2 ds︸ ︷︷ ︸
Measure of the deviation between the numerical simulation and the

experimental data 2

+
3

∑
k=1

(
bk

∫ tk

t0

(Qk(s|θ))2ds
)
+ b4

∫ t4

t0

(A1(s|θ))2ds + b5

∫ t5

t0

(A2(s|θ))2ds︸ ︷︷ ︸
Penalization term ensuring the chronological assumptions

.

(10)

The parameter t f corresponds to the time in days of data extraction from in vivo experimentations (see Figure 3), hence
t f = 45. The definition of (10) also includes the interval of days [t f − 3; t f + 3] and the parameters (ak)k=0,...,5, (bk)k=1,...,5. The
time interval [t f − 3; t f + 3] allows us to use the L2-norm squared to compare the simulated trajectories to the observation.
However, it implies that the experimental data are supposed to be true on a six days interval around t f . One can reasonably
justify this assumptions by the fact that this non-local norm regularizes the observation from its inherent biological chaos.
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Chaos means that biological phenomenon, processes or experiments are extremely sensitive to small perturbations. In our
case, it is translated by the variability of chronological appearances of phenomenon between mice. The L2-norm smooths the
variability in time in the objective function and is less sensitive to the observation variability.

Remark 2. We introduce ak and bk as normalization parameters in G. The objective function G is a sum of positive terms where each
of these terms have a contribution to the final cost. These contributions are individually linked to a specific part of the information on the
biological process. However, there are discrepancies between the different parts, for instance, y∗2 ≪ y∗3 (cf. Figure 3) or t1 ≪ t3. Some data
can be falsely assimilated as outliers. Hence, we consider the following:

ak =
1

6y∗k
, bk = fk(y

∗
k )

1
tk − t0

,

where fk adjusts the coefficient bk in regard to y∗k . Ultimately, the normalization coefficients make all contributions to the cost function
equal.

4.3 Identifiability and sensitivity of the parameters
We study the identifiability of the model to understand the degree to which the parameters can be constrained to a unique
value or a reasonable range of values given the data available. Since multiple model parametrizations produce similar be-
haviour (see section 4.3.1), we use profile likelihood methods (cf. [23, 24]) to refine the interpretation of the estimators (see
section 4.3.4).

4.3.1 Optimization challenges

Figure 4: Evolution of cell populations and axons in the pancreas for 7 different sets of parameters. The x-axis
is the time in days. For the top four graphs, the y-axis corresponds to percentage of a specific population in the pancreas. The
vertical red lines correspond to the time of appearance within a tolerance of six days. The red dots at day 45 correspond to the
observation y∗ for the mouse 1 (see Figure 3) and and the confidence intervals of the data are represented by the red segments.
Each curve on the same graph is associated to its set of parameters (see Table 3). All sets of parameters have almost the same
optimization score (under 10), however the dynamics are different.

The optimization problem leads to mathematical and numerical challenges. With such experimental data and such a large
set of parameters, we can not except to calibrate the model uniquely. It leads to multiple local minimizers and convergence
issues. We use the Covariance Matrix Adaptation Evolution Strategy (CMA-ES see [25,26]) which is based on a derivative-free
evolution algorithm in order to overcome the obstacles linked to the size of the optimization problem and to the non-trivial
dependence of the cost function on the parameters. The results of the optimization procedure give a set of acceptable param-
eters. The evolution of cell populations can be simulated for each of these parameters’ vector (cf. Figure 4). It is interesting to
note that the trajectories in the numerical simulation show different behaviours for the same cost (see Figure 4).
Recall that the expected asymptotic behaviour corresponds to the depletion of all healthy and precancerous cells and the
saturation of PDAC. Furthermore, the autonomic axons density is supposed to vanish whereas the sensory axons density
converges to a threshold (see Section 3). The numerical simulations confirm that the time near the steady state and the time
of the experimental data 1 are not on the same time frame. Moreover, some trajectories tend faster to the equilibrium with the
same cost function values than others. For instance, we observe in Figure 4 that some sets of parameters correspond to a faster
convergence rate:
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• We see that one trajectory of Q1 is decreasing after time t f .

• Two trajectories of Q2 are increasing then decreasing with a peak values between the range of the appearance time of
the PDAC.

• We distinguish that two trajectories of A1 are increasing, reach their maximum value around 35 days and then are
decreasing relatively fast after 45 days.

Further analysis are needed in order to classify which parameters tuples are relevant.

4.3.2 Discrete formulation of the objective function and link with the likelihood function

Consider the continuous solution X(t) of the system formed by the equations (1)-(6)

X(t) = (Q0(t), Q1(t), Q2(t), Q3(t), A1(t), A2(t)) = (Xk(t))k=1...6.

Recall that X(t) is included in a compact subset of R6 denoted K (see Section 3). Moreover, the time interval of interest is finite
and we denote T its upper bound and I = [0, T). We denote (si)0,...,N−1 the finite sequence of length N used to to discretize
the time interval [0, T). In order to calibrate the parameters of the system (1)-(6), we introduce the model function g : K 7→ R6

+.
It allows us to confront the simulations to the measurement values and to the biological assumptions. In the first hand, we
denote gk as the k-th coordinate of the model function denoted:

gk (si|θ) =




Xk

∑j Qj
(si) if k = 1, . . . , 4

X4(si) + Aeq
1 if k = 5

X5(si) if k = 6

if si ∈ [t f − 3; t f + 3]

Xk(si) if si ∈ [0; tk]

where Aeq
1 is the initial equilibrium state of autonomic axons. In the second hand, we denote ỹk the k-th coordinate of the

statistical observation (i.e. the quantitative value gathering the measurement values and the biological assumptions):

ỹk,i =

{
y∗k if si ∈ [t f − 3; t f + 3]
0 if si ∈ [0, tk]

(11)

where i = 0, . . . , N − 1, y∗ is the vector of the experimental measurements and tk is the time of appearance of the k-th variable
of X. Finally, we denote the observables as following :

yi(θ) = g (si|θ) + ϵi for i = 0, . . . , N − 1, (12)

where θ is the vector of parameters of the model and ϵi is the independent noise.

Finally, we denote χ2 the objective function which measures the agreement of experimental data with the observables
predicted by the model :

χ2(θ) =
N−1

∑
i=0

1
ci
∥yi(θ)− ỹi∥2

2, (13)

where ỹi is the vector composed by the ỹk,i (see (11)) and ci are coefficients gathering the corresponding measurements er-
rors and normalization terms coming from the discrepancy of the data. The objective function described in (13) corresponds
to the objective function G given in (10) in a discrete time frame and considering the experimental noise. This function is
also assimilated to −2LL, where LL is the log-likelihood. Hence, the minimization problem is equivalent to the maximum likeli-
hood estimation problem. It is a widely documented problem in the literature and has beneficial properties like efficiency and
consistency [27].

4.3.3 Profile likelihood to identify the parameters

The issue remains the large number of parameters and the "small" amount of data at our disposal. Therefore, the study of
the identifiability of the parameters gives further knowledge about the fit between the model and the observation and helps
to interpret the outputs given by the model. Since the optimization problem is linked to the maximization of the likelihood,
the profile likelihood solves the identifiability problem [28]. This one-dimensional projection is performed to visually evaluate
whether different values of the same parameter give similar outputs. We recall that the vector θ denotes the parameters of the
model . Hence, using the objective function (13), the impact of the value of the specific parameter θj for fitting the model to
the observation is assessed by the following profile likelihood :

Pj(p) = min
θ∈{θ | θj=p}

χ2(θ), (14)

where the objective function (13) is evaluated as a function of the values pj taken by the parameter θj while all others param-
eters θi, i ̸= j are reoptimized. This one-dimensional representation of the likelihood (14) can be geometrically interpreted
in order to assess the identifiability of the parameter θj [23, 29]. For instance, a flat profile for Pj corresponds to a structural
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non-identifiability for the parameter θj. It implies that the parameter is non-unique for the minimization of the objective func-
tion. Eliminating the non-uniqueness requires more data or additional data on different quantities. If Pj has a minimum but
is flat on one side then the parameter θj is considered as a practically non-identifiable parameter. It implies that the data do
not contain significant enough information about the parameter. The parameter value cannot be restricted to a precise value.
Similarly, new experiments leading to additional data are required in order to rigorously estimate the parameters. However,
if Pj describes a curve with unique minimum in a realistic range of values then the parameters θj is identifiable. Also, if some
knowledge is assumed on the experimental noise ϵj, a finite confidence interval can be computed and gives an asymptotic
validation of the identifiability of the parameter θj (see [23, 28, 29]).

An implementation of the profile likelihood has been performed where θj takes 20 distinct values denoted
{

pj
i |i = 1 . . . 20

}
which cover its range (see Table 2). For each pj

i , the minimization problem (14) has been solved numerically with 50 differ-
ent initial conditions on the parameters θi, i ̸= j in order to fully explore the optimization domain (see Appendix C). This
Monte-Carlo approach allows to obtain several sets of admissible parameters for each pj

i . It gives a qualitative criterium to
validate the identifiability of a parameter : if the median of the costs Pj admits a distinct minimum at pj,∗ then we consider
the parameter to be identifiable and its value to be pj,∗. It is reasonable to consider as estimator the identifiable parameters

pj,∗, however these values are highly dependent on the choice of the discretization of the
(

pj
i

)
i
. This uncertainty related to

this choice is significantly reduced when we focus on the confidence range obtained through the procedure, i.e. the range where
the identifiable parameters give reasonable results concerning the deviation between the observations and the model.

Figure 5: Numerical results of the identifiability problem using the profile likelihood. Each plot corresponds to a
specific identifiable parameter (π0, π1, π2, γ2, γ3, τC, δ0). The x-axis describes the values taken by the fixed parameter θj. The
y-axis denotes the corresponding fitting error defined in (14). The gray area represents 75% of the results between the first and
last quartile (see Appendix C). The median (in blue) and the mean (in orange) for 50 iterations of the minimization problem
show that each parameters admits a distinct minimum value under 10 for the fitting error.

As a result, we clearly distinguished seven identifiable parameters in our model (see Figure 5): the progression transfer
rates π0, π1 and π2, the proliferation rates of the PanIN and the PDAC respectively γ2 and γ3, the saturation term for the
proliferation of the PanIN and PDAC τC and finally the amplitude of the Michaelis-Menten term describing the effect of the
PanIN and the PDAC on the progression of the Acini into ADM δ0. These parameters and their estimated values are gathered
in the Table 1.

π0 π1 π2 γ2 γ3 τC δ0
Estimated value 0.0025 0.00942 0.176 0.229 0.31 100 3.65
Confidence range (10−4, 10−2) (10−3, 10−1) (10−1, 0.5) (10−1, 0.3) (0.2, 0.4) (50, 200) (3, 5)

Table 1: Values of the identifiable parameters.

The identifiability of these seven parameters is further verified by comparing the cost distribution of the objective func-
tion in two cases: when we fix the identifiable parameters and minimize on all the remaining parameters and when all the
parameters are free during the optimization. In the first case, the cost distribution is located around 4 (close to the minimal
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value obtained in the numerical simulation). In the second case, the cost distribution is much more spread (see Figure 8 in the
Appendix). It confirms that the parameters are correctly estimated thanks to the data available since the distribution of fitting
errors is concentrated on small values. Further details about the numerical methods are postponed in the Appendix C. In
the end, this method allows to obtain a data-driven identifiability criterion without making assumptions on the experimental
noise. It also gives estimators and their confidence range (see Table 1) for the identifiable parameters of the model.

4.3.4 Biological interpretations

Interpretation of the identifiability results. This numerical study around the identifiability of the parameters of the model
gives interesting insights about the experimental data and the biological processes behind it. First, we observed that the
transfer rates from Acini to ADM π0, ADM to PanIN π1 and PanIN to PDAC π2 are identifiable. Moreover, the estimates for
the transfer rates respect the following order relation

π2 > πi, i = 0, 1.

It implies that the progression process appears to go faster at the late stage of the PDAC development.
We also obtain estimates for the proliferation rates of the PanIN γ2 and the PDAC γ3. It implies that the data combining the
proportion of cell populations at 45 days and the knowledge of the first time of appearance of each cell population give a
sufficient amount of knowledge in order to calibrate the speed of the proliferation mechanism in the model. However, the
threshold parameters τc is likely to be underestimated in regards to the data at our disposal. The value of this threshold is of
a different order of magnitude compared to the other parameters. Therefore, its range of acceptable estimates is also wider
compared to the other parameters and additional data are needed in order to compute a finer estimate.

Sentivity analysis results.The other parameters seem unidentifiable but a variance-based sensitivity analysis (see [30,31])
allows us to acquire additional information. In order to perform this analysis, we restrict ourselves to the parameters linked to
the effect of the axons on the cell population concentrations: the parameters in the transition rates β1, β2 and δ2, the parameters
in the proliferation terms τC

A1
and τC

A2
(c.f. Table 2). The other parameters are fixed and are given by the last set of parameters

in the Table 3. The choice of this specific set of parameters is based on qualitative considerations such as its associated cost
given by (10), the fact that the associated trajectories are similar to the expected behavior (e.g. the decay of A1, etc). Hence, the
inputs are these five parameters, which are denoted

ϑ =
(

β1, β2, δ2, τC
A1

, τC
A2

)
.

Concerning the output of the sensitivity analysis, our focus is on the PDAC cells. We introduce the following indicator of the
variation of the PDAC cells:

V = 1 −
∫ tF

t0
Q3(s; ϑ)ds∫ tF

t0
Q3(s)ds

, (15)

where Q3(·) denotes the PDACs concentration for the control parameters set (given by the whole last set of parameters in the
Table 3), Q3(·; ϑ) denotes the PDAC cells concentration for the input parameters ϑ, t0 = 10 and tF = 70 correspond to the
initial time and the finite time for the model simulations. The interpretation of the output V in (15) is the following:

• if |V| ≤ ϵ for ϵ arbitrary small, then axons have almost no effect on the appearance of PDACs between days t0 and tF.

• If V > ϵ, the inputs in ϑ have an inhibiting effect on the PDACs between days t0 and tF.

• Conversely, if V < −ϵ, the inputs in ϑ have a positive impact on the PDACs between days 10 and 70 which can also be
interpreted as a protumoral effect of the axons.

The results of the variance-based sensitivity analysis are given by the first-order indices and the total-effect indices respec-
tively S1 an ST in the Figure 6 (see [32]). Both types of index measure the contribution of the effect ϑi to the output variance.
However, the first-order index measure the effect of varying θi alone and is averaged over the variations of the other input
parameters. Whereas, the total-effect index gives the contribution of ϑi and its interactions with any other inputs or tuple
of inputs. This approach is also called the global sensitivity analysis because it also measures the sensitivity of any tuple of
inputs.
Ultimately, the following conclusions can be drawn from the sensitivity analysis (see Figure 6).

• The two main contributors to the variability of the PDACs are the parameters β1 and τC
A2

. Both parameters have an
inhibiting effect on the PDACs when their values are growing. However, they do not play the same role in the system
(the first regulates the effect of the autonomic axons on the transfer between ADM and PanIN and the latter regulates
the effect of the sensory axons on the proliferation).

• By definition, we have that ST(ϑi) ≥ S1(ϑi) and the equality holds when the model is additive. One interesting remark
is that the first-order index and the total-effect index of τC

A2
are almost equivalent. This implies that the contribution of

cross-effects between τC
A2

and the other parameters is small and thus that the contribution of sensory axons on PDAC
proliferation through the proliferation mechanism is almost independent of other axonal mechanisms on the cell popu-
lations.

• The first-order indices of β2, δ2 and τC
A1

are significantly smaller than the indices of the two other parameters. This
implies that the variation of these parameters, taken one by one, has a relatively negligible effect on the variations of
PDACs. Moreover, since the total-effect index of β2 is small, this implies that the inhibitory impact of autonomous axons
on the transfer of PanIN cells to PDACs does not have much impact on the overall amount of PDACs in the model.

16



Figure 6: Indices of the sensitivity analysis of the parameters linked to the axons on the PDAC cells. The color
blue correspond to the first-order-effect indices (S1) of the Sobol sensitivity analysis and the color orange correspond to the
total-effect indices (ST). The black segment corresponds to the confidence interval for the associated sensitivity index.

• Concerning δ2 and τC
A1

, the discrepancy between the first-order indices and the total-effect indices indicates that the
parameters still have an effect on the overall amount of PDACs. However, the significance of the effect is primarily
seen through the interactions between one of these two parameters and the others (i.e., when measuring the impact of
varying pairs or tuples of parameters simultaneously).

In silico denervation. A first step of the model validation has been realized in the previous sections through the calibra-
tion of the model from the biological data and the study of the identifiability of the parameters. In what follows, we consider
the dynamics associated to the last set of parameters in Table 3 and define as a control the corresponding evolution of PDACs
between days 10 and 70 (the blue curve in Figure 7). Now, a more qualitative approach of model validation is considered by
making denervation in silico. This model validation step is based on three types of denervation and corresponding observa-
tions:

• in [2] and [11] , it has been observed that the denervation of the autonomic axons has a pro-tumoral effect. The pro-
tumoral effect of the denervation is also observed in the numerical simulation in Figure 7. The orange curve corresponds
to the amount of PDACs (Q3) when the parameters in front of the autonomic axons in the transfer rates are negligible
(β1 = β2 = 0) and when the parameters dividing the autonomic axons in the proliferation terms is large

(
τC

A1
= 100

and A1/τC
A1

≈ 10−3). Hence, we see that the PDACs appear earlier and converge toward a bigger plateau compared to
the control curve (blue).

• The denervation of the sensory axons alone corresponding to the red curve in Figure 7 shows that the denervation has
an anti-tumoral effect by delaying the PDACs arrival. This can be performed by taking δ2 = 0 and τC

A2
= 100 in the

model. The immediate conclusion is that the sensory axons have a pro-tumoral role in the PDAC progression which is
corroborated by the experimental conclusions in [13].

• In [2] , a pro-tumoral effect has been observed when a denervation of both autonomic and sensory axons has been
performed. The same effect is also observed in the numerical simulation (green curve in Figure 7). In order to simulate
this additional denervation, we take the same values for the parameters linked to the autonomic axons. We set to 0 the
parameter of the sensory axons in the transfer rate (δ2 = 0) and to a large value the parameter linked to the effect of the
sensory axons in the proliferation terms (τC

A2
= 100). One can note that compared to the autonomic denervation case, the

pro-tumoral effect is not as strong when the sensory axons are also denervated. Finally, the three types of denervation
performed in vivo are also performed in silico and the in vivo and in silico conclusions are analogous.
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Figure 7: Numerical simulations of the time evolution of PDAC cells. The x-axis describes the time in day. Each
curves corresponds to the simulation of the quantity Q3 in different cases: when there is no denervation (blue), when the effect
of the autonomic axons is off (orange), when the effect of the sensory axons is off (red) and when the effect of the autonomic
and sensory axons is off (green). The set of parameters for the simulation is given in the Table 3 (last set of parameters).

5 Conclusion
In this paper, we develop an original model to investigate the role of peripheral axons in pancreatic cancer progression. The
study of the calibration to the experimental data highlights the genericity of the model and the fine analysis of the data in-
formes on the underlying mechanisms. On the one hand, the optimization process to study the parameters identifiability and
to obtain the parameters estimations is performed on mouse data but could be adapted to human data. On the other hand,
it also gives the intricate links between experimental data, model parameters and underlying biological mechanisms. For in-
stance, the information on the relatively low amount of PanIN cells coupled to the information on the chronological time of
appearances lead to the conclusion that the speed of tumour progression accelerate towards the late stage of PDAC develop-
ment. In addition, the model is very useful for testing hypotheses with the help of numerical simulations. The model allows
us to simulate the effect of a partial or complete denervation at any time. It sheds lights on complex correlation between the
cell populations and the axons and confirms some biological observations.
A first step for expansion and improvement is to investigate further the acquisition of the experimental data in order to ob-
tain quantitative data reducing the predictive uncertainty of the model. As an example, additional measurements are needed
to quantify more precisely the evolution of sensory and autonomic axon density over time. These measurements would be
related to the speeds of axon proliferation in the model. Moreover, these speeds aggregate into a coefficient various effects
coming from different cell populations. This uncertainty can be reduced by studying and building an optimal experimental
design in relation to the mathematical model.
The model could be further improved by considering the phenotype of the cell as a continuous variable. In particular, this
approach leads to a coupled model with a partial differential equation and differential equations. This formalism would allow
a more precise description of the tumour progression and the neuroplastic changes occurring during this process. In particu-
lar, this would allow the incorporation of neglected cell categories (e.g. PanIN 1, PanIN 2, PanIN 3, etc) into the model and it
would lead to a finer representation of the biological mechanisms.
An additional extension step would be to more accurately include other component of the tumor microenvironment (as ex-
ample the immune system) in the modeling. However, the precision gained in the modeling automatically leads to an increase
in the data required for calibration and an increase in the complexity of the predictions that can be made by this new model.
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A Additional Lemmas
Lemma 1. [Bounds on the cancerous cells]
Let Q0(0) > 0, Q1(0) = Q2(0) = Q3(0) = 0, A1(0) ∈ (−τA1 , τA1 ) and A2(0) ∈ (0, τA2 ). Let τA1 < τC

A1
. Then it exist t∗ > 0 and

two constants 0 < cy < Cy such that
∀t > t∗, cy ≤ Q2(t) + Q3(t) ≤ Cy.

Proof.[Lemma 1]
We introduce the following notations : y(t) = Q2(t) + Q3(t) and C(A1(t), A2(t)) = 1 + A1(t)

τC
A1

+ A2(t)
τC

A2

. We recall that

d
dt

y(t) = (γ2Q2(t) + γ3Q3(t))
(

C(A1(t), A2(t))−
y(t)
τC

)
+ f1(A1(t))Q1(t).

Since A2(t) ≤ τA2 and τA1 < τC
A1

there exists a constant Ca such that

0 < C(A1(t), A2(t)) < Ca, ∀t > 0.

Now, we assume there exists t0 > 0 such that
y(t0) > τCCa + C

where C > 0 is a constant which will be discussed later and we denote V0 a neighborhood of t0. Using the bounds on Q1 and
f1, we obtain

d
dt

y(t) ≤ γy(t)
(

Ca −
y(t)
τC

)
+ M1C(Q0, Q1),

where γ ∈ [γ2, γ3]. The function P : x ∈ R+ 7→ γx(Ca − x/τC) + M1C(Q0, Q1) is polynomial which admits two roots: a
negative and a positive one. We denote y+ the positive root of P and we assume C large enough such that y+ < y(t0). Then,
for t ∈ V0, we have

d
dt

y(t) < 0 =⇒ y(t) ≤ y(t0).

Moreover, since the solutions of (8) are nonnegative, we obtain a uniform upper bound for Q2 and Q3.

Now, we focus on the proof of the lower bound of y. First, we prove that it exists t1 ≥ 0 such that y(t1) > 0. Let us assume
that ∀t ≥ 0, y(t) = 0. It implies that d

dt y(t) = 0 and that Q1 is uniformly equal to 0. Moreover, d
dt Q1 must be equal to 0 and
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then ∀t ≥ 0 Q0(t) = 0. It leads to a contradiction since Q0(0) > 0.
Hence, let us assume that 0 < y(t1) < ca where ca = 1 − τA1

τC
A1

and then ca ≤ C(A1(t), A2(t)). Moreover, we denote V1 a

neighborhood of t1 and we have

d
dt

y(t) = (γ2Q2(t) + γ3Q3(t))
(

C(A1(t), A2(t))−
y(t)
τC

)
+ f1(A1(t))Q1(t),

≥ γy(t)
(

ca −
y(t)
τC

)
.

Then, for t ∈ V1, we have
d
dt

y(t) > 0 =⇒ y(t) ≥ y(t1).

■

Lemma 2 (Study of the vector field). Let z = 0, w = 0 and z − f2(A1)
γ2

= 0 be the three surfaces of interest in order to study the vector
field of the system (9).

• w = α2Q2 − α3Q3, −→n = (α2, −α3, 0) then

−→n · f (Q2, Q3, A1) = α2Q2

[
z(γ2 − γ3)−

(
1 +

α3
α2

)
f2(A1)

]
.

• z = 1 − Q2+Q3
τC

+ A1
τC

A1

+
τA2
τC

A2

, −→n =

(
− 1

τC
, − 1

τC
, 1

τC
A1

)
then

−→n · f (Q2, Q3, A1) =
1

τC
A1

w

(
1 −

(
A1
τA1

)2
)

.

• z − f2(A1)
γ2

= 1 − Q2+Q3
τC

+ A1
τC

A1

+
τA2
τC

A2

− f2(A1)
γ2

, −→n =

(
− 1

τC
, − 1

τC
, 1

τC
A1

− f ′2(A1)
γ2

)
then

−→n · f (Q2, Q3, A1) = − 1
τC

f2(A1)

(
γ3
γ2

Q3 + Q2

)
+

(
1

τC
A1

−
f ′2(A1)

γ2

)
w

(
1 −

(
A1
τA1

)2
)

.

B Results on asymptotically autonomous differential systems
In this section, we recall some results on asymptotically autonomous differential equations. The proofs of the results and
further details can be found in [33–35].

Definition 1. Let f : R × Rn 7→ Rn and g : Rn 7→ Rn be continuous and locally Lipschitz on Rn. An ordinary differential equation in
Rn

ẋ = f (t, x), (16)

is called asymptotically autonomous with limit equation

ẏ = g(y), (17)

if
f (t, x) −−−→

t→∞
g(x), locally uniformly in x ∈ Rn.

We denote the ω-limit set of ω of a forward bounded solution x to (16) satisfying x(t0) = x0 by ω(t0, x0):

ω(t0, x0) =
⋂

s>t0

{x(t); t ≥ s}. (18)

We recall the main theorems established by Markus in [33].

Theorem 3. The ω-limit set ω of a forward bounded solution x to (16) is nonempty, compact, and connected. Moreover

dist(x(t), ω) −−−→
t→∞

0.

Finally ω is invariant under (17), i.e. if y(t0) = y0 ∈ ω and y(t, y0) its trajectory with initial point y0 then y(t, y0) ∈ ω. In particular
any point in ω lies on a full orbit of (17) that is contained in ω.

Theorem 4. Let y∞ be a locally asymptotically stable equilibrium of (17) and ω the ω-limit set of a forward bounded solution x to (16).
If ω contains a point y0 such that the solution of (17) though (0, y0) converges to y∞ for t → ∞, then ω = {y∞}, i.e.

x(t) −−−→
t→∞

y∞.

These theorems have been used in population dynamics in order to prove that asymptotically autonomous ODEs arising
from the models converge to equilibrium (e.g. [36]). Moreover, these theorems have been generalized in [35] to be applied for
specific PDEs.
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C Methods for the identifiability analysis with the profile likelihood.

C.1 Parameters of the model
Table 2 describes the list of all parameters appearing in the model equations. Each parameter is supplied with its range
of values and a short description. The range of parameter values is chosen to be large for two reasons. The first is not to
impose too restrictive conditions since the model is completely original and very little information is available. The second
is to maximize the search space for reasonable parameters in order to calibrate the model. It is then possible to divide the

Description Symbol Units Range of value
Average density of autonomic axons in healthy pancreas Aeq

1 nm(µm−3) 0.0099
Saturation term of the logistic-like growth τA1 nm(µm−3) 0.3
Transfer rate of the Q0 to Q1 π0 day−1 (10−5, 1)
Transfer rate of the Q1 to Q2 π1 day−1 (10−5, 1)
Transfer rate of the Q2 to Q3 π2 day−1 (10−5, 1)
Growth rate of Q2 γ2 day−1 (10−6, 1)
Growth rate of Q3 γ3 day−1 (10−6, 1)
Amplitude of the effect of A1 on the transfer rate β1 nm−1µm3 (0, τ−1

A1
)

Amplitude of the effect of A1 on the transfer rate β2 nm−1µm3 (0, τ−1
A1

)

Maximum amplitude of the Michaelis-Menten term δ0 unitless (0, 10)
Amplitude of the effect of A2 on the transfer rate δ2 nm−1 µm3 (0, 10)
Saturation term of the logistic growth τC cells(mm−3) (50, 103)
Saturation term of the logistic growth τA2 nm(µm−3) (0, 2)
Threshold for the effect of A1 on the growth of Q2 and Q3 τC

A1
nm(µm−3) (0.3, 2)

Threshold for the effect of A2 on the growth of Q2 and Q3 τC
A2

nm(µm−3) (0, 2)
Amplitude of the effect of Q1 on the growth of A1 α1 mm3cell−1day−1nm(µm−3) (10−5, 1)
Amplitude of the effect of Q2 on the growth of A1 α2 mm3cell−1day−1nm(µm−3) (10−5, 1)
Amplitude of the effect of Q3 on the growth of A1 α3 mm3cell−1day−1nm(µm−3) (10−5, 1)
Amplitude of the effect of Q2 on the growth of A2 ᾱ2 mm3cell−1day−1 (10−5, 1)
Amplitude of the effect of Q3 on the growth of A2 ᾱ3 mm3cell−1day−1 (10−5, 1)

Table 2: List of the parameters for the model described by the equations (1)-(6). Recall that units associated to
the Qi are cells(mm−3) and to Ai nm(µm−3).

parameters of the model to estimate into five categories:

1. The transfer rates π0, π1 and π2. These parameters describe the main rates of cell transfer. More specifically, the time
evolution of cell and axon populations is simulated by a compartmental model and these parameters quantify the speed
of transfer from one to another compartment.

2. The proliferation speeds γ2 and γ3. These parameters give the growth speeds of the PanIN and PDAC cell populations.

3. The parameters of the regulations on the transfer rates β1, β2, δ0 and δ2. These parameters are multiplicative coef-
ficients appearing in the transfer rates. They regulate either positively or negatively the speed of transfer from one
compartment to another in the model.

4. The saturation rates τC, τC
A1

, τA2 and τC
A2

. The saturation rates are closely linked to bio-physical constraints such as
the maximal volume of the model’s domain (i.e. the pancreas) and the maximal axons densities in the domain. These
two quantities might vary from one individual to another, however one can reasonably assume maximal bounds and
implement it in the model.

5. The parameters of the regulations on the proliferation speeds of axons α1, α2, α3, ᾱ2 and ᾱ3. These parameters are
multiplicative coefficients appearing in the growth terms of the axons. Their main effect is to modulate the rate of axon
proliferation depending on the amount of cell populations present at the observed time.

Moreover, the density of autonomic axons in a healthy pancreas Aeq
1 is given by the control experiments and amounts to

0.980 nm(µm−3). The other parameter set in this model is τA1 (i.e. the saturation rate of A1). Since A1 is the variation of the
density of autonomic axons with respect to Aeq

1 , setting the value of τA1 to 0.3 implies that the maximum variation of the
density of autonomic axons does not exceed one third of its equilibrium state. This assumption can be justified in the model
by the fact that natural innervation and denervation in vivo appear to be phenomena at the margin during the development
of the pancreatic adenocarcinoma. In addition, autonomic axons appear to be pushed to the periphery of the organ during the
development of PDAC cells and the domain of the model is the pancreas and its immediate surroundings.

C.2 Numerical method to assess the identifiability with the profile likelihood
In this section, we detail the method used to study the identifiability of the parameters. It is assimilated to an optimization
problem and can be considered as a one-at-a-time identifiability process since we study the profile likelihood of each parameter
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π0 δ0 π1 β1 γ2 π2 β2 δ2 γ3 τC α1 α2 α3 τC
A1

ᾱ2 ᾱ3 τA2
τc

A2
1.5e-3 8.4 1.9e-5 3.2 4.2e-1 1.1e-3 2.2 3.2 9.3e-1 8.5e+1 1.6e-5 8.4e-2 4.7e-4 3.6e-1 6.0e-1 1.6e-5 1.9 1.6
1.5e-3 7.8 6.4e-3 1.5e-1 1.2e-6 8.6e-2 6.0e-1 8.6 4.3e-1 1.0e+2 1.7e-3 2.2e-1 1.5e-3 1.8 7.2e-1 1.4e-5 2.0 1.4
1.3e-3 8.8 8.6e-3 2.9e-1 3.6e-1 2.7e-1 2.5e-1 2.6e-1 3.6e-1 1.0e+2 4.4e-5 1.3e-2 7.8e-5 2.0 3.5e-1 1.5e-5 1.9 1.6
1.3e-3 9.9 1.8e-5 3.3 6.9e-1 1.6e-1 3.3e-2 2.0e-1 6.9e-1 6.3e+1 3.4e-4 7.5e-3 8.6e-5 2.0 3.1e-1 3.8e-5 2.0 1.5e-1
1.4e-3 9.1 4.5e-3 6.5e-2 8.2e-2 5.5e-2 9.9e-2 9.7 4.3e-1 9.3e+1 1.2e-5 5.3e-2 3.0e-4 5.4e-1 6.6e-1 1.3e-5 1.7 2.0
1.7e-3 7.7 9.1e-3 3.2 2.1e-6 7.5e-2 1.5e-1 8.9 3.7e-1 1.0e+2 1.9e-5 3.8e-2 2.2e-4 7.7e-1 6.5e-1 2.3e-5 1.8 1.6
2.2e-3 4.9 5.6e-2 3.2 1.0e-2 4.9e-1 3.3 3.1e-1 2.0e-1 1.9e+2 1.0e-5 4.8e-1 6.0e-3 2.0 9.6e-1 1.0e-5 1.5e-1 2.0

Table 3: Table of parameters for the numerical computations in Figure 4

independently. We recall that the parameters are denoted by the vector θ which include all the parameters except for τA1 and
Aeq

1 fixed as in Table 2. The computation of the profile likelihood is broken down as follows:

Step 1. For each component θj of the vector of parameters, we choose a sequence of 20 values which discretizes its range of
values. The sequence discretize uniformly the range of values of the parameters δ0, β1, β2, δ2, τC, τC

A1
, τA2 and τC

A2
. For the

other parameters, the sequence discretize uniformly the log10 transformation of their respective ranges of value. This allows
us to explore more precisely the optimization domain by taking into account the differences in the orders of magnitude

between parameters. The sequence of values chosen for the parameter θj is denoted
(

pj
i

)
i=1...20

.

Step 2. For each pj
i , we minimize χ2 defined by (13) on θ ∈

{
θ | θj = pj

i

}
. Since, the problem is non-linear, non-convex

and high dimensional, we choose to repeat 50 times the optimisation procedure using as the initialization step a random
sets of parameters chosen by the uniform distribution over their respective value range (or over the log10 transformation of
their value range). For this optimization problem, we use the CMA evolution strategy algorithm [37] : at each step of the
optimization loop, the algorithm picks a set of parameters given by a specific random distribution over the optimization
domain. It evaluates the objective function value for this set of parameters and iterate by updating the random distribution
with the barycenter of the "best" parameters (i.e. whose objective function values are the lowest). The algorithm stops if the
distance between the best evaluation of the objective function of the last 40 iterations of the optimization loop and all the
objective function values of the last iteration is less than the tolerance threshold 10−3.

Step 3. For each θj, we plot the first quartile, the last quartile and the median of the 50 optimal objective function values
obtained in order to visualize the results of step 2. It gives the following Figures 9-10. If the curves formed by the median
describe a convex shape and a minimum is clearly attained in a distinct value, we consider that the parameter is identifiable
and its estimate is this distinct values (for instance, in Figure 9, the top panel shows that median attains its minimal value at
π0 = 0.0025.). Else, we iterate step 2 once or twice on a reduced domain where the already identifiable parameters are fixed to
their estimated values.

The numerical results of this optimization process are summarized in Figures 9-10. We denote trial 1 the first iteration
of step 2, trial 2 the second and trial 3 the third. In total, seven parameters are identifiable (see Figure 5 and Table 1). We
choose to stop iterating the identifiability process after the third trial considering the amount of data at our disposal and the
over fitting issues coming from the high dimensionality of our problem. One can reasonably justify this choice by looking at
the distribution of the objective function values in trial 3 (see Figures 9-10). The cost function values over the whole range
for the remaining parameters are concentrated under 10 and the median of the cost distribution does not have a clearly
distinguishable minimum value. An extra iteration might not ensure a sufficient difference between the minimum of the
median and the rest of the median values.
As a final validation step, we perform the following numerical experiments: we fix the seven identifiable parameters to their

Figure 8: Distribution of the evaluations of the optimal objective function. The x-axis is the range of the cost
function. The y-axis is the frequency over a sample of size 200.
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values (see Table 1), we pick 200 sets of rescaled parameters (for the non identifiable ones) from a uniform random distribution
over their value ranges and we compute the minimization problem

C = min
θ | θj=pj,∗ , j∈J

= χ2(θ)

where χ2 is defined by (13) and J is the set of coordinates of the indentifiable parameters denoted pj,∗. It follows that the
distribution of the optimal objective function evaluations is concentrated on 3 (see Figure 8). For instance, the costs of the
trajectories shown in Figure 4 are superior or equal to 3. This numerical experiments ensures that the results on the identifiable
parameters are satisfactory from a qualitative point of view.

Figure 9: Numerical computation of the profile likelihood for nine parameters. Each row corresponds to a pa-
rameter. This parameter takes twenty distinct values represented by the color gradient. The numerical method gives a cost
distribution for each value of the parameter. This distribution is then visualized by a boxplot (the vertical axis represents the
cost). This method is iterative for the non-identifiable parameters and this leads to a new simulation on a reduced optimization
domain. For instance, π0, π1 and γ2 are identifiable from the first iteration. The parameters π2 and δ0 are identifiable from the
second iteration and γ3 from the third iteration. The other parameters are non-identifiable after three iteration.
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Figure 10: Numerical computation of the profile likelihood for the other parameters. Each row corresponds to a
parameter. This parameter takes twenty distinct values represented by the color gradient. The numerical method gives a cost
distribution for each value of the parameter. This distribution is then visualized by a boxplot (the vertical axis represents the
cost). This method is iterative for the non-identifiable parameters and this leads to a new simulation on a reduced optimization
domain. For instance, only τC is identifiable (from the second iteration). The other parameters are non-identifiable.
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