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Abstract
Seeds are a vector of genetic progress and, as such, they play a significant role in the sustainability of the agri-food system. The
current global seedmarket is worth USD 60 billion that is expected to reach USD 80 billion by 2025. Seeds are most often treated
before their planting with both chemical and biological agents/products to secure good seed quality and high yield by reducing or
preventing losses caused by diseases. There is increasing interest in biological seed treatments as alternatives to chemical seed
treatments as the latter have several negative human health and environmental impacts. However, no study has yet quantified the
effectiveness of biological seed treatments to enhance crop performance and yield. Our meta-analysis encompassing 396 studies
worldwide reveals for the first time that biological seed treatments significantly improve seed germination (7±6%), seedling
emergence (91±5%), plant biomass (53±5%), disease control (55±1%), and crop yield (21±2%) compared to untreated seeds
across contrasted crop groups, target pathogens, climatic regions, and experimental conditions. We conclude that biological seed
treatments may represent a sustainable solution to feed the increasing global populations while avoiding negative effects on
human health and ensuring environmental sustainability.
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1 Introduction

Crop losses due to pests (sensu lato that includes animal pests,
pathogens, and weeds) may range from 50 to more than 80%
(Oerke 2006) and those caused by crop pathogens alone cost
the global economy USD220 billion annually (Savary et al.
2019). These losses may be prevented or contained by apply-
ing effective crop protection measures. Chemical pesticides
are the most commonly used crop protection measures, from
pre-sowing to post-harvesting (Oerke 2006; Cooper and
Dobson 2007; Aktar et al. 2009). More specifically to seed
treatments, chemical seed treatments are generally aimed at
controlling seed- and soil-borne pests affecting crop establish-
ment (Figure 1), crop biomass development, and yields
(Wrather et al. 2010; Simpson et al. 2011; Munkvold et al.
2014; Sappington et al. 2018; Lamichhane et al. 2020b; Hitaj
et al. 2020).

The routine-based planting of chemically treated seeds has
raised several socio-economic, human health, and environ-
mental concerns. This is because of the poor efficacy or in-
consistent effectiveness of chemical seed treatments in con-
trolling seed- and soil-borne pests (Rossman et al. 2018;
Mourtzinis et al. 2019; Lundin et al. 2020; You et al. 2020;
Fadel Sartori et al. 2020); risk exposure to operators that treat
seeds or handle treated seeds (White and Hoppin 2004; Han
et al. 2021); development of different forms of human cancer
(AGRICAN 2020); and negative effects on non-target organ-
isms such as bees (Rundlof et al. 2015;Main et al. 2020), birds
(Li et al. 2020b; Fernández-Vizcaíno et al. 2021), and soil
beneficial microorganisms (Nettles et al. 2016; Zaller et al.
2016; Gomes et al. 2017). In addition, the planting of chem-
ically treated seeds negatively affects beneficial plant fungal
endophytes, involved in plant growth and development there-
by reducing early plant growth (Vasanthakumari et al. 2019).
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Therefore, there is a need to limit or replace chemical seed
treatments with other sustainable practices to achieve the same
goal— viz. improved seed germination, seedling emergence,
biomass production, pest control, and crop yield—with no or
reduced human health and environmental impacts
(Lamichhane 2020).

Biological seed treatments contain active ingredients
encompassing microbes like fungi and bacteria, as well as
plant and algae extracts. Previous studies investigated the ef-
fectiveness of biological seed treatments in controlling seed-
and soil-borne pests including their potential to improve seed
germination, seedling emergence, plant biomass develop-
ment, and yield (see the list of references used in the meta-
analysis). However, the type of product used for biological
seed treatments, the target seed- and soil-borne pests, the cli-
mate zone, the crop group, and the experimental conditions
considered in these studies are very heterogeneous.
Consequently, the effectiveness of a given biological seed
treatment may significantly vary across contrasted systems
or conditions and, therefore, the results of individual studies
are not sufficient to draw a general conclusion. Quantitative
systematic review or meta-analysis is particularly useful in
quantifying and synthesizing the potential of biological seed
treatments on crop development and yield. Enhanced knowl-
edge on the best performing biological seed treatments across
different crop species or different environmental gradients will
be instrumental in the adoption of planting biologically treated
seeds. This will in turn save yields needed to feed the increas-
ing world population while reducing environmental risk and
health hazards. Several recent meta-analyses in the field of
agronomy successfully quantified the impact of different

cropping practices on crop development and yield (Soltani
and Soltani 2015; Carrillo-Reche et al. 2018; Knapp and van
der Heijden 2018; Li et al. 2020a, c). In contrast, to the best of
our knowledge, no meta-analysis has been performed yet to
quantify the effectiveness biological seed treatments on crop
performance and yield.

The objective of this study was to quantify, via a meta-
analysis, the effectiveness of biological seed treatments in
improving seed germination, seedling emergence, plant bio-
mass development, disease control, and yield compared to
untreated seeds (i.e., without application of any chemical or
biological products) across contrasted environmental condi-
tions, crop groups, and climate zones.

2 Materials and methods

2.1 Data sources

Data for the meta-analysis were retrieved from the ISI-Web of
Science database taking into account articles published before
11 June 2020. The keywords used to find the articles were
“non-chemical seed treatment” (68 publications), “biological
seed treatment” (140 publications), “seed bacterization (366
publications), and “seed treatment” (3284 publications). Only
the studies that compared biological seed treatments vs. un-
treated seeds and their effect on the following five variables
— viz. seed germination (SG), seedling emergence (SE), plant
biomass (PB), disease control (DC; either disease incidence or
severity) or crop yield (CY) — were included in the meta-
analysis. Although CY is the key final output of interest, we
also focused on other four response variables for two main
reasons. First, given that we included all crop groups in our
meta-analysis, the definition of the response variable CY dif-
fers between cereals (the quantity of the harvested grain per
unit surface) and vegetables (the quantity of the harvested bio-
mass per unit surface that could be sprouts or leaves used such
as ready-to-use leafy vegetables). Second, the potential of bi-
ological seed treatments to improve crop performance is main-
ly due to an improved control of seed- and soil-borne pests that
affect the early crop development phase (SG & SE etc).

We did not consider those studies where seed treatments
were applied to break seed dormancy or to control weeds.
Conference papers or book series were also excluded especial-
ly if they were not available online or did not contain a full
text. Overall, 64 articles were selected for seed germination,
126 articles for seedling emergence, 153 articles for plant
biomass, 210 articles for disease development, and 163 arti-
cles for crop yield (Supplementary Data 3). The mean values
and the number of replications/observations for the selected
characteristics were extracted from the selected articles. For
studies that consisted of a series of experiments, different bi-
ological seed treatments or different environmental

Fig. 1 Damping-off and root rot of soybean caused by Pythium spp. Poor
seedling emergence and post-emergence seedling death leading to a low
quality of crop establishment and stand development are an indicator of
these diseases. Seed treatments represent an important practice to protect
the seed and seedlings both pre- and post-emergence. In fields with
historical problems of soil-borne pathogens, seed treatments represent
an important agronomic lever to enhance germination and emergence
vigor (i.e., the speed of seed germination and seedling emergence) that
is essential for plant development and yield. Photo courtesy of Tom
Allen, Mississippi State University, USA.
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conditions, each comparison between biological seed treat-
ments and the control treatments was considered as a separate
data point ("observation").

2.2 Data set overview

The selected articles contained 8596 observations. Most of
these articles tested biological seed treatments under several
sets of experiments and had a high weighted data. DC was
investigated in about 34.5% of the total observations followed
by SE (24.6%), PB (17.6%), CY (14.6%), and SG (8.8%).

Experiments were conducted either under controlled or
field conditions. Experiments performed under controlled
conditions included those on SG and PB measurements.
SE data were measured either in studies conducted under
controlled conditions (48% of data) or those carried out
under field conditions (52% of data). Likewise, 42% and
58% of the data on DC were measured under controlled
and field conditions, respectively. Most of the data on CY
were obtained under field conditions (82%) while the rest
(18%) were collected under controlled conditions. Field
experiments were conducted across South and North
America, Europe, North Africa and Asia under different
climate zones. Key information concerning crop or crop
group, the target biotic stress, and the measured variables
are presented in Supplementary Data 3.

In the selected articles for meta-analysis, plant pathogenic
fungi were the key target of biological seed treatments (58%)
followed by oomycetes (11%), bacteria (8%), nematodes
(3%), and viruses (3%). Some studies also considered a path-
ogen complex that involved more than one pathogen at the
same time (e.g., under field conditions) which included 13%
of the data. In experiments conducted under controlled condi-
tions, seeds/soils were either artificially inoculated or not with
one or more pathogens. Non-inoculated treatments (i.e., con-
trol) were also considered which contained 4% of the data.We
did not consider the potential effect of biological seed treat-
ments on insect pest control as only little information is avail-
able on this topic in the literature.

2.3 Data analysis

In each study and for each data point, the response ratio (R)
was calculated to detect the effects of biological seed treat-
ments on the five response variables as follows (Marty and
BassiriRad 2014):

R ¼ X t

X c

 !
ð1Þ

where X t and X c are themean values for measured plant traits
subjected to biological seed treatments and control (untreated

seeds), respectively. Standard error (SE) was estimated for
each n observations as shown below (Neyeloff et al. 2012):

SE ¼ Rffiffiffiffiffiffiffiffiffiffiffiffi
R� n

p ð2Þ

The weighted average has a desirable feature as it gives
more weight for studies with a higher number of observations
compared with those with a lower number of observations.
This provides an appropriate way to calculate the overall ef-
fect size (Gurevitch and Hedges 1999). The weight for each
observation (wv) was calculated as below:

wv ¼ 1

SE2 þ v
� � ð3Þ

where v is a constant that represents variability due to sam-
pling error as well as variability in the population of effects
and can be calculated as follows (Neyeloff et al. 2012):

v ¼ Q− k−1ð Þ
∑w−

∑w2

∑w

� � ð4Þ

where k is number of observations, w is equal to 1
SE2 and Q is

heterogeneity among observations (see the section 2.4 for its
calculation).

Weighted average of the response ratio (R ) was calculated
as follows (Neyeloff et al. 2012):

R ¼ ∑ wv � Rð Þ
∑wv

ð5Þ

Heat map graphs were used to show the differences among

study factors for R. The weighted average of the response ratio
>1 in the heat map indicates a positive response while a value

of <1 shows a negative response. Standard error of R (SER )
was estimated as shown below (Neyeloff et al. 2012) :

SE
R
¼

ffiffiffiffiffiffiffiffiffi
1

∑wv

s
ð6Þ

Significant changes were tested by 95% confidence inter-
vals (CI), which were calculated as follows (Neyeloff et al.
2012):

CI ¼ R� 1:96� SE
R

ð7Þ

No overlap of confidence intervals with zero indicates that
biological seed treatments significantly affected the measured
plant traits.

For easier interpretation of the results, the percentage of
change due to biological seed treatments compared with the
control was calculated (changes (%)) for all the measured
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plant traits as follows (Hedges et al. 1999; Marty and
BassiriRad 2014; Soltani et al. 2018):

Changes %ð Þ ¼ R−1
h i

� 100 ð8Þ

where a positive and a negative percentage change value in-
dicates an increase and a decrease of the measured trait, re-
spectively. For example, for disease development, a negative
value shows a reduction in disease development (i.e., a better
disease control).

2.4 Heterogeneity test

The heterogeneity among the effect sizes of studies was tested
using a chi square (Q) test and I2 statistic to determine whether
the variance among effect sizes was significantly greater than
the expected sampling error (Rosenberg et al. 2004). A signif-
icant Q value shows that a portion of the heterogeneity can be
explained by subgrouping the studies into different categories
(Traveset and Verdu 2002; Rosenberg et al. 2004; Soltani
et al. 2018). Both fixed- and random-effects were calculated
to determine the heterogeneity in different studies (Neyeloff
et al. 2012). However, a random-effect is more suitable than a
fixed-effect in our meta-analysis. This is because the data used
came from a series of individual studies that were performed
across different crop groups, biological seed treatment types,
and climate zones. Therefore, it is unlikely that all the studies
were functionally equivalent. Therefore,Q values were calcu-
lated as follows (Neyeloff et al. 2012):

Q ¼ ∑ w� R2
� �

−
∑ w� Rð Þ½ �2

∑w
ð9Þ

The calculated Q shows random-effects (Qv) if we use wv

instead of w in Eq. (9). Finally, I2 statistics were calculated as
suggested previously (Neyeloff et al. 2012):

I2 ¼ Q−dfð Þ
Q

ð10Þ

where I2 indicates the heterogeneity due to the random-effects
if we use Qv and df is equal to k-1. I2 ranges between 0 and
100%. The heterogeneity is not important when I2 < 40%,
moderate when 30% < I2 < 60%, substantial when 50% < I2

< 90%, and considerable when 75% < I2 < 100%.

2.5 Mean effect size by study factor

Study factors were categorized into six different subgroups to
further investigate the effect of biological seed treatments on
the response variables and mean effect sizes were calculated
for each subgroup. The first subgroup was « experimental
conditions » that included a comparison of controlled vs. field
conditions and their combination. Controlled conditions

consist of experiments conducted in growth chambers, green-
houses, and tunnels. The second subgroup was « biological
seed treatments» that comprised seed treatments with plant
extracts (PE), plant derived products (PDP), or microorgan-
isms (M). The latter included either bacteria or fungi as a
subgroup. The third subgroup was « crop groups » which
included cereals, horticultural, industrial, or leguminous
crops. The forth subgroup was « the target biotic stress »
including plant pathogenic fungi, oomycetes, bacteria, nema-
todes, viruses, a pathogen complex, or no biotic stress condi-
tions (i.e., negative control). The situation of pathogen com-
plex includes more than one type of biotic stress that often
occur under field conditions (Lamichhane and Venturi 2015;
Rojas et al. 2016; van Agtmaal et al. 2017; You et al. 2020).
The fifth subgroup was « climate zones » based on the zone of
field studies considered in the meta-analysis, which were trop-
ical, arid, temperate climate with no dry season (NDS), tem-
perate climate with dry season (DS), or continental climate
(C). The climate zones were determined using an online
search of the location of the study on the website (https://en.
climate-data.org/). The differences between subgrouped
categories were considered significant if their confidence
intervals did not overlap.

3 Results and discussion

3.1 Heterogeneity test

TheQ test was significant for all response variables except for
CY showing that a portion of the heterogeneity can be ex-
plained by subgrouping the studies into different categories.
In contrast, the Qv tests indicated that the heterogeneity of SG
(Qv = 47.2) and CY (Qv = 498.9) was not significant (Table 1).
Using the fixed-effects, I2 statistic showed considerable het-
erogeneity for all response variables except for CY. When I2

statistics were calculated as random-effect, the heterogeneity
was not important for SG, DC, and CY while substantial het-
erogeneity was found for SE and PB (Table 1). Therefore, we

usedQv for further analysis to calculate R. Subgrouping of the
studies into different categories allowed us to reduce the het-
erogeneity of the data in some cases (Tables 2 and 3). For
example, the heterogeneity of SE data was low and non-
significant under tropical and arid climates (Table 2).

3.2 Overall effectiveness of biological seed
treatments

Overall, when all study factors were combined, biological
seed treatments significantly improved SG (7±6%) and SE
(91±5%) compared with the untreated seeds (Fig. 2a). The
gain in SE due to the planting of biologically treated seeds
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was much higher under controlled conditions (123±8%) com-
pared with that under field conditions (56±6%). Likewise,
biological seed treatments significantly improved PB (53

±5%) and DC (55±1%) compared with the untreated seeds
(Fig. 2a). Disease control efficacy due to biological seed treat-
ments was significantly different both under controlled (59

Table 1 Heterogeneity among the effect sizes of studies. The
heterogeneity was calculated by chi square (Q) and I2 tests taking into
account both fixed- and random-effects for the response variables. SG,

seed germination; SE, seedling emergence; PB, plant biomass; DC,
disease control; CY, crop yield. **significant at p<0.01; ns, not
significant.

Response variable No. study No. observation Q I2

Fixed Random Fixed Random

SG 64 754 4767.54** 47.21ns 84.21 0

SE 126 2114 38343.67** 16226.15** 94.50 86.98

PB 153 1509 9040.04** 5449.26** 83.32 72.33

DC 210 2964 11887.13** 3301.37** 75.07 10.25

CY 163 1255 877.33ns 498.99ns 0 0

Table 2 Heterogeneity among different study factors and response
variables as calculated by random-effects chi square (QW) tests. SG,
seed germination; SE, seedling emergence; PB, plant biomass; DC,
disease control; CY, crop yield; df, degree of freedom; PDP, plant

derived products; PE, plant extracts; M, microorganisms; –, no data
were available for the analysis; NDS, temperate climate with no dry
season; DS, temperate climate with dry season; **p < 0.01; *p < 0.05;
ns, not significant.

Groups SG SE PB DC CY
Df Qv Df Qv Df Qv Df Qv Df Qv

Experimental conditions

Controlled – – 1021 11369.6** – – 1728 2358.1** 220 127.9ns

Field – – 1091 5046.5** – – 1232 779.5ns 1033 933.6ns

Climate zones

Tropical – – 26 26.3ns – – 221 156.5ns 101 101.5ns

Arid – – 53 9.3ns – – 338 303.2ns 251 99.5ns

Temperate NDS – – 26 630.2** – – 215 134.8ns 238 223.7ns

Temperate DS – – 45 94.4** – – 140 94.3ns 135 214.8**

Continental – – 506 3325.0** – – 211 131.4ns 254 220.9ns

Crop groups

Cereal 404 68.8ns 441 797.1** 561 3779.9** 986 2065.6** 520 225.4ns

Horticultural 348 31.7 ns 611 9956.9** 403 154.7ns 917 507.9ns 170 55.3ns

Industrial 17 5.8ns 297 2020.2** 182 227.5* 289 187.8ns 135 51.87ns

Leguminous 195 54.2ns 758 3293.4** 357 472.4** 766 407.2ns 425 429.6ns

Biotic stresses

Control 527 27.7ns 361 81.4ns 549 540.0ns 118 88.7ns 194 120.3ns

Complex 7 0.1ns 325 603.9** 66 90.0* 358 257.4ns 194 201.6ns

Fungi 195 41.7ns 722 2474.4** 354 2633.6** 1647 2436.9** 394 415.4ns

Bacteria – – 14 4.4ns 19 26.6ns 231 177.6ns – –

Oomycetes – – 603 11963.5** 165 197.4* 309 296.1ns 24 22.7ns

Nematode – – – – 47 66.0* 93 97.1ns 56 11.5ns

Virus – – – – – – 73 75.0ns – –

Seed treatments

PDP 32 1.6ns 90 201.7** 15 16.6ns 111 528.5** 24 3.2ns

PE 205 35.9ns 173 186.1ns 39 44.2ns 134 65.7ns 13 4.5ns

M 514 36.3ns 1848 15709.6** 1452 5349.4** 2714 1946.7ns 1214 431.5ns

Bacteria 380 92.2ns 1012 8152.7** 1184 4955.5** 1806 1263.1ns 932 841.6ns

Fungi 128 14.1ns 740 6222.0** 222 256.2ns 795 561.6ns 217 111.9ns
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±1%) and field (48±2%) conditions. Biological seed treat-
ments had significant impact on CY (21±2%) compared with
the untreated seeds (Fig. 2a). CY improvement due to biolog-
ical seed treatments was much higher under controlled condi-
tions (18±6%) than that under field conditions (6±2%). For all
the five response variables, the improvement due to biological
seed treatments was more pronounced under controlled con-
ditions compared with that under field conditions (Fig. 3).

The planting of biologically treated seeds systematically
provided higher benefits under controlled conditions than in
the field. This is not surprising as the efficacy of any seed
treatment is reduced under field conditions due to a myriad
of abiotic and biotic factors that interact under these condi-
tions (Lamichhane et al. 2018, 2020a). However, our meta-
analysis clearly shows that the planting of biologically treated
seeds has a huge potential to enhance yield gain and to in-
crease profitability even under field conditions due to im-
proved disease control.

Compared with other variables, SE benefitted the most due
to the planting of biologically treated seeds. This improved SE
was mainly due to an enhanced level of control of diseases
caused by soil-borne pathogenic fungi and oomycetes (Rojas
et al. 2016; Foster et al. 2017; Serrano and Robertson 2018).
While biological seed treatments enhanced SE via better con-
trol of individual plant pathogenic oomycetes and fungi, SE
was improved to a lower extent in situations characterized by
the pathogen complex. This means that, biological seed treat-
ments are effective in controlling individual pathogens, but
less effective against a disease complex involving different
pathogens as shown previously (You et al. 2020).

3.3 Biological seed treatment types

Among different products used for biological seed treatments,
seeds treated with M significantly improved SG (9±7%) com-
pared with other products (Fig. 2b). No significant effect of
seeds treated with fungal microorganisms was found on SG
(p= 0.05) while biological seed treatments with beneficial
bacteria significantly enhanced SG (7±4%). Both PDP and
PE slightly improved SG but without any significant differ-
ence compared with other biological seed treatments (Fig. 2b).

Among the response variables, SE had the highest response
ratios due to biological seed treatments (Fig. 3). Seed treat-
ment with M was the most effective in improving SE (102
±6%) compared with those with PE (7±6%) and PDP (21
±15%; Fig. 2b). Both bacterial and fungal microorganisms
used for seed treatments improved SE compared with untreat-
ed seeds, with fungal microorganisms being more effective
(133±13%) than their bacterial counterparts (85±6%).

Significant increase in PBwas found with seed treated with
PE (37±13%) and M (54±6%) while seed treated with PDP
did not have any significant impact on PB (13±23%) (Fig. 2b).
Both bacterial and fungal microorganisms used for biological
seed treatments significantly improved (p<0.05) PB by 56%
and 38%, respectively.

All sub-grouped products used for biological seed treat-
ments significantly provided (p<0.05) a more effective DC
with significant difference in their effectiveness (Fig. 2b).
The magnitude of DC obtained was similar between seed
treated with M (52±1%) and PE (53±7%) while DC was sig-
nificantly higher with seeds that were treated with PDP (75
±3%). Biological seed treatments with beneficial fungi or

Table 3 Heterogeneity among different study factors and response
variables as calculated by random-effects chi square (QW) tests. SG,
seed germination; SE, seedling emergence; PB, plant biomass; DC,

disease control; CY, crop yield; df, degree of freedom; –, no data were
available for the analysis; **p < 0.01; *p < 0.05; ns, not significant.

Groups SG SE PB DC CY
Df Qv Df Qv Df Qv Df Qv Df Qv

Key groups of bacteria

Azospirillum spp. 19 0.9ns – – 17 10.3ns – – 19 0.8ns

Bacillus spp. 105 7.2ns 277 276.1ns 286 491.2** 380 189.9ns 237 162.8ns

Burkholderia spp. – – 89 649.1** 106 111.5ns 47 0.5ns 17 19.5ns

Paenibacillus spp. – – 17 23.8ns 9 0.3ns – – 9 11.1ns

Pseudomonas spp. 151 68.3ns 318 1720.5** 503 504.0ns 961 800.1ns 446 445.1ns

Rhizobium spp. – – 36 39.1ns 8 10.0ns 30 10.1ns 26 13.9ns

Serratia spp. 25 2.3ns – – 10 11.1ns 33 30.4ns 14 10.3ns

Streptomyces spp. – – 30 118.7** 27 35.2ns 39 37.4ns – –

Key groups of fungi

Clonostachys spp. – – 36 239.6** – – 12 18.9ns – –

Gliocladium spp. – – 73 421.7** – – 78 84.8ns 14 16.3ns

Penicillium spp. – – 24 18.8ns 22 28.6ns 22 16.1ns 6 1.4ns

Trichoderma spp. 98 10.9ns 567 5219.8** 122 140.7ns 474 293.8ns 166 125.0ns
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bacteria provided DC to a similar extent (fungi +57% vs.
bacteria +49%) while their effectiveness was significantly dif-
ferent (p<0.05) compared with untreated seeds (Fig. 2b).

Commonly used microorganisms (bacteria and fungi) for
seed treatments and their response values are listed in
Table S1. Likewise, the most effective bacteria and fungi in
improving crop performance and yield, when applied with
seed treatments, are reported in Fig. 4 a and b, respectively.
All response variables but SG were significantly improved
when bacteria or fungi were used for seed treatments.

Among bacteria (Fig. 4a), seed treatments with
Burkholderia spp. were the most effective in terms of improved
SE (180±38%) followed by those with Paenibacillus spp. (115
±63%), Pseudomonas spp. (82±13%), Rhizobium spp. (59
±20%), and Bacillus spp. (10±4%). No significant change in

PB was observed when seeds were treated with Azospirillum
spp. whileRhizobium spp. (66±57%) followed by Streptomyces
spp. (53±35%), Bacillus spp. (36±8%), Pseudomonas spp. (27
±4%), Paenibacillus spp. (21±16%), Burkholderia spp. (19
±7%), and Serratia spp. (18±13%) seed treatments significantly
enhanced PB, in decreasing order of importance. All but
Burkholderia spp. provided significant DC with Serratia spp.
(68±7%) being the most effective, followed by Streptomyces
spp. (51±9%), Bacillus spp. (49±4%), Pseudomonas spp. (48
±2%), and Rhizobium spp. (32±12%). Significant effect on CY
was observed when seeds were treated with Bacillus spp. (15
±5%), Rhizobium spp. (13±6%), and Pseudomonas spp. (8
±3%), in decreasing order of effectiveness.

As for fungi (Fig. 4b), SE was significantly improved when
seed treatments were performed with Gliocladium spp. (234

Fig. 2 Changes (%) in response variables due to biological seed
treatments compared with untreated seeds (i.e., control; see Eq. 8 for
detailed information). The changes are grouped by experimental
conditions (a), seed treatment types (b), crop groups (c), target
pathogens (d), and climate zones (e). Error bars show 95% confidence
intervals (CI). No overlap of error bars with zero indicates that biological
treatments significantly affected the response variables. Differences
among sub-group categories are not significant when error bars are

overlapped. No error bars indicate that the symbol is larger than the
error. SG, seed germination; SE, seedling emergence; PB, plant
biomass; DC, disease control; CY, crop yield; PDP, plant derived
products; PE, plant extracts; M, microorganisms; NDS, temperate
climate with no dry season; DS, temperate climate with dry season. The
number of studies and observations for each response variable is reported
in Table 1.
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±52%), followed by Penicil lum spp. (179±29%),
Clonostachys spp (168±68%), and Trichoderma spp. (141
±16%). All but Clonostachys spp. and Gliocladium spp. seed
treatments significantly increased PB with Penicillum spp.
being the most effective (70±34%) compared with
Trichoderma spp. (31±11%). In contrast, seed treatments with
all four fungal groups significantly enhanced DC with
Clonostachys spp. being the most effective (69±15%) follow-
ed byGliocladium spp. (59±5%), Trichoderma spp. (57±3%),
and Penicillum spp. (53±13%). Finally, only seed treatments
with Trichoderma spp. significantly enhanced CY (31±6%).

Biological seed treatments with PE provided the most sig-
nificant CY increase (53±26%) followed by those with M (34
±2%). In contrast, biological seed treatments with PDP

negatively affected CY (-6%) compared with untreated seeds
(Fig. 2b). Both bacterial and fungal microorganisms used for
biological seed treatments significantly improved CY com-
pared with untreated seeds (fungi +8%; p<0.05 vs. bacteria
+10%; p<0.05). More details about PDP and PE treatments
can be found in Table S2 and Supplementary Data 3. Only
response ratio values are reported for these treatments due to a
large variation between PDP and PE treatments that did not
allow us to analyze these data.

Application of beneficial microorganisms to seeds allows
the placement of microbial inocula into soil, thereby facilitat-
ing a rapid colonization of seedling roots and offering protec-
tion against soil-borne pests and pathogens (Papavizas 1985;
Couillerot et al. 2009; O’Callaghan 2016). At the same time,
replacing chemical seed treatments with biological seed treat-
ments helps to ensure natural functioning of seed-associated
bacteria, which represent an important reservoir of microor-
ganisms playing an essential role for early plant development
and vigor (Matsumoto et al. 2021). Avoiding the planting of
chemically treated seeds also means enhancing seed and plant
endophytes that have important functions in their host includ-
ing disease suppression (Hardoim et al. 2015; Berg et al.
2016). These endophytes are negatively impacted by chemical
seed treatments (Vasanthakumari et al. 2019; Chen et al.
2020).

3.4 Crop groups

SG enhancement due to biological seed treatments was signif-
icantly different among the crop groups (Figs. 2c and Fig. 3).
Biological seed treatments significantly improved SG of legu-
minous (58±10%) and industrial crops (28±0%) while no sig-
nificant improvement in SG was observed for cereal (p= 0.05)
and horticultural (p= 0.05) crops (Fig. 2c). Biological seed
treatments had the lowest effect on SE improvement in cereal
(31±6%) while it provided the highest benefit for industrial
(191±22%) and horticultural crops (145±9%). This can be
explained by the fact that cereals are the most vulnerable crop
groups as they are most often attacked by a myriad of seed-
and soil-borne pathogens (Majumder et al. 2013) across all
phases of the crop cycle.

In all crop groups, biological seed treatments significantly
increased (p<0.05) PB compared with untreated seeds.
Statistically significant differences were observed among crop
groups in terms of increase in PB due to biological seed treat-
ments with cereals drawing the most important gain (77±12%)
followed by leguminous (49±8%), industrial (45±11%), and
horticultural crops (18±5%). The gain in PB of cereal crops
due to biological seed treatments was significantly different
(p<0.05) compared with that of the other crop groups
(Fig. 2c). In contrast, no significant difference (p=0.05) in PB
increase due to biological seed treatments was observed be-
tween industrial and leguminous crops although both of them

Fig. 3 Weighted average of the response ratio of the measured/studied
variables for different study factors as shown by heat map graph (see
Eq. 5 for detailed information). The weighted average is grouped by
experimental conditions (a), seed treatment types (b), crop groups (c),
target pathogens (d), and climate zones (e). The weighted average of the
response ratio >1 in the heat map indicates a positive response while a
value of <1 shows a negative response. The blank part in the heat map
graph was due to no data availability. SG, seed germination; SE, seedling
emergence; PB, plant biomass; DC, disease control; CY, crop yield; PDP,
plant derived products; PE, plant extracts; M, microorganisms; NDS,
temperate climate with no dry season; DS, temperate climate with dry
season. The number of studies and observations for each response
variable is reported in Table 1.
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had a significant PB gain (p<0.05) compared with that of
horticultural crops.

Disease control due to biological seed treatments was ob-
served among all crop groups with cereals benefiting the most
(63±2%) followed by leguminous (54±3%), horticultural (51
±2%), and industrial crops (42±4%). Significant differences in
DC (p<0.05) in cereals crops were observed compared with
leguminous, horticultural, and industrial crops. In contrast, no
significant difference (p=0.05) in DC due to biological seed
treatments was observed among leguminous and horticultural
crops (Fig. 2c).

A significant effect of biological seed treatments on CY
was observed for all crop groups with leguminous crops tak-
ing the most important advantage (20±5%), followed by in-
dustrial (18±7%), cereal (12±2%), and horticultural (12±7%)
crops. There was no significant difference (p=0.05) between
crop groups in terms of CY improvement due to biological
seed treatments, except for the difference between cereals and

legumes, with the latter taking significantly higher CY bene-
fits than the former (p<0.05).

3.5 Biotic stresses

No significant improvement (p=0.05) on SG due to biological
seed treatments was found (Fig. 2d). In contrast, biological
seed treatments significantly improved SE via a better DC
due to plant pathogenic oomycetes (252±11%), followed by
fungi (55±8%), the pathogen complex (29±7%), and even
under no pathogen inoculation conditions (9±2%). SE
due to biological seed treatments was not significantly in-
creased when diseases were caused by bacterial pathogens
(7%; p=0.05). Biological seed treatments significantly in-
creased (p<0.05) PB either under biotic stresses or under con-
trol conditions compared with untreated seeds (Fig. 2d).
Biological seed treatments increased PB through significantly
better control of diseases caused by plant pathogenic fungi

Fig. 4 Major types of
microorganisms used for seed
treatments. These
microorganisms include groups
of bacteria (a) and fungi (b) that
improve crop performance and
yield when applied with seed
treatments. SG, seed germination;
SE, seedling emergence; PB,
plant biomass; DC, disease
control; CY, crop yield. The
number of studies and
observations for each response
variable is reported in Table 1.
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(133±20%), followed by the pathogen complex (78±17%),
oomycetes (76±14%), bacteria (34±13%), and nematode path-
ogens (20±7%).

Biological seed treatments were the most effective in re-
ducing seed and seedling diseases caused by plant pathogenic
viruses (67±4%) followed by those caused by fungi (64±1%),
nematodes (64±5%), bacteria (57±3%), oomycetes (43±3%),
and the pathogen complex (41±3%). Significant differences
(p<0.05) in DC were observed among diseases caused by
plant pathogenic viruses, fungi, and nematodes compared
with those caused by other biotic stresses or under no inocu-
lation conditions (Fig. 2d).

Biological seed treatments improved CY through signifi-
cantly better control of plant pathogenic oomycetes (43
±17%), the pathogen complex (21±7%), and pathogenic fungi
(11±4%). In contrast, no significant yield gain response
(p=0.05) due to biological seed treatments was observed due
to better control of plant pathogenic nematodes (Fig. 2d).
Likewise, no significant CY increase due to biological seed
treatments (p=0.05) was observed between the pathogen com-
plex and control conditions or between stress due to patho-
genic fungi and nematodes. No CY data were available for
stress caused by plant pathogenic bacteria and viruses (Fig. 3).

3.6 Climate zones

Biological seed treatments significantly enhanced (p<0.05)
SE across all but tropical climate zones. The magnitude of
SE increment was significantly higher in temperate DS (86
±35.16%), followed by continental (80±12%), and temperate
NDS (47±10%) climate zones, compared with the arid zone
(17±11%) (Fig. 2e). Among the response variables, SE due to
biological seed treatments had the most important gain com-
pared with DC and CY (Fig. 3). Significant negative reduction
in SE due to biological seed treatments was observed under
tropical climate (18±16%). DC under field conditions due to
biological seed treatments was significantly increased in arid
(67±3%), followed by tropical (52±5%), temperate DS (50
±6%), temperate NDS (43±4%), and continental (37±5%) cli-
mate zones (Figs. 2e and 3).

Biological seed treatments significantly increased CY gain
that was the highest under temperate DS (23±11%) followed
by tropical (21±9%), temperate NDS (14±5%), arid (12±5%),
and continental (6±5%) climate zones. There was no signifi-
cant difference (p=0.05) between climate zones in terms of
CY improvement due to biological seed treatments, except
for the difference between continental climate zone and tem-
perate DS or tropical climate zones.

We found a significant effect of climate on the effective-
ness of biological seed treatments in improving crop develop-
ment and yield due to enhanced disease control. For instance,
SE was negatively affected by biological seed treatments un-
der tropical climate zones compared with others, which could

be due to the effect of soil moisture, elevated temperature, or
their interactions. Indeed, regions with a lower frequency of
rainfall are more likely to benefit from the planting of biolog-
ically treated seeds, as observed for seed priming (Carrillo-
Reche et al. 2018).

The planting of biologically treated seeds significantly in-
creased CY gain across all climate zones compared with the
untreated seeds. However, the extent of benefit provided by
this practice was different among the climate zones with all
but continental climate zones benefitting the least. Our results
corroborate the conclusion of a recent meta-analysis where
on-farm seed priming had the largest positive response on
CY under arid or semi-arid climates (Carrillo-Reche et al.
2018). We found that biological seed treatments did not im-
prove SE in tropical regions but enhanced DC in the same
regions. This implies that CY improvement in this region
was mainly due to an increased DC after SE. However, in
other climate zones, improved CY was related both to en-
hanced SE and increased DC due to the planting of biologi-
cally treated seeds.

4 Conclusion

Information on the potential of different biological seed treat-
ments across different crop groups or climatic zones, in terms
of crop performance, is particularly useful for stakeholders of
the agri-food system for decision making. Based on our re-
sults, the planting of biologically treated seeds should be en-
couraged across climate zones or crop groups where this prac-
tice already ensures increased crop performance. In contrast,
further improvements of the currently used biological seed
treatment methods, and the development of new ones, should
be considered for areas or crop groups that provide lower yield
gain.

The planting of biologically treated seeds with microorgan-
isms can also mitigate the impact of climate change due to
improved tolerance to abiotic stresses such as heat stress (Abd
El-Daim et al. 2014; O’Callaghan 2016). Indeed, no inocula-
tion conditions considered in this meta-analysis were related
to treatments without artificial inoculation of plant pathogens
although other abiotic stresses were naturally occurring under
these conditions. Significant improvement in SE and CY un-
der non-inoculated conditions observed in this meta-analysis
is a clear indication that biological seed treatments have po-
tential to increase crop performance and yield under climate
change.

Finally, our meta-analysis showed that biological seed
treatments have potential to ensure long-term sustainability
of the agri-food system with no or reduced human health
and environmental impacts. Our results therefore are of great
significance for the stakeholders who are looking to foster the
sustainability of the agri-food system.
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