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Abstract

Soil arganic carbon (Q and nitrogen (N cortents have an essertia rdeinsoil fertility, but they
may be affected by salinity, which is especialy responsible for land degradation in arid and
semaridregions. The objective of this work was to study the ahility of visible and near infrared
diffuse reflectance spectroscopy (VN RS) to predict soil Cand N cortents and electrical
conductivity (EG a proxy for sall salinity) in variabl y salt-affectedtopsoils of the Sne Saloum
regon (Senegal). Dfferent calibration procedures and spectral pretreat ments were conpared,
and variabl e | og-transformati on useful ness was eval uated for predi ction opti nhzation
Predictions involved three calibration procedures: dobal partial least squares regression
(PLSR, which used al calibration sanples si mlarly, locally weighted (local) PLSR wth
target sanples pred ctedindi vidually by gving higher weight tod osest calibration spectra;, and
global PLSR per salinity dass, after spectral dscri mnation of these dasses. Predictions were
perfor med wth possible spectrumpretreat nents (e. g, derivatization) and variable deci nal 10g-
transfor mati on

The study was perfor ned on 311 topsail sanples (0-25 cmdepth), either unsalted to slightly
salty (Salt-, EC<2 nB cm?l; 262 sanples) or nediumto highly salty (Salt+ EC >2 nf cmi;
49 sanples). Sail salinty was accurately discri mnated using spectra: in validation 100 %and
95%of Salt- and Salt+sampl es were correctly assigned on average, respectively. Best Cand N
content predictions were achieved after log-transfor mation using calibration by class
(RvaL =087 and local calibration (RvaL =077), respectively, best EC prediction was
achieved wthout log-transfor mation using dobal calibration (RvaL =0 90). This suggested C
and Ncontert predictions were affected by salinity; logC and logN distributions were al rmost
symmetrical, hence log-transfor mation usefulness, while logEC distribution was very
asymnetrical. No pretreat ment yielded systematically good predictions; nevertheless, first-
order derivative using 31-point gap often yielded good predictions, and second-order
deri vatives poor results.

Keywords
electrical conductiuty, spectral pretreat nent; partia least squares regression; locally wei ghted
regression; dscri ninant anal ysis; semarid Vst Africa

H ghlights
- Soil Cand Ncorterts and salinty were accurately predicted using VN RS (RPD > 2)
- Ccontent was best predicted using PLSR by salinity dass on log-transformed val ues
- Ncontent was best predicted using locally weighted PLSR on log-transformed val ues
- Salinity was best predicted using dobal PLSR wthout |og-transfor nation
- Spectrumpretreat ment opti mzation depended onthe variable and PLSRtype



Graphical abstract

VNIRS prediction of C and N contents and salinity in variably salt-affected soils (Senegal)

Dataset: 311 variably salty topsoil samples from Sine Saloum area, Senegal

Two salinity classes: unsalted-slightly salty (EC =2 mS cm!; 262 samples) vs.
medmum-highly salty soils (EC> 2 mS cm'l; 49 samples)

Spectral pretreatments: 46 VINIR spectrum types (e.g. derivatization)
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1 Introduction

Soil organic natter (SOM), nade nainly of carbon (G 58%of the SONM coupledto nitrogen
(N, phosphorus and sulfu, pdays an essertial rde in sal physical (e.g, sal aeration,
aggregation), chemcal (e.g, pHregulaion and nutrient reserve) and bidogical fertility (e g,
mi neralization and nutrient recycling by heteratrophic saill organisns; Lal, 2014). Qoti mzing
these functions and processes allows sails to provide ecosystem services, such as food
production di nate regulation or even water storage, regulation and supply (Domnati e d.,
2010; Lal, 2014). Thus, maintaining SOMstocks is a najor issue worldwde inthe context of
cli mate change and land degradation ( D gnac et d., 2017, Qupta 2019).

Soil salinization whichis the accunulation of water-sduble salts inthe soil, can have natural
or arthropic origins (primary or secondary salinization respectively). The proportion of salt-
affected salls, located mainyinaridand semaridregions, is esti natedto be 7. 5%of the g obal
land surface area ( Hossain, 2019). Salinity affects sail properties, particuarly Cand Ncycling
Indeed a high level of salts reduces sail nacrobial biomass and activity and thus SOM
deconposition (Retz and Hiynes, 2003, Yuan et al., 2007). Moreover, dant ggowthis li mted
in salt-affected sails: their bionass production is reduced, leadingto alower amount of fresh
organic matter input irto sal, often causing a SOM stock decrease (\Wng & 4., 2010). A in
many countries in dry regions, Senegal is i npacted by high pri nary sainization principally
due to di nate change, resulting in locally so-called “Tannes” (highly degraded salty pl s,
literally tanned or burnt out; Datta et d., 2001). The current surface area of Senegal salt-
affected sallsis higher than 1 7 mllion ha, and the Tanne surface area is expected toincrease
inthe fuure a the expense of agricutural sals, mangroves and sails under natural vegetation
(Faye et d., 2019, Sadio, 1991). Inthis context, to be able to prevent sal degradation it is
necessarytospatialy and tenporally assess sail salinization processes and esti nate their | ong-
ter mi npact on SOMcontent.

Accurate mapping of spatiad and tenporal changes in SOMcontent and soil sainty levels a
different scales requires the analysis of nmany sanples. Msible and near infrared diffuse
reflectance (VN R spectroscopy (VN RS) has been proposed as an alternative to conventi onal
anal ytical nethods to assess sail properties: its cost- and ti ne-effecti veness has been notably
evidenced for SOMcortent deter mnation (O Rourke and Hol den, 2011; Senberg et al., 2010).
VN RS has also shown its useful ness for quantifying sail organic Cand N contents and sail
electrical conductivity (EQ, whichis used as a proxy for sal sainity (Qarate et a., 2016
Stenberget a., 2010; Mscarra Rossel e a., 2006). Several authors also observed a direct effect
of salt content onthe MNI R absorbance spectrum (Farifteh et a., 2008, Li et a., 2019, Wng
et d., 2018).

Sone challenges have, however, been identified in VN RS applications to sals. In regions
affected by variable levels of sal salinzation sal spectral libraries nay be characterized by
i nportant spectrum diversity, possibly leading to less accurate prediction of SOM content
( Mbura-Bueno et d., 2019). To overcone the issue of sal dversity in spectra libraries,
different types of modelscan be used For exanple, Liuet d. (2018), who used a VN Rspectral
library including different sal types, obtained the best predictions of sal arganic C content
whentheyfirst discri mnatedsal types fromtheir VN Rspectra andthen perfor ned predi cti ons
by sal type. Another strategy consists of performing indvidual prediction of each target

4



sanple, wing only calibration sanples that are its spectral nei ghbours; this isthe principle of
local partia least squares (PLS) regression (PLSR), which has shown good resuts for the
prediction of sal organic Cinlarge and heterogeneous spectral libraries (Qairate et d., 2016;
Nocita et a., 2014). Spectrum pretreat nent (e g, standard zation or derivatization) has also
been usedtoi nprove prediction accuracy, especiallytoreduce spectrumnoisethat dsturbs the
relationship bet ween spectra and studied sanple properties (Boysworth and Booksh, 2007,
Senberget d., 2010). Few aut hors have specifically studiedthe effect of spectral pretreat nents
on prediction nodel accuracy. Liu et a. (2019), who predicted SOM contert using VN RS
observed an effect of spectral pretreat nent (six pretreat nents tested) on the calibration set
selection based on spectral representativeness, whichthus influenced SOM contert prediction
perfor mance. Mbura- Bueno et a. (2019) conbined four types of prediction nodels wth six
spectral pretreat ments and observed an effect of the conbi nation nodel xpretreat nent on sail
organic C content prediction using VN R spectra. Recently, aher authors tested fractional
derivatives and reported good VN RS predictions wth 1 5-order derivatives for salt content
(Vdng et d., 2018) or 0.2-0 8 order derivatives for SOM( Xu et d., 2020). However, nost of
these studies considered only a fewspectral pretreat nents and did not consider their possible
conbination (e g, standardization then derivatization). In addition prediction nay be
hanpered for explained variables that do not folow a nor nal dstribution, so several authors
have used logtransformation (wth either natural o deci nal logarithn), rod-square-
transfor mation or Box Cox transfor mationto obtain an approxi mately normal distribution and
thus i nprove prediction (Vasques e a., 2008, Liu and Chen 2012 Terra et a., 2015; Lobsey
et al., 2017). For instance, \asques e a. (2008) and Terra et a. (2015) reported better VN RS
predictions of sal arganic C wth logio transfor metion than wthout logio transfor mation The
latter authors conpared different variable transfor nati ons: the best resuts were achieved wth
logio transfor mation for several sal properties, such as organic Cor exchangeable bases, wth
square-roat transfor mation for aher properties, such as day activty or nost nacronutrierts,
with Box Cox transfor mationfor sand contert only, and wthout transfor nationfor clay content
and nost 0xi des.

Therefore, predicting sal properties fromspectral libraries that include bath unsalted and salty
sals mght be challenging, but appropriate conbinations of nodel type and pretreat nents coul d
hel pto address this challenge. The objective of this work was to opti nize VN RS predi cti ons
of topsail arganic Cand taa Nconternts and ECina spectral library including variably salty
sails byidentifyingthe best combi nations of the type of prediction nodel, spectral pretreat nent
and variable transfor nation. Mre specifically, the study was conducted on sails of the Sne
Sal oumregion (Senegal) and three types of PLSR (dobal, i.e, common; locally wei ghted; and
by EC class) were conmbined wth 46 spectral pretreat nents (e g, centring, standard nor nal
variate detrending derivatization andtheir possible associations) totest pred ction accuracy.
Inaddition the log-transfor nation of explained variables was alsotested



2 Miterids and nethods

21 Sudied regon and soil sanpling

The sal sanples that were studied orignate from the Senegalese admnistrative regon of
Fatick whichis 100 to 250 kmeast-sout heast of Dakar and covers 6850 kn¥. The cli nate is
semarid wth 400- to 600- mm annual rainfall and 28-29 °C nean annual tenperature. The
regon includes the deltaic Sne Salloumestuary in the west (Quaternary sed nents); gently
rdling plains derived froman ancient dune field overl ying a cortinental sedi nentary basin(lae
Qretaceous) inthe east; and residual dissected plateaus of the sanme cortinental sedi nentary
basininthe north (Roger e d., 2009, Tappan et a., 2004). The nain soil types are GQeyic
Sol onchaks (sduble-salt rich and hydronorphic), Ferralid Sderalic Aenosas (very sandy,
strongly weat hered ox de-rich), Unbric Geysds (waterlogged dark-coloured wthlow base
saturation), Ferric Lixisols (wthlowactiuvity days, high base status and oxi de concretions),
Sagnic Huvisds (stratified sed nents, long waterlogged), and, to a lesser extent, Haplic
Arenosas (very sandy) and Dystric Regosds (poorly devel oped, wth low base saturation;
| USS Wirking Goup WRB, 2015). Natural vegetation is nainly tree savannah and shrub
savannah but also nmangroves. The main crops are peanuts and pearl nillet, soneti mes naize,
and market gardening (on some hydronorphic soils). Comnonly, livestock is nore or less
inegratedinoagricutural systens, especialy catle and s nall rum narts.

As part of the study of Chauvin (2013), the sanpled sites were chosen to capture the reg onal
variahility of land covers and sall types, except mangroves and nudflats on Huvisds (due to
accessibility issues). The sanpling design which involved 312 sites, was based on a
classification carried out usingtwo 2010 Landsat 7 i mages (183 x 170 km each) provided by
the sensor Enhanced Thematic Mpper, which has e ght bands fromQ.45to0 12 50 pm wth 30-
mresd uionin general (USGS, 2011). I nages were anal ysed using ENVI 45 soft ware (ITT
Msual Infor mation Sol uions, Boulder, CQ USA) for geonetric correction, nosaicking and
colour conposites and Arc@ S 9 3 soft vare (ESRI, Redlands, CA USA for d gtization and
for creating a land cover map. Al these sites had sals wthtexture dominated by sand-size
partides. Overall, the site latitude ranged from13°35 35" to 14°41 33" N and the sitelongitude
ranged from16°38 04" to 15°35 28" W (ne sail sanple was cdlected a each site & a depth of
0-25 cmusing a nanual auger.

2 2 Sail analyses

Before anal yses, the sall sanples were air-dried and then crushed using a nortar and pestle
before 22 mmsieving Al analyses were carried out in 1SOA001: 2015 certified laboratories of
the French National Research Institute for Sustainable Developnent (IRD) in Dakar. Total C
and N conterts were deter mned on 0.2- mm ground, 100- ng aliquats according to 1SO
10694: 1995 and 13878: 1998 procedures, respectivel y (1SQ 1995 and 1998 respectivel y) using
a CHN elenental analyser (Thermo FAnnigan Hash EAL112, Mlan Italy). Sol sanples
colectedinthe study area were expectedto be carbonate-free; thus, al carbon was considered
organic. However, one sanple had a very high Gto- Nratio (28 9), suggesting that it night
contain carbonates. This sanple was considered an outlier and re moved fromthe sail sanple
set, whichthus included 311 sanples. The EC was deter nined accord ngtothe 1SO 11265: 1994
procedure (1SQ 1994) on suspensions of 20 g of 22 mmsieved sail in 100 L de m neralized
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water using an ohmmeter (SynpHony SB70G WMR, Mnt- Royal, QG Canada). Two sal
salinty dasses were dstinguished accordng to Sadio (1991), who studied the Sne Saloum
area and consi dered vegetation and sall texureinadditionto EC unsaltedor slightly saltysails
(dencted as Salt-), wth EC<2 nScm?!; and nediumto highly salty sals (Salt+), wth
EC>2 nBcml

Reflectance spectra inthe visibde and near infrared regions were acquired bet ween 350 and
2500 nmat 1 nmirtervals using a portable LabSpec 4 spectrophotometer (Anal ytical Spectral
Devices, i.e, ASDQ Boulder, CQ USA. Thisinstrunent is equipped wtha contact probe, and
the sanples are scanned manually wththis probe (surface area scanned: 80 mn%). Each VN R
spectrumresuted fromthe averaging of 32 coadded scans, and absorbance zeraing was carried
out every hour wsing a reference standard (Spectralon i.e, polytetrafluoroethylene). Each
sanple spectrumresuted fromthe averaging of spectra acquired on three aliquats of 2- mm
sieved air-dried sanples that had been oven-dried at 40 °Cfor at least 12 h

2 3 Chenonetric anal yses

231 Petreat nents

Before anal yses, reflectance spectra were converted into absorbance, which was calcuated as
the deci mal logarithmof the inverse of reflectance (absorbance =1ogio[ Vreflectance]). Several

comnon spectrum pretreat ments were used aone or in conjunction to reduce baseline
variaions, enhance spectral fea ures, reduce the partid e-size scatteri ng effect, re nove linear or
curvilinear trends of each spectrum and/ or renove additive or multipicative signal effects
(Boysworth and Booksh, 2007, Senberg et d., 2010): Savitsky- Colay smoothing (Snoo),

centring (Centr), standard nor mal variate (SNV), It- and 2d-order detrending (DL [R), Bt-
and 20d-order derivativewith 11- or 31-point gaps ( Der111, Der131, Der211 and Der231); Gentr
fdlowed by DL, [2 or the derivatives nertioned (e g, GntrDl, Centr 2 o Gentr Der111);

SNV fdlowed by DL (SNVDL1), D2 (SNVD2) or the derivatives nentioned (e. g, SNVDer111);

Dl or 2 fdlowed by the derivatives nentioned (e g, DLDer1l1l); CentrDL or Centr D2
fdlowed by the derivatives nentioned (e g GentrD1 Der111); SNVDL or SNVD2 followed by
the derivatives nentioned (e g SNVDLDerl1l1l); and raw absorbance spectra wth no
pretreat ment, were alsostudied (Raw). Al pretreat nents ai mat anplifying the useful parts of
spectraand a reduci ngirrelevant infor mation Mre specifically, nost of the pretreat nents ai m
at renmovi ng additi ve and multi plicati ve effects due tolight scattering and at enhanci ng spectral

features (e.g, SNV detrending and derivatives) but using different approaches and wth
different resuts (Rnnan & d., 2009, Senberg et d., 2010). Therefore, conbining spectral

pretreat nents is a common practice and has often proven usefu (Rnnan et d., 2009, Senberg
et a., 2010, CGhozalideh e d., 2013). Intaal, 46 spectrumtypes were studied including
45 types of pretreated spectraand rawspectra(Hg S1). Qher comnon spectrumpretreat nents,

such as multiplicative scatter correction ( M5O and continuumre noval, were na included in
this set of pretreat nents. Indeed the for ner corrects spectra fromtrends measured over the
sanpl e spectrumset sothat the corrected spectrum of a gven sanple changes accordingtothe
sanple set to whichit belongs, which may conplicatethe use of M5C ( Boysworthand Booksh,

2007). The latter has nost generally been used for reflectance but nat absorbance spectra,

especialyinrenote sensing studies (Gark and Roush, 1984; Cong et d., 2018).



The distributions of Cand Ncortents and EC were skewed, wthskewness coeffidents reaching
24 31 and 42 respectively (Table 1). A nonnor mal dstributions hanper statistical

procedures, the deci nal logarithmc transfor mation (1ogio) of these variables was carried out to
tryto achieve nore normal dstributions (Lobsey et a., 2017, Terra et d., 2015). Indeed, the
distributions of logG logN and logEC were much less skewed, but the dstribution of 10gEC
was still skewed naticeabl y (skewness coefficients were 0.5 Q7 and 1 3inthe calibration set,

respectively). To docunent the effect of log-transfor mation regression procedures were
perfor med on bath C contert and logG N content and logN and EC and logeC \ariable
transfor mati ons usingthe natural logarithm(ln) and square roat were alsotested but in general,
these transfor mati ons resulted in poorer predctions than using logio and wll nat be preserted

232 Glibration and validation sets

The set of 311 sanples (after one sanple was renoved as an outlier, cf. 22) was dividedintoa
calibration set for buildng prediction nodels and a validation set totest these nodels. This
distinction bet ween the calibration and validation sets was based on principal conponent
anal ysis (PCA perfor med on s noat hed (2nd-order Savitzky- Col ay filtering wi dth 11) and then
centred spectra usingthe R package Facto MineR (L€ et a., 2008). PCA condenses the huge but
redundant infor mation carried by spectra (here absorbance a 2151 wavelengths) irto a s nall
nunber of latent variables (L\&) that are linear combi nations of absorbances, and L\6 are built
to be arthogonal one to anat her (no redundancy) andto explain nmaxi mumvariance (torepresent
at best spectral variahility). Then, the Kennard Sone a gorithm( Kennard and S one, 1969) was
applied to PCA scores to select spectraly representative sanples for calibration using the R
package sail.spec (Sla et d., 2014), and the renaining sanples were used for validation The
Kennard- S one al gorithm has becone very popular inrecent years for optini zing the spectral
representati veness of calibrationsanples wthinaspectral library (Nocita et d., 2014; Qairate
et d., 2016, Lobsey et d., 2017, Vdng et d., 2018; Liuet d., 2019; Mbura-Bueno et d., 2019).
This algorithmis particularly relevant when the library reflects the variability of land covers
and sail typesina gven area (e g, regon country), as was the case inthe present study (cf.
section 2 1). Indeed insuch cases, validation results provide realistic approxi mations of how
accurately newsanples fromthis area woul d be predicted usingthe library. This a gorithmfirst
selects the pair of sanples separated by the largest Euclidian dstance, then the sanple nost
distant from sanples aready selected ec, until the required number of sanples, here
calibration sanples, is reached Due to presumebly high sal variahbility, the size of the
calibration set was set to 249 sanples (80% and the size of the validation set to 62 sanples

(209.

2 33 Regression procedures

Three regression procedures vere carried out, which al invol ved PLSR dobal PLSR locally
wei ghted PLSR and PLSR by salinity dass, after dass discri mnation using PLS discri mnant
anal ysis (PLSDA). Al procedures were perfor ned using the R package rnirs (Lesnoff et a.,
2020). The PLS procedure a n$ a condensing the huge and redundant infor nation carried by
spectra ino a small nunber of LVs that are: i) linear conbinations of absorbances,
i) athogonal one wth anaother, and iii) built to nmaxi mze their covariance with the expl a ned
variable (narely, Ccontent, logG Ncontent, logN EC or logEQ); the last point dffers from
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PCA which ai ns at describing spectrumset dversity (cf. 232), while PLSis a stepinthe
regression or discri mnation procedure. Then regression or dscri mnant anal ysisis carried out
with L\5.

A obal PLSR is the common PLSR procedure. Qne prediction nodel is bult wing al
calibrationsanples andisthen appliedtoal validation sanpl es (Boys worthand Booksh, 2007).
Locally weighted PLSR (hereinafter called local PLSR) builds one prediction model for each
validation sanple individually and weights the contribution of calibration sanples to nodel
buil d ng based ontheir spectral si mlarity wththat validation sanple (Boysworth and Booksh,
2007). Spectral si mlarity was calcuated according tothe R correlaion coefficient bet ween
validation and calibration sanples. The wei ghts assignedto calibration sanples were cal culated
accordingto Lesnoff et al. (2020) using equation 1:

w =exp[-u/ SOu)] Equation 1
where wisthe weight, exp isthe exponerntial function SDisthe standard deviation and uis a
parameter defined accordingto equation 2

u=d/ max(d) Equation 2
where d neasures spectral dissi mlarity calcuated according to equation 3, and nax(d) is its
maxi mumover the calibration set:

d=[05x(1- R]%> Equation 3
where Risthe correlation coefficient bet ween a given validation sanple and each calibration
sanple

In addition weights assigned to calibration samples were also calcuated according to
equation 4instead of equation 1

w =exp[-u/ 2SO u)] Equation 4

However, the prediction resuts using bath weight functions dd nat dffer nuch; noreover,
those achieved with equation 1 were better in general thantheir counterparts using equation 4
(which gave relatively loner weight tothe closest nel ghbours when conpared to equation 1),
soit ddnat seemusefu to present the results achieved using equation 4

PLSR by dass first involved PLSDAto predict the salinity dass of validation sanples (Salt-
vs. Salt+) wsingthe PLSDA-I mprocedure of the rnirs package (I mfor linear nodel; Lesnoff et
a., 2020). This procedure invol ved the creation of two dumny variables (e g, the resulting
Salt + variable obtained the value 1 for Salt+sanples and O for Salt- sanples); PLSR was then
used to predict the cass corresponding tothe dummy variable for which prediction was the
highest (e g, if Salt+ prediction yielded 0.9 and Salt- prediction Q. 1, the sampl e was classified
as Salt+). Then for each sal property considered (Ccorntert, logG Ncontert, logN EC and
logeQ, dobal PLSR built wth al calibration sanples froma gven salinity dass (Salt- o
Salt+ was appliedto validation sanples bel onging tothis dass accordingto PLSDA
Therefore, for each variable (G Nand EQ), three regression procedures (global, local and by
class) weretested wth 46 spectrumtypes and possi b e variabl e | og-transfor nation (cf. 2 3 1).
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Whatever the procedure (dobal PLSR local PLSR or PLSDA), randomly selected fivefa d
cross-validation wth 10 replicates was perfor ned onthe calibration set, and the nunber of L\5
that mini mzed the root nean square error of cross-validation (RMBECV) was considered
opti mal and selected Wien a prediction yiel ded a negative val ue, it was replaced by zero Al
the steps of the che mo netric anal yses are summarizedin Ag 1

311 samples with VNIR spectra & reference data

Kennard Stone algorithm on smoothed and centred spectra
- CAL set : 80% representative spectra
- VAL set : 20% remaining spectra
I

’46 types of spectra obtained on the total dataset (CAL + VAL) ‘

Reference data processing Reference data processing
C content using or not log; C content using or not log;
N content using or not log; N content using or not log;

EC without log EC without log
v v
Model calibration:
5-fold cross-validation Application of the models
randomly selected (x 10)
=> selection of NLV
(lowest RMSECV)

- Global PLSR;

- Locally weighted PLSR;
- Global PLSR per salinity class predicted by PLSDA

FHg 1 Dagramof the main steps fdlowed inthis study. NLVisthe nunber of latent variables. The
dar k-background boxes refer to datasets and the white-background ones to processes.

2 34 Bvaluation of prediction nodel perfor nance

The paraneters used for assessing the goodness of fit of predictions were as fdlowvs:

-the roat nean square error (RMBE), either calcuated over the calibration set in cross-
validation (RMBECV) o over the validation set (RNMSEP);

- the bias, whichisthe nean residue over the validation set;

- R bet ween predi ctions and obser vations cal cul ated over the calibration set in cross-validation
(Rcv) o over the validation set (RvaL);

- RPD which is the ratio of standard deviation to RMBE on either the calibration set or
validation set (RPDcv and RPDvaL, respectively); Chang et a. (2001) considered that
RPD > 2 corresponded to accurate N RS predictions of sail properties;
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- RPIQ whichis the ratio of interquartile range (i.e, dfference bet ween the third and first
quartiles; 1 QR to RVBE (RPl v, RPI QuaL) and has been recomnmended instead of RPDfor
variables that do not fdlowa nor nal distribution (Bellon- Maurel et a., 2010).

For PLSDA a her performance paraneters were considered:

- sensitivity, whichisthe proportion of sanples correctly assignedto a dass (in %of the set);

- specificity, whichisthe proportion of sanples correctlyidentified as nat belongingtothe class

considered (in % At nan and Hand 1994).

2 35 Qonparisons bet ween sets and bet ween nodel perfor mances

S mlarity bet ween t wo spectra can be eval uated using the coefficent of deter mnation (R),
and si mlarity bet ween two spectrumsets can be eval uated by average R over al possibe pairs
of spectra nade of one spectrumfrom each set. Therefore, spectra si mlarity bet ween the
calibration and validation sets, which depended on the spectrum type (raw or pretreated
spectra), was eval uated usingthe average R bet ween every calibration and validati on spectrum
To eval uate the calibration nei ghbourhood of validation sanples, the number of calibration
spectrathat were correlated to each validation spectrumwth R >0.95 was aso consi dered
For a gven variabl e, the average RMBEP cal cu ated using all 46 types of spectra was comnpared
bet ween the dfferent regression procedures using Sudent’s paired t-test when the RIVBEP
distribution was nor nal or the W coxon signed rank sumtest aher wse after nor nality was
eval uated wththe Shapiro- Wik test. Inthe sarme way, for a gven regression procedure, the
average RVBEP over the 46 types of spectra was conpared bet ween pred ctions usingthe | og-
transfor mati on of the considered variable or nat.

3. Resuts and discussion

3.1 Reference data

Table 1 presents the distributions of the three studied variables, nanely, Cand Nconternts and
EC wthout and wthlog-transfor mation inthe calibration and vali dati on sets. The observed C
and Ncontents vere low, wth respective neans and SDs anountingto 43 £+32gCkg! and
0.34 £0.24 gNkg!forthe whol e dataset; noreover, the observed Cand Ncontents were highly
correlated (R=0095), which confirned their aganic natue (data not shown). Wen
consi dering bat h salinityclasses, the dstribution of observed Cand Ncontents ( nean, nedian,
SDand IQR was quite si mlar inthe calibration and validation sets but wth a wder range in
the calibrationthaninthe validation set ( mostlyfor Ncortent). However, their dstribution and
range per salinty dass were quite dfferent between the calibration and validation datasets,
particdarly in Salt+ (nean and SD were 56 50 vws. 23+16gCkg?! and 044 £0.35 s.
0.21 £014 gNkg?, respectively). For bath Cand Ncontents, nedians dd na dffer nuchin
general bet ween Salt- and Salt+inthe calibration set; however, inthe validation set, Salt+
sanples had twce snaller nedian C and N conterts than Salt- samples. Conparable
observations were nade for the nean athough a slight dfference was also observed inthe
calibration set (2529 %lower in Salt- thanin Salt+for bath variables). The relative SD (i.e,
raio of SDto nmean; RSD expressedin % was slightly lower in Salt- than Salt+ for bath C
and Ncontents, it was 68 % vs. 80-90%in the calibration set and 51-63% \s. 6570%in the
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validation set for Salt- vs. Salt+ respectively. This indicated higher heterogeneity but wthout
systenatically lower values of Cand N contents in Salt+than in Salt-, in accordance wth
Pankhurst e a. (2001), who studied variably salt-affected sals from different Australian
regons and dd nat find any linear (negative) correlation bet ween sail arganic Ccontent and
EC for their whol e dataset.

Table 1 Dstribution of Cand Ncontents and EC before and after | og-transfor nation in calibrati on and
vali dation sets accordingto salinity dasses. Salt- corresponds to unsalted or slightly salty sanples and
Salt+to nediumto highly salty ones (EC <vs. >2 nS cm?!). Noa, Nat- and Nat+are the number of
sanples intaa, Salt- and Salt + sets, respectively. SDis the standard deviation IQR the irnterquartile
range (dfference bet ween third and first quartiles) and Skewthe skewness. Al paraneters have the
sane unit asthe sal property considered, except skewness (unitless).

Cali bration Vali dation

Soil property  Set (Nrota =249; Nait- =214; Nait+=35) (Nrota =62, Nait- =48; Nait+=14)
Mn Median Mean Max SD IQR Skew Mn Median Mean Max SD IQR Skew
C content Both 0.8 32 42 207 32 28 24 10 39 46 170 33 33 19
(9Ckg?) Salt- 0.8 32 40 207 27 27 27 15 4.5 53 170 33 32 18
Salt+ 0.8 2.9 56 179 50 59 12 10 19 23 73 16 14 21
N content Both 0008 026 034 210 025 020 31 0010 031 035 120 020 020 17
(gNkg?) Salt- 0009 026 033 210 022 019 39 015 035 040 120 020 016 18
Salt+ 0008 030 044 143 035 048 12 010 016 021 062 014 014 19
EC Both 0.0 0.0 14 290 41 01 42 0.0 0.0 27 286 61 08 28
(nBcmt) Salt- 0.0 00 01 12 02 00 41 00 00 01 13 02 00 36
Salt+ 21 6.9 93 290 68 64 15 37 81 115 286 80 99 10
logC Both -01 05 05 13 03 04 05 00 0.6 06 12 03 04 01

[logo(9Ckgl)] Salt- -1 05 05 13 02 03 06 02 06 07 12 02 03 04
Salt+ -01 0.5 06 13 04 06 02 00 03 03 09 02 03 08

logN Both -11 -06 -05 03 02 03 07 -10 -05 -05 01 02 03 00
[logo(gNkg')] Salt- -10 -06 -05 03 02 03 009 -08 -05 -04 01 02 02 04
Salt+ -11 -05 -05 02 03 06 01 -10 -08 -07 -02 02 03 009

logEC Both -24 -16 -12 15 10 10 13 -21 -14 -09 15 11 16 09
[logo(nScmy)] Salt- -24 -17 -16 01 05 06 12 -21 -15 -14 01 05 05 14
Sat+ 03 08 09 15 03 04 02 06 09 10 15 03 04 03

The observed EC showed much higher variaion in Salt- than Salt+ the RSD of both the
calibration and validation sets was 220-230%for Salt- ws. 70-74%for Salt+ Mreover, the
RSD also dfferedinthe tata set bet ween the calibration and validation sets: 298 %vs. 226 %
respectively. Indeed the EC distribution in Salt+ was quite dfferent between the calibration
and validation datasets. In contrast, the EC distribution in Salt- was simlar in bath the
calibration and validation sets: 01 £0.2 nS cm? in each set.

EC was neasuredina 15 sail: water extract, which does na necessarily represent actual field
conditions but allows conparison bet ween sanples under contrdled conditions. Thus, the
observed EC val ues presented here coul d underesti nate sanpl e salinity under field conditions,
as their intial water content was not considered (Mavi and Mrschner, 2017).
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The three variables dd not have nor mal distribuions: the skewness val ue was syste natically
positive inthe calibration and validation sets, wth nany snall val ues. The log-transfor mation
decreased the skewness paraneter doseto zerofor dl three variables sothat distributions were
more symnetrical; the log-transfor nati on also allowed the distributions per salinity dassto be
closer bet ween the calibration and validation datasets. However, the distribution of logECin
the calibration and validation sets (except for Salt+) was still very skewed.

3.2 Prediction o the sail dectrica conductivity
The log-transfor mation of EC did nat i nprove its prediction probably because the distribution
of 1ogEC was still very skewed; thus, the correspondi ng resuts wll nat be presented

321 Sanple dscri mnation accord ngto EC class

The PLSDA built to discri mnate sal salinty cdasses using sanple VN R spectra either raw
or pretreated Viel ded accurate results: in validation, systenatically 100 % of the Salt- sanples
were correctly dscri minated and on average over all 46 spectrumtypes (£SD), 95.2%(£7.5%
of the Salt+ sanples were correctly assigned (Table 2). Sone authors also showed accurate
discri mnation of sall dasses when using VN Rspectra For exanple, Liuetal. (2018) achieved
accurate discri mnation of five saill dasses (0-20 cmdepth) studied in different provinces of
China using PLSDA based on VN R spectra \asques et a. (2014) aso observed a strong
correlaion bet ween sail VN R spectra and taxonomc classes, which was partly explained by
sall cdour. Inthe present study, the naticeable PLSDA efficiency coul d also be explained by
the effect of salinty on sal cdour and thus on spectrum absorbance (Shahid et a., 2018).
Indeed an effect of sal salinty on VN Rspectra has been reportedinthe literature. Vdng et
al. (2018) reported a negative correlation bet ween spectral absorbance and EC which was also
the case inthe present study (data nat shown); in contrast, Li e a. (2019) found a positive
correl aion bet ween sail spectral absorbance and salt concentration These contradictory results
coul d hardy be expl ai ned bythe predom nance of different salts bet weenthe studied sails since
sodiumions were predomi nant inthe sails studied by Li et a. (2019) and Wang et d. (2018),
while sufate ions were predomnant inthe sal sanples of the present study (Sadig 1991).
However, the presence of salts can variably affect aher sal characteristics, such as their
conposition or structure, and thus indirectly nmodify sal spectra (Shahid et al., 2018, Senberg
et d., 2010). Wiile the dscrimnation of Salt- sanples was perfect, regardess of the
pretreat nent, the discrim nation of Salt+ sanples was slightly affected by the pretreat nent
used Indeed 10 9%ocof the 46 types of spectraledtoincorrect discri nination for veryfew Salt +
validationsanples (onlythree or four, dependi ng on the spectrumtype considered). In contrast,
89. 1%of the spectrumtypes ledto perfect or nearly perfect (i.e, only one msdassified sanple)
discri mnation for this class. In taa, four sanples were patentially misclassified which
differed accord ng to spectrumtype: they had EC bet ween 37 and 6.8 n cm?; three of them
had the lowest ECinthe Salt+ class. V¥ coul d therefore suppose, as reported by Liu et a.
(2018), that depending on spectrumtype, these sanples could have spectral characteristics
closer tothe characteristics of Salt- than Salt + sanypl es.
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Table 2 Confusion natrix of PLSDA validation for the t wo salinity dasses (Salt-i.e EC<2 nf cm!?
vs. St+i.e EC>2 nBcml) according to the spectrumtype (ST) considered Snoo refers to
smoathing Centr to centring; SNV to standard normal variate, DL and 2 to 1st- and 2nd-order
detrendi ng, respectively, Der111, Der131, Der211 and Der231to 1st- and 2nd-order derivative wth 11-
or 31-point gaps, respectively.

%S Ts Observed salinity

with Predic- Sensi- Speci-
ST o ted Salt- Salt+  Total tiuty ficty
si malar alinit Nbait- =48 Nsait+=14 9 9
result salinty  (MNat ) (Nait+=14) ( /) ( /)
Centr, DI, 2, CentrD1, CGentrC2, Deril], 56.5 Salt- 48 0 48 1000 100.0
Centr Der111, DiDer1ll, 2Der1l], Salt + 0 14 14 1000 100.0
Centr D1 Der111, Gentr C2Der111, Deri131,
Centr Der131, DiDer131, 2Der13],
Centr DL Der131, Centr 2 Der13],
SNVD2 Der 131, Der211, Centr Der211,
D1 Der211, D2Der211, CentrD1 Der211],
Centr D2 Der211, 2 Der231, Centr 2 Der231
Raw Snoo, SNV, SNVD1, SNVD2, 326 Salt- 48 1 49 1000 929
SNVD2 Der111, SNVDer 131, SNVD1 Der 131, Salt + 0 13 13 929 100.0
Der231, Centr Der231, DiDer231,
Centr D1 Der 231, SNVDer 231, SNVD1 Der 231,
SNVD2 Der 231
SNVDer111, SNVD1Derill 4.3 Salt- 48 2 50 100.0 85.7
Salt + 0 12 12 85.7 100.0
SNVDer211, SNVD1 Der211, SNVD2 Der211 6.5 Salt- 48 4 52 100.0 714
Salt + 0 10 10 714 100.0
Total 100.0
Mean over al STs Salt- 48.0 07 487 100.0 95.2
(and SD (00 (11 (L) (00 (7.9
Salt + 00 133 133 952 100.0
(0.0) (1) (1) (79 (0.0

322 Peddionof EC

For each EC calibration procedure wthout |og-transfor mation (g obal, local, by class), the
results that yielded the lowest RMBEP are presented in Table 3 and FAg 2 while Fg 3
conpares RMBEP anong the three calibration procedures. The mnost accurate EC prediction
was obtained wth a gobal nodel (using SNVD1; RMBEP =19 nScm?), while the best
predictions achieved wth local PLSR (using SNVD2Der111) and PLSR by class (using
Der131) were less accurate (RMBEP =2 1and 23 n6 cm?, respectively, Table 3and Ag 2).
Thus, comnon PLSR (i.e.,, gobal PLSR was appropriate for EC prediction. Wen averaged
over al 46 spectrum types considered local PLSR yielded the lowest RNSEP
(24+£0.2 n5 cm?l), dose but significantlylower than gobal PLSR(25 = 0.3 n5 cm?!), which
itself was significantlylower than PLSR by dass (28 £0.2 nS cm?; Table3 and Fg 3).
ECin Salt+sanples was nore accurately predicted when calibration was carried out on bath
Salt- and Salt+ sanples than on Salt+sanples only (Fg 2. This could be explained by the
small number of Salt+ samples inthe calibration set, whichli nited the prediction accuracy of
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the nodel by class (Kuang and Mbuazen, 2012). In contrast, ECin Salt- sanples was nore
accurately predicted when only Salt- sanples were used for calibration probably because of
the heterogeneity provided by the addition of Salt+sanples, wth a dustering effect (g 2
Stenberg et d., 2010).

To our knowedge, no study has focused on EC (15 sal: water) prediction in variaby salt-
affected sails using VNIRS, but predictions achieved for Salt- sanples were conparable to
those reported inthe literature for the same class. Dunn et a. (2002) studied topsail sanples
orignating fromsouthern New South Vdles (Australia), wth variable texture but low EC
(<18 nB cml); using dobal calibration they achieved RPDvaL =12 whichisconparableto
the resuts of the present study for Salt- sanples (RPDvaL =13 on average and up to 14
Table 3). Islamet a. (2003) studied EC prediction wsing utravidet and VNI RS (250- 2500 nn)
in unsalted and slightly saty sals (EC <15 nScm?) in New South Wales and sout heast
Queensland (Australia) and achieved RPDvaL =1.Q Goncerning the Salt+ dass, Veindorf et
al. (2016) used VN RS for predicting ECinsalt-rich sanples calected a several depths inthe
Monegros region, Spain (average EC=58+38 nScm!?). They found 16 < RPDvaL <20
and 24 < RPl QuvaL <30 wing support vector regressions and penalized spline regressions,
whichis nore accurate thaninthe present study, possibly attributedtothe more honogeneous
EC distribution inthe sampl e popul ation studied by Véindorf et a. (2016) and tothe li mted
nunber of Salt+sanplesinthe present study.

The interpretation of EC prediction accuracy dffered accordingtothe perfor mance paraneter
that was considered For the tatal validation dataset, RPDvaL and RvaL suggested that the
models were accurateingeneral, whereas RPl QuaL suggestedthat the nodels were nat accurate
(Table 3). Due tothe very skewed distribution of EC (IogEC was still far from nor nal, cf.
2 31), the | QR was very lowand rmuch snaller than SO so RPl Q was also nuch s maller than
RPD This was, however, na the case inthe Salt+ class, but the latter included fewsanples.
Contradiction bet ween high RPD and low RPIQ highlighted the difficulty of irterpreting
prediction results sonetimes, and the li mts of paraneters used for eval uating the perfor nance
of prediction nodels for variables that have very asymnetrical and/ or dustered distributions.
For nonnor nally distributed variables, Bellon- Miurel e a. (2010) recommended consi deri ng
RPI Qinstead of RPD and thus referring RVBE to 1 QR instead of SD for eval uating nodel
perfor mance; however, this approach does nat necessarilyleadto easilyirterpretable results for
very skewed distributions, as seen here. Mreover, studying EC in bath clusters separately
(Salt- and Salt+) did nat necessarily i nprove the prediction results. Onthe one hand, EC was
very honogeneous in Salt- sanples: SD(Q1 n5cm?l) andl QR(Q 0 n5 cm?) were verysnall,
so RVBEP could hardy be lower. Onthe ather hand, the nunber of Salt+ sanples was too
small toalowaccurate prediction as nentioned previously.
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Table 3 Qoss-validation and validation resuts of VNI RS predictions of electrical conductivity
(nmS cm?!) for each PLSR nethod i) using raw spectra; ii) using the spectrum type that mni mzed
RMBEP; iii) averaged over al 46 spectrumtypes (wth SD. For PLSR by dass, validation parameters
were calculaed for i) the total validation set, ii) the validation sanples predicted as Salt- by PLSDA
iii) the validation sanples predicted as Salt+ by PLSDA (the size of Salt- and Salt+ validation sets
depended onthe spectrumtype, cf. Table 2).

Spectrum VAL LV Cali bration Vali dation
type set (Nrota =249; MNait- =214; Nait+=35) (Nrota =62 ; unfixed Nat-and Nait+)
R RMSE RPD RPIQ Mean SD R SYope Bas RMSE RPD RPIQ
cv cv cv cv VAL VAL VAL P VAL VAL
Qdoba PLSR
Raw Total 11 0.84 16 25 01 27 61 08 083 01 21 29 0.4
SNVD1 Tota 9 0.85 16 26 01 27 61 09 08 01 19 31 0.4
Mean Total 7 0.82 18 23 01 27 61 083 077 02 25 24 03
(SD d (@0 (@) (an (00 (004 (a0e (@) (@3 (03 (a9
Local PLSR
Raw Tota 7 0.82 18 23 01 27 61 087 08 03 22 28 0.4
SNVD2Der111 Tota 5 0.84 17 25 01 27 61 08 079 00 21 29 0.4
Mean Tota 7 0.82 18 23 01 27 61 08 08 01 2.4 25 0.3
(SD (d (00 (@) (@) (00 (003 (a04H (@D (@2 (02 (00
PLSR By class*
Raw Total 9118 084 17 24 01 27 61 079 08 -03 28 22 03
Salt- 0.55 0.1 14 03 02 08 062 031 00 0.5 14 0.1
Salt + 0.58 51 13 13 120 81 049 065 -13 6.0 14 18
Der131 Total 7,153 081 18 22 01 27 61 08 07 -01 23 26 03
Salt- 0.63 0.1 16 03 01 02 063 099 01 02 12 02
Salt + 0.50 51 13 13 115 80 070 043 -05 4.9 16 20
Mean Total 6,146 0.83 17 24 01 27 61 079 08 -02 2.8 22 0.3
(SD (222 (009 @y (@ (a0 (004 (a0 (@2 (@ (02 (00
Salt- 0.59 0.1 15 03 02 06 063 060 00 0.5 13 0.1
(005 (@9 (@1 (a0 (@) (oy (@100 (@39 (@ (@4 (a1 (@D
Salt + 0.56 50 14 13 128 81 049 059 -08 59 14 18
(@05 (@ (an (@) (@n (@) (019 (019 (0 (@4 (@n (02

* For PLSR by dlass, the number of latent variablesis nentioned for PLSDA PLSRfor sampl es predicted as Salt-
and PLSR for sanples predicted as Salt+ respectively (wth SD» into brackets when averaged over al spectrum

types)
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Fg 2 Masured vs. predicted EC(wthout |og-transfor mation) and Cand Ncontents (wth and without 1og-transfor mation) usingthe spectral type (anong the
46 tested) that mini mized RMSEP for each PLSR (cf. Table 6). The vertical axs title specifies when Cand N contents were predicted after 1og-transfor nati on
("using log™). Salt- corresponds to unsalted or slightly salty sanples and Salt+tomedi umto highly salty sanples. The line represents y = x.
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3.3 Prediction o sal organic carbon content

Table 4 presents C content prediction results using raw spectra using spectrumtypes that
yielded lowest RMBEP, and on average over all spectrumtypes, for the three calibration
procedures, wthout |og-transfor mation or using log-transfor nation, while boxpl ats presented
in Hg 3 conpare dstributions of RMBEP over dl spectrumtypes according to calibration
procedure and possi bl e log-transfor nation of Ccontert.

Wsi ng | og-transfor mation o nat, the best validation resuts were obtai ned with PLSR by dass:
without logtransfor mation, the lowest RMBEP was 16 17 and 19 gCkg! wth PLSR by
class, dobal and local PLSR respectively, using log-transfor mation the lowest RMBEP was
13 17and 149gCkgl, respectively. Better validation resuts wth PLSR by dass than wth
global andlocal PLSRseenedtoresut nainlyfrom better prediction on Grich sanples, which
were Salt- sanplesin general (Fg 2). The sane result was found when RMSEP was averaged
over the 46 spectrumtypes, wsing log-transfor nation or nat (Table 4 Fg 3), which could be
attributed to higher sanple set honogeneity all owed by calibration by dass in bath cali bration
and validation Indeed Brunet e d. (2007) reported that N RS predi ction accuracy increased
when sal Cand N content calibrations were built and applied to texturally honpgeneous
sanple sets. Liuet d. (2018) alsoreported better soil organic Ccontent prediction wth rmodels
built and applied by sail type than usingthe whol e spectral library (RIVSEP decreased by 119).
Better prediction using calibration by salinity dass could additionally be explained by the
positive correl ation bet ween sall salinty and saill moisture, evenin dried samples (Nawar et d.,
2015), as heterogeneous soil noisture cani npact C content prediction accuracy (Alory et d.,
2019).

Moreover, regardess of the calibration procedure, the lowest RMBEP was ohtained using
variable log-transfor mation, which in particdar allowed low C content val ues to be better
predicted (Table 4 Fg 2). The nean RMBEP over al 46 spectrumtypes was also smaller
using log-transfor mation, regardess of the calibration procedure. Indeed the log-
transfor mation of Ccontent ledtoless asymnetrical variable dstribution and, in particuar, to
"ungroupi ng" of G poor sanples, which contributed to higher nodel accuracy (Table 1, Luca
et d., 2017, Mbura- Bueno et a., 2019).

On the whole the benefit of PLSR by cdass wsing log-transfor ned C contert values was
naticeable when conpared wth g obal PLSR using Ccontent val ues (i.e, common procedure),
either consi dering best results or averages over al spectrumtypes. The nost accurate prediction
of C content, wing PLSR by cdass, log-transfor nation and SNVDer13l, ielded
RMSEP =139gCkg?!, RPDvaL =25 and RPl QuaL =25 which according to Chang et 4.
(2001), was accurate (RPDvaL >2). Uhder such conditions, RMBEP was 24 %l ower than the
lownest R\VBEP obtainedwith gobal PLSR (using D2 wthlog-transfor nation or SNV wt hout
log-transfor nation; Table 4), whichis a higher dfference thanthat reported by Liuet a. (2018)
when conparing PLSR by sail type and gobal PLSRin Chinese provinces. Qher studies that
addressed VNRS or NRS prediction of sandy topsoil Ccontent a the regional scale used
global calibration in general and achieved results conparable to those achieved wth this
procedure in the present study (e g, RPDvaL =2 3 far Barthés et d., 208 for a sanple
popul ation orig nating fromfour sites in Burkina Faso and Congo- Brazzaville RPDvaL =19
for Gimbule et d., 2012 ina 1000-kng areain Mbzanbi que, while RPDvaL =19 was achieved
inthe present study).
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The nodel perfor nance could probably be inproved by increasing the nunber of Salt+
sanples, which was snall. Indeed the positive effect of increasing the number of calibration
sanples on validation accuracy has been reported by severa auhors, either a the local scale
(Luca et d., 2017) or national scale (Qairate et a., 2016), urtil an optimum was reached,
dependi ng on sanple popul ation d versity.

Table 4 G oss-validation and validation resuts of MNI RS predictions of sal arganic carbon content
(gCkg?t) wing or nat logtransfor mation for each PLSR nethod i) wsing raw spectra; ii) using the
spectrumtype that mni mzed RMBEP, iii) averaged over al 46 spectrumtypes (with SD.

Cali bration Vali dation
b del Spectrum LV ( Nrota =249) _ (Nrota =62)
type R RMSE RPD RPIQ R Bas RMSE RPD RPIQ
cv CVv cv cv VAL Sl ope VAL P VAL VAL
d obal Raw 13 0.68 19 17 15 0.64 070 -01 20 17 17
_ SNV 11 0.57 22 15 13 0.72 0.74 01 17 19 19
nolog  Mean 12 062 20 16 14 05 068 02 21 15 15
(SD (9 (@03 (@y (@ (aQ (a0g (005 (0D (02 ()] (@D
d obal Raw 14 0.41 4.3 0.7 0.6 071 069 -02 18 19 18
- D2 12 0.66 19 17 15 0.73 0.79 01 17 19 19
usi ng Mean 13 0.66 20 16 14 0.68 0.74 01 19 18 17
log (SD (2 (o) (@5 (0 (02 (004 (008 (09 () () @y
Local Raw 9 0.63 20 16 14 0.6 069 00 21 16 16
- SNV 7 0.56 22 15 13 0. 67 0.74 0.2 19 17 17
nolog ~ Mean 10 064 20 16 14 059 068 02 22 15 15
(SD (2 (003 (@) (an (ay (a0g (005 (0D (02 ()] (@D
Local Raw 11 0.57 25 13 11 0.74 079 -02 17 2.0 20
- Centr 11 0.39 3.9 0.8 0.7 0.82 0.8 -01 14 23 23
usi ng Mean 11 0.67 19 17 15 0.70 0.75 01 18 18 18
log (SD (2 (009 (04 (@3 (a2 (00g (006 (0D (02 (02 (@2
By Raw 9158* 0.65 19 16 14 0.72 081 02 18 19 19
class SNVDer131 7,159* 0.70 18 18 16 0.79 0.91 0.2 16 21 21
- Mean 6,138 060 20 16 14 0.67 078 01 19 17 17
nolog (SD (234* (00 (@2 (01 (0 (@08 (009 (0) (02 (@2 (a2
By Raw 913 8* 0.65 2.0 16 14 0.75 0.80 0.0 16 2.0 20
class  SNvDer131 7,157 074 17 19 17 0.87 102 0.2 13 25 25
sig M Gey E LT 150l ke @y @3 @y 20
g (5D (332 (3 (2 (09 (02

* For PLSR by dass, the number of latent variablesis nentioned for PLSDA PLSRfor sampl es predicted as Salt-
and PLSR for sanples predicted as Salt+ respectively (wth SD» into brackets when averaged over al spectrum

types)

3.4 Prediction o sal nitrogen content

Predictions of Ncontent were perfor med wththe three calibration procedures, either usinglog-
transfor mation or not. Table 5 presents the results achieved using rawspectra usingthe nost
appropriate spectrumtypes (i.e, lowest RMSEP) and on average over al spectrumtypes. In
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addition Hg 3 preserts the effects of the calibration procedure, spectrumtype and log-
transfor nmation onthe Ncontent predction accuracy.

W't hout log-transfor nation, thethree nodels were nat accurate accordngto Chang et a. (2001,
RPD <2 and provided simlar RMBEP (013 gNkg?!) when using the nost appropriate
pretreat ment. Nevertheless, PLSR by class tended to predict the Ncontent of Salt+ sanples
more accuratel ythan global andlocal PLSR(F g 2): despitethe small numnber of Salt+sanples,
their Ncorntent prediction was thus nore accurate using only Salt+sanples for calibrationthan
by wsing bath Salt- and Salt+ sanples, which was not observed for C prediction of Salt+
sanples. Therefore, the VNI R spectral signature of salinity nmight have an effect on Ncontent
prediction, which has nat yet beenreportedinthe literature. inglog-transfor nation the nost
accurate predictions were achieved wth local PLSR (and SNVDer211), yieldng
RMSEP =010 gNkg1, RPDvaL =21 and RPI QuaL =2 0 and was thus accurate according to
Chang et a. (2001). In contrast, the nost accurate predictions achieved withthe g obal nodel
and by class yielded RPDvaL =17 and 1 9 respectively, sothey were not accurate according
to this reference. Wing logtransfor mation or nat, the lowest nean RMSEP over al
46 spectrumtypes was also obtained wthlocal PLSR (Table 4 Fg 3).

For each calibration procedure, the lowest RMBEP and lowest mean RMBEP over all spectrum
types were obtained wth Ncontent log-transfor metion as was alsothe case for C However,
unlike Ccortert, the benefit of |og-transfor mati on tended to concern not only N poor sanples
but aso nost sanples poorly predicted wthout 1og-transfor nation (Fg 2). The benefit of log-
transfor mation on RIVBEP for a gven calibration procedure was not nuch larger than the
standard error of laboratory anal ysis (= 20.01 gN kg1; 1SQ 1998); athough significart, this
benefit was thus li nited in general.

On the whol g, the benefit of local PLSR using log-transfor med Ncontent values was naticeabl e
when conpared wth gobal PLSR using N content values (i.e, comnmon procedure), either
consi dering best results or averages over al spectrumtypes.

Because of the very low Ncontert (nean and SD were 034 +0.24 gCkg! over the whole
dataset), the results oltained inthis study were necessarilyless accuratethanthe resuts nostly
reportedinthe literature (e.g, RPDvaL =2 8and 40 far Chang and Laird 2002 and Mor 6n and
Cozzolino, 2004, who studied sanple sets where the Ncortert averaged 2.8 and 58 gN kg1,
respectively). However, for atopsoil sanple population orignating fromfour sandy sites in
north central and south Burkina Faso and in Congo- Brazzaville wth Ncontent si mlar tothe
N content of the present study ( mean and SD were 0.37 £ 020 gNkg?! ws. 0.34 £0.24 gN kg1
here), Barthes et a. (2008) achieved RPDvaL =22 using gdobal N RS calibration (also using
spectrally representative sanples for calibration). This result is conparable to the best
predictions achieved inthe present study, using local calibration but better than global PLSR
predictions achieved here, possibly because Barthés et a. (2008) stud ed unsalted sails.

20



Table 5 @ oss-validation and validation resuts of VNIRS predictions of soil nitrogen cortert (gN kg
1) wsing or nat log-transformation for each PLSR nethod i) using rawspectra; ii) using the spectrum
type that mini mized RMBEP, iii) averaged over al 46 spectrumtypes (with SD.

Cali bration Vali dati on
Nrota =249 Nrota =62
b del Spectrum LV ( Nrotal =249) -( otal =62)
type RMBE RPD RPIQ Bas RME RPD RPIQ
Rcv RvaL YSope

CcVv cv cv VAL P VAL VAL

d obal Raw 12 0.63 0.15 16 13 0.57 079 -001 0.14 14 14

B SNV 11 0.48 0.19 13 L1 0.62 0.78 0.01 013 L5 L5

nolog Mean 12 0.55 0.17 14 12 054 076 0.02 0.15 14 13

(SD () (@03 (001) (01 (00 (Q06) (007 (Q01) (001 (01 (02

d obal Raw 12 0.50 0.21 11 0.9 0.65 076 -001 0.12 17 16

- D2 12 0.64 0.15 16 13 0. 66 0.78 0.01 0.12 17 16

using Mean 13 0.64 0.16 16 13 0.63 0.78 0.01 013 L6 15

log (SD (2 a0y (002 (02 (0) (005 (008 (00D (a0py () (0y

Local Raw 11 0.63 0.16 16 13 0.58 0.83 0.00 0.15 14 13

SNVD2 Der131 7 0.59 0.16 15 12 0.65 0.84 0.03 0.13 16 15

nolog Mean 10 0.58 0.17 15 12 060 080 0.02 014 14 14

(SD (9 (005 (001) (0D (01 (003 (005 (001) (001 (1) (0D

Local Raw 11 0.65 0.16 15 12 0.63 076 -001 013 L6 16

- SNVDer211 15 0.50 0.22 11 0.9 0.77 078 -001 0.10 21 20

using Mean 11 0.65 0.16 16 13 0.67 0.78 0.01 0.12 17 17

log (SD (2 (009 (003 (03 (02 (0 06) (0 08) (00 (00 (02 (02

By Raw 9127* 0.61 0.16 16 13 0.47 071 0.01 0.16 12 12

class Der 131 7,159* 0.59 0.16 15 12 0.74 102 0.04 0.13 16 16

- Mean 6,128 0.51 0.18 14 11 0.55 0.79 0.03 0.15 13 13

no log (sD (233* (007 (001 (a1 (Q1) (009 (1) (Q02) (002 (01 (02

By Raw 9,13 8* 0.65 0.16 16 13 0.68 0.84 0.01 0.12 17 16

class SNV 9153* 057 017 15 12 074 083 002 011 19 18

us;ng Mean 6,148 0.61 0.16 16 13 0. 66 091 0.03 0.14 15 15

log (SD (2149 (@0n (@0 (0 (0 (009 (012 (ao0y (0020 (@2 (02

* For PLSR by dlass, the number of latent variablesis nentioned for PLSDA PLSRfor sampl es predicted as Salt-
and PLSR for sanples predicted as Salt+ respectively (wth SD¥ into brackets when averaged over al spectrum

types)
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FHg 3 Dstribution of RMSEP over the 46 spectrumtypes for the three variables and three PLSR
procedures, possibly usinglog-transfor mationfor Cand Ncontents. \ertical lines i nsi de boxes represent
medians, red danonds neans. The battomand top of each box are first and third quartiles. Boxpl ot
whisker ends are either the nini numand naxi mum values when they were included in 1 5ti nes the
interquartilerange; aher wse, the latter val ue was used (andthe nini mumand or maxi mumpoints were
represented out of the boxplat). Lower-case lettersind cate significant effects of | og-transfor nation; and
capital lettersindicate significant effects of PLSR net hod, considering procedures without and wthlog-
transfor mati on separatel y (the si gnificance of dfferences was esti mated using Sudent’s pairedt-test for
nor mal distributions, Minn- Wiitney- Vil coxon test aher wise; p <0.05); “a” and “ A’ were assigned to
hi ghest val ues.

3. 5 Hfect o spectrumtype on spectra si mlarity and validation results

3 51 Hfect of spectrumtype on spectral si mlarity bet ween calibration and validati on sets
The R coeffident was usedtoeval uatethe si mlarity bet ween calibration and vali dati on sanpl e
spectra (e g, Shenk et al., 1997), which depended on spectrumtype (raw or pretreated
spectrun). Table 6shows: i) the average R bet ween the calibration and validati on spectra, and
ii) the average nunber of calibration neighbours (R >095 per validation sanple, bath
consi dering the spectrumtype that yiel ded the best validation results for each PLSR procedure
and variable.

22



For predictions wthout log-transfor mation the nost accurate gobal PLSR were achieved wth
pretreat ments that resuted in strong spectral similarity bet ween calibration and validation
sanples: SNV for C and N contents and SNVD1 for EC (average R =095 172 and
154 spectral neighbours on average, respectively). This resut seermed logical because al
cali bration spectra have the sane wei ght when building d obal PLSR whichissi mlarly applied
toal validation sanples. For local PLSR wthout log-transfor mation the best prediction of C
contert was achieved wth SNV, whichresultedinstrong spectral si nilaritybet ween cali bration
and validation sanples, while the best predictions for Ncontent and EC were achieved wth
SNVD2 Der131 and SNVD2 Der111, which resulted in lower si mlarity (average R =085
0.87, 51-52 calibration nei ghbours on average). As the closest calibration nei ghbours had the
highest weight in local nodel builldng ths difference indicated that nore calibration
nei ghbours were required for predicting C content than Ncontert and EC suggesting that N
and salinty mght have clearer spectral signatures than C This result is counterirt uitive since
the Ccontent is much higher than the Ncontert in sails, sothat a stronger spectral signature
woul d have been expected for sail Cthan for sal N However, fewer calibration nei ghbours
were requiredto achieve the best Npred ctionthan the best Cprediction which suggested t hat
the sail Nsignature was easier to catch Thus, we mi ght hypat hesize that the spectral signature
of sall Nwas less dispersed thanthe spectral signature of sail G inaccordance wththe much
smaller chemcal dversity of Nconpounds than Cconpoundsinsals. The best PLSR by class
without log-transfor mation were obtained wth spectrumtypes that resuted inirter nediate
si mlarity bet ween calibration and validation spectraz Der131 for N content and EC and
SNVDer131 for Ccontent (average R =087, 59 spectral nei ghbours on average). This result
coud be explained by PLSR by class invaving three separate nodels: i) PLSDA to
discri mnate Salt- and Salt+ sanples; ii) specific gobal PLSR for sanples predicted as Salt-
(built wth Salt- calibration sanples); and iii) specific gobal PLSR for sanples predicted as
Salt+(built wth Salt+ calibration sanpl es). Thus, we might hypat hesize that opti nizing PLSR
by cass required a kind of conpromse over the three separate nodels. The best predictions in
PLSR by cass were achieved wth spectrumtypes that resulted in irter nediate si mlarity
bet ween cali brati on and vali dati on spectra so we might assume that such spectrumtypes hel ped
toreachthis conpronise.

Incontrast, usinglog-transfor nation of Cand Ncontents, the most accurate gl obal nodels were
obtained wth C2, whichsplitthetaal set bet ween calibration and vali dati on sanpl es (average
R =073 34 calibrationnei ghbours on average). Strong spectral si mlarity bet ween calibration
and validation sanples bei ng no longer required suggested that log-transfor nation of Cand N
contents woul d nmake d obal calibrations easier. The best local PLSRfor Ccontent was obtai ned
using Centr, which yielded high spectral si mlarity (average R =095 and 172 calibration
nei ghbours on average, as was alsothe case wthout |og-transfor mation but wsing SNV), while
the best local PLSR for N content was obtained with SNVDer211, which yiel ded lowspectral
si mlarity (average R =0.80 and 10 cali brati on neighbours only on average, i.e, lower than for
its counterpart wthout |og-transfor nation). Inline wth previous consi derations, the Nspectral
signature was suggested to be even clearer using log-transfor nation The best nodel by class
for Cconternt was obtained wth SNVDer 131 (as was alsothe case wthout log-transfor nation),
which yielded inter mediate spectral si mlarity, whilethe best nodel by class for Ncontent was
obtained wth SNV, which yielded high spectra si nilarity (higher than for its counterpart
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without logtransfor mation). In line wth previous considerations, wth log-transfor nation,
opti mzingthethree steps of PLSR by class was suggestedtostill require a kind of conmpromse
for C(as was the case wthout log-transfor mation irter nediate spectral simlarity) but nat for
N (high si nil arity).

Overall, the best prediction for C content was achieved wth PLSR by class and |og-
transfor mati on using a pretreat nent that yiel dedinter nediate si mlarity between calibrati on and
validation sanples. The best prediction for Ncontent was achieved wth local PLSR and | og-
transfor mation using a pretreat ment that yiel ded low si mlarity. Fnally, the best EC prediction
was achieved wth dgobal PLSR wthout log-transfor mation using a pretreat nent that yiel ded
hi gh si mlarity. Possiblereasonsthat woul d explainthe pretreat nent effect on predictionresults
have rarely been examned specifically, nevertheless, Liu et a. (2019) aso observed an effect
of pretreat nent on the Kennard Sone selection of calibration sanples based on spectral
representativeness and thus on pred ction results.

Table 6 Hfect of the spectrumtype (ST) that nini nized RIVBEP on spectra similarity according to
i) average R (+-SD bet ween calibration and validation spectra (CAL and VAL, Nota =249 and 62,
respectively); and ii) average nunber of calibration neighbours (#-SD per validation spectrum
considering R >0.95 RMSEP was calcuated for dobal, local and per-cdlass calibration of Cand N
conterts and EC possibdy using their log-transformation (except far ECQ. Best predictions are
underlined

Co nbi nation of PLSRand ST Average R Average nu r_mer of
that miri rized RNVGEP bet ween CAL  cdlibration nei ghbours
and VAL with R >095

W t hout varial e log-transfor mati on

SNV for dobal PLSRon Cand Nandlocal PLSRon C 0.95+-0.06 172+-69
SNVDL for dobal PLSR on EC 0.95+-005 154+-63
Der 131 for per-dass PLSRon Nand EC 0.87+#-009 59+ -47
SNVDer 131 for per-dass PLSRon C 0.87+#-009 594 -47
SNVD2 Der111 for local PLSR on EC 0.874-009 51+4-45
SNVD2 Der131 for local PLSR on N 0.85+-0 11 52+-43
W t h variall e l og-transfor mati on
Centr for local PLSR on C 0.954/-0.06 172+ -69
SNV for per-class PLSR on N 0.954/-0.06 172+4-69
SNVDer 131 for per-dass PLSRon C 0.874-009 59+ -47
SNVDer211 for local PLSR on N 0.80+#-011 10+4/-12
D2 for gobal PLSR on Cand N 0.734-024 34+-33

3. 52 Hfect of spectrumtype on prediction accuracy

The effect of spectrumtype on prediction results invol ved aspects a her than spectral si mlarity
bet ween calibration and validation sanples. Ag. 4 presents RMBEP for each combi nation
model x variable xspectrumtype, and inthe case of Cand Ncontents, either using variable
log-transfor mation or nat. Twenty-t wo spectrumtypes (out of 46) were removed because they
al vays Vyielded prediction resuts si nilar to or slightly worse than those achieved wth o her
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particuar pretreat nents, regardess of the variable o calibration procedure (e.g, Gentr before
anather pretreat nent aways yielded exactly the sane result as that pretreat nent alone). A
si mlar figure wth all 46 spectrumtypes is presentedin Ag SL

The best predictions of C content required log-transfor mation and were achieved wth
calibration by dass using SNVDer131, SNVD1Der131, SNVD2Der13l (RMBEP =13

1 49gCkgl), SNVand Der131(14-159CKkg?l), but very good pred ctions were also achieved
with local calibration using Centr and SNV (RMSEP =14-15gCKkg?). The best Ncontent

predictions also required log-transfor mation and were achieved wth local calibration using
SNVDer211 (and SNVD1Der211 and SNVD2Der211), Der211 (and DLDer211 and
D2 Der211; Ag SI, RMSEP=0.10 gNkg), SNV DL and SNVD1 (0 11gNkg?l). However,

conparable prediction resuts were also achieved with a model by dass using SNV, SNVD],

SNVD2 and SNVD2 Der131 (011 gNkg?). The best EC predictions were achieved wth the
gobal nodel wing SNVD1, SNV Raw and GCentr (RMBEP =19-21 nScmil), bu

conparable resuts were achieved wth the local nmodel using SNVD2Der111 and Centr
(21 n5cml).

No given pretreat nent yielded good prediction results over al variables and calibration
procedures, but trends coul d be observed For Cand Nconterts, either using log-transfor mation
or nat, pretreat nents wth Der131 often yiel ded sone of the best prediction resuts for a given
calibration procedure and never yiel ded poor results. In contrast, good predictions of Cand N
conterts were rarely achieved wth pretrea nents that invol ved Der211 and Der231 For EG

SNV al ways viel ded good predictions, while Der211 (and DLDer211 and D2 Der211; Fg Sl)

al vays yiel ded poor predidions.

Co nparing the effects of pretreat nents regardess of whet her log-transformation was used led
to contrasting observations. For g obal calibrationof Ccontent, agven pretreat nent nost often
yiel ded cornrparabl e perfor mances wth or wthout log-transfor nati on either good (Gentr, SNV,

D1 and [2), poor (2nd-order derivatives) or irter nediate (SNVDL and SNVD2). The trend was
si mlar but less narked for local calibrations of Cand Nconternts, but the pretreat nents that

yielded good or poor predictions were nat necessarilythe sane as for gobal calibration of C
contert. However, the trend tended to be opposite for the gobal calibration of Nconternt: a
maj ority of pretreat nents that yiel ded good predictions wth log-transformation yiel ded poor
predi ctions wthout log-transfor mation The situation was irnter nediate for calibration by class
of Cand Ncontents, wth conparable proportions of pretreat nents that yiel ded si mlar kinds
of results and opposite kinds of results wth and withou |og-transfor mation.

Depending on the variable and calibration procedure, the variaion of prediction results
according to spectrum type mght be high o low thus, pretreat nent opti mzation was
someti nes crucia and someti nes nat crucia, which has rarely been reported inthe literat ure.

The RSD of RMSEP over al 46 spectrumtypes was the lowest, 5% for C and Ncontents in
global PLSR wth log and for N content inlocal PLSR wthout log in such conditions,

pretreat ment selection was nat trdy crucia (e g, far dobal Ccontent calibration wth log,

17<RMEP<219gCkg?). The RSD of RMBEP was 7-8%foar Cand N conterts in d obal

PLSRand for ECinlocal and per-class PLSR al without log The RSD of RMSEP was 9-10 %
inlocal PLSRfor Ccontent wth or wthout log and for Ncontent wthlog, which yielded the
best Ncontent predictions. The RSD of RMBEP was 11-13%for ECinglobal PLSR which
yielded the best EC predictions, and for Cand Ncontents in PLSR by dass, al wthout |og;
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and for Ccontent in PLSR by dass wthlog which yieldedthe best Ccontent predictions. The
RSD of RMBEP was 15%for Ncontert in PLSR by dass wthlog insuch conditions, selecting
an appropriate pretreat ment was decisive. The RSD of RMBEP was even >60%for EC wth
log whatever the PLSR here avoidng an inappropriate pretreat nent was indispensable
(Fg S1). The RSDs of RPDvaL and RPI QuaL were generally dosetothe RSD of RMBEP (data
not shown). Thus, the best predictions of C and N conterts and EC were achieved wth
calibration procedures that produced rather high variation in prediction resuts depending on
spectrumtype (9%for Nand 12%for Cand EQ. Actually, the effect of pretreat nent tendedto
be less decisive in general ingobal calibrationthanin calibration by class: the RSD of RMBEP
ranged from5to 8%for the for mer, except 12%for EC vs. 11-15%for the latter, except 7%
for EC The effect of pretreat nent was inter mediateinlocal calibration (8-10%except 5%for
N contert). This resut might be due tothe larger effect of pretreat nents when fewer sanples
are used for calibration: this was the case in calibration by class (only calibration sanples from
the dass considered were used) and to sonme extent in local calibration (only calibration
nei ghbours had a naticeable contribution). This effect has been partly reported by Liu et a.

(2019), who studiedthe effect of calibration set size on SOMpredi ction using si X pretreat nents:

they observed that pretreat ment affected prediction accuracy only when fewer than 70-80
sanples were used for calibration (g obal calibration here). This effect naght also be inferred
fromconparisons bet ween studies that invol ved sampl e sets of different sizes andtested several

pretreat nents (e.g, wth dobal PLSR Qairate & a., 2016, on a set of >3800 sanples,

achieved best VN RS predi ctions of organic Ccontent just usinga novi ng average on 10 bands,

while Vasques et a., 2008, on a set of ca 550 sampl es, achieved the best VNI RS predi cti ons
of logC using derivatives). Mreover, in calibration by class, nasclassification (which mght

concern up to four sanples; Table 2) could increase the variahility of prediction accuracy
depending on pretreat nent. Mbura- Bueno et a. (2019) also observedthat the range of Ccontent

prediction accuracy according to VN R spectrum pretreat nent varied bet ween the four
calibration procedures they tested The present study additionally shows that the pretreat nent

effect depended onthe studied sail property and its possile log-transfor nation
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Concl wsion

The present study eval uated the effects of calibration procedures (dobal, local or per-salinity
class PLSR i.e, for Salt- <2 nBcm! w. St+ >2 nS cm?), logtransfor nation of the
explained variable, and spectrumtype (46 were tested) on VN RS predictions of topsoil Cand
N contents and EC at the regional scale in variably salty sails of the Sne Saloum area of

Senegal. The best prediction of Ccontent was achieved wth PLSR by dass appliedtospectrum
absorbance pretreated wth SNVDer 131 and using | og-transfor mation (RMSEP = 13 gCkg1,

RPDvaL =25 and RPl QuaL =25). In contrast, the best prediction of Ncontent was achieved
withlocal PLSR applied to spectrumabsorbance pretreated wth SNVDer211, aso using | og-

transfor mation (RMBEP =010 gNkg!, RPDvaL =21 and RPl QuaL =2.0). The best EC
prediction was achieved wth gobal PLSR applied to spectrum absorbance pretreated wth
SNVD1,  wthou log-transfor mation (RMSEP =19 nScm!, RPDvaL =31 and
RPI QuaL =0 4 the latter was explained by the domi nance of very slightly salty sanples). V¢
m ght, however, assune that gobal calibration woul d nat necessarily be the nost appropriate
procedure for predicting EC in a sanple population wth nore Salt+sanples. Mreover, the
distribuions of logC and logN were a nost symiretrical, hence the usefu ness of log-

transfor mati on for predicting these variabl es; however, the distribution of logEC was still very
asymnetrical, sologtransfor mation of EC did not hel pits prediction Spectrum pretreat nent

affected prediction accuracy, bu no pretreat nent yielded good prediction resuts over al

variables and calibration procedures; nevertheless, pretreat nents wth Der131 (Ist-order
derivative wth a 31-poi nt gap) often yiel ded good predictions, especialyfor Cand Nconterts,

while 2nd-order derivatives yiel ded poor resultsin general.

Therefore, no unique procedure would opti mze VN RS prediction of soil properties in a
heterogeneous regional spectral library. calibration approach as well as processing of
explanatory and explained variables must be tailored depending on the property and its
distribution as highlighted by the results of the present study; but also dependi ng on sanpl e set

size and diversity, which was nat studied here but has been suggested by aher studies.

Nevertheless, and i nportartly, the present study showed that accurate prediction of the sal

salinty dass coul d easily be achieved by PLSDA (on average, over al spectrumtypes, 100 %
and 95% of Salt- and Salt+ validation sanples were correctly assigned, respectively). The
present study also showed that accurate VN RS predictions of Cand Ncontents and ECin
variably salt-affected soils could be achieved (RPDvaL >2) using dfferent conbinations of
calibration procedures and processing (i ncl udi ng pretreat nent and I og-transfor nati on).
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