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Summary

We compiled hydrogen and oxygen stable isotope compositions (δ2H and δ18O) of leaf water

from multiple biomes to examine variations with environmental drivers. Leaf water δ2H was

more closely correlated with δ2H of xylem water or atmospheric vapour, whereas leaf water

δ18O was more closely correlated with air relative humidity. This resulted from the larger

proportional range for δ2H of meteoric waters relative to the extent of leaf water evaporative

enrichment compared with δ18O. We next expressed leaf water as isotopic enrichment above

xylem water (Δ2H andΔ18O) to remove the impact of xylem water isotopic variation. ForΔ2H,

leaf water still correlated with atmospheric vapour, whereas Δ18O showed no such correlation.

This was explained by covariance between air relative humidity and the Δ18O of atmospheric

vapour. This is consistent with a previously observed diurnal correlation between air relative

humidity and the deuterium excess of atmospheric vapour across a range of ecosystems. We
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conclude that 2H and 18O in leaf water do indeed reflect the balance of environmental drivers

differently; our results have implications for understanding isotopic effects associatedwithwater

cycling in terrestrial ecosystems and for inferring environmental change from isotopic

biomarkers that act as proxies for leaf water.

Introduction

The stable isotope composition of hydrogen and oxygen in leaf
water varies throughout the day, among plants within a site and
across environmental gradients (Zundel et al., 1978; Flanagan
et al., 1991a; Cernusak et al., 2002, 2016; Lai et al., 2008; West
et al., 2008). Leaf water becomes enriched in the heavy isotopes 2H
and 18O compared with the water entering the roots as a result of
evaporative isotopic fractionation during transpiration (Gonfi-
antini et al., 1965). There is also isotopic exchange between water
vapour in the atmosphere and that in the leaf (Craig & Gordon,
1965); notably, this continues even if transpiration has ceased
under a saturated atmosphere (Welp et al., 2008; Kim & Lee,
2011; Helliker, 2014; Goldsmith et al., 2017). Furthermore, the
distribution of isotope enrichment within the leaf can vary as a
function of leaf anatomy and physiology (Yakir et al., 1989; Gan
et al., 2002; Holloway-Phillips et al., 2016; Barbour et al., 2021).
Therefore, the stable isotope composition of leaf water provides an
information-rich isotopic signal that can be applied across a broad
range of disciplines (Yakir, 1998). Interest in understanding leaf
water stable isotope composition has been further motivated by
recognition that leaf water is the starting point for isotope signals in
plant organic compounds such as sucrose, starch, cellulose, lignin,
leaf waxes (Yakir, 1992; Farquhar et al., 1998; Barbour, 2007;
Lehmann et al., 2020). Leaf water isotopic signals can even be
reflected in the bones and teeth of herbivores, such as kangaroos
(Ayliffe & Chivas, 1990; Faith, 2018).

Models of leaf water stable isotope composition have been
developed over several decades and typically perform reasonably
well at explaining observed leaf water isotopic variation (Dong-
mann et al., 1974; Flanagan et al., 1991b; Roden & Ehleringer,
1999; Farquhar&Cernusak, 2005; Cuntz et al., 2007;Ogée et al.,
2007). However, some questions about subtler aspects of leaf water
isotopic composition remain (Cernusak et al., 2016). One such
question is whether stable isotopes of hydrogen and oxygen reflect
differently the balance of environmental and physiological drivers
that lead to variation in leaf water stable isotopes.

Models of leaf water isotopic composition do not differentiate
between hydrogen and oxygen in their general formulation; the
major mechanisms that cause leaf water to change isotopically are
common to both elements. However, the magnitudes of the
fractionation factors associatedwith themechanisms dodiffer. This
is also true for meteoric waters, such that the relative extent of
variation in the isotopic composition of plant source water and
atmospheric vapour across the landscape is different between 2H
and 18O; on average, there is a c. 8‰change in δ2H for a given 1‰
change in δ18O (Craig, 1961; Rozanski et al., 1993).Movement of
the two isotopologues H2

18O and 2HHO within the leaf may also
vary, for example due to different diffusivities in water (Cuntz
et al., 2007), in air (Barbour et al., 2017), and potentially across

membranes (Mamonov et al., 2007) and there can be different
extents of exchange with organic molecules (Yakir, 1992; Chen
et al., 2020). Here, we aimed to assess whether hydrogen and
oxygen stable isotopes in leaf water respond differently to the
environment, to better understand whether δ2H and δ18O in
organic matter proxies capture environmental signals differently.

To do this, we compiled datasets that provided measurements
under natural conditions of both δ2H and δ18O in leaf water, xylem
water and atmospheric vapour, along with concurrent measure-
ments of air temperature and relative humidity. Table 1 provides a
summary of data sources. Within each dataset, we averaged
individual observations, such that each row of data in the compiled
dataset represents a mean value for a given species by site by time
combination. In total, the dataset contained 546 such rows. The
geographic range of the combined dataset covered more than 100°
of latitude and more than 3000 m of elevation (Table 1). We
limited the dataset to daytime observations, as it is primarily during
photosynthesis that leaf water signals are incorporated into organic
compounds. This also helped to avoid issues of nonsteady state leaf
water enrichment at night (Cernusak et al., 2002, 2005; Seibt
et al., 2006). We note that it has recently been shown that
extraction of stem xylem water for isotopic analysis can be
accompanied by an offset in δ2H from the water that is likely to
have been taken up by the roots (Zhao et al., 2016; Chen et al.,
2020; Barbeta et al., 2022). We did not attempt to apply a
correction for this offset as we lacked a basis on which to make the
correction that could be applied across the compiled dataset.

δ2H and δ18O of leaf water, xylem water and vapour

The Craig–Gordon equation (Craig & Gordon, 1965) forms the
basic building block for models of leaf water isotopic composition
and provides a convenient entry point for examining the environ-
mental drivers of leaf water δ2H and δ18O. The Craig–Gordon
equation can be approximated as:

δe ≈ δs þ ϵþ þ ϵk þ δv � δs � ϵkð Þh Eqn 1

(δe, predicted δ2H or δ18O at the evaporative sites within leaves; δs,
δ2H or δ18O of source water, which we equated in our dataset to
xylem water; ε+, equilibrium fractionation between liquid and
vapour; εk, kinetic fractionation during diffusion through the
stomata and boundary layer; δv, δ2H or δ18O of atmospheric
vapour and h, wa/wi, the water vapour mole fraction in the air
outside the leaf boundary layer divided by that at the evaporative
sites inside the leaf substomatal cavity). Thewi is typically assumed
to be saturated at leaf temperature, although recent evidence has
suggested that it may be less than saturated at times (Cernusak
et al., 2018, 2019; Buckley&Sack, 2019;Holloway-Phillips et al.,
2019). If wi is saturated and leaf temperature is equal to air
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temperature, then wa/wi is equal to the relative humidity of the air
surrounding the leaf. Eqn 1 is an approximation of a more precise
form of the Craig–Gordon equation (Farquhar et al., 2007);
however, it is very useful in that it shows intuitively what the
different drivers of δe are expected to be. Therefore, we used the
more precise version of the equation for calculations and analyses,
but used the approximate version here to guide our discussion. A
summary of formulae for calculating the equilibrium and kinetic
fractionation factors forδ18Oandδ2Hand themore precise version
of the Craig–Gordon equation can be found in Cernusak et al.
(2016) and in the Supporting Information Dataset S1.

Eqn 1 assumes isotopic steady state, in which the water leaving
the leaf through transpiration has the same isotopic composition as
that entering the leaf from the xylem. Furthermore, it makes a
prediction for the evaporative sites, while the unit ofmeasure in our
dataset is bulk leaf water (δl), the total sum of water extracted from
the leaf. Bulk leaf water can be expected to be somewhat less
enriched than the evaporative sites, due to the influx of unenriched
xylem water in the veins (Roden & Ehleringer, 1999; Farquhar &
Gan, 2003; Farquhar et al., 2007; Holloway-Phillips et al., 2016).
Whereas the mechanisms in the Craig–Gordon equation are

identical for δ2H and δ18O, the relative magnitudes of the
equilibriumandkinetic fractionation factors differ. For δ2H, the ε+

is relatively large and εk relatively small, whereas the converse is true
for δ18O (Merlivat, 1978; Horita &Wesolowski, 1994; Cernusak
et al., 2016). The ratio ε+ : εk is c. 3 : 1 for δ2H and 1 : 3 for δ18O
(Dataset S1).

We plotted the Craig–Gordon predicted leaf water isotopic
compositions against observations for our dataset, to determine
whether the Craig–Gordon equation could provide a reasonable
framework for guiding analyses of different drivers. Fig. 1 shows
the observed bulk leaf water δ2H and δ18O plotted against that
predicted by the Craig–Gordon equation, using the measured air
temperature, relative humidity, isotopic composition of xylem
water and atmospheric vapour. Overall, the Craig–Gordon
equation explained 89% of observed variation in leaf water δ2H
and 67% of observed variation in leaf water δ18O. As anticipated,
the slopes of the relationships were less than unity, as would be the
case if some fraction of bulk leaf water represented unenriched
xylem water. The generally good predictive ability of the Craig–
Gordon equation for daytime leaf water isotopic composition
suggests that it can provide a framework for evaluating whether

Table 1 Datasets and associated site information for the data compilation presented in this paper.

Dataset Site Latitude Longitude Elevation
(m)

MAP
(mm)

MAT
(°C)

Vegetation
type

References

Western_USA_Roden Cascade_Heads 45.03 −123.91 14 2410 10.7 Forest (Roden & Ehleringer, 2000a,b)
Bill_Williams_River 34.26 −114.03 150 97 23.8 Woodland
Weber_River 41.13 −111.90 1450 510 10.6 Woodland
Red_Butte_Canyon 40.78 −111.80 1790 700 10.1 Woodland
Big_Cottonwood 40.62 −111.73 1987 840 9.4 Woodland

Washington_USA_Lai Wind_River 45.82 −121.95 371 2467 8.7 Forest (Lai & Ehleringer, 2011)
Utah_USA_Flanagan Coral_Pink 37.04 −112.72 1855 380 10.5 Woodland (Flanagan et al., 1993)
Tibetan_Plateau_Yu Lhasa 29.65 91.03 3658 460 8.4 Grassland W. Yu, unpublished
Qld_Aus_Munksgaard Cairns −16.79 145.69 30 2000 25.0 Forest/Woodland (Munksgaard et al., 2017)

Tinaroo −17.17 145.54 680 1400 22.0 Forest/Woodland
Herberton −17.34 145.42 918 1150 19.0 Woodland
Wild_River −17.65 145.28 860 950 21.0 Woodland
Mount_Garnet −17.67 145.10 660 800 24.0 Woodland

NW_China_Zhao Pailugou_2900 38.54 100.30 2900 369.2 0.7 Forest (Zhao et al., 2014)
Pailugou_2700 38.55 100.29 2780 369.2 0.7 Forest
Riparian 42.02 101.23 930 34.9 8.9 Woodland
Gobi 42.27 101.12 906 34.9 8.9 Woodland

NT_Aus_Cernusak Alice_Springs −23.70 133.83 598 276 21.0 Woodland (Kahmen et al., 2013a;
Cernusak et al., 2016)Tennant_Creek −19.65 134.16 365 454 25.9 Woodland

Elliot −17.50 133.51 234 604 26.8 Woodland
Katherine −14.48 132.36 143 1140 27.2 Woodland
Darwin −12.44 130.88 33 1736 27.6 Woodland

NSW_Aus_Twining Tumbarumba −35.66 148.15 1249 1900 9.6 Forest (Twining et al., 2006)
Hawaii_USA_Kahmen MLM_1 19.69 155.20 683 5676 18.4 Forest (Kahmen et al., 2011)

MLM_3 19.66 155.47 2061 2000 11.3 Forest/Woodland
MLM_4 19.59 155.45 2465 1500 9.9 Forest/Woodland
MLM_5 19.83 155.82 694 500 20.0 Forest/Woodland

Greenland_Bush Kangerlussuaq 67.02 −50.70 50 140 −5.7 Grassland (Bush et al., 2017)
Germany_Hirl Grünschwaige 48.40 11.75 448 743 9.3 Grassland (Hirl et al., 2019)
Germany_Bögelein Palatinate 49.28 7.81 550 1067 7.9 Forest (Bögelein et al., 2017)
France_Wingate LeBray 44.71 −0.77 62 900 13.0 Forest L. Wingate & J. Ogée,

unpublished
France_Barbeta Ciron 44.38 −0.31 60 813 12.9 Forest A. Barbeta, unpublished
Canada_Flanagan Lethbridge 49.69 −112.83 910 380 5.8 Grassland (Flanagan et al., 1991a)
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different environmental drivers predominate for hydrogen vs
oxygen.

Some additional sources of unexplained variation in Fig. 1 could
include departures from isotopic steady state (Dongmann et al.,
1974; Farquhar & Cernusak, 2005), variation in the fraction of
unenriched water in leaves associated with differences in leaf
anatomy and physiology (Holloway-Phillips et al., 2016; Barbour
et al., 2021) and unaccounted for variation in boundary layer
conductance (Buhay et al., 1996). The detailed data required to test
for each of these possibilities were not available across the compiled
dataset. However, we did repeat our analyses with observations
limited to the middle of the day (from 11:00 h to 14:00 h), when
isotopic steady state is most likely to be achieved (Harwood et al.,
1998). This yielded very similar results to those shown in Fig. 1.
The same was also true for subsequent figures and we therefore
present analyses with all daytime observations included.

The environmental drivers that are used in the Craig–Gordon
equation are air temperature, which impacts ε+ (Horita &

Wesolowski, 1994); relative humidity, which is assumed equal to
wa/wi if leaf temperature has not deviated from air temperature and
wi is saturated; isotopic composition of source water entering the
leaf, assumed equal to the measured xylem water in our analyses;
and the isotopic composition of atmospheric water vapour. Fig. 2
shows the observed leaf water δ2H and δ18O plotted against each of
these four environmental drivers. For δ2Hl, xylem water δ2H and
atmospheric vapour δ2H were much more strongly correlated with
it than air temperature or relative humidity. For δ18Ol, conversely,
air relative humiditywasmuchmore strongly correlated than any of
the other drivers. For δ2Hl, either xylem water or atmospheric
vapour δ2H explained more than two-thirds of its variation,
whereas for δ18Ol the air relative humidity explained about half of
its variation.

The reason that xylem water is a much stronger driver of leaf
water for δ2H than for δ18O is because the range of variation in
meteoric water isotopic composition compared with that in leaf
water evaporative enrichment is larger for δ2H than for δ18O. This
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can be seen through inspection of Fig. 3, which shows the
evaporation lines for leaf water for each site in the dataset and their
extrapolation to themeteoricwater line.The range in the y-axis over
which the evaporation lines intersect the meteoric water line for
δ2H is c. 120‰and the corresponding range on the x-axis for δ18O
is c. 15‰, for a ratio of c. 8 : 1, consistent with the slope of the
meteoric water line. Conversely, the range for leaf water isotopic
composition beginning at themeteoric water line andmoving right
along the evaporation lines is c. 100‰ on the y-axis for δ2H and c.
30‰ on the x-axis for δ18O, for a ratio of c. 3 : 1. Therefore the
point at which the evaporation line intersects the meteoric water
line can exert a much stronger influence on leaf water for δ2H than
for δ18O, because its range is relatively large compared with the
range overwhich evaporation can enrich the leaf water above source
water. Another way to understand this conceptually is to consider
that the slope of the meteoric water line, defining source water
variation in δ2H–δ18O space, corresponds approximately to the
ratio of the equilibrium fractionations for δ2H and δ18O
(mean = 8.6 in our dataset). Conversely, the slopes of the
evaporation lines corresponded approximately to the ratio of the
sum of equilibrium and kinetic fractionations (mean = 2.9 in our
dataset).

This difference between leaf water dynamics for δ2H and δ18O,
driven by source water isotopic composition, is important for
interpreting organic material signals. For example, leaf water
proxies based on δ2H, such as the δ2H of n-alkanes derived from
leaf waxes, if sampled across a large geographic range, could be
expected to be strongly influenced by a widely varying δ2H of
source water (Liu & Yang, 2008; Sachse et al., 2012; Ladd et al.,
2021). Conversely, only if there is little variation in source water
δ2H, will the variation in n-alkane δ2H of leaf waxes reliably record
the extent of leaf water evaporative enrichment (Kahmen et al.,
2013b). For an organic matter proxy such as cellulose δ18O, we
would expect the geographic variation in source water isotopic
composition to have less influence compared with the dynamics of

leaf water enrichment above source water, driven primarily by
relative humidity (Barbour & Farquhar, 2000; Kahmen et al.,
2011). To the extent that such geographic variation can provide a
space for time substitution, our results also have implications for
interpreting changes through time within a site. For example, δ2H
of n-alkanes from leaf waxes has been combined with δ18O of
hemicellulose sugars for reconstructing paleoclimate from sedi-
mentary records (Zech et al., 2013;Hepp et al., 2021). Our results
suggest that δ2H of n-alkanes should be better suited to detecting
changes inδ2Hof precipitation andδ18Oof hemicellulose sugars to
detecting changes in relative humidity. We note, however, that the
extent of transfer of the leaf water signal to the biomarker will also
be important; for example, for cellulose δ18O, our analysis of leaf
water δ18O may be more relevant to leaf cellulose than to stem
wood cellulose, as the latter is subject to partial exchange with
unenriched xylem water (Roden et al., 2000; Kahmen et al., 2011;
Cheesman&Cernusak, 2017), with the same caveat also applicable
for grasses (Helliker & Ehleringer, 2000; Liu et al., 2017).

Isotopic enrichment of leaf water above xylem water

In addition to xylem water δ2H having a close correlation with leaf
water δ2H, atmospheric vapour δ2H also had a close correlation.
The next question we asked in our analysis was whether the
relationship between leaf water and vapour for δ2H would still
remain stronger than that for δ18O when variation in xylem water
isotopic composition was removed. To answer this question, we
expressed leaf water as enrichment above xylem water (Δl),
calculated asΔl = (δl − δx)/(1 + δx), where the subscript ‘l’ refers
to leaf water and ‘x’ to xylem water. Again, we use the approximate
form of the Craig–Gordon equation here for ease of interpretation
to guide our analysis, but used the more precise form in our
calculations. With leaf water expressed as enrichment above source
water, the Craig–Gordon equation becomes (Farquhar et al.,
1989):
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Fig. 3 The isotopic composition of xylem
water, leaf water and atmospheric vapour
plotted in δ2H–δ18O dual-isotope space. The
black line shows the meteoric water line,
defined as δ2H = 8 × δ18O + 10. The
coloured lines show the evaporation lines for
leaf water, in which the intercept with the
meteoric water line is the mean for each site
and the slope is calculated as (δ2Hl − δ2Hx)/
(δ18Ol − δ18Ox) using themean quantities for
each site, where subscript ‘l’ refers to leaf
water and ‘x’ to xylem water. The colours of
the lines refer to the individual datasets
compiled for this paper. The range of δ18Ol

observed for each site defines the length of the
coloured lines.
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Δe ≈ ϵþ þ ϵk þ Δv � ϵkð Þh Eqn 2

(Δe, predicted enrichment at the evaporative sites in leaves andΔv,
enrichment of atmospheric vapour relative to source water). Note
that this latter term is generally negative; that is, atmospheric
vapour is generally depleted in heavier isotopes compared with
source water. In our analysis, we calculated Δv as Δv = (δv − δx)/
(1 + δx), where δv is δ2H or δ18O of atmospheric vapour and δx is
that of xylemwater. In Fig. 4, we show the observed bulk leaf water
enrichment plotted against the three environmental drivers
remaining in Eqn 2.

Fig. 4 shows that the correlation between leaf water and relative
humidity for hydrogen has been markedly improved by removing
source water variation, with relative humidity now explaining 41%
of the variation in Δ2Hl. Therefore, after calculating Δ2Hl to
remove the source water signal, the sensitivity to relative humidity
became more apparent. For oxygen, there was also a strengthening
of the correlation between leaf water enrichment and relative
humidity, with the R2 increasing from 0.49 to 0.57. Interestingly,
however, the correlation between leaf water enrichment and
atmospheric vapour enrichment was still relatively strong for
hydrogen, but weak for oxygen, which stands out as a point of
difference between Δ2H and Δ18O in Fig. 4. Stronger relation-
ships with atmospheric vapour for Δ2Hl than for Δ18Ol have also
been observed previously in some of the individual datasets that
have now been compiled for this paper (Cernusak et al., 2016;
Bögelein et al., 2017; Munksgaard et al., 2017).

Role of atmospheric vapour isotopic composition

Can we identify further the underlying cause of the stronger
correlation between leaf water and atmospheric vapour for Δ2H
compared with Δ18O? To explore this, we turned again to the
Craig–Gordon equation, taking the derivative of Eqn 2 with
respect to Δv. This provides a mathematical description of
predicted drivers of the change in Δl for a given change in Δv:

dΔl

dΔv
¼ dϵþ

dΔv
þ dϵk
dΔv

þ h 1� dϵk
dΔv

� �
þ Δv � ϵkð Þ dh

dΔv
Eqn 3

We used our dataset to estimate the terms in Eqn 3 by taking
regression slopes for the derivative terms and mean values for h
and (Δv − εk). These estimates are shown in Table 2 forΔ2H and
Δ18O. From Table 2, it can be seen that the first two terms on the
right side of Eqn 3 are small inmagnitude for bothΔ2H andΔ18O
and unlikely to have a strong influence on dΔl/dΔv for either.
Because dεk/dΔv is small, it means that the third term on the right
side will approach the value of h, which is larger by comparison,
having amean value in our dataset of 0.5, or an air relative humidity
of c. 50%. The largest term in Eqn 3 by far for bothΔ2H andΔ18O
is (Δv − εk), having mean values of −79‰ and −35‰ for Δ2H
and Δ18O, respectively. This is then multiplied by a much smaller
term, dh/dΔv. Importantly, (Δv − εk) is negative, setting up the
possibility that the interplay between the third and fourth terms on
the right side of the equation could be important, with the third
term, h(1 − dεk/dΔv), being positive and the fourth term,
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(Δv − εk)dh/dΔv, potentially counteracting it with a negative
value.

The interaction between the third and fourth terms in Eqn 3
does indeed appear to be pivotal in explaining why leaf water
correlates more strongly with atmospheric vapour for Δ2H than
for Δ18O. For Δ2H, the linear regression between h and Δ2Hv

was not significant (P = 0.32, n = 546) and had a slope of
−0.0004. This gives a value for the fourth term in Eqn 3 for
Δ2H of 0.03, which therefore adds slightly to the positive value
of the third term, again having a value of c. 0.5. Conversely, for
Δ18O, the regression between h and Δ18Ov was significant
(P < 0.001, n = 546) and had a positive slope of 0.0102.
Because this slope was positive, the fourth term on the right side
of Eqn 3 for Δ18O takes on an overall negative value of −0.36.
Therefore, for Δ18O, the fourth term on the right side of Eqn 3
largely cancels the influence of the third term and, as a result,
there is little change in Δ18Ol for a given change in Δ18Ov. This
manifests in our dataset as a weakened correlation between leaf
water and atmospheric vapour for Δ18O as seen in Fig. 4f
whereas, for Δ2H, there is a stronger correlation between leaf
water and atmospheric vapour, as seen in Fig. 4c.

The analysis above shows that there is a positive correlation
between relative humidity and theΔ18O of atmospheric vapour in
our dataset, whereas such a correlation does not exist between
relative humidity and the Δ2H of atmospheric vapour. Through
application of Eqn 3, we showed that this difference partly explains
why leaf water δ2H more strongly correlates with atmospheric
vapour δ2H than is the case for δ18O. Another way to approach the
underlying issue of this apparent difference in behaviour of
atmospheric vapour for the two isotopologues with respect to
relative humidity is to calculate the deuterium excess or the
departure from an expectation of the relationship between δ2H and
δ18O based on the meteoric water line. The global meteoric water
line is described by δ2H = 8 × δ18O + 10 (Craig, 1961). We
therefore calculated the deuterium excess of water vapour, dv, as
dv = δ2Hv – 8 × δ18Ov (Dansgaard, 1964). We also made the
same calculation for atmospheric vapour composition with respect
to xylem water, Δdv = Δ2Hv – 8 × Δ18Ov. We then tested for
correlations between these parameters and the air relative humidity
in our dataset. Both showed significant negative correlations with
relative humidity, with the relationship stronger for Δdv (R

2 =
0.17, P < 0.001, n = 546) than for dv (R

2 = 0.08, P < 0.001,
n = 546).

A relationship between the deuterium excess of atmospheric
vapour and relative humidity has also been observed on diurnal
timescales at six sites in the northern hemisphere (Welp et al.,
2012) and at a tropical site in Cairns, Australia (Munksgaard et al.,
2020). This pronounced, general pattern is thought to be driven by
the diurnal pattern of plant transpiration and the contribution of
transpired water to atmospheric vapour and by entrainment of the
free atmosphere into the planetary boundary layer with increased
convective mixing during the day. The result is a general midday
decrease in the δ18O of atmospheric vapour, but little to no change
in δ2H. This leads to the diurnal variability of dv, which is
anticorrelated with the diurnal pattern of relative humidity (Welp
et al., 2012; Munksgaard et al., 2020). A shorter time series of 3 d
at the Wind River Experimental Forest (Washington, USA)
showed a similar pattern (Lai & Ehleringer, 2011). The strength
of this pattern suggests that such diurnal variation could be driving
the overall relationship between dv and relative humidity in our
dataset. Welp et al. (2012) also observed negative correlations
between day-to-day variation in dv and relative humidity through-
out the summer months at sites located near large bodies of water,
with such patterns also previously reported for sites in marine-type
settings (Uemura et al., 2008; Gat et al., 2011). Such dynamics
related to marine air sources may also have been relevant at some
sites within our dataset. When we restricted our analysis from
daytime observations to only midday observations (between
11:00 h and 13:00 h) to minimise diurnality, we observed a weak,
but still significant, relationship between dv and relative humidity
(R2 = 0.02, P < 0.05, n = 200), showing the importance of
diurnal effects. What is clear overall is that covariation between
Δ18Ov and relative humidity, but notΔ2Hv and relative humidity,
plays an important role in modulating leaf water isotope dynamics,
leading to the result highlighted in our dataset ofΔ2H of leaf water
showing stronger correlationwithΔ2Hof atmospheric vapour than
is the case for Δ18O.

Are two isotopes better than one?

Some organic matter proxies, such as plant cellulose, allow both
δ18O and δ2H to be measured. In such cases, it is possible to
estimate leaf water isotopic composition for both δ2H and δ18O
and therefore to reconstruct dl, the deuterium excess for leaf water.
As seen in Fig. 3, the slopes of the evaporation lines tend to be
uniform and independent of the source water and the position

Table 2 Values for the terms in Eqn 3 calculated from the combined dataset.

dϵþ
dΔv

dϵk
dΔv

h Δv � ϵkð Þ dh
dΔv

h 1� dϵk
dΔv

� �
Δv � ϵkð Þ dh

dΔv
Sum of shaded
columns

Δ2H −0.09 −0.01 0.51 −79.2 −0.0004 0.51 0.03 0.45
Δ18O 0.01 −0.02 0.51 −35.2 0.0102 0.52 −0.36 0.15

Derivative terms (dy/dx) were calculated as the slope of a linear regression of the two parameters y and x, whereas nonderivative termswere calculated as the
meanof thegivenparameter.According toEqn 3, thedependenceof leafwater isotopic enrichmenton theatmospheric vapour isotopic composition,dΔL/dΔv,
is equal to the sumof the shaded columns,which is shown in the final column.As can be seen, the primary difference forΔ2H comparedwithΔ18O results from
the term dh/dΔv; that is, a correlation between atmospheric humidity and the isotopic composition of atmospheric vapour, which is much stronger for Δ18O
than for Δ2H.
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along the evaporation line is determined mainly by relative
humidity. Therefore, dl is expected to show a relationship with
relative humidity that is largely independent of sourcewater isotope
composition. For this reason, it has been suggested that such a dual-
isotope approach could provide a stronger basis for reconstructing
relative humidity than either isotope alone when the source water
isotopic composition is not known (Zech et al., 2013; Voelker
et al., 2014). Our dataset gave us an opportunity to test this idea
across a diverse range of sites and conditions.

Fig. 5 shows dl for the dataset, calculated as
dl = δ2Hl – 8 × δ18Ol, plotted against potential drivers, includ-
ing relative humidity. Because dl was calculated from δ18Ol and
δ2Hl, we can compare the relationships with relative humidity
among the three. The dl does indeed have the strongest
relationship; however, it is not very much stronger than that for
δ18Ol. The R

2 for dl vs relative humidity is 0.54 (Fig. 5b), whereas
that for δ18Ol is 0.49 (Fig. 2f), and that for δ2Hl is 0.07 (Fig. 2b).
Therefore, surprisingly, leaf water δ18O on its own would be nearly
as good a predictor of air relative humidity as dl calculated from
both the δ18O and δ2H of leaf water. The explanation for this is
the relatively constrained variation in δ18O of xylem water,
especially in comparison with δ2H (Fig. 3) and the relative
insensitivity of Δ18Ol to atmospheric vapour Δ18Ov, as discussed
above. Given these considerations, we suggest that if applying a
dual-isotope approach in this way, one should weigh up carefully
the uncertainty associated with estimating leaf water δ2H from
cellulose δ2H, given the relative complexity in the signal transfer
pathway from leaf water to cellulose for δ2H (Cormier et al., 2018;
Lehmann et al., 2021). The cost in uncertainty associated with this
may not be worth the relatively modest improvement in strength
of the correlation between dl and relative humidity compared with
that for δ18O alone.

Conclusions

Wecompiled a dataset for δ2H and δ18Oof leaf water, xylemwater,
atmospheric vapour, air temperature and relative humidity from a
diverse range of sites and used the dataset to test for differences in
how leaf water δ2H and δ18O reflect environmental drivers. We
conducted the analysis in the context of asking which drivers could
be best reconstructed from leaf water proxies based on organic

material. Xylem water δ2H was a much stronger driver of variation
in leaf water δ2H than was the case for xylemwater δ18O as a driver
of variation in leaf water δ18O. Conversely, relative humidity
showed a considerably stronger relationship with leaf water δ18O
than it did with leaf water δ2H. This pattern persisted when we
removed xylem water isotopic variation from the leaf water signal
by expressing the leaf water isotopic composition as an enrichment
above xylem water. We identified the underlying reason for this
pattern as a correlation between relative humidity and the δ18O of
atmospheric vapour. Such a correlation has also been observed in
time series of vapour isotopic composition measurements, and
manifests most clearly as an anticorrelation between the deuterium
excess of atmospheric vapour and relative humidity on diurnal
timescales. While we did not have sufficient resolution of sampling
within sites to tease this apart in our dataset, we suspect that this
diurnal pattern is likely to underlie the correlation between relative
humidity and atmospheric vapour Δ18Ov that we observed. We
conclude that leaf water δ2Hand δ18Odo indeed reflect the balance
of potential environmental drivers differently: leaf water δ2H
reflects more strongly xylem water δ2H and atmospheric vapour
δ2H, whereas leaf water δ18O reflects more strongly air relative
humidity.
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Hepp J, Mayr C, Rozanski K, Schäfer IK, Tuthorn M, Glaser B, Juchelka D,

StichlerW,ZechR,ZechM.2021.Validationof a coupledδ2Hn-alkane–δ18Osugar

paleohygrometer approach based on a climate chamber experiment.Biogeosciences
18: 5363–5380.
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