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Abstract: We investigate a connection between spatial statistics and sta-
tistical physics to obtain new covariance functions with direct physical in-
terpretation for spatial random fields. These covariance functions are based
on the exponential Boltzmann-Gibbs representation and use an energy func-
tional to represent interactions between the values of the random field at
different points in space. This formulation results in closed-form generalized
covariance functions, which display infinite variance in Euclidean spaces of
dimension larger than one. We propose regularization schemes in real and
reciprocal (spectral) space that lead to well-behaved covariance structures.
The real-space regularization parameter allows a continuous interpolation
between the Boltzmann-Gibbs covariance and the exponential covariance.
We also propose discretized approximations on regular grids, and we show
that they represent reparametrized versions of the well-known Besag and
Leroux lattice models. We then discuss parameter estimation and spatial
prediction for the regularized Boltzmann-Gibbs covariance model in two di-
mensions. We recommend using the pairwise difference likelihood that com-
bines satisfactory estimation performance and good scalability with many
observation points. The predictive performance of the regularized covari-
ance function is assessed by means of cross-validation statistics. Irregularly-
spaced samples from the Walker Lake dataset are used, and spatial predic-
tion is conducted by means of ordinary kriging. The regularized Boltzmann-
Gibbs covariance yields improved predictive performance compared to the
exponential covariance model.
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1. Introduction

There are strong links between statistical physics and spatial statistics. These
date back to the work of Besag [6, 7] on lattice autoregression models, which
was inspired by the Ising model developed for magnetic systems by the physi-
cist Ernst Ising [32], and to the seminal Monte Carlo algorithm of Nicholas
Metropolis [38], which was initially developed for the simulation of liquids and
today occupies a central position in Bayesian statistics and simulation-based
statistical inference [42].

In statistical physics, the spatial dependence and variation of field values is
usually expressed in terms of Boltzmann-Gibbs probability density functions
(pdf), which have the general form f = exp(−H)/Z, where H is an energy
functional, and Z is a normalization constant known as the partition function.
For example, this formulation is used in statistical field theory [34]. The partition
can be explicitly calculated in finite-dimensional cases if the model is Gaussian,
i.e., if the energy functional is of quadratic form, but it is usually intractable
in more general cases. Nonetheless, various techniques allow the approximate
calculation of Z [26].
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The main ideas of statistical field theory have been used to develop Boltz-
mann-Gibbs random fields with a new class of covariance structure [24, 28,
25], including cross-covariance models for multivariate data [29]. Furthermore,
combining the equilibrium (i.e., purely spatial) Boltzmann-Gibbs fields with
linear response theory, a new space-time covariance function was obtained [30].

The Boltzmann-Gibbs framework was also used to develop the so-called
stochastic local interaction (SLI) model. This model defines a Gaussian Markov
random field over the observed locations, which may be irregularly spaced, by us-
ing an appropriately specified neighborhood for each location. Then, fast numer-
ical estimation and prediction are possible even with large numbers of locations,
and without resorting to the framework of finite-element-based approximations
to stochastic partial differential equations (SPDEs) [37]. The SLI model has
been recently extended to the spatiotemporal setting [27]. The main advantage
of the Boltzmann-Gibbs representation in this case is that it provides explicit
and sparse expressions for the precision matrix (i.e., the inverse covariance ma-
trix), which partake a significant computational advantage with respect to the
classical, covariance-based approaches (e.g., kriging, and Gaussian process re-
gression).

In this study, we investigate theoretical properties and statistical techniques
for a form of Gaussian Boltzmann-Gibbs models whose energy functional H is
related to the spatial variation of the realizations of the field x(s) and of its gradi-
ent function ∇x(s). High energies (and therefore low probabilities of realization)
are associated with large values of the squares of the field and its gradient. Two
parameters are used to scale the magnitude of the contributions from these two
terms to the overall energy. This approach offers a natural mechanism for as-
signing lower probability of realization to functions x(s) that show strong global
or local variability in space, such that spatial coherence of values x(s) across
different locations s is established and can be controlled parametrically.

The content of the remainder of the paper is structured as follows. In Sec-
tion 2, we define the Boltzmann-Gibbs energy with respect to an appropriate
function space as starting point and then derive distributional properties of
the resulting random fields. Specifically, we characterize the spatial variability
through both its spectral representation and the corresponding covariance func-
tions. This allows highlighting links to existing random field models that have
been explored for statistical implementations. In Euclidean space of dimension
larger than one, our formulation yields generalized covariances with infinite vari-
ance. Therefore, in Section 3 we develop and compare two regularization schemes
that define approximating models with finite variance. One of the regularization
schemes operates in the spectral domain and the other directly on the covari-
ance function. For both approaches, we analytically and numerically investigate
the behavior of the variogram function in different limits. Section 4 highlights
links to the Besag and Leroux models on regular lattices, which can be viewed
as another regularization approach. Section 5 discusses parameter estimation
of the regularized covariance function using maximum likelihood techniques. A
simulation study illustrates the performance of the estimators for various data
configurations based on subsamples of the Walker Lake dataset; we advocate
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the pairwise difference likelihood as a method that provides accurate estima-
tions and good scalability with many observation locations. Section 6 presents a
study to assess the prediction performance of the new covariance models using
the Walker Lake dataset. Finally, a discussion of the results and our conclusions
are presented in Section 7.

2. Boltzmann-Gibbs random fields

We consider spatial models defined over a domain D which we choose as a
compact subset of Rd, where s ∈ R

d denotes the location vector. The boundary
∂D of D is supposed to be a piecewise smooth (i.e., infinitely differentiable)
manifold of dimension d − 1. More precisely, {X(s, ω) : s ∈ R

d, ω ∈ Ω} is a
scalar, real-valued spatial random field defined on a probability space (Ω,F ,P),
where Ω is the sample space, F is a σ-field of subspaces of Ω, and P is a
probability measure [49]. The realizations of the random field X(s;ω) for ω ∈ Ω
are deterministic functions denoted by x(s). The expectation over all states will
be denoted by E[·], and mx(s) = E[X(s;ω)] if the expectation is well defined,
i.e., if

∫
Ω
|x(s;ω)|P (dω) < ∞. Without loss of generality, we will consider below

mx(s) = 0 unless otherwise specified.

2.1. Energy representation

In this work, we consider realizations x(s), s ∈ R
d, possessing regularity proper-

ties that give mathematical sense to operations such as differentiation (up to the
second order), integration on compact subsets of Rd and Fourier transforms, i.e.,
we ensure that such operations are well-defined. In the usual mean-square sense,
these regularity conditions are too restrictive for practical use. We therefore con-
sider them in a weak sense. In recent work, [11] defined Generalized Random
Fields as tempered distributions from Schwartz’s theory of distributions [45]. In
this framework, the operations of differentiation, integration and Fourier Trans-
form are well defined and are considered in a distributional sense. Here, we will
suppose that x(s) belongs to the Sobolev space W2,2(D), which is the weak
sense restriction to D of the generalized functions (i.e. tempered distributions)
on R

d admitting square integrable second-order distributional derivatives. In
W2,2(D), point values such as x(s) or the Laplacian of the function x(s),

∇2x(s) =
d∑

i=1

∂2x(s)

∂s2i
,

are expressed in terms of integrable generalized functions, such as Dirac delta
functions. For simplicity of exposition, we abuse notation and conveniently write
x(s) and ∇2x(s) to refer to these tempered distributions.

The focus of our work is on random fields characterized by the Boltzmann-
Gibbs probability density function (pdf) f = exp(−H)/Z over W2,2(D) given
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by

H[xD;θ] =
1

2

∫
Rd

{
α0x

2(s) + α1 [∇x(s)]
2
}
I(s ∈ D)ds, (2.1)

where xD = {x(s), s ∈ D}, θ = (α0, α1)
� with α0, α1 ∈ R

∗
+ (where R

∗
+ is the

set of positive real numbers), ∇ =
(

∂
∂s1

, . . . , ∂
∂sd

)
is the gradient operator and

I(A) is the indicator function with I(A) = 1 if the condition A is satisfied and
I(A) = 0 otherwise.

In the pdf, the denominator Z is the normalizing constant, frequently referred
to as the partition function. The functions x(s) belong to the space W2,2(D),
and they denote realizations (states) of the random field X(s;ω). We shall refer
to such random fields as Boltzmann-Gibbs (BG) Random Fields.

From a rigorous, mathematically oriented perspective, the representation
(2.1) should be set in the framework of Gaussian measures on Hilbert spaces [13].
The probability density would then be deduced from the respective character-
istic function, involving its trace operator on W2,2(D). This rigorous approach
would come at the cost of highly technical functional analysis arguments. Since
the focus of this work is on the statistical use of BG random fields, we opt for
a more direct, physics-oriented characterization. With this perspective in mind,
the main properties of BG random fields X(s;ω) can be stated as follows:

(A.1) The partition function Z =
∫
W2,2(D)

exp(−H(xD)) dxD involves the func-

tional integral over all states x(s) [18, 34, 3, 26]. This represents an in-
tegral over an infinite-dimensional space, the rigorous definition of which
is rather involved [3]. However, for our purposes, the mathematical de-
tails arising in the calculation of Z are circumstantial since the statistical
properties of the random field follow directly from the structure of the
energy functional without making explicit use of Z.

(A.2) The random field is Gaussian. This property derives from the fact that
the energy is a quadratic functional of x(s).

(A.3) The expectation is equal to zero. This property follows from the fact that
for Gaussian random fields the expectation coincides with the mode of
the pdf. Since α0, α1 > 0, it holds that H ≥ 0, and the mode is obtained
for H = 0. However, we get H = 0 if and only if x(s) is the zero element
in W2,2(D), which corresponds to the generalized version in W2,2(D) of
the null function over Rd.

(A.4) The random field is stationary. This follows from the fact that (i) the
expectation is zero, and (ii) the parameters α0 and α1, which determine
the generalized covariance function (see Section 2.2), are independent of
the spatial locations. In particular, the energy functional admits a spec-
tral representation, cf. Eq. (2.6), which involves a translation-invariant
spectral density determined by α0 and α1. Since the field is Gaussian, the
translation invariance of the mean and the covariance function guarantees
both wide-sense and strict-sense stationarity.

(A.5) The random field is statistically isotropic. This property reflects the fact
that the energy functional does not have a directional preference. The
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isotropy is broken if, e.g., (∇x(s))
2
is replaced by (b · ∇x(s))

2
, where

b ∈ R
d and b · ∇x(s) denotes the dot (inner) product of the two vectors.

In more general cases where we consider random fields whose mean function
mx(s) is not zero everywhere, we assume that it also belongs to W2,2(D). If
the mean function is not constant, x(s) includes a non-stationarity in the mean.
Stationarity and isotropy then hold for x(s) − mx(s) in (2.1). From now on,
mx(s) is assumed to be equal to zero everywhere.

In the following, the integral of the square gradient in (2.1) is expressed in
terms of the Laplacian of x(s). Let dS be the unit surface element on ∂D, and
n(s) the unit outward-pointing vector perpendicular to ∂D for s ∈ ∂D. Then,
Green’s first identity, which extends integration by parts to dimensions d > 1,
leads to the following representation:

∫
D
(∇x(s))

2
ds = −

∫
D

x(s)∇2x(s) ds+

∫
∂D

x(s) [∇n(s) · x(s)] dS. (2.2)

The standard assumption in statistical field theory is that the boundary term,
i.e., the last integral on the right hand side of Eq. (2.2), can be neglected [19].
Indeed, if the domain D is a hypercube [0, L]d, the “bulk” term, i.e., the first
integral on the right hand side of Eq. (2.2), extends over a domain that scales as
Ld, while the boundary term involves an integral over a domain that scales as
Ld−1. Hence, if L � 1, the contribution of the boundary term becomes negligible
in comparison to the bulk.

In light of the above, we propose to work with the energy functional given as

H[xD;θ] =
1

2

∫
Rd

[
α0x

2(s)− α1x(s)∇2x(s)
]
I(s ∈ D)ds. (2.3)

In the Boltzmann-Gibbs approach, the regularity properties of the realiza-
tions (i.e., of the sample paths) are not derived from the covariance function, as
is commonly done with mathematical representations of Gaussian random fields
based on the covariance [2]. In contrast, our approach consists of defining the
class of functions (i.e., sample paths) admissible in the energy functional (2.1),
and the properties of the joint pdf and the covariance function then follow.

2.2. Spectral representation

In this section we derive a spectral representation for the energy functional
given by Eq. (2.1) in terms of the Fourier transform (FT). The Fourier repre-
sentation of x(s)I(s ∈ D) involves a series of discrete frequency vectors ki. The
series representation converges to the Fourier integral as D → R

d. However, the
functions x(s) in the energy functional Eq. (2.1) are not absolutely integrable
over R

d. Hence, their Fourier transform does not exist in the ordinary sense.
Nonetheless, a generalized Fourier transform can be defined for tempered dis-
tributions by means of suitably defined test functions [11, 17, 41]. For the sake
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of brevity, we shall directly use the main results of this theory regarding Fourier
transforms. Interested readers will find all the theoretical justifications in the
references above. In the following, x̃(k) refers to the generalized Fourier trans-
form. The BG random field states can then be expressed using the weak-sense
Cramér representation of x(s), given in terms of the following integral

x(s) = IFT[x̃(k)] =
1

(2π)d

∫
Rd

ejk·s x̃(k) dk, (2.4)

where j is the imaginary unit, k ∈ R
d denotes the frequency vectors in reciprocal

(Fourier) space, and IFT denotes the inverse Fourier transform.
The energy functional can be expressed in the spectral representation. For

this, we take into account the orthonormality of the Fourier basis, i.e.,∫
Rd

ej(k+k′)·sds = (2π)dδ(k+ k′),

and the algebraic representation of the second-order partial derivatives in
Fourier space, i.e., FT[∂2x(s)/∂s2i ] = −k2i x̃(k), which leads to FT[∇2x(s)] =
−‖k‖2 x̃(k). We thus obtain the following expression of the energy functional in
(2.1) which corresponds to Parseval’s identity (i.e., the equality of the energy
content in the direct and reciprocal spaces):

H[x̃D;θ] =
1

2 (2π)d

∫
Rd

x̃∗(k)
[
α0 + α1‖k‖2

]
x̃(k) dk, (2.5)

where x̃D = {x̃(k), k ∈ R
d} and z∗ represents complex conjugation of z. Based

on this expression, the BG spectral density is given by

C̃(k) =
1

α0 + α1‖k‖2
=

1

α0

(
1 + α1

α0
‖k‖2

) . (2.6)

Hence a =
√

α1/α0 can be interpreted as the (length) BG scale parameter,
whereas 1/(α0a

d) corresponds to the BG variance parameter, which we will
denote by σ2 from now on.

2.3. Covariance representation

The covariance function is obtained through the following inverse Fourier trans-
form (where h ∈ R

d is the vector-valued lag in real space):

Cd(h) =
1

(2π)d

∫
Rd

ejk·hC̃(k)dk. (2.7)

Since C̃(k) is a radial function (i.e., its dependence on k is only through k =
‖k‖), the covariance function is also radial, i.e., it depends on h only through the
Euclidean distance r = ‖h‖ ≥ 0. For the sake of conciseness, we will use the same
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notation C for the vector covariance function and its radial representation. The
radial spectral representation is given by the following Hankel transform [49, 26]:

Cd(r) =
1

(2π)d/2rν

∫ ∞

0

kν+1Jν(kr) C̃(k) dk, (2.8)

where Jν(·) is the Bessel function of the first kind and order ν = d/2 − 1.
Using the BG spectral density (2.6) and provided that α1 > 0, the spectral
representation becomes

Cd(r) =
1

(2π)d/2α1rν

∫ ∞

0

kν+1Jν(kr)
α0

α1
+ k2

dk .

The above integral can be evaluated using the Hankel-Nicholson integration for-
mula [1, p. 488], [20, p. 306, Eq. 6.565.4], which leads to the following expression
for −1 < ν < 3/2 which is satisfied for d ∈ {1, 2, 3, 4}:

Cd(r) =
1

(2π)d/2α1

(
1

ar

)ν

Kν (r/a) . (2.9)

In Eq. (2.9), Kν(·) is the modified Bessel function of the second kind of order ν.
In particular, it follows that the generalized BG covariance is given by

Cd(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
2 aα0

e−r/a = σ2

S1
e−r/a, d = 1,

1
2πα1

K0(r/a) = σ2

S2
K0(r/a), d = 2,

1
4πα1r

e−r/a = σ2

S3

exp(−r/a)
r/a , d = 3,

1
4π2α1ar

K1(r/a) = σ2

2S4

K1(r/a)
r/a d = 4.

(2.10)

Above, Sd = 2πd/2/Γ(d/2) denotes the surface area of the d − 1-dimensional
unit sphere (i.e., the “area” of the boundary of the d-dimensional unit ball),
with S1 = 2, S2 = 2π, S3 = 4π and S4 = 2π2. To see how the expressions
for d = 1 and d = 3 follow from Eq. (2.9), we need to take into account two
aspects: (i) K−1/2(x) = K1/2(x), based on the symmetry of the modified Bessel
function of the second kind with respect to ν [26, p. 336] [4, p. 686], and (ii)
K1/2(x) =

√
π
2xe

−x; the latter follows from the integral representation of Kν(x)
for ν = 1/2 [4, Eq. (14.131)].

In Eq. (2.10), we see that C2(·) to C4(·) exhibit a singularity at r = 0. More
generally, for d = 2, 3, 4 the function Cd(h) is a generalized covariance [28, 11].
This is a consequence of the fact that both the BG field’s derivatives and its
Fourier transform are defined in the generalized sense.

2.4. Some special cases

We now elaborate on two special cases of the BG random field.
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Whittle-Matérn (W-M) random fields: The spectral density of Whittle-Matérn
(W-M) random fields is given by C̃(k) = Aν,d/(1 + ‖k‖2a2)ν+d/2, where Aν,d is
a coefficient that depends on the dimension of space and the smoothness index
ν > 0 of the W-M field. A comparison between the above and Eq. (2.6) shows
that the latter describes a W-M covariance with ν = 1/2 in d = 1. In d = 2,
the BG spectral density is equivalent to the W-M spectral density for ν = 0.
As shown in [11], the random field corresponding to ν = 0 is a Generalized
Random Field, which is well defined in the framework of tempered random dis-
tributions. The associated covariance is a covariance distribution, referred to as
the generalized Matérn covariance. In [37, 11], it was shown that this General-
ized Random Field arises as a weak solution of the stochastic partial differential
equation (SPDE)

(κ2 −Δ)1/2x(s) = ε(s), s ∈ D ⊂ R
2, (2.11)

where κ2 > 0, ε(s) is Gaussian white noise, and the SPDE is fractional due to
the non-integer exponent 1/2. Using appropriate boundary conditions on the
PDE of Neumann or Dirichlet type, [37] defined a stochastic weak solution and
obtained well-defined and accurate approximations through classical Gaussian
random fields. Then, the link to the parametrization of C2(r) in (2.10) is given
by a = 1/κ.

Scale-free case: For α0 = 0, the BG spectral density becomes C̃(k) =
(α1‖k‖2)−1. This is the Fourier representation of the generalized covariance
function K(r) = −Ad/r

d−2 for d ≥ 3 and K(r) = −A2 log r for d = 2. In
this case, the covariance does not have a characteristic scale a. The general-
ized covariance function is undefined at r = 0, but it is still positive definite
in a distributional sense. Furthermore, it represents the Green’s function of the
Laplace equation [33]. In addition, the logarithmic function obtained in d = 2
corresponds to the De Wijs geostatistical model [39, 12]. Again, this random
field can be interpreted as a stochastic weak solution to the SPDE in (2.11)
when κ2 = 0; see [37, 11] for details.

3. Regularization of the covariance function

The covariances obtained for d = 2 to d = 4, i.e., C2(·), C3(·) and C4(·), exhibit
a singularity at zero which hinders their practical use. In this section, we use reg-
ularization to build easily tractable finite-variance approximations, which can
be used as standard stationary covariance functions for prediction and simula-
tion. The term “regularization” is here used for procedures that lead to stable
solutions of ill-posed problems [23]. In the case of divergent Feynman integrals
obtained in statistical field theory, various regularization techniques can be used
to make the integrals finite, including momentum-cutoff (spectral-cutoff), the
Pauli-Villars method, as well as lattice-based and dimensional regularization
methods [35]. Herein, we consider two options: real-space regularization using a
spatial cutoff at very small distances, and regularization with a spectral cutoff
at large frequencies.
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3.1. Real-space regularization

In this section we introduce a regularization method which is based on the use
of a small cutoff distance ε.

3.1.1. Theoretical result

We first state the general theoretical result in the following proposition and then
provide its proof. The set of positive integers is denoted N

∗.

Proposition 3.1. Let ε > 0. The function Cd,ε(h) = Cd(r + ε), where r =
‖h‖,h ∈ R

	 and Cd(·) is any of the radial forms defined on the right-hand side
of (2.10), is positive definite in R

	 for any � ∈ N
∗.

For the proof, the following well-known proposition recalls some properties
characterizing radial functions that are strictly positive definite in R

	 for any
� ∈ N

∗. Proofs can be found in [47, 15].

Proposition 3.2 (Completely monotone functions). For a radial function ϕ(r) :
[0,∞] → R the following three properties are equivalent:

1. ϕ(‖h‖2) is strictly positive definite on R
	 for every � ∈ N

∗;
2. ϕ(r) is completely monotone on [0,∞) and non constant;
3. there exists a non negative Borel measure μ on [0,∞) that does not con-

centrate on 0 and satisfies ϕ(r) =
∫∞
0

e−t rμ(dt).

The equivalence of the properties (2) and (3) is known as the Bernstein
theorem [5], while the equivalence of (1) and (2) was shown by Schoenberg [44].
The equivalence of (1) and (3) follows from the other two equivalences. We also
need the following Lemma, which is an interesting result on its own.

Lemma 3.1. Let ϕ(z) be a completely monotone (CM) function on (0,∞) or
on [0,∞). Then the function ϕε(z) := ϕ(z + ε) with ε > 0 is CM on [0,∞).

Proof. As stated in Proposition 3.2, the function ϕ(z) is a CM function on
(0,∞) (respectively on [0,∞)), if and only if there exists a positive measure μ
on [0,∞) such that for all z > 0 (respectively z ≥ 0),

ϕ(z) =

∫ ∞

0

e−ztμ(dt).

Let us now consider the positive measure g(dt) = e−εtμ(dt) with ε > 0. Then,∫ ∞

0

e−ztg(dt) =

∫ ∞

0

e−(z+ε) tμ(dt) = ϕε(z),

which shows that ϕε is a completely monotone function. Moreover, since ϕε(0) =
ϕ(ε) < ∞, it is defined on [0,∞].

Equipped with these preliminary results we are now able to prove the main
result in Proposition 3.1.
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Proof of Proposition 3.1. The negative exponential is known to be positive defi-
nite on R

	 for any � ∈ N
∗. Following [14, Proposition 4], the function zν/2Kν(

√
z)

is CM on (0,∞). By application of Lemma 3.1, the function (z+ε)ν/2Kν(
√
z + ε)

with ε > 0 is thus CM on [0,∞) since it is finite at z = 0. Hence, the func-
tion (‖h‖ + ε)νKν (‖h‖+ ε) is positive definite on R

	, for any � ∈ N
∗. By

continuity, limν→0(‖h‖ + ε)νKν (‖h‖+ ε) = K0(‖h‖ + ε) is thus also posi-
tive definite on R

	, which proves the Proposition for d = 2. For d ≥ 3, we
first use the fact that z−ν is CM on (0,∞) when ν > 0. Thus, the product
z−νzν/2Kν(

√
z) = z−ν/2Kν(

√
z), is also CM on (0,∞) since the product of two

CM functions is CM. Then, the same reasoning as above applies: by application
of Lemma 3.1, the function (z+ε)−ν/2Kν(

√
z + ε) is CM on [0,∞) and therefore

the function (‖h‖ + ε)−νKν(‖h‖ + ε) is positive definite on R
	, for any �. The

proof follows by setting ν = 1/2 and ν = 1 corresponding to d = 3 and d = 4
respectively.

We highlight that, even though the functions in Eq. (2.10) have been ob-
tained from (2.9) for specific space dimensions, all covariance functions Cd,ε(h)
obtained by application of Proposition 3.1 are valid on R

	, � ∈ N
∗, for any value

ε > 0.

3.1.2. Variograms of regularized BG random fields

The functions Cd,ε(h)/Cd(ε) are valid correlation functions for any value ε > 0.
The associated normalized variograms are

γ̃d,ε(h) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1− K0(r/a+εa)

K0(εa)
, d = 2,

1− εa
r/a+εa

exp (−r/a) , d = 3,

1− εa
r/a+εa

K1(r/a+εa)
K1(εa)

d = 4

(3.1)

with εa = ε/a. In Figure 1, several 2D normalized variograms γ̃2,ε are shown
for various values of a and εa. The parameter εa has a significant effect on the
shape of the variogram, which we next study analytically for εa � 1. Note that
larger values of εa also provide valid variograms, but in this case the function
Cd,ε(r) can barely be considered as an approximation of the Boltzmann-Gibbs
model explored in this work. At the end of this section, we further show that
the Cd,ε tends to the exponential model as ε → ∞.

Let us first consider the case d = 2, with εa � 1. For the sake of sim-
plifying notation we drop the index d. The dependence of the variogram at
very short distances can be obtained from the leading-order approximation
K0(z) � − ln(z/2) − γE , where γE is the Euler-Mascheroni constant. This ap-
proximation is very accurate if z < 0.1, and it remains practically useful as long
as z < 0.2. Direct calculation of Eq. (3.1) using the approximation yields the
normalized variogram at distance ε:

γ̃ε(ε) � − ln(2)

ln(εa/2) + γE
. (3.2)
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Fig 1. Theoretical normalized variogram γ̃2,ε(r) for various values of the parameters a and
ε. Black line: a = 1 and ε = 0.01. Blue dashed lines: a = 1 and ε = 1/R with (from top to
bottom) R = 500, 20, 5, 1. Blue continuous line: exponential variogram with range a = 1. Red
continuous lines: ε/a = 0.01 for a = 0.5, 2, 5 (a increases from top to bottom).

Furthermore, given a specific level γ̃ε(rg) = g � 1, based on Eq. (3.2) the
distance rg where this level is achieved is given by

rg/a = 21−1/g e−γE .

Let us now compute the distance r1/2 such that γ̃ε(r1/2) = 1/2. Using the
leading-order approximation of K0(·), it follows that

γ̃ε(r1/2) � 1−
ln((r1/2 + ε)/2a) + γE

ln(ε/2a) + γE
,

based on which the distance r1/2 is given by

ε+ r1/2 �
√
2ae−γE

√
ε.

If we assume that ε � r1/2, one finally gets

r1/2/a =
√
2e−γE

√
εa, (3.3)

for which the condition ε � √
ε is indeed verified. These computations show that

the behavior of the normalized variogram at very short distances is controlled
by εa = ε/a, see Eq. (3.2). Furthermore, the distance at which the normalized
variogram reaches 1/2 is proportional to the range and proportional to

√
εa.

The practical range of the variogram can be defined as the distance rη such that
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γ̃ε(rη) = 1 − η, with some η � 1. According to Eq. (3.1), this is given by the
solution of the equation K0(rη/a + εa) = ηK0(εa), which involves a nonlinear
combination of a and εa.

Let us now examine the variogram corresponding to d = 3. Here again we
drop the subscript d = 3 for the sake of lighter notation. Then,

γ̃ε(ε) = 1− e−ε/a

2
� 1

2
+

εa
2
.

Notice that this value is very close to 1/2 when εa � 1, which is usually the
case. For d = 4, the first order Taylor series expansion K1(z) � 1/z as z → 0
leads to

γ̃ε(ε) � 1− εa
2εa

εa
2εa

=
3

4
,

independently on a. These findings imply that as d increases, the (regularized)
variograms γ̃d,ε show an increasingly steep behavior at short distances, and the
associated BG random fields have increasingly rough sample paths.

Next, we consider the case εa � 1, i.e., the asymptotic behavior as εa → ∞.
When d = 3, one gets immediately

γ3,ε(r) = 1− e−r/a εa
εa + r/a

.

For d = 2 and d = 4, following Abramowitz and Stegun [1, Eq. 9.7.2], as z → ∞
we obtain the approximation

Kν(z) =
( π

2z

)1/2
e−z

(
1 +

4ν2 − 1

8z
+

(4ν2 − 1)(4ν2 − 9)

128z2
+ · · ·

)
.

Hence, as ε � a, and considering ν = d/2− 1, one gets that

γ̃d,ε(r) = 1−
(

εa
εa + r/a

)ν
Kν(ε/a+ r/a)

Kν(ε/a)
� 1− e−r/a

(
εa

εa + r/a

)ν+1/2

.

Therefore, in all cases γ̃d,ε tends to the exponential variogram as εa tends to
infinity.

In conclusion, the parameter εa plays the role of a regularity parameter that
controls the shape of the covariance function, ranging from a generalized covari-
ance function with a slope at the origin proportional to ε−1

a if εa � 1, to an
exponential model if εa � 1.

3.2. Frequency-space regularization

The divergent covariance functions in Eq. (2.10) (for d = 2, 3, 4) can also be
regularized by imposing a frequency cutoff Λ > 0, i.e., by assuming that the
spectral density is given by

C̃Λ(k) =
I(‖k‖ ≤ Λ)

α0 + α1‖k‖2
. (3.4)
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Note that the SLI spectral density in Eq. (2.6) is given by C̃(k) = limΛ→∞ C̃Λ(k).
Using the frequency cutoff Λ < ∞, the variance is given by the integral

σ2
Λ =

1

(2π)d

∫
Rd

C̃Λ(k)dk, (3.5)

which takes a finite value for d ≥ 2.
The finite cutoff replaces the upper integration limit in the spectral integral of

Eq. (2.8) for the covariance function. To our knowledge, this integral with finite
upper limit cannot be explicitly evaluated for every r ≥ 0. However, for large r
the equations (2.10) provide a very accurate approximation of the regularized
covariance. A finite value of Λ implies (i) that the regularized variance (3.5) is
also finite and (ii) that the random field is mean-square differentiable for every
order. Hence, the variogram function is well-defined for r → 0, and in addition
γ(r) = c0r

2 +O(r4).
Indeed, using the spectral representation (2.8), we obtain the following rep-

resentation for finite Λ and for d ≥ 2:

γΛ(r) =
1

(2π)d/2α0

[
lim
r→0

∫ Λ

0

kν+1Jν(rk)

rν(1 + a2k2)
dk −

∫ Λ

0

kν+1Jν(rk)

rν(1 + a2k2)
dk

]
. (3.6)

To approximate the above expression, we use the Taylor series expansion of
the Bessel function Jν(·), which is given by [1, Eq. 9.1.10]

Jν(x) =
(x
2

)ν ∞∑
k=0

(
−x2/4

)k
k! Γ(ν + k + 1)

=
(x
2

)ν [
1− x2

4Γ(ν + 2)
+O

(
x4
)]

. (3.7)

In light of the above, the expansion of the variogram function around r = 0 is
given by

γΛ(r) =
1

(2π)d/2α0

⎡⎣∫ Λ

0

k2ν+1dk

2ν(1 + a2k2)
−
∫ Λ

0

k2ν+1
(
1− k2r2

4Γ(ν+2)

)
2ν(1 + a2k2)

dk

⎤⎦+O(r4)

=
r2

2d+1πd/2 Γ(d2 + 1)α0

∫ Λ

0

kd+1

1 + a2k2
dk +O(r4).

This integral is evaluated using the change-of-variable transformation ak → x
and leads to the general expression

γΛ(r) =
Bd(aΛ)

α0ad

(
r2

a2

)
+O(r4) = σ2Bd(aΛ)

(
r2

a2

)
+O(r4), (3.8a)

where Bd(aΛ) is a dimensionless constant. More precisely for d = 2, 3, 4, we
obtain

Bd(aΛ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

16π

[
(aΛ)2 − ln(1 + a2Λ2)

]
, d = 2,

1
48π3/2 Γ(5/2)

[
(aΛ)3 − 3aΛ + 3 tan−1(aΛ)

]
, d = 3,

1
256π2

[
(aΛ)4 − 2(aΛ)2 + 2 ln(1 + a2Λ2)

]
, d = 4.

(3.8b)
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The variance of the spectrally regularized BG process with spectral den-
sity (2.6) is given by

σ2
Λ =

Sd

(2π)d

∫ Λ

0

kd−1

a0 (1 + a2k2)
dk.

Evaluation of the above integral leads to the following expressions:

σ2
Λ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S2

(2π)2
ln(1+a2Λ2)

2α0a2 = σ2

4π ln(1 + a2Λ2), d = 2,

S3

(2π)3
aΛ−tan−1(aΛ)

α0a3 = σ2

2π2

[
aΛ− tan−1(aΛ)

]
, d = 3,

S4

(2π)4
(aΛ)2−ln(1+a2Λ2)

2α0a4 = σ2

16π2

[
(aΛ)2 − ln(1 + a2Λ2)

]
, d = 4.

(3.9)
Thanks to the high frequency cutoff, the variance is finite as can be seen

from (3.9), and the variogram is therefore bounded. Thus, a normalized version
of the variogram can be defined, which we denote by γ̃Λ(r) = γΛ(r)/σ

2
Λ. Let

us consider the case d = 2. Based on the spectral representation Eq. (3.6), the
series expansion Eq. (3.7) of the Bessel function J0, and the regularized variance
Eq. (3.9), the series expansion of the normalized variogram becomes

γ̃Λ(r) = − 2a2

ln(1 + a2Λ2)

∞∑
k=1

(−1)k

(k!)2

(r
2

)2k
uk, (3.10a)

with the series coefficients uk being defined by the integrals

uk =

∫ Λ

0

x2k+1

1 + a2x2
dx =

1

a2

∫ Λ

0

x2k−1dx− 1

a2
uk−1 =

Λ2k

a2

(
1

2k
− uk−1

Λ2k

)
.

(3.10b)
Let us define ũk = uk/Λ

2k with ũ0 = ln(1 + a2Λ2)/2a2. Then, the uk are
obtained from the following recursive equation

ũk =
1

2k
− ũk−1

Λ2
,

which shows that ũk tends rapidly to 1/(2k) for increasing k. Finally, the fol-
lowing power series is obtained for γ̃Λ(r)

γ̃Λ(r) = − 2a2

ln(1 + a2Λ2)

∞∑
k=1

[
−
(
rΛ

2

)2
]k

ũk

(k!)2
. (3.11)

The power series expansion in Eq. (3.11) converges absolutely for all r. This
can be shown by means of D’Alembert’s ratio test [46], thanks to the factorial
term (k!)2 in the denominator. However, the expansion is not very useful in
practice, since the rapid growth of the term (rΛ/2)2k with increasing r makes the
series unstable as soon as rΛ/2 > 20. A more stable approach is the expansion
of the Hankel transform (2.8), which makes use of the roots of the zero-order
Bessel function of the first kind and leads to semi-analytical expressions for
d = 2, 4 [4, 22]. For numerical computation of γΛ(r) by means of Eq. (3.6),
standard numerical integration routines provide stable results (e.g., using the
integrate routine in the base library of the R software).
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3.3. Matching the regularization schemes

In the preceding two subsections, we presented real-space and frequency-space
regularization methods for the generalized covariance functions (2.10) in d =
2, 3, 4. Both approaches provide expressions that yield finite variance values,
while maintaining the form of the generalized covariances in (2.10) at larger lags.
Hence, it is useful to investigate conditions on the regularization parameters for
which both approaches lead to the same variance, i.e., σ2

ε = Cε(0) = C(ε) = σ2
Λ.

To better understand this constraint, consider the fact that the variance is given
by the integral of the spectral density as evidenced in (3.5). Both regularization
schemes modify the spectral density (3.4) at high frequencies (‖k‖ � 0). Hence,
the matching of the variance ensures that the integrals of the respective spectral
densities, C̃Λ(‖k‖) and C̃ε(‖k‖), are the same over the entire range of ‖k‖, and
thus over the regime of high ‖k‖ as well.

By taking into account (2.10) and (3.9), the variance matching condition
leads to the following equations:

σ2

2π
K0(ε/a) =

σ2

4π
ln(1 + a2Λ2), d = 2

σ2

4π

exp(−ε/a)

ε/a
=

σ2

2π

[
aΛ− tan−1(aΛ)

]
, d = 3,

σ2

4π2

K1(r/a)

r/a
=

σ2

16π2

[
(aΛ)2 − ln(1 + a2Λ2)

]
, d = 4.

We further simplify the equations above by considering that in order to
only modify the behavior of the covariance near zero, it must hold that aΛ �
1 and ε/a � 1. We therefore use the following approximations: K0(ε/a) �
−γE − ln(ε/2a), K1(ε/a) � a/ε, ln(1 + a2Λ2) � 2 ln(aΛ), exp(−ε/a) � 1, and
aΛ − tan−1(aΛ) � aΛ. Then, the variance matching condition simply becomes
Λε = 2e−γE in d = 2, Λε = π/2 in d = 3, and Λε = 2 in d = 4. As a first order
approximation one could thus set Λε � d/2. In addition to the assumptions
aΛ � 1 and ε/a � 1, the above analysis demonstrates that the variance match-
ing condition also requires Λε ∼ O(1). These conditions allow a wide range of
combinations of ε and Λ values.

A different approach for matching the regularization schemes involves match-
ing the short distance behavior of the variogram function. As before, we assume
aΛ � 1 and ε/a � 1. In d = 2, we consider the first term of the series expan-
sion (3.8) for the normalized variogram γ̃Λ(r), which is given by(

rΛ

2

)2 [
1

ln(1 + a2Λ2)
− 1

a2Λ2

]
.

Evaluating γ̃Λ(r) at r = ε, we obtain

γ̃Λ(ε) �
(
εΛ

2

)2 [
1

ln(1 + a2Λ2)
− 1

a2Λ2

]
�
(
εΛ

2

)2
1

2 ln(aΛ)
,
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where the last approximation is based on aΛ � 1. If we assume that Λε = b for
some fixed scalar b, then

γ̃Λ(ε) � − b2/8

ln(ε/a)− ln b
.

On the other hand, the variogram at distance ε according to real-space reg-
ularization is given by (3.2), γ̃ε(ε) � − ln(2)/ (ln(ε/a)− ln(2) + γE). To match
the two regularized variograms at distance ε, we numerically determine the lo-
cus b(ε) of the nonlinear equation γ̃Λ(ε) − γ̃ε(ε) = 0, for log(ε/a) ∈ [−10,−2].
Figure 2 plots ε/a against the respective values b. As evidenced in this plot,
the two variograms match for b ∈ [2.45, 2.75] and ε/a ≤ 0.1, which then implies
that Λ � 10. Hence, we conclude that both matching approaches lead to very
similar results, despite their different origins.

Fig 2. Plot of the curve representing the zero-level locus of the regularized (normalized)
variogram difference γ̃Λ(ε)− γ̃ε(ε) in the parameter space (b, εa).

4. Statistical models for lattice data

In this section, we present a discretization of the continuum BGmodel over a reg-
ular grid in dimension d. We consider a hyper-rectangular grid G = {1, . . . , n1}×
. . . × {1, . . . , nd} ⊂ Z

d with a hyper-cubic unit cell. The d-dimensional vec-

tors sk, k = 1, . . . , n with n =
∏d

i=1 ni are the grid node locations, and x =
(x1, . . . , xn)

� with xk = x(sk) is the vector of the field values on the grid.
We further allow the grid step b > 0 to be different from 1, such that we
use the grid Gb = {b j | j ∈ G}, where j = j(s) = (j1, . . . jd)

� is a G-valued
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index vector with one index for each of the d dimensions. We represent grid
points s as follows: s = b

∑d
i=1 jiei, where {ei}di=1 is the set of unit vectors

ei = (0, . . . , 0, 1, 0, . . . , 0)T with 1 at the i-th position, and j is the G-valued
index defined above.

4.1. Energy terms for lattice models

By using a discrete approximation of the gradient evaluated at the grid points in
Gb, the energy term (2.1) can be expressed as a bilinear functional of x : G → R

n.
Using the forward difference approximation for the gradient, i.e.,

∇ix(s) =
x(s+ bei)− x(s)

b
, i = 1, . . . , d,

the discretized contribution of a grid point s ∈ Gb to the integral in the energy
functional of the Boltzmann-Gibbs model (2.1) is given by

1

2bd

[
α0x(s)

2 + α1b
−2

(
d x(s)2 − 2

d∑
i=1

x(s)x(s+ bei) +

d∑
i=1

x(s+ bei)
2

)]
,

where the leading term corresponds to the normalization with respect to the
hyper-volume bd of the grid cell containing s. Since each point s ∈ G is the
forward neighbor of the d points s − bei, i = 1, . . . , d, the overall additive con-
tribution (to the approximation of the energy integral) of terms that directly
involve xk = x(sk) can be summarized as follows:

Ik =
1

2bd

[
α0x

2
k + α1b

−2

(
2dx2

k − 2

d∑
i=1

xkx(sk + bei)− 2

d∑
i=1

xkx(sk − bei)

)]
.

Therefore, we use the approximation Hb(x;θ) =
∑n

k=1 Ik for the lattice model
over Gb. The points s at the boundary of Gb merit special attention. If s has
index vector j and ji = ni for some i ∈ {1, . . . , d}, then the forward neighbor
s+bei is part of Gb. Similarly, if ji = 1 for some i ∈ {1, . . . , d}, then s is forward
neighbor of the point s−bei that is not part of Gb. In the following equations, we
therefore keep the points lying outside the grid Gb if they are direct neighbors
of points within the grid. In statistical practice, even if the field values for such
points outside the grid are not observed, it is possible to impose appropriate
boundary conditions for such points. A first possibility would be to use Dirichlet
boundaries, i.e., to set x(s) = 0 if s �∈ Gb. Another possibility would be to use
Neumann boundaries, i.e., to set x(s + bei) = x(s) if exactly one of the two
points s or s+ bei is not part of Gb.

The energy term Hb(x;θ) discretized over the grid Gb is bilinear with respect
to components of x, such that it can be written in matrix notation as follows:

Hb(x;θ) =
1

2
x�Q(θ)x. (4.1)
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Since the original energy functional and the discrete approximation in (4.1) are
non-negative for any α0, α1 ≥ 0, such that max(α0, α1) > 0, the precision matrix
Q(θ) is non-negative definite. Moreover, the precision matrix is positive definite
if at least one of α0, α1 is positive, and if in addition maxdi=1 ni ≥ 2 in the
case of Neumann boundary conditions. The energy functional (4.1) tends to the
continuum energy (2.1) at the limit of infill asymptotics b → 0 by considering the
grid where the number of grid points ni is replaced by [ni/b] in each dimension
i = 1, . . . , d.

The precision matrix can be additively decomposed as follows:

Q(θ) = α0b
−d In + α1b

−(d+2) Q1, (4.2a)

where In is the n×n identity matrix which results from the energy of the squared
fluctuations, and Q1 is the gradient precision sub-matrix which incorporates the
sum of the squared differences and is given by

[Q1]k1,k2 =2d I(k1 = k2)− I (sk2 ∈ {sk1 ± bei | i = 1, . . . , d}) , (4.2b)

where k1, k2 ∈ {1, . . . , n}.

4.2. Links to common lattice models

Using the above expressions for the precision matrix elements, we can explicitly
provide the conditional distribution of the observation xk at a point sk given
the observations at its grid neighbors NBk = {sk ± bei | i = 1, . . . , d} with
|NBk| = 2d. Standard results for (arbitrary) Gaussian vectors [e.g., 43] imply
that the conditional variance is given by 1/[Q]k,k, and the conditional mean is
given by −[Q]−1

k,k

∑
k̃ �=k[Q]k,k̃xk̃, such that the conditional distribution can be

written as follows:

xk | x−k ∼ N

⎛⎝ α1

b2α0 + 2dα1

∑
k̃∈NBk

xk̃ ,
bd+2

b2α0 + 2dα1

⎞⎠ , k = 1, . . . , n, (4.3)

where x−k refers to the values of the field over all grid points with the exception
of xk. From (4.3), it follows immediately that our grid approximation of the
model is closely related to two widely used models for lattice data in spatial
statistics. The most popular and fundamental model for areal data observed over
known graphs, which are defined by means of the respective adjacency matrix,
is due to Besag [6, 7, 8, 43], and it is often referred to as the conditionally
autoregressive (CAR) model. The general Besag model can be characterized
through its conditional distributions

xk | x−k ∼ N

⎛⎝ 1

|NBk|
∑

k̃∈NBk

xk̃,
1

|NBk| τ

⎞⎠ , k = 1, . . . , n,

where τ > 0 is a precision parameter. Therefore, the Boltzmann-Gibbs model
characterized by the conditional distributions in (4.3) is equivalent to the Besag
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model (with points connected to s given by s± bei, i = 1, . . . , d) if α0 = 0 and
τ = α1/b

−(d+2).
An extension of the Besag model is the Leroux model [36], which is charac-

terized by the precision matrix

QLeroux = τLeroux [(1− λ)In + λQBesag(1)] , λ ∈ [0, 1],

where τLeroux > 0 is a precision parameter and QBesag(1) denotes the precision
matrix of the Besag model with τ = 1; the general Besag model arises as a
boundary case when λ = 1 and τ = τLeroux. The Leroux model interpolates
between the Besag model (λ = 1) and a model with spatial independence (λ =
0). The Leroux model is equivalent to the Boltzmann-Gibbs model in (4.3) if

λ =
α1

α0b2 + α1
, τLeroux =

α0b
2 + α1

bd+2
. (4.4)

As a result, the grid approximation of the Boltzmann-Gibbs model with en-
ergy given in (4.1) can be interpreted as a reparametrization of the Leroux
model using parameters α0 and α1 instead of τLeroux and λ. The grid step b is
not considered as a parameter since it is usually fixed before using the model.
The grid approximation, potentially combined with appropriate boundary con-
ditions, can be viewed as another regularization technique for the continuous-
space model, where smaller values of b will lead to a more faithful approxima-
tion.

5. Parameter estimation

We now explore how the estimation of the parameters of a regularized covari-
ance function of the form σ2Cd,ε(h; a) can be achieved. Several standard estima-
tion methods are available for Gaussian random fields: Weighted Least Squares
(WLS) [12], Full Likelihood (FL) and Composite Likelihood (CL) [10, 9]. Com-
posite likelihoods are products of “smaller” likelihoods defined on certain subsets
of the data, such as data pairs, for which the likelihood is easy to compute. One
can consider the marginal likelihood, the conditional likelihood or the likeli-
hood of differences (also referred to as increments) of such pairs. We follow [10]
and choose to consider all possible differences {uij = xi − xj}1≤i<j≤N , where
Uij(ω) = X(si;ω) − X(sj ;ω) is the two-point random increment. Compared
to a full likelihood, this approach can easily handle very large datasets, which
resonates with the motivation for exploring Boltzmann-Gibbs models. Following
the definition of the variogram function, i.e, γij(θ) =

1
2 Var[X(si;ω)−X(sj ;ω)],

we obtain Var[Uij(ω)] = 2γij(θ); note that γij(θ) is abbreviated notation for
γd,ε(sj − si;θ), which emphasizes the dependence upon the parameters θ to be
estimated. Under the Gaussian assumption for the random field X(s;ω), Uij(ω)
is distributed as a Gaussian random variable N (0, 2γij(θ)). Ignoring the spatial
dependence between different variables Uij(ω), the negative weighted composite
likelihood (after dropping the constant terms that are irrelevant for parameter
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estimation) is given by

cl(θ) =

N∑
i=1

N∑
j>i

wijclij(θ),

where the pairwise likelihood terms are defined by

clij(θ) =
log γij(θ)

2
+

u2
ij

4γij(θ)
. (5.1)

The computational cost of calculating cl(θ) is O(N2). It can be significantly
reduced by only considering pairs of sites that are closer than a specified distance
r0, i.e., by setting wij = I(rij ≤ r0). As shown in [10], choosing an appropriate r0
not only provides a significant gain in computational time but also increases the
statistical efficiency, since pairs of observations separated by distances exceeding
the correlation range are uninformative for the spatial scale parameter. The
associated CL score statistic,

CL(1)(θ;ω) =

N∑
i=1

N∑
j>i

wij

γ
(1)
ij (θ)

2γij(θ)

[
1− Uij(ω)

2

2γij(θ)

]
, (5.2)

is unbiased, i.e., E[CL(1)(θ;ω)] = 0, where 0 is the zero vector in a space with
dimension equal to the number of components of θ. In Eq. (5.2) f (1) denotes
the gradient (i.e., the vector of partial derivatives) of a function f with respect
to θ. This result does not depend on distributional assumptions about X(s;ω),
since for stationary random fields it always holds that E[Uij(ω)

2] = 2γij(θ). CL
is therefore expected to provide better estimates than FL when the Gaussian
assumption is violated.

6. Case study: Walker Lake data

6.1. Description of the data set

We use the well-known Walker Lake data set [31] to illustrate statistical as-
pects of the Boltzmann-Gibbs covariance model. It is available from the gstat

package in R [40]. The Walker Lake data set was derived from digital terrain
elevations of the Walker Lake area in western Nevada, US. A rectangular region
containing elevation values at 1.95 million regularly spaced points was divided
into a coarse-grained 300× 260 grid in which each cell contained a 5× 5 array
of points. The mean and variance of the elevation within each cell were deter-
mined. Through a deterministic function of these two values, a synthetic metal
concentration V (herein denoted by X for consistency with our random field
notation) was derived for each cell of the grid. A complete description of the
construction of the Walker Lake data set is given in [31, Appendix A]. Because
the complete data set is highly non-stationary, we selected the [10, 200]×[10, 100]
subdomain containing N = 17, 381 data points, which we deem compatible with
a stationarity assumption (see the left-hand side plot of Figure 3).
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Fig 3. Walker Lake data. Left: Map of synthetic metal concentration in the selected subdo-
main. Right: Histogram of the concentration values in the subdomain.

6.2. Estimation of the variogram

6.2.1. Estimation with full dataset

We first estimate the parameters of the BG variogram using as training set all
17,381 data in the entire subdomain, based on WLS and CL. Full likelihood is
not feasible for numerical reasons due to the large size of the training dataset.
As can be seen from the histogram plot on the right-hand side of Figure 3, the
concentration follows a non-Gaussian distribution. For numerical optimization
we used the R function nlminb, which was successfully tested on simulated data
in unreported preliminary analyses.

Estimated values of the BG parameter vector (σ2, a, εa)
� are listed in Ta-

ble 1, and the estimated variograms are shown on Figure 4. The experimental
variogram (black circles) is computed for distances ranging from 0 to 70, us-
ing K = 80 bins of equal width. When the fitting is performed using WLS,
the experimental variogram is closely fitted by the Boltzmann-Gibbs variogram
σ2γ̃2,ε(h) where γ̃2,ε(h) is given by Eq. (3.1) (blue continuous line). WLS is
used with optimal weights proportional to nk/γ̃

2(hk;θ), where hk is the dis-
tance corresponding to bin k ∈ {1, . . . ,K} and nk is the number of pairs in that
bin (cf. [12] for a justification of this choice). CL-based variograms estimated
with cutoff distances r0 = 10 and r0 = 20, underestimate the variability at
distances larger than the respective cutoff distance. For r0 = 30 or larger, the
estimated variogram is almost identical to the one estimated with WLS. In all
cases, the estimated spatial cutoff parameter verifies εa � 1 (see Table 1), as
discussed in Section 3.

For comparison, an exponential variogram σ2(1− exp(−‖h‖/a)) was also fit-
ted with WLS and CL under the same conditions. Its fit to the experimental
variogram is evidently inferior to that of the BG model, in particular for inter-
mediate (with respect to the range) distances, approximately between 15 and
35. The additional regularization parameter in the BG variogram allows fitting
very accurately the experimental variogram at all distances (short, intermediate
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and large). For the exponential variogram, CL systematically underestimates the
variability at distances larger than r0. The estimates are equal to WLS estimates
only if the cutoff distance is equal to 50, which equals half of the North-South
diagonal distance in the study domain. From now on, the set of parameters
(σ2, a, εa) = (67, 450, 40.7, 0.07) will be considered as the “ground truth”. These
parameters correspond to the WLS and CL estimates with r0 ≥ 30 (blue curve
in Figure 4).

Fig 4. Empirical and estimated theoretical variograms using WLS (continuous lines) and CL
(broken lines). Blue: Boltzmann-Gibbs (BG) variograms. Red: Exponential (Exp) variograms.

Table 1

Estimates of the Boltzmann-Gibbs and exponential variogram model parameters obtained by
means of Composite Likelihood (CL) with several cutoff distances and Weighted Least

Squares (last row).

Boltzmann-Gibbs Exponential
r0 σ̂2 â ε̂a σ̂2 â
5 67,450 107.5 0.001 25,875 2.3
10 67,440 133.3 0.007 29,560 2.9
20 67,450 40.7 0.067 41,620 5.6

CL 30 67,450 40.7 0.067 52,780 8.7
40 67,450 40.7 0.067 59,955 11.2
50 67,450 40.7 0.067 62,503 12.5

WLS 67,450 40.7 0.075 61257 12.2

6.2.2. Estimation using smaller training sets

We now assess the ability to estimate the “true” variogram based on training
sets of small to moderate size. We will uniformly select 200, 400 and 800 sam-
ples from the full subdomain dataset and estimate the parameters using WLS,
Full Likelihood (FL) and CL with r0 ∈ {5, 10, 20, 30, 40, 50}. The whole ex-
periment of random subsampling followed by estimation is repeated 100 times.
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These estimates are then compared to the “ground truth” established in Sec-
tion 6.2.1. Since the synthetic metal concentration does not follow the Gaus-
sian distribution, likelihood methods might not perform very well. FL is ex-
pected to perform poorly (even if computationally feasible), because it relies
heavily on the distributional properties of the multivariate Gaussian distribu-
tion.

Fig 5. Estimates of BG parameters by means of different estimation methods based on training
sets with 400 randomly selected observations (100 repetitions). Estimation methods involve
CL with r0 = 10, 20, 30, 40, 50; FL; WLS. Top left and Bottom Row: estimates of σ2, − log(εa)
and log(a); red points and crosses denote training sets with FL estimates of σ̂2 ≥ 100, 000.
Top right: log(â) vs. σ̂2 for all spatial models. In all plots: blue dots are CL and WLS estimates
obtained with full dataset.

Figure 5 shows the estimates of the three BG parameters for different esti-
mation methods as well as the scatter plot of log(â) vs. σ̂2, for all methods.
The estimates are obtained for 100 configurations of n = 400 randomly sampled
observations. FL leads to a bimodal set of estimates. In the first group, the
estimates are close to those obtained with the complete dataset (black markers
in Figure 5). However, there is also a second group of estimated values (red
markers in Figure 5) with much larger values of σ̂2 (from 115,687 to 200,643)
and ranges (from 949 to 2,102, with 2,102 representing the upper bound for
the range used in the optimization procedure) and smaller εa (from 0.0007 to
0.0032). This bimodality is specific to FL in this experiment, even though WLS
and CL with large r0 also lead to estimates that significantly deviate from the
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“true” values. Closer inspection reveals that r0 ∈ {20, 30} consistently leads
to the least biased estimates. However, the variance is underestimated due to
the small size of the training set. The upper-right window of Figure 5 is a
scatter plot of σ̂2 and â obtained from all the estimation methods (WLS, CL,
FL). As evidenced in this plot, σ̂2 and â are not correlated if σ̂2 is approxi-
mately around the “true” value. However, for training configurations that lead
to larger estimates of σ̂2, there is a positive linear correlation between log(â)
and σ̂2.

Very similar patterns were obtained with training sets containing n = 200
and n = 800 observations. Estimates are more or less dispersed around the
“true” values, depending on n. In particular, the FL group of large variance
and large range estimates becomes smaller as n increases (and vice-versa, it
becomes larger as n decreases). The score statistics associated with CL, given
in Eq. (5.2), are very close to zero for all cutoff distances r0.

Figure 6 represents the 100 BG model variograms (based on CL param-
eter estimates with r0 = 30), along with the variograms (experimental and
based on CL estimates) obtained from the complete dataset of the Walker Lake
subdomain. For the sake of comparison, both Boltzmann-Gibbs and exponen-
tial variograms were estimated. The comparison clearly shows that BG esti-
mates are less dispersed and more centered around the “true” (experimental)
variogram. This figure provides further evidence that the regularized BG vari-
ogram model better fits the spatial dependence of the data than the exponential
model, even for moderately sized training sets. Similar plots were obtained for
n = 200 and n = 800 but are not reported herein for the sake of concise-
ness.

Fig 6. Estimated variograms based on training sets with 400 randomly selected observa-
tions (100 repetitions). On both plots, black dots represent the experimental variogram com-
puted with the complete dataset. Blue lines show variograms estimated on the complete
dataset, and grey lines correspond to variograms estimated on the 100 training sets, using
CL with r0 = 30 in both cases. Left: Boltzmann-Gibbs variograms. Right: Exponential vari-
ograms.
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6.3. Prediction and cross-validation

To assess the predictive performance of the BG model, the random training
sets and their associated parameter estimates obtained in Section 6.2 are now
used for prediction (kriging) and cross-validation. For a training set of size n,
where n ∈ {200, 400, 800}, we use ordinary kriging to predict the synthetic metal
concentration X at each of the N − n remaining locations of the Walker Lake
subdomain (N = 17, 381). The partitioning of the dataset into training and
validation sets is repeated 100 times. Four different spatial models are used for
the comparison. First, ordinary kriging is performed for each randomly selected
training set with the BG “ground truth” variogram and the exponential (Exp)
variogram (both shown as blue lines in Figure 4). Recall that the “ground truth”
parameters were estimated with WLS, and they are listed in Table 1. Then, for
each of the above random training sets, the variograms (BG and Exp) with
parameters estimated using maximum CL with the optimal cutoff distance (i.e.,
r0 = 30), are also used for ordinary kriging. The resulting four spatial models are
denoted F-BG, F-Exp, S-BG and S-Exp, respectively, where F stands for “Full
dataset” (on the selected subdomain) and S for “Subdomain samples”. For each
random training set and each spatial model, four different scores are computed:
mean error (ME), mean squared error (MSE), mean normalized squared error
(MNSE), and linear correlation between the prediction error and the true value
(COR). Good predictive performance requires ME close to 0 and MNSE close
to one. The latter requirement is due to the fact that (assuming zero bias of the
kriging estimates) E[(X̂i − Xi)

2] = σ2
K,i, where Xi and X̂i are the true value

and the kriging estimate at point si, respectively, and σ2
K,i is the associated

kriging variance. Recall that kriging is the orthogonal projection on the linear
subspace spanned by the data, e.g. [12]. Therefore, E[(X̂i − Xi) X̂i] = 0, and
COR should be as close to 0 as possible. For each of the above four scores and
each of the four spatial models, we obtain 100 values associated with the 100
training sets.

The results of the cross-validation analysis are summarized in Table 2. As
expected, for all values n and for all the spatial models, kriging is essentially
unbiased (with ME being close to zero). Boxplots of the average MSEs are
shown in Figure 7. For all n, the MSE is smaller for the BG model than for
the Exp model, whether based on the full dataset (F-BG vs. F-Exp) or the sub-
samples (S-BG vs. S-Exp). The relative MSE improvement of the BG model
versus the Exp ranges from 1.5% when n = 200 to 2.4% when n = 800. When
using the Exp model, predictions are slightly more accurate with the “full”
model than with the specific model estimated with the sample at hand. The
opposite holds when using the BG model, but the difference is very small. A
striking result is that NMSE is significantly closer to 1 for the BG than for the
Exp model. In other words, the exponential model largely underestimates the
magnitude of the kriging error, whereas the BG model has an MNSE score quite
close to 1. In addition, COR is always smaller with the BG than for the Exp
model. To summarize, the (regularized) BG model provides better scores than
the exponential model for all validation metrics considered.



Boltzmann-Gibbs random fields 4111

Table 2

Assessment of prediction performance of BG and exponential models on the Walker Lake
dataset. Sparsity index (ps), Mean Error (ME), Mean Squared Error (MSE), Mean

Normalized Squared Error (MNSE), and mean Correlation between the prediction error and
the true value (COR), for different training set sizes (n = 200, 400, 800) and four different

spatial models. Boldfacing is used to denote the optimal values for each score.

n ps ME MSE MNSE COR
200 F-BG 0.230 0.94 29,449 1.05 0.016

F-Exp 0.418 0.91 29,882 1.27 0.068
S-BG 0.338 0.95 29,633 1.08 0.003
S-Exp 0.484 0.91 29,974 1.29 0.052

400 F-BG 0.115 −0.31 24,381 1.09 0.033
F-Exp 0.157 −0.48 24,923 1.43 0.091
S-BG 0.128 −0.30 24,427 1.06 0.018
S-Exp 0.180 −0.38 24,870 1.33 0.071

800 F-BG 0.063 0.55 20,486 1.17 0.039
F-Exp 0.072 0.51 20,985 1.63 0.089
S-BG 0.063 0.54 20,526 1.19 0.039
S-Exp 0.073 0.50 20,940 1.54 0.080

Fig 7. MSE of kriging predictions based on the BG and Exp variogram models for the Walker
Lake dataset. Boxplots are shown for all combinations of spatial models and training set
sizes based on 100 different partitions of the dataset). First four boxplots (from left to right)
correspond to n = 200: Full BG (F-BG), Full Exp, Sample BG (S-BG), and Sample Exp.
The same order is repeated for n = 400 and n = 800. See text for details.
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A particularly interesting feature of the BG model that enables efficient com-
putation of predictions is the degree of sparsity of the precision matrix. An in-
dicator of sparsity is the proportion of precision matrix entries with an absolute
value larger than 10−8, denoted by ps. The index ps is listed in the third column
of Table 2. Its values show that the precision matrix is always sparser for the
BG than for the Exp model. This is a noteworthy finding, since the exponential
model possesses a Markov property on the continuous plane [37] and is known
to show very sparse precision matrices in practice.

All of the above results of cross-validation analysis provide strong evidence
in favor of the regularized Boltzmann-Gibbs model, at least for this dataset.

7. Conclusions

The work presented in this paper was motivated by the strong interest in statis-
tical methodology geared towards spatial models based on physically inspired
stochastic differential equations, e.g., in the developments and applications orig-
inating in the seminal work of [37], and going further in [11], as well as connec-
tions between statistical field theory and spatial models [24, 28, 25]. Starting
from the specification of a Boltzmann-Gibbs model that directly and intuitively
controls spatial dependence in terms of an energy functional that contains con-
tributions from squares of the fluctuations and their gradients, we have charac-
terized the properties of the resulting random fields in terms of the covariance
and the spectrum. In cases where the variance is infinite, we achieve finite covari-
ance structures, useful for simulation and statistical modeling and prediction,
by means of regularization schemes in the direct and spectral domains. Specifi-
cally, the direct-space covariance regularization introduces a new approximation
parameter, ε > 0, which can be estimated jointly with the other model param-
eters using techniques such as the pairwise difference likelihood. When ε moves
from 0 to infinity, the corresponding model smoothly interpolates between the
Boltzmann-Gibbs generalized covariance and the exponential covariance. In two
dimensions both of the above can be considered as special cases of the widely
used Matérn covariance with regularity parameters 0 and 0.5, respectively.

With respect to spectral regularization, instead of using a “hard” (abrupt) fre-
quency cutoff in Eq. (3.4), it is possible to use a tapering function that provides
a smooth decay of the spectral density, as proposed in [24]. This is equivalent to
a convolution of the random field with a suitable kernel function in direct space;
the latter would then act as a filter for the high-frequency fluctuations of the
field. Such a choice is certainly appealing due to the smooth decay of the spectral
density that it produces. On the other hand, the integrals for the regularized
variance (3.5) and variogram function (3.6), will become more complicated.

A grid approximation of the Boltzmann-Gibbs field with appropriate bound-
ary conditions can be viewed as another regularization technique and establishes
a direct link to the popular Besag and Leroux lattice models used in spatial
statistics. The grid approximation is characterized by sparse precision matrices,
which are useful for gridded high-dimensional data thanks to their numerical
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benefits. In future work, we plan to develop similar sparse matrix approxima-
tions of the Boltzmann-Gibbs models for irregularly spaced locations.

Another promising research direction is the extension of the Boltzmann-Gibbs
model to vector random fields, which would be applicable to multivariate contin-
uum data as well as multi-spectral images. In addition, given the simple rational
function expression of the Boltzmann-Gibbs spectral density, it is worthwhile
to investigate spectral estimation methods for Boltzmann-Gibbs random fields,
both for gridded but incomplete and irregularly spaced data. Such approaches
based on Whittle’s approximation [48] of the Gaussian log-likelihood have been
explored in [16, 21].

The Gibbs energy term (2.1) studied herein provides control over local gra-
dients but not directly over the local curvature of the random field. Boltzmann-
Gibbs models which include curvature have been developed in [24, 28, 25]. Ex-
tensions towards the inclusion of higher-order (than the gradient and curvature)
terms allowing for smoother realizations of the Gaussian field, or towards terms
defining non-Gaussian Boltzmann-Gibbs fields, are other promising areas of re-
search.
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