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Abstract

We design moving horizon state estimators for a general model of bioprocesses. The underlying optimization is nonconvex due
to the microbial growth kinetics, which are modeled as nonlinear functions. We relax the nonconvex growth constraints so that
the optimization becomes a second-order cone program, which can be solved efficiently at large scales. Unfortunately, solutions
to the relaxation can be inexact and thus lead to inaccurate state estimates. To recover feasible, albeit potentially locally optimal
solutions, we use the concave-convex procedure, which here takes the form of a sequence of second-order cone programs. We find
that the moving horizon state estimators outperform the unscented Kalman filter on numerical examples based on the gradostat and
anaerobic digestion when there is high process noise or parameter error.
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1. Introduction

Uncertainty arises in bioprocesses from imperfect modeling
and inaccurate measurements. States that cannot be precisely
known from measurements are typically estimated using ob-
servers, also known as state estimators. The nonlinear nature
of most bioprocesses, e.g., due to microbial growth, makes this
additionally challenging. There are several types of nonlinear
state estimation algorithms, including one-step algorithms like
the extended and unscented Kalman filters (UKF) [1], asymp-
totic observers [2], and moving horizon estimators (MHE) [3].

In this paper, we formulate a new MHE for bioprocesses.
MHE entails solving an optimization for the last τ values of the
state, where τ is the length of the estimation window. It is often
more accurate than one-step estimators, which can suffer from
the ‘short horizon syndrome’ [4], but also more computation-
ally demanding—if τ is large, the MHE will be a large, some-
times nonconvex optimization. Starting with [5], there have
been numerous applications of MHE to bioprocesses such as
wastewater treatment [6, 7, 8] and cell cultures [9, 10].

We use the convex relaxation from [11, 12] to make the MHE
more tractable. When the microbial growth is described by the
Monod function [13] (with a constant biomass approximation)
or the Contois function [14], the relaxed MHE can be written
as a second-order cone program (SOCP) [15].

The solution of a relaxation might be outside the original
feasible set, and hence infeasible. To recover feasible, albeit lo-
cally optimal solutions, in Section 5 we use the concave-convex
procedure (CCP) [16, 17]. The advantage of this approach is
that it builds directly on the relaxed MHE. In particular, if the
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relaxation is an SOCP, the the CCP entails solving a sequence
of SOCPs.

Our main original contributions are the formulation of a new,
relaxed MHE for bioprocesses, and the use of the CCP to obtain
feasible solutions. We also use the analytical results from [12]
to state conditions under which the relaxation is exact; unfortu-
nately, the objective of the MHE does not in general satisfy the
conditions, and the solutions were rarely exact in simulation. In
each such case, the CCP was able to recover a feasible solution.

The rest of the paper is organized as follows. We describe the
model and setup in Section 2. We state the MHE in Section 3
and formulate a convex relaxation in Section 4. In Section 5 we
specialize the CCP to the MHE. In Section 6, we implement the
relaxed MHE and the CCP on examples based on the gradostat
and anaerobic digestion.

2. Modeling

2.1. Network

The system consists of a set of p well-mixed tanks, S, which
are interconnected by mass flow and diffusion. The constant
volume of tank i is Vii, and V ∈ Rp×p is a diagonal matrix of
the volumes. The flows of water into and out of tank i are Qin

i
and Qout

i . The flow from tank i to tank j is denoted Qi j. The
diffusion between tanks i and j is di j, where di j = d ji. Let

Ci j =

{
0, i , j
Qin

i , i = j , Li j =

{
di j, i , j
−

∑
k∈S dik, i = j ,

Mi j =

{
Q ji, i , j
−Qout

i −
∑

k∈S Qik, i = j ,

and N = L+ M. L is Laplacian and therefore negative semidefi-
nite. M is compartmental and is invertible if the network is out-
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flow connected [18]. N is hence also invertible if M is outflow
connected, and potentially even if M is not outflow connected.

2.2. Microbial growth
We model the microbial growth in the tanks following the

notation of Section 1.5 of [19]. In each perfectly mixed tank
there are m substrates and biomasses. The process state vector
of tank i ∈ S is denoted ξi ∈ Rm

+ and the corresponding influent
concentration vector ξin

i ∈ R
m
+ .

There are r ≤ m different biochemical reactions. The reac-
tion kinetics in tank i are collected in the vector φi(ξi) ∈ Rr

+,
which, we note, could be different in each tank due to factors
such as pH and temperature. Here we focus on the case where
the elements of φi(ξi) are concave functions with second-order
cone (SOC) representations.

We let κi ∈ Rm×r denote the stoichiometric matrix relating
the reaction vector, φi(ξi), to the evolution of the process state
in tank i. The dynamics in tank i ∈ S are given by

Viiξ̇i = Viiκiφi(ξi) − Qout
i ξi −

∑
j∈S

(Qi j + di j)ξi

+ Qin
i ξ

in
i +

∑
j∈S

(Q ji + di j)ξ j.

We now express the dynamics in vector form. We omit sub-
scripts to denote stacked vectors, i.e., ξ = [ξ1, ..., ξp]> and
φ(ξ) = [φ1(ξ1), ..., φp(ξp)]>. We denote the Kronecker prod-
uct of A and B by A ⊗ B, the identity matrix by Iα ∈ Rα×α, and
let Â = A ⊗ Im. Let K be a block diagonal matrix with κ1, ..., κp

on its main diagonal, and note that K = Ip ⊗ κ if κi = κ, i.e.,
all tanks have the same stoichiometric matrix. The dynamics of
the system in vector form are written

V̂ ξ̇ = V̂Kφ(ξ) + N̂ξ + Ĉξin. (1)

Note that the dynamics can be non-autonomous, in which case
N̂, Ĉ, and ξin are time-varying.

2.3. Discretization in time
MHE, as is often the case in state estimation, is usually im-

plemented in discrete time. To discretize (1), we approximate
the derivatives with a linear function, which we denoteDn. For
example, the implicit Euler method with time step ∆ is given by
Dn[ξ(·)] = (ξ(n) − ξ(n − 1))/∆.

Let τ be the length of the estimation window, and let t + τ be
the current time period. We denote the sequence of time periods
Nt = {t + 1, ..., t + τ}. The discretized dynamics are given by

V̂Dn[ξ(·)] = V̂Kφ(ξ(n)) + N̂(n)ξ(n) + Ĉ(n)ξin(n) + ω(n) (2)

for n ∈ Nt. Here ω(·) ∈ Rmp is process noise.

2.4. Measurements
For each time period n ∈ Nt, we have measurements of the

form

y(n) = Θ

[
ξ(n)
φ(ξ(n))

]
+ ν(n),

where Θ ∈ Ro×(m+r)p and ν(·) ∈ Ro is sensor noise.

3. State estimation

Given Σ � 0, let ‖x‖2Σ = x>Σ−1x. The state estimate for each
n ∈ Nt is the solution of the below optimization problem.

P(t) min
ξ(·),T (·),ν(·),ω(·)

∥∥∥ξ(t) − ξ̄(t)∥∥∥2
Σ0

+
∑
n∈Nt

‖ν(n)‖2Σν + ‖ω(n)‖2Σω (3a)

subject to T (n) = φ(ξ(n)), n ∈ Nt, (3b)

V̂Dn[ξ(·)] = V̂KT (n) + N̂(n)ξ(n)

+ Ĉ(n)ξin(n) + ω(n), n ∈ Nt, (3c)

y(n) = Θ

[
ξ(n)
T (n)

]
+ ν(n), n ∈ Nt, (3d)

(ξ(·),T (·)) ∈ Ω. (3e)

The estimator proceeds by incrementing t by one in each time
period and resolving P(t). Given a solution, ξ(n), n ∈ Nt, a
prediction at time t + τ + 1 is obtained by solving (2) for ξ(t +

τ + 1).
Here we have introduced the variable T (·) so that the growth

kinetics only appear in (3b). The first term in the objective is
the arrival cost, where ξ̄(t) is an estimate of the state prior to
the MHE window. The second corresponds to the discrepancy
between the predicted and measured outputs, and the third to
model error. Physically, ω(·) could represent inflow uncertainty
in ξin(·). The constraint (3e) represents optional linear condi-
tions like ξ(·) ≥ 0 and T (·) ≥ 0. Such constraints can add bias
the estimator, but, for example, prohibit unphysical solutions.

If the system is at equilibrium or changing slowly, it may also
be useful to solve the below steady state problem.

PS min
ξ,T,ν,ω

‖ν‖2Σν + ‖ω‖2Σω (4a)

subject to T = φ(ξ) (4b)

0 = V̂KT + N̂ξ + Ĉξin + ω (4c)

y = Θ

[
ξ
T

]
+ ν (4d)

(ξ,T ) ∈ Ω. (4e)

4. Convex relaxation

We obtain a convex relaxation of P(t) by replacing (3b) with

T (n) ≤ φ(ξ(n)), n ∈ Nt. (5)

We similarly obtain a convex relaxation of PS by replacing (4b)
with

T ≤ φ(ξ). (6)

We denote these relaxations PR(t) and PSR, respectively. As
shown in [11], these are concave and can be represented as
SOC constraints when each growth rate is either Monod with
constant biomass or Contois.

We say that PR(t) (PSR) is exact when all elements of (5)
((6)) are satisfied with equality. In this case, the relaxation has
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the same solution as the original problem. To a limited extent,
we can characterize exactness by adapting the results of [12]. In
short, those results come from using the Karush-Kuhn-Tucker
conditions to derive expressions for the dual multipliers of (5)
and (6), the positivity of which guarantees exactness due to
complementary slackness. Here we omit the proofs because
the present modifications are slight—the only aspect of PR(t)
that is not a special case of the model in [12] is the arrival cost,∥∥∥ξ(t) − ξ̄(t)∥∥∥2

Σ0
, and it does not affect the result.

Assumption 1. To simplify our exactness results, we assume
the following.

• Dn[ξ(·)] = (ξ(n) − ξ(n − 1))/∆, the implicit Euler method.

• ω(·) = 0, which is to say there is no process noise. This
eliminates the third term in the objective in P(t).

• Θ is block diagonal, so that the measurement can be writ-
ten yξ(n) = Θξξ(n) + νξ(n) and yφ(n) = ΘφT (n) + νφ(n).
The associated weighting matrices are Σ

ξ
ν and Σ

φ
ν .

• We exclude (3e) and (4e) from the analysis. We concede
that without the constraints ξ(·) ≥ 0 and T (·) ≥ 0, it is
possible for exactness to hold while some components of
ξ(·) and/or T (·) are negative. However, given reasonable,
e.g., positive observations, this is highly unlikely, and one
can always simply examine the solution. We therefore as-
sume that if exactness holds, then ξ(·) ≥ 0 and T (·) ≥ 0.

We remark that the results in this section are not meant to
be comprehensive, but rather to provide some guidelines as to
whether a given instance of the relaxation is likely to be exact.
When it is not exact, it may still provide a good approximation,
especially if an underestimator is used to limit the inexactness
of (5) or (6), as in [11]. For when feasibility of P(t) or PS
is essential, in Section 5 we use the relaxations as a basis for
obtaining feasible, albeit potentially local, optimal solutions.

4.1. Exactness of the relaxed MHE
Let J(ξ(n)) ∈ Rrp×mp denote the Jacobian matrix of φ(·) at

ξ(n). For convenience, we define the following quantities for
each n ∈ Nt:

Γ(n) =
1
∆

(
V̂/∆ − N̂(n)> − J(ξ(n))>K>V̂

)−1
V̂

Ω(n) = −2Θ>φΣ
φ
ν
−1

(yφ(n) − ΘφT (n)) − ∆K>V̂
t+τ∑
k=n

 k∏
l=n

Γ(l)

 V̂−1

×

(
2J(ξ(k))>Θ>φΣ

φ
ν
−1

(yφ(k) − ΘφT (k))

−2Θ>ξ Σ
ξ
ν

−1
(yξ(k) − Θξξ(k))

)
.

Observe that if ∆ is small enough, Γ(n) is positive definite and
close to the identity matrix. The following result follows from
Theorem 1 in [12].

Proposition 1. PR(t) is exact if at an optimal solution, Ω(n) >
0 for all n ∈ Nt.

Unfortunately, because the derivative of the objective depends
on the optimization variables, there is no clear way to guarantee
this condition using only the parameters.

4.2. Exactness of the steady state relaxation
PSR is a special case of the steady state optimization in Sec-

tion IV.A of [12], wherein its exactness is characterized by The-
orem 2. Specializing the result yields the following proposition.

Proposition 2. PSR is exact if the network is outflow connected
and at the optimal solution,

0 <
(
Imp + K>V̂

(
N̂>

)−1
J(ξ)>

)−1
×(

2Θ>φΣ
φ
ν
−1

(yφ − ΘφT ) − 2K>V̂
(
N̂>

)−1
Θ>ξ Σ

ξ
ν

−1
(yξ − Θξξ)

)
.

As in the dynamic case, due to the dependence of the objective
on the variables, this does not lend itself to simpler exactness
guarantees.

5. Nonconvex solution via the CCP

When the relaxations are not exact, one can still obtain local
minima via nonlinear programming. We now show how to do
so with the CCP [16]; we specifically use Algorithm 3.1 in [17]
because it does not require a feasible starting point. Other ad-
vantages of this approach over generic nonlinear programming
algorithms are that it exploits the problem’s partial SOC struc-
ture, and is implementable as a sequence of SOCPs. We focus
on PS to streamline exposition, but note that all of what follows
applies to P(t) as well as the bioprocess optimizations in [12].

Observe that constraint (4b) can be written as the pair

T ≤ φ(ξ) (7a)
T ≥ φ(ξ). (7b)

By assumption, (7a) is convex, and each element is repre-
sentable as an SOC constraint. Constraint (7b) must therefore
be nonconvex. Because φ(ξ) is concave, it is the part of (7b)
that must be linearized in the CCP. We remark that this strat-
egy was applied to an SOC relaxation of optimal power flow in
power systems in [20].

The CCP for PS is as follows. Choose initial algorithm pa-
rameters ξ0, σ0 > 0, σmax > σ0, and ξ > 1, and set the iteration
counter to z = 0. Then repeat the below steps until a stopping
criterion, e.g., convergence of the objective or variables, is sat-
isfied.

1. Solve the optimization

ξz+1 = argmin
ξ,T,ν,ω,η

‖ν‖2Σν + ‖ω‖2Σω + σzη
>1rp

subject to T ≤ φ(ξ)
η + T ≥ φ(ξz) +J(ξz)>(ξ − ξz)
η ≥ 0

0 = V̂KT + N̂ξ + Ĉξin + ω

y = Θ

[
ξ
T

]
+ ν

(ξ,T ) ∈ Ω.
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2. Set σz+1 = min{ξσz, σmax}.
3. Set z = z + 1.

Note that η ∈ Rrp is a slack variable that allows ξ0 to be poten-
tially infeasible for PS. 1rp ∈ Rrp is the vector of ones, and the
additional term in the objective is a penalty on η. This enables
us to set ξ0 to the (infeasible) solution of PSR, a natural choice.

6. Examples

We present two numerical examples, one based on the grado-
stat [21] and the other on anaerobic digestion [22, 23]. In each
example, we compare the relaxed MHE (denoted MHE-R),
which solves PR(t), the exact MHE (denoted MHE-CC), which
solvesP(t) using the CCP as in Section 5, and the UKF [1]. The
starting point for the MHE-CC in each time period is the solu-
tion to MHE-R. We chose the UKF for comparison because it
has among the best performance of one-step filters on nonlinear
systems. We measure performance in terms of the root-mean-
square error of the estimated trajectory. We implemented the
MHE-R and MHE-CC using the parser CVX [24] and the solver
Gurobi [25] on a personal computer from 2014 with a 1.4 GHz
dual-core processor.

6.1. The gradostat
The gradostat is a special case of (1) where in each tank i ∈ S,

a single substrate of concentration S i is converted to a single
type of biomass of concentration Xi. The conversion occurs at
the rate φ(S i, Xi)/y, where here y = 1 and

φ(s, x) =
µmaxsx
Kx + s

with µmax = 1 and K = 1, the Contois kinetics. The process
state in tank i is thus given by ξi = [S i, Xi]> and the stoichio-
metric matrix by κi = κ = [−1, 1]>.

Only biogas production is observed, so that y(n) = T (n) +

ν(n) ∈ R4, where the sensor noise in each tank is drawn from a
normal distribution with zero-mean and variance 0.1.

There are 400 time periods of length ∆ = 0.1. The discretiza-
tion is the standard explicit Euler step, Dn[ξ(·)] = (ξ(n + 1) −
ξ(n))/∆. The initial condition is S i(0) = i and Xi(0) = 4.5−0.5i
for i = 1, ..., 4. The process noise for each concentration in
each tank is drawn from a normal distribution with zero-mean
and variance ∆2.

There are four tanks, all with unit growth rate parameters
and Vii = 10. The inflow vector is Qin = [2 1 1 1]>. The flows
between tanks are Q12 = 1, Q23 = 2, Q34 = 1, Q42 = 1, and the
diffusion is d = 0.3Q.

In tank i ∈ S, the substrate influent concentrations are
S in

i (n) = 5 (1 + cos(iπn/400)), except that in tank 1, the sub-
strate is S in

1 (n) = 20 for n ∈ {160, ..., 200}, which simulates
a temporary spike. The biomass influent concentrations are
Xin

1 (n) = 2, Xin
2 (n) = 1 + 3n/400, Xin

3 (n) = 4 − 3(n − 1)/400,
and Xin

4 (n) = 2 for n ∈ {0, ..., 100} ∪ {300, ..., 400} and zero
elsewhere.

The MHEs use a horizon of τ = 10. The weighting matrices
in the objective are Σ0 = I4, Σν = I4, and Σω = 0.1I4. The

CCP parameters are σ0 = 1, σmax = 1, 000, and ξ = 1.5, and it
terminates after ten iterations or if the change in the objective
and sum of the elements of η are less than 10−3.

The MHE-R and MHE-CC used on average 3.4 and 18.2 sec-
onds to produce their estimates in each period after n = 10, and
the CCP used on average 5.8 iterations. The UKF, which we
expect to be far faster, averaged 10−3 seconds per iteration.

Table 1 shows the root-mean-square errors for the substate
and biomass over all tanks and time periods. The MHE-CC
performs best, then the UKF, and last the MHE-R. The solu-
tion produced by the MHE-CC is effectively exact, while that
produced by the MHE-R is not.

UKF MHE-R MHE-CC
S 4.1 14.3 1.0
X 8.2 9.0 2.4

Table 1: Root-mean-square errors

Figures 1 and 2 show the trajectories of the states and esti-
mators in each tank. Here we see that the MHE-R is consis-
tently above the actual state trajectory. The UKF does follow
the state, but not smoothly due to the process noise. The MHE-
CC smoothly follows the state, and for the most part coincides
in the plots.
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Figure 1: Substrate concentrations in each tank.

We remark that in simulations without process noise, the
MHE-CC and UKF performed similarly. We interpret this as
being due to the ‘short horizon syndrome’ [4]—by looking over
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Figure 2: Biomass concentrations in each tank.

multiple time periods, the MHE is better able to separate the
noise from the model.

6.2. Anaerobic digestion
This example is adapted from the model of anaerobic diges-

tion in [22], which is a simplification of that in [23]. Our inten-
tion is to compare the estimators’ performances under signifi-
cant parameter error, which we describe later.

There is one tank of unit volume with two substrate con-
centrations, S 1 (g/L) and S 2 (mmol/L), and two biomasses, X1
(g/L) and X2 (g/L). There are two biochemical reactions, both
described by Contois kinetics:

φ1(S 1, X1) =
µmax

1 S 1X1

K1X1 + S 1
and φ2(S 2, X2) =

µmax
2 S 2X2

K2X2 + S 2
.

The process state and stoichiometric matrix are ξ =

[S 1, S 2, X1, X2]> and

κ =


−k1 0
k2 −k3
1 0
0 1

 .
The dilution rate, which because the volume is one is equal to
the in-and outflow of water, is D(n) = 0.05(1 + cos(πn/40)).
This model slightly deviates from (3c) in that while the out-
flows of substrate are D(n)S 1(n) and D(n)S 2(n), the outflow of
biomass are 0.65D(n)X1(n) and 0.65D(n)X2(n), as in [22]. The
parameters are summarized in Table 2.

Parameters Values
µmax

1 , µmax
2 0.0292 h−1, 0.0308 h−1

K1, K2 0.71, 0.928
k1, k2, k3 42.14, 116.5 mmol/g, 268 mmol/g
S in

1 , S in
2 16 g/L, 75 mmol/L

Table 2: Parameter values. Units are shown only for parameters that are have
units.

The observation in each time period is y(n) =

[S 1(n), S 2(n)]> + ν(n) ∈ R2, where the sensor noise for
each substrate is drawn from a zero-mean normal distribution
with variance 10. There are 200 time periods of length ∆ = 1
hour. The discretization is again the standard explicit Euler
step, Dn[ξ(·)] = (ξ(n + 1) − ξ(n)). The initial condition is
ξ(0) = [0.989; 8.559; 0.1358; 0.4829]. There is zero mean,
unit variance normal process noise in the evolution of each
substrate.

The MHEs use a horizon of τ = 10. The weighting matrices
in the objective are Σ0 = I4, Σν = I2, and, for the two substrates,
Σω = I2; the elements of (3c) corresponding to the biomasses,
which have no process noise, are constrained to be zero. The
CCP parameters are σ0 = 1, σmax = 10, 000, and ξ = 1.5,
and it terminates after twenty iterations or if the change in the
objective and sum of the elements of η are less than 10−4.

To improve the numerical performance, we put the biomasses
in units of mg/L and adjusted the corresponding parameters.
We found that the UKF and MHEs all estimated the process
state similarly well. To make the problem more challenging,
we introduced errors into the estimators’ initial state, ξ̃(0) =

[20; 20; 0.15; 0.45], and maximum growth rate, µ̃max
2 = 1.

The MHE-R and MHE-CC used on average 1.6 and 25.1 sec-
onds to produce their estimates in each period after n = 10, and
the CCP used on average 15.3 iterations. The UKF averaged
5 × 10−4 seconds per iteration.

Table 3 shows the root-mean-square errors for the process
state over all time periods. The UKF performs slightly better
than the MHEs on S 1, X1, and X2. On S 2, as seen in the second
subplot of Figure 3, the UKF loses the trajectory for some time
and incurs a far higher error than the MHEs.

We also observe that the MHE-CC perform slightly worse
than the MHE-R, particularly on X2, which we explain as fol-
lows. A solution to P(t) under one set of parameters will gener-
ally be infeasible under different parameters. On the other hand,
by virtue of being a relaxation, there will be many solutions that
are feasible and potentially optimal for PR(t) under both sets of
parameters. In this regard, the approximate nature of MHE-R
makes it less sensitive to parameter errors.

UKF MHE-R MHE-CC
S 1 38.6 45.9 45.9
S 2 306.1 40.7 40.9
X1 47.8 47.9 48.2
X2 107.2 112.2 158.3

Table 3: root-mean-square errors
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Figure 3: Substrate and biomass concentrations. Note that X1(n) and X2(n)
have units of mg/L.

These results suggest that an MHE is appropriate for prob-
lems that are particularly challenging due, for instance, to high
levels or noise or parameter error. For easier problems, the UKF
or another one-step estimator may be preferable for simplicity.

7. Conclusion

We have formulated two novel MHEs for a general nonlinear
model of bioprocesses. The first MHE is a convex relaxation,
which can be solved efficiently as an SOCP, but can admit so-
lutions that are infeasible for the original model. The second
MHE starts with the SOCP and uses the CCP to tighten the re-
laxation and, eventually, obtain a solution that is feasible for the
original model. In two examples, we found that the MHE out-
performs the UKF on difficult problems with high process noise
and exhibited significantly higher robustness to parameter error.

We now describe two directions for future work. Uncertainty
can be explicitly represented in convex optimization using tools
like stochastic and robust optimization. In this way we could
therefore model uncertainty in parameters like the growth rates
and influents. A second direction is to estimate these parame-
ters by viewing them as optimization variables. In some cases,
e.g., the maximum growth rate, this will result in a biconvex
problem, for which the alternating direction method of multi-
pliers [26] is a promising approach.

References

[1] S. J. Julier, J. K. Uhlmann, Unscented filtering and nonlinear estimation,
Proceedings of the IEEE 92 (3) (2004) 401–422.

[2] D. Dochain, State and parameter estimation in chemical and biochemical
processes: a tutorial, Journal of process control 13 (8) (2003) 801–818.

[3] C. Rao, J. Rawlings, D. Mayne, Constrained state estimation for non-
linear discrete-time systems: stability and moving horizon approxima-
tions, IEEE Transactions on Automatic Control 48 (2) (2003) 246–258.
doi:10.1109/TAC.2002.808470.

[4] J. B. Rawlings, D. Q. Mayne, M. Diehl, Model predictive control: theory,
computation, and design, 2nd Edition, Nob Hill Publishing, 2017.

[5] J. Flaus, L. Boillereaux, Moving horizon state estimation for a biopro-
cesses modelled by a neural network, Transactions of the Institute of Mea-
surement and Control 19 (5) (1997) 263–270.

[6] E. Arnold, S. Dietze, Nonlinear moving horizon state estimation of an
activated sludge model, IFAC Proceedings Volumes 34 (8) (2001) 545–
550.
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