
HAL Id: hal-03681151
https://hal.inrae.fr/hal-03681151

Submitted on 31 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Copula miss-specification in REML multivariate genetic
animal model estimation

Tom Rohmer, Anne Ricard, Ingrid David

To cite this version:
Tom Rohmer, Anne Ricard, Ingrid David. Copula miss-specification in REML multivariate genetic
animal model estimation. Genetics Selection Evolution, 2022, 54 (1), pp.36. �10.1186/s12711-022-
00729-3�. �hal-03681151�

https://hal.inrae.fr/hal-03681151
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Rohmer et al. Genetics Selection Evolution           (2022) 54:36  
https://doi.org/10.1186/s12711-022-00729-3

RESEARCH ARTICLE

Copula miss-specification in REML 
multivariate genetic animal model estimation
Tom Rohmer1*  , Anne Ricard2,3 and Ingrid David1 

Abstract 

Background: In animal genetics, linear mixed models are used to deal with genetic and environmental effects. 
The variance and covariance terms of these models are usually estimated by restricted maximum likelihood (REML), 
which provides unbiased estimators. A strong hypothesis of REML estimation is the multi-normality of the response 
variables. However, in practice, even if the marginal distributions of each phenotype are normal, the multi-normality 
assumption may be violated by non-normality of the cross-sectional dependence structure, that is to say when the 
copula of the multivariate distribution is not Gaussian. This study uses simulations to evaluate the impact of copula 
miss-specification in a bivariate animal model on REML estimations of variance components.

Result: Bivariate phenotypes were simulated for populations undergoing selection, considering different copulas for 
the dependence structure between the error components. Two multi-trait situations were considered: two pheno-
types were measured on the selection candidates, or only one phenotype was measured on the selection candi-
dates. Three generations with random selection and five generations with truncation selection based on estimated 
breeding values were simulated. When selection was performed at random, no significant differences were observed 
between the REML estimations of variance components and the true parameters even for the non-Gaussian distri-
butions. For the truncation selections, when two phenotypes were measured on candidates, biases were systemati-
cally observed in the variance components for high residual dependence in the case of non-Gaussian distributions, 
especially in the case of a heavy-tailed or asymmetric distribution when the two traits were measured. Conversely, 
when only one phenotype was measured on candidates, no difference was observed between the Gaussian and non-
Gaussian distributions in REML estimations.

Conclusions: This study confirms that REML can be used by geneticists to evaluate breeding values in the multivari-
ate case even if the multivariate phenotypes deviate from normality in the situation of random selection or if one 
trait is not measured for the candidate under selection. Nevertheless, when the two traits are measured, the violation 
of the normality assumption may lead to non-negligible biases in the REML estimations of the variance-covariance 
components.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
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Background
Multivariate mixed models are widely used in animal 
genetics to deal with genetic and environmental effects 
(see for example Mrode [1], Jiang [2], Meyer [3]). Even 

though many methods are available to estimate the vari-
ance and covariance terms of these models (see Jensen 
and Mao [4] for an exhaustive review), in practice, these 
parameters are frequently estimated using restricted 
maximum likelihood (REML), which a method that was 
developed by Patterson and Thompson [5] and Verbyla 
[6] and provides unbiased estimators. Best linear unbi-
ased predictions (BLUP) are then used to estimate the 
breeding values and to perform selection [7].
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A strong assumption of REML estimations is the multi-
normality of the vector of phenotypes. However, this 
assumption may be violated even if the marginal distri-
butions are normal. Indeed, marginal distributions are 
not sufficient to characterize the multivariate distribution 
of a random vector. The copula of a random vector is a 
(multivariate) cumulative distribution function that links 
the marginal distributions of the random vector to the 

multivariate distribution, and characterizes the depend-
ence structure of the random vector. In recent years, 
copulas have been extensively used in many fields includ-
ing hydrology [8], actuarial sciences and finance [9]. In 
genetic studies, Tregouet et al. [10] used copula (Frank’s 
family) to analyze familial binary data and Li et  al. [11] 
used normal copulas to analyze non-Gaussian bivariate 
traits, in a quantitative trait linkage context. An exhaus-
tive study of copula can be found in Nelson [12]. To our 
knowledge, in genetics, even when the distribution of the 
bivariate phenotypes is not normal, REML estimations of 
the variance components are still used in spite of the fact 
that the theoretical consistency of the estimator is not 
established.

The aim of the present study was to use simulations 
to evaluate the impact of a copula miss-specification in 
the bivariate animal model on REML estimations of vari-
ance-covariance components and on estimated breeding 
values (EBV) when each of the two traits of the bivariate 
model are Gaussian but the set of bivariate traits is not.

Method
As mentioned above, marginal distributions do not ena-
ble the characterization of the multivariate distribution 
of a random vector. Let Z = (Z1,Z2) be a 2-dimensional 
random vector with cumulative distribution function 
(cdf ) F and let F1, F2 be the marginal cdf of Z assumed to 
be continuous. According to Sklar’s theorem [13], there is 
a unique function C : [0, 1]d → [0, 1] such that:

The copula C characterizes the dependence structure of 
vector Z . For Z1 and Z2 Gaussian variables, the vector 
(Z1,Z2) is a Gaussian vector if the copula of (Z1,Z2) is the 
normal (N) copula given by:

(1)F(z) = C{F1(z1), F2(z2)}, z = (z1, z2) ∈ R
2.

where �ρ stands for the cdf of the centered bivariate 
normal distribution with a correlation matrix whose 
off-diagonal entries are ρ ∈ (−1, 1) and �−1 the inverse 
cdf of the standard normal distribution. Other standard 
bivariate copulas are the Frank (F) copula, the Clayton 
(Cl) copula and the Joe (J) copula, given for (u, v) ∈ [0, 1]2 
respectively, by:

A more exhaustive list of copulas can be found in the 
books of Nelson [12] and Joe [14]. The well-known Ken-
dall’s correlation can be defined in terms of the copula Cθ 
by:

see Genest and Favre [15] for an exhaustive discussion of 
the relation between dependence measure and copulas. 
Because CCl

θ  and CJ
θ are not defined for a negative Ken-

dall’s correlation, the rotated 270◦ copulas were used to 
deal with the negative correlations. The formal expres-
sion of the rotated copulas is:

As an illustration, Fig. 1 shows the contour plot of bivari-
ate distributions with Gaussian margins and N, F, C, J 
copula (or rotated version) with Kendall’s tau of ±0.7.

N and F copulas are symmetric, whereas both Cl and J 
copulas are asymmetric (in the sense of radial asymmetry 
[16]).

In a univariate setting, skewness and kurtosis measure 
the asymmetry of the distribution and the heaviness of 
the distribution tails, respectively, and make it possible 
to quantify the distance from normality. An extension 
of these measures for the multivariate case is proposed 
in Mardia [17]. For the bivariate Gaussian case, Mardia’s 
skewness and kurtosis are 0 and 8, respectively, regard-
less of the variance-covariance parameters. Mardia’s 
skewness and kurtosis were evaluated using 1000 Monte 
Carlo simulations for the bivariate distributions pre-
sented in Fig. 1 and for a sample of size n = 1000 . Their 
values are listed in Table 1. As expected, these bivariate 
distributions are more distant from a bivariate Gauss-
ian distribution when Kendall’s tau is high. The bivariate 

CN
ρ (u, v) = �ρ(�

−1(u),�−1(v)), (u, v) ∈ [0, 1]2,

CF
θ (u, v) =

1

θ
log

(

1+
(exp(−uθ)− 1)(exp(−vθ)− 1)

exp(−θ − 1)

)

, θ ∈ R
⋆,

CCl
θ (u, v) = max

(

(

u−θ + v−θ − 1
)−1/θ

, 0
)

, θ ∈ [−1, 0) ∪ (0,+∞),

C
J
θ (u, v) = 1−

[

(1− u)θ + (1− v)θ − (1− u)θ (1− v)θ
]1/θ

θ ≥ 1.

τ = 4

∫

[0,1]2
Cθ (u, v)dCθ (u, v)− 1,

rCθ (u1,u2) = u1 − Cθ (u1, 1− u2).
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distribution with J copula appeared to have higher skew-
ness and kurtosis values than the other copulas.

Other standard measures in a multivariate setting are 
lower ( �L ) and upper ( �U ) tail dependence. These indexes 
between 0 and 1 measure the correlations in the (bot-
tom) left and (top) right tail of the distribution and are 
more often used in an extreme value context. Concepts of 
lower and upper tail dependence can be found in Joe [14]. 
The Cl copula has a lower tail dependence but no upper 
tail dependence (for τ = 0.7 , their values are �L = 0.86 
and �U = 0 ). The J copula has an upper tail dependence 
but no lower tail dependence (for τ = 0.7 , their val-
ues are �U = 0 and �L = 0.86 ). Neither F nor N have a 
tail dependence (regardless of Kendall’s tau, �U = 0 and 
�L = 0).

Illustrations
The normality of the dependence structure between traits 
(precorrected by environmental factors), can be graphi-
cally evaluated by fitting a bivariate normal contour plot 
to the plot of the two phenotypes (or, if the phenotypes 
are not marginally distributed, the scatter plot of Gauss-
ian quantiles of the rank of the two phenotypes over the 
number of observations, see for example [15]). Devia-
tions from normality can also be evaluated using Mar-
dia’s skewness and kurtosis as mentioned before. Such a 
graphic and measures are illustrated in the two following 
examples.

Example 1 The first illustrative dataset consists in 
n = 2808 Large White pigs, observed over a 100-day 
period between 2017 and 2019. The phenotypes observed 
were cumulative feed intake (CFI) at 10 days and average 
daily gain (ADG) at 100 days. The Pearson’s correlation 
between the two phenotypes is ρ = −0.27.

The quantiles of the ranks over n of the phenotypes and 
the contour plot of the bivariate normal distribution are 
plotted in Fig.  1a. In spite of the normality of the mar-
gins, the distribution of the points is not homogeneous 
in the ellipse of the contour plot of the bivariate Gaussian 
distribution, suggesting that the hypothesis of bivariate 
normality of pairs of phenotypes is unrealistic.

Fig. 1 Contour plot of bivariate distributions with Gaussian margins and for copula, the normal copula, Frank’s copula, Clayton’s copula and Joe’s 
copula or the rotated versions, with Kendall’s tau (top) τ = 0.7 (bottom) τ = −0.7

Table 1 Mean value of Mardia’s skewness and kurtosis for the 
simulated bivariate distributions

Mean values were obtained from 1000 simulations of a sample of size 1000. 
Marginal distributions were Gaussian. Copulas were normal (N), Frank (F), 
Clayton (Cl) and Joe (J)

τ = 0.4 τ = 0.7

Skewness Kurtosis Skewness Kurtosis

N 0.02 7.98 0.02 7.99

F 0.03 8.66 0.07 11.01

Cl 0.69 8.61 2.31 11.58

J 0.78 8.73 2.35 11.67
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Example 2 The second illustration is the average daily 
gain of n = 1289 lambs and their mothers’ average milk 
production. The Pearson’s correlation between the two 
phenotypes is ρ = 0.57 . The quantiles of the ranks over 
n of the phenotypes are plotted in Fig. 1b. As in Exam-
ple 1, the distribution of the points is not homogeneous 
in the ellipse of the bivariate Gaussian distribution and 
the bivariate normality hypothesis of pairs of phenotypes 
can be questioned.

Using the VineCopula package [e.g. 18] in R [19], it 
is possible to define the “most adjusted” copula in terms 
of Akaike information criterion (AIC) and to perform 
the corresponding contour plots. It should be noted 
that, within a trait, data are considered to be inde-
pendent in the calculus of the AIC, which is not true 
due to the genetic part. Nevertheless, this AIC classi-
fication allows us to obtain a more acceptable copula. 
The copula that fits both datasets best is the Joe-Frank 
[14] (or rotated version). In Fig. 3, the contour plots of 
the bivariate distribution with the Joe-Frank copula and 
Gaussian margins are shown for the two illustrations. 
The choice of these bivariate distributions seems to be 
more satisfactory than the multivariate Gaussian distri-
butions shown in Fig. 2.

Mardia proposed a normality test based on the dis-
tance between the measured skewness and kurtosis 
and the theoretical values for the Gaussian case [17]. 
For the pig example, skewness and kurtosis values 

were, respectively, 0.40 and 8.15 and the p-values for 
the respective Mardia normality tests were 10−6 and 
0.31. Hence, the normality hypothesis can be rejected 
because of the asymmetry of the distribution.

For the lamb example, the respective skewness and 
kurtosis values were 0.03 and 8.67 and the p-values of the 
respective Mardia tests were 0.14 and 2.3× 10−3 . Hence, 
the normality hypothesis can be rejected because of the 
heaviness of the distribution tails.

In this study, the impact of a non-normal dependence 
structure between phenotypes on the REML estimations 
of the variance components in the genetic models was 
evaluated by simulating a simplified pig breeding scheme.

Simulations
The populations were generated following the same 
schema as Gonzales et al. [20]. Founders G0 consisted in 
n0 = 216 unrelated animals, 204 females and 12 males. 
For the following generations, each male was mated to 17 
females. Eight generations (G1 to G8 ) were simulated. To 
this end, two multi-trait situations that exist in pig farm-
ing were considered.

The first situation is standard case, where all progeny 
had two observed phenotypes. In the simulations, each 
female produced 12 offspring: 2 males and 10 females 
(the artificial unbalanced sex ratio may be due to a 
higher male culling rate in unrelated other phenotypes). 
Thus, each generation comprised 2448 animals. All 

Fig. 2 Plot of Gaussian quantiles of the ranked observations over n animals for the two illustrations. a Cumulative feed intake (CFI) at 10 days and 
average daily gain (ADG) at 100 days of n = 2808 Large White pigs, b ADG of n = 1289 lambs and their mothers’ average milk production. Contour 
plots of the normal copula with respective Pearson’s correlation ρ of − 0.27 and 0.57.
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progeny were candidates for selection. The total number 
of animals over eight generations, including founders was 
n = 19, 800.

The second multi-trait situation mimicked a second 
phenotype that can only be measured after culling (such 
as carcass traits). In the simulations, half of the animals 
have a missing value on the second phenotype. Only the 
animals with a missing value are candidates for breed-
ing. Each female produced 24 offspring: 4 males and 24 
females with 2 males and 12 females with both traits 
and 2 males and 12 females with only one trait, the lat-
ter being the candidates for selection. Thus, each genera-
tion comprised 4896 animals, and over eight generations, 
n = 39, 384 . Only 2448 animals per generation were can-
didates for selection.

In both situations, male and female breeders were ran-
domly mated to produce the next generation, but in such 
a way, that the full/half siblings were not mated with each 
other to limit inbreeding.

In generations G1 to G3 , the reproducers were chosen 
at random. Then, from G4 to G8 , selection was performed 
for a balanced breeding objective for the two traits. 
Reproducers were chosen by truncation from a combina-
tion of their breeding values estimated by BLUP with a 
weight of 50% on each trait. Selection was made within 
the progeny of one male. Among the 34 male offspring 

of a male, the best male was selected, which represents a 
selection rate of 2.9% and among the 170 female offspring 
of a male, the best 17 females were selected, which repre-
sents a selection rate of 10%.

Genetic values were simulated as follows. For the founder 
generation, given a genetic covariance matrix 

� =

(

σ 2
a1

σa12
σa12 σ 2

a2

)

 , breeding vectors (ai,1, ai,2) , i = 1, . . . , n0 

were drawn according to the Gaussian distribution with the 
covariance matrix � . For the other generations, the breeding 
values were ai,j = 0.5(aif ,j + aim,j)+Mij , j = 1, 2 and 
i = n0 + 1, . . . , n , where if  and im were respectively the 
indexes of the sire and dam of the ith animal and (Mi1,Mi2) 
was the Mendelian sampling term drawn from a bivariate 
Gaussian distribution with the covariance matrix �/2.

Performances were then simulated according to dif-
ferent residuals. All the simulated residuals (εi,1, εi,2) , 
i = 1, . . . , n , were sampled independently from a bivari-
ate distribution with standard Gaussian margins. That is 
to say, in Eq.  (1), F1 = F2 = � . The copulas were the N 
copula (Gaussian case), F copula, Cl copula and J copula 
(or the rotated version according to the sign of the resid-
ual correlation).

Conditional copula approaches were used to gener-
ate the residuals for non-Gaussian distributions [12, 

Fig. 3 Plot of Gaussian quantiles of the ranked observations over n animals for the two illustrations. a Cumulative feed intake (CFI) at 10 days 
and average daily gain (ADG) at 100 days of n = 2808 Large White pigs. Contour plots of the rotated 270◦ Joe-Frank copula with parameters 
(δ, �) = (−1.4,−1) . b ADG of n = 1289 lambs and their mothers’ average milk production. Contours plots of the Joe-Frank copula with parameter 
(δ, �) = (6, 0.56)
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Section 2.9]. For negative Kendall’s correlations, rotated 
270◦ copula were used taking −εi,2 instead of εi,2.

To be sure that the comparisons would be meaningful, 
the copula parameter was chosen in such a way that Ken-
dall’s tau, τe , was the same for all residuals.

Note that, thus, the Pearson’s residual correlations ρe 
between the different simulated copula were different. 
Given the bivariate distributions of the residual terms, 
theoretical correlations ρe were obtained by numerical 
integration, except for the Gaussian case, where Kend-
all’s tau and Pearson’s correlation are linked by the fol-
lowing formula ρ = sin(π2 τ ) [14].

We considered three categorical fixed effects with 
three, two and two modalities for each trait and 
denoted βj the vector of the fixed effect for the jth trait 
(arbitrary values in our simulations). The associated 
design matrices are denoted Xj , j = 1, 2.

Finally, the bivariate phenotypes (yi1, yi2) , i = 1, . . . , n 
were obtained following the bivariate animal model:

where for j = 1, 2 , yj = (y1,j , . . . yn,j) , εj = (ε1,j , . . . εn,j) 
and aj = (a1,j , . . . an,j).

For each generation Gk , k ≥ 3 , the variances and 
covariances were estimated by REML using the data 
from generations G0 to Gk . The heritabilities of the two 
traits (in the narrow sense [21]) were then computed as:

The BLUP of the BV were obtained, generation after gen-
eration by solving Henderson’s mixed model equations 
[1, 7] again using the data from generations G0 to Gk . The 
genetic gains for the generation Gk for each of the two 
traits, were evaluated by the difference in the mean value 
of the BV of generation Gk with the mean value of the BV 
of the founders ( G0 ) relative to the theoretical genetic 
standard deviation. The REML estimations and the BLUP 
were made using the Asreml software [22].

Residual variances σ 2
e1

 and σ 2
e2

 were set to 1. For the 
genetic effect, we considered two Kendall’s correlations: 
τa ∈ {0.2, 0.4} , that correspond to Pearson’s correlation 
ρa ∈ {0.31, 0.59} . For the residual effect, we considered 
four Kendall’s correlations: τe ∈ {±0.4,±0.7} . The cor-
responding Pearson’s residual correlations (in absolute 
values) for N, F, Cl and J copula, respectively, were for 
the medium correlation ( |τe| = 0.4 ): 0.588, 0.544, 0.578 
and 0.576 and for the high correlation ( |τe| = 0.7 ): 
0.891, 0.846, 0.852 and 0.850. For each possible pair of 
correlations ( τa and τe ), the genetic variances ( σ 2

a1
 and 

σ 2
a2

 ) considered were (0.18 and 0.18), (0.18 and 0.67) 

(2)
{

y1 = X1β1 + a1 + ε1
y2 = X2β2 + a2 + ε2,

(3)h2j =
σ 2
aj

σ 2
aj
+ σ 2

ej

, j = 1, 2.

and (0.67 and 0.67) leading to low and moderate herita-
bilities of 0.153 and 0.401. Thus, 24 parameter sets were 
considered. Finally, 1000 Monte Carlo simulations per 
set (of such populations) were run and the mean value 
and the SE of the estimated heritabilities, genetic and 
residual correlations and genetic gains were considered. 
Note that the SE of the estimates corresponds to the SD 
of the 1000 estimations.

Results
First, we present the results of the estimated heritabili-
ties, genetic correlations and residual correlations in the 
situation with no missing phenotype. Then, we summa-
rize the situation in which some phenotypes on the sec-
ond trait are missing.

Heritability, with no missing phenotypes
At generation G3 , (random selection), regardless of the 
set of parameters and copula, the absolute biases for her-
itability (average of the 1000 replicates) ranged between 
0.000 and 0.001 with SE ranging from 0.017 to 0.031. No 
differences were significant for the t-test at level α = 0.05.

In Additional file  1: Tables  S1, S2, the average biases 
and SE of the estimated heritabilities at generation G8 are 
given for the situation with no missing phenotypes.

At generation G8 , regardless of the set studied, the 
absolute bias of the heritability for the N copulas was on 
average 0.003 with values ranging from 0.002 to 0.005. 
The absolute bias for the heritability of the non-normal 
copulas tended to be higher (in absolute value): on aver-
age, 0.016 with values ranging from − 0.052 to 0.059. The 
SE ranged from 0.007 to 0.019, with an average of 0.015 
for a positive residual correlation and an average of 0.012 
for a negative residual correlation.

The differences between the estimated heritabilities 
and the true heritabilities were never significant for the 
F copula. For the Cl and J copulas, when the residual 
dependence was positive, the differences were significant 
for the trait with a moderate heritability when the resid-
ual dependence was high and the heritability of the two 
traits differed, with an underestimated heritability for Cl 
and an overestimated heritability for J. The maximum of 
the absolute bias was 0.059 for the J copula and 0.052 for 
the Cl copula. When the residual dependence was nega-
tive, with some rare exceptions, the moderate heritabili-
ties estimates were systematically biased, whereas the 
heritability estimate of the traits with a low heritability 
only differed significantly from its true value when the 
negative residual dependence was strong.

Figure  4 illustrates one of the sets of parameters with 
the strongest absolute biases, with a true heritability of 
0.153 for the first trait and of 0.401 for the second, where 
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the estimated heritabilities for the second trait were box-
plotted generation by generation for each copula. Ken-
dall’s tau of the genetic component was τa = 0.4 and 
Kendall’s tau of residual component was τe = 0.7.

For this set of parameters, we observed for the trait 
with the highest heritability marked changes in the esti-
mated biases between G3 and G4 (the absolute difference 
in the mean values of the estimated biases between G3 
and G4 was 0.031 for Cl copula). The change between G7 
and G8 was much smaller (the absolute difference in the 
mean values was 0.006 for J copula). On average, Mar-
dia’s kurtosis values obtained from the first three genera-
tions (random selection) were greater than 8.73 for all the 
non-normal copulas and Mardia’s skewness values were 
greater than 0.39 for Cl and J copula (leading to a rejec-
tion of the normal hypothesis).

Correlations with no missing phenotypes
At generation G3 , for both the genetic and residual cor-
relations, no significant differences were observed for the 
t-test at level α = 0.05 . The absolute biases for the genetic 
correlations ranged from 0.000 to 0.011 (SE between 
0.036 and 0.115). The absolute biaises of the residual cor-
relations were always lower than 0.002 (SE between 0.004 
and 0.026).

In Additional file  1: Tables S3, S4, the average biases 
and SE of the estimated correlations (genetic and resid-
ual) at generation G8 are shown for the situation with no 
missing phenotypes.

At generation G8 , regardless of the cases studied, the 
absolute bias in the genetic correlation of the N copula 
was on average 0.003 and was higher for the non-normal 
copulas, on average 0.047. The absolute bias in the resid-
ual correlations of the N copula was on average 0.001 
and for the non-normal copulas, on average 0.017. The 
SE ranged from 0.019 to 0.075 for the genetic correla-
tions (lower for a positive residual correlation, on average 

0.036 and higher for negative residual correlation, aver-
age 0.052) and from 0.003 to 0.015 for the residual 
correlations.

For non-normal copulas, when the residual depend-
ence was positive, the genetic correlation was systemati-
cally biased upward and the residual correlation of data 
simulated with the F or Cl copulas was biased downward. 
With some rare exceptions, the reverse was observed for 
the data simulated using the J copula. When the residual 
dependence is negative, the general trend is underesti-
mation of the genetic correlation and overestimation of 
the residual correlation for all non-normal copulas, but, 
for the genetic correlation, the values were never signifi-
cantly different from 0.

In the case of a positive residual dependence, for both 
the residual and genetic correlations, the highest values 
of the absolute bias were for a high residual depend-
ence and heritability for both traits. In these cases, the 
differences between estimated and true parameters for 
the non-Gaussian distributions were all significant. The 
maximum absolute bias was reached for the J copula, 
i.e. 0.161 for the genetic correlations and 0.06 for the 
residual correlations, followed by the Cl copula, 0.140 
for the genetic correlations, and 0.056 for the residual 
correlations.

Figures 5 and 6 illustrate one of the set of parameters 
with the strongest absolute biases for the genetic and 
residual correlations, with the same heritability of 0.401 
for the two traits. Kendall’s tau of the genetic component 
was τa = 0.2 and Kendall’s tau of the residual component 
was τe = 0.7.

For these Kendall correlations, we observed marked 
differences in the estimated biases between G3 and G4 
both for the genetic and residual correlations. The dif-
ference was much smaller between G7 and G8 . For the 
genetic correlations, on average, the absolute difference 
in bias between G3 and G4 was 0.042 and 0.012 between 

Fig. 4 Boxplot of the estimated heritabilities from generation G3 to generation G8 for the set corresponding to h21 = 0.153 , h22 = 0.401 , τa = 0.4 and 
τe = 0.7 with no missing phenotypes. 1000 simulations were run. The red dotted line represents the theoretical heritability. Residual copulas are 
normal(N), Frank (F), Clayton (Cl) and Joe (J). Grey boxes are the 95% confidence intervals
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G7 and G8 for the J copula. For the residual correlations, 
on average, the absolute difference in bias between G3 
and G4 was 0.024 and 0.007 between G7 and G8 , for the 
J copula. On average, Mardia’s kurtosis values obtained 
from the first three generations (random selection) were 
lower than 8.21 for all the non-normal copulas (the tests 
of multivariate normality based on kurtosis were, on 
average, non-significant) but Mardia’s skewness values 
were, on average, greater than 1.17 for the C and J copula 
(leading to a rejection of the normal hypothesis).

Genetic gain with no missing phenotypes
The genetic gains for generation G8 for the situation with 
no missing phenotypes, are in Additional file 1: Tables S5, 
S6.

The genetic gains were higher for traits with a moder-
ate heritability than a low heritability and higher when 
the residual correlation was negative compared to when 
it was positive. The SE were high for the whole set of 
parameters considered, ranging from 0.33 to 0.60, higher 
for positive residual correlations (average 0.43) and lower 
for negative residual correlations (average 0.35).

Figure  7 shows the relative differences in genetic gain 
from the normal case for the F, Cl and J copula. When the 
residual correlation was positive, and the two traits had 
the same heritability, the genetic gain for F and Cl was 
higher than for the N copula and lower for the J copula 
and the relative difference between the Gaussian and 
non-Gaussian cases was low ( < 5% ). When the heritabil-
ity of the two traits was different, the genetic gain for the 
F and Cl copulas was lower for the most heritable trait 
and higher for the other trait than for the N copula. The 
genetic gain for the J copula was higher for both traits. 
The largest absolute relative difference was reached by 
the Cl copula with a low genetic correlation and high 
positive residual dependence, with a relative gain (with 
respect to the Gaussian case) of 21.3% for the trait with 
a low heritability, and a relative loss of 9.7% for the trait 
with a moderate heritability. When the residual correla-
tion was negative, the genetic gain was lower for non-
normal copulas than for the N copula when the residual 
correlation and the relative difference with the Gaussian 
case were moderate (less than 8% absolute relative differ-
ence in all cases).

Fig. 5 Boxplots of estimated genetic correlations from generation G3 to generation G8 for the set corresponding to h21 = 0.401 , h22 = 0.401 , τa = 0.2 
and τe = 0.7 with no missing phenotypes. 1000 simulations were performed. The red dotted line represents the theoretical genetic correlation. 
Residual copulas are normal (N), Frank (F), Clayton (Cl) and Joe (J). Grey boxes are the 95% confidence intervals

Fig. 6 Boxplots of estimated residual correlations from generation G3 to generation G8 for the set corresponding to h21 = 0.401 , h22 = 0.401 , τa = 0.2 
and τe = 0.7 with no missing phenotypes. 1000 simulations were performed. The red dotted lines represent the theoretical residual correlations. 
Residual copulas are normal (N), Frank (F), Clayton (Cl) and Joe (J). Grey boxes are the 95% confidence intervals



Page 9 of 12Rohmer et al. Genetics Selection Evolution           (2022) 54:36  

Summary of the situation with missing phenotypes
Biases and SE of heritabilities and estimated genetic and 
residual correlations are in Additional file  2: Tables  S7, 
S8.

For the sake of simplicity, we do not present the case 
of τe = 0.4 for which biases are similar to the case of 
τe = 0.7 . For both the estimated heritability and the esti-
mated correlations, biases are extremely low and close 
to the Gaussian case (always lower than 0.005). The SE 
ranged from 0.010 to 0.019 for the heritabilities, from 
0.023 to 0.049 for the genetic correlation, and from 0.003 
to 0.012 for the residual correlations. No significant 

differences were found from the true parameters in the 
t-test at level α = 5% . Genetic gains are in Additional 
file 2: Table S9.

As above, the genetic gains for the non-normal copulas 
were similar to the genetic gains for the N copulas. The 
maximum absolute difference relative to the Gaussian 
case corresponded to a loss of 2.2%.

Discussion
We performed simulation analyses with the bivariate 
animal model to qualify the robustness of the REML 
in the presence of deviations from normality due to 

Fig. 7 Plot of the relative differences between the normal and non-normal cases in genetic gain for generation G8 with no missing phenotypes. 
1000 simulations were performed. Residual copulas are Frank (F), Clayton (Cl) and Joe (J) or the rotated version. Kendall’s correlations τe were ±0.7 . 
The top two rows represent positive residual correlations and the bottom two rows represent negative residual correlations
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misspecification of the dependence structure of the 
residual part. Thus, we looked for classes of non-normal 
parametric copulas for the residual part that deviate from 
normality because of the asymmetry and/or because of 
the tails of the distribution. Hence, we considered:

• A symmetric dependence structure (F copula) and 
asymmetric distribution (Cl and J copula).

• A case with lower (left) tail dependence (Cl copula) 
upper (right) tail dependence (J copula) and without 
tail dependence (F copula).

Note that in the sense of Mardia’s kurtosis, the higher 
the residual correlation, the heavier the tail of the 
distribution.

Villanueva et al. [23] reported that the benefit of multi-
variate BLUP on univariate BLUP is higher when absolute 
correlation values between traits are high, when genetic 
and phenotypic correlations have opposite signs, or when 
heritabilities differ for the two traits. Thus, the parameter 
sets used in our simulations covered these situations.

We have shown, in the context of a simplified pig 
breeding scheme, the following three points: 

1. With random selection of the reproducers, the REML 
is robust to a strongly asymmetric and heavy-tailed 
distribution on the residual part.

2. When the phenotype for one trait is missing for half 
the population, and selection of the reproducers is 
carried out among the animals with only one trait 
by truncation from a combination of their EBV, the 
REML is also robust to a strongly asymmetric and 
heavy-tailed distribution on the residual part.

3. With no missing phenotypes and with truncation 
selection of the reproducers from a combination of 
their EBV, both the asymmetry of the residual part 
and the heaviness of the tails of the distribution can 
lead to significant differences between the theoretical 
parameters and values obtained by REML, when the 
correlation of the residual part is sufficiently large. 
When both the genetic and residual correlations 
are positive, the differences between the estimated 
and theoretical heritabilities are larger in the case of 
unbalanced heritabilities and largest for the trait with 
the highest heritability. Conversely, the differences 
between the estimated and theoretical correlations 
are larger in the case of balanced heritabilities.

As already mentioned above, for the generations with 
random selection ( G0–G3 ), the robustness of the esti-
mations was remarkable for all the variance-covariance 
components, in spite of the use of the REML method 
that uses the likelihood of the multivariate Gaussian 

distribution to estimate parameters; regardless of 
whether the residual distribution was asymmetric or 
heavy-tailed, the estimations were not affected. This 
can be partially explained by the fact that the probabil-
ity of the residual part of a chosen animal being close 
to the center of the bivariate distribution is high in the 
different models due to the normality of the traits. The 
centers of non-Gaussian distributions are not really dis-
torted compared to the Gaussian distribution. Hence, 
neither the asymmetry of the tails nor the heaviness of 
the tails of the residual distribution affects the REML.

With missing phenotypes on the second trait, we 
observed no significant impact of a copula miss-specifi-
cation on REML estimations of the variance-covariance 
components, even when truncation selection was per-
formed. Since selection was carried out on animals with 
only one observed trait, the REML was probably compa-
rable to the univariate case, for which the robustness of 
the REML estimations that face deviation from normality 
has been reported by many authors, e.g. [24–27].

These two situations (random selection or missing 
phenotypes) suggest that the observed deviations from 
normality in the case of truncation selection and two 
observed traits are due both to the selection process car-
ried out in the upper right tail of the distribution (com-
bined with the asymmetry and the heaviness of the tails 
of the residual distribution) and indirectly to the selec-
tion intensity (see for example [28, 29]), and to the choice 
of the candidates for breeding. The lowest observed 
biases for the symmetric non-Gaussian distribution (F 
copula) suggest that the asymmetry of the residual distri-
bution affects the REML more than the heaviness of tails 
of the residual distribution.

When the heritability of the two traits is the same, 
the truncation selection process combined with high 
(respectively low) dependences in the upper right tail of 
the residual distribution will lead to overestimation (resp. 
underestimation) of the residual correlations and con-
sequently to underestimation (respectively overestima-
tion) of the genetic correlations. In the case of a negative 
correlation, the considered residual distributions do not 
have a right upper tail, hence the impact on the estimated 
genetic and residual correlations was globally lower (in 
particular, SE of the genetic correlation were greater). 
Nevertheless, in this case, the selection had more impact 
on the REML estimations of the heritabilities (with 
smaller SE), particularly when the heritability of the two 
traits was moderate.

The largest differences in genetic gain compared with 
the Gaussian case were for the Cl copula with unbalanced 
heritabilities, for which the variability in the upper left 
part of the distribution was the highest among the copu-
las considered here.
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Copulas do not enable characterization of the full 
dependence structure between random vectors, except 
for a few copulas (e.g. normal or t-copulas). See Hofert 
et  al. [30] for an exhaustive discussion on this topic. 
Hence, to simulate non-Gaussian phenotypes, non-
Gaussian dependence structures were only applied to the 
residuals.

We limited our study to two correlated traits. The case 
of d > 2 dimensional phenotypes could be explored with 
a more complex dependence structure between pheno-
types. For example, one could study hierarchical Archi-
medean copulas in multivariate residuals by considering 
the composition of bivariate Archimedean copulas, see 
for example, Okhrin and Ristig [31].

In this study, our aim was to exacerbate differences 
between the Gaussian and non-Gaussian case by considering 
high residual (and phenotypic) correlations and heavy-tailed 
distributions for the residual part. Of course, in practice, dif-
ferences between the true distribution and the Gaussian dis-
tribution are not always so pronounced and any errors in the 
estimation of the genetic components can be difficult to eval-
uate. For bivariate data, the scatter plot of the ranks (based 
on the phenotypes, corrected for fixed effects) can allow to 
identify the copula, and in particular, it can be viewed as a 
graphical tool to check the normality of the copula, especially 
the asymmetry or the tail dependence of the data. Mardia’s 
skewness and kurtosis allow to indicate deviations from the 
normality and can be evaluated before the selection process 
to anticipate estimation bias. Other measures can be used 
to evaluate the deviation from the normality. For example, 
lower/upper tail dependencies can be evaluated below/above 
a cut-off parameter according to Schmid and Schmidt [32].

To reduce biases due to the selection process and the 
miss-copula specification in the REML estimations, an 
inference copula-based method, which assumes that the 
copula family of the residual part is known, could be 
developed to estimate more accurately the parameters 
of the genetic model. Nevertheless, this assumes prior 
knowledge on the residual dependence structure (for 
example biological evidence); the choice for the paramet-
ric copula on the residual part could also be guided by 
the scatter plot of the ranks. An interesting perspective 
would be to propose an efficient algorithm to evaluate 
the parameters of the mixed model when the copula of 
the residual part is not normal.

Conclusions
In this paper, we used simulations to assess the impact 
of a non-Gaussian distribution of the residuals for the 
bivariate animal model on the REML estimation of the 
variance-covariance terms. We considered one situa-
tion in which two traits are observed for each animal 
and another situation in which the second trait is only 

observed in half of the population (typically meas-
ured after culling). In the two situations, when male 
and female breeders are chosen at random, our results 
show that even in the case of a non-Gaussian distribu-
tion for the residual part, REML estimations based on 
Gaussian assumptions provide robust estimates of var-
iance-covariance components. For a truncation selec-
tion based on the summation of the EBV, in the case of 
missing phenotypes for the second trait, we observed 
no impact of the miss-specification on the REML esti-
mations of the variance-covariance components. Thus, 
in this situation, REML can be used even when phe-
notypes deviate from the multi-normal distribution. 
Nevertheless, in the case of two observed phenotypes, 
one must pay attention to possible errors due to the 
residual dependence structures, particularly in the case 
of high correlations and asymmetric or heavy-tailed 
distributions.
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