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Abstract 15 

The process of oxidative stress occurs all over the production chain of animals and 16 

food products. This review summarizes insights obtained in different farm species 17 

(pigs, ruminants, poultry, and fishes) to underpin the most critical periods for the 18 

venue of oxidative stress, namely birth/hatching and weaning/start-feeding phase. 19 

Common responses between species are also unravelled in periods of high 20 

physiological demands when animals are facing dietary deficiencies in specific 21 

nutrients, suggesting that nutritional recommendations must consider the 22 
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modulation of responses to oxidative stress for optimizing production performance 23 

and quality of food products. These conditions concern challenges such as heat 24 

stress, social stress, and inflammation. The magnitude of the responses is partly 25 

dependent on the prior experience of the animals before the challenge, reinforcing 26 

the importance of nutrition and other management practices during early periods to 27 

promote the development of antioxidant reserves in the animal. When these 28 

practices also improved performance and health of the animal, this further confirms 29 

the central role played by oxidative stress in physiologically and 30 

environmentally-induced perturbations. Difficulties in interpreting responses to 31 

oxidative stress arise from the fact that the indicators are only partly shared between 32 

studies, and their modulations may also be challenge-specific. A consensus about 33 

the best indicators to assess pro-oxidative and antioxidant pathways is of huge 34 

demand to propose a synthetic index measurable in a non-invasive way and 35 

interpretable along the productive life of the animals.  36 

 37 

Keywords: Oxidative stress, Physiological transition, Inflammation, Challenge, 38 

Animal performance. 39 

 40 

Implications 41 

The agro-ecological transition in farming practices stimulates natural processes in 42 

biological systems. Oxidative stress is considered as a pivotal mechanism 43 

underlying the adaptation of animals to management practices and acclimation to 44 
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environmental constraints. This reinforces the importance of monitoring and 45 

understanding the responses to pro-oxidant challenges in farm animals. An overview 46 

in different farm species from different ecosystems (terrestrial, aquatic) may be 47 

helpful to obtain a consensus on the best biomarkers to measure the redox status 48 

and evaluate and propose management practices able to limit the short and 49 

long-term consequences of oxidative stress on animal performance, health and 50 

welfare. 51 

Introduction 52 

Farm animals are facing many environmental conditions and constraints that 53 

challenge their physiology during their whole productive life. Oxidative stress has 54 

emerged as an important issue to explain dis-adaptation and dysfunctions (Abuelo et 55 

al., 2019) leading to impaired survival, bad production performance or compromised 56 

health and immunity (Al-Gubory et al., 2010). Oxidative stress arises from the 57 

imbalance between the production of reactive oxygen species (ROS) and the 58 

neutralizing capacity of the antioxidant system. The ROS family includes free 59 

radicals which are often small and diffusible molecules with one or more unpaired 60 

electrons (peroxides, superoxide, hydroxyl radical) and no-radical molecules 61 

(hydrogen peroxide, peroxinitrite, etc.) which are by-products of the metabolism of 62 

oxygen in animal cells. The ROS have beneficial effects for many biological 63 

processes such as stem cell differentiation, lineage commitment, self-renewal and 64 

cell homeostasis (Ren et al., 2015), because they act as signals inside and between 65 

cells to regulate gene expressions involved in cell development and growth (Dalton 66 
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et al., 2002). However, exaggerated and even uncontrolled ROS production induces 67 

oxidative damage to proteins, lipids and DNA, and results in the deterioration of 68 

cellular structure and functions, and even cell death. Damaged and destroyed 69 

macro-biomolecules can also trigger inflammatory responses as a starting point of 70 

altered health. Both enzymatic and non-enzymatic molecules produced by the 71 

animal (uric acid, glutathione GSH) or brought by the diet (vitamins E and C, 72 

carotenoids, flavonoids, polyphenols, selenium, zinc) act as antioxidants to prevent 73 

or repair the oxidative damages. Oxidative stress is then defined as a distress 74 

situation corresponding to an overexposure to oxidants which results in non-specific 75 

oxidation of biomolecules and disruption of redox signalling (Sies and Jones, 2020). 76 

This can induce transient or permanent perturbations which generate physiological 77 

consequences within the cells and at the whole animal level (Pignatelli et al., 2018).  78 

A better knowledge of the critical periods when exaggerated ROS production 79 

occurs and(or) elements in the antioxidant defence system are lacking, is required in 80 

farm animals to pay attention on aggravating events during these periods, with the 81 

objectives to limit consequences on production performance, health, and welfare. 82 

This review enlightens critical periods for the venue of oxidative stress in different 83 

farm species, including mammals and oviparous species living in terrestrial or 84 

aquatic environments. Detailed mechanisms underlying oxidative issue for a given 85 

species can be found in other reviews (Lushchak, 2011; Birnie-Gauvin et al., 2017; 86 

Chowdhury and Saikia, 2020; Hoseinifar et al., 2021). However, enlightening 87 

common or specific responses across species may allow a better anticipation of the 88 
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risk events for each species when the conventional management practices must 89 

evolve to cope with climatic pressure and environmental or societal expectations. 90 

For instance, quality issues for all species can be foreseen when considering meat 91 

quality degradation of broilers due at least in part to the physiological challenge 92 

imposed by rapid growth on oxidative metabolism. Pastoral ruminant systems can 93 

provide examples for risks underlying outdoor productions in pigs or other species. 94 

Inter-species comparison in the modulation of pro- and antioxidant molecules and its 95 

relationships with variations of performance and health may also underpin the best 96 

indicators (when, how, what, where, frequency) to monitor oxidative stress in farm 97 

animals.  98 

Critical physiological transition periods in early life 99 

Physiological transition periods are associated with many obligatory changes in 100 

types of nutrients, environmental temperature, physical activity, etc..,. These induce 101 

many metabolic changes in cell physiology, notably for mitochondria responsible for 102 

energy production and controlling many processes from signalling to cell death 103 

(Salin et al., 2015; Bottje, 2019).  104 

Birth or hatching and start-feeding phases  105 

Birth in mammals is the most striking shared period for the venue of acute oxidative 106 

stress, due to the abrupt switch from a fetal environment with a lower oxygen supply 107 

(maternal-mediated respiration in the uterus) than that after birth (autonomous 108 

pulmonary respiration). Whereas hypoxia is necessary for the development and 109 

growth of the fetus, the aerobic metabolism is needed to efficiently provide enough 110 
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energy for the newborn to ensure survival and development (Morton and Brodsky, 111 

2016). This switch is obligatory associated with large amounts of ROS generated by 112 

the neonatal cells (Friel et al., 2004). This period is also concomitant with a transition 113 

in gut activity from amniotic fluid to colostrum feeding, which is another source of 114 

oxidative stress (Osorio, 2020; Rosa et al., 2021). In oviparous species, many 115 

similarities at hatching are found with these events at birth. In poultry where the 116 

embryo derives nutrient requirements from the egg, changes in oxygen availability 117 

and nutrition at hatching also induce alterations in the redox status. The role of 118 

oxygen in the venue of oxidative stress was proved by the fact that 119 

hypoxia/re-oxygenation protocol to pre-hatching ducklings resulted in a higher 120 

susceptibility to ROS monitored in red blood cells of these animals (Rey et al., 2010). 121 

In situation of aqueous life for fishes, the hatching period is also critical but this is 122 

likely more due to the nutritional transition and the dramatic morphological changes 123 

in the larvae which both increase the energy demand at this moment, than due to 124 

changes in oxygen availability. A specificity of fish is also the high concentrations of 125 

long chain n-3 polyunsaturated fatty acids in feed and in animal tissues, which are 126 

thus particularly prone to oxidation. In the absence of a suitable antioxidant 127 

protection, lipid peroxidation in fish tissues due to the ingestion of oxidized feeds 128 

during the early developmental stages thus led to depressed growth and bad 129 

survival (Fontagné-Dicharry et al., 2014), inflammatory response 130 

(Fontagné-Dicharry et al., 2018) and various pathologies including muscular 131 

dystrophy (Boglione et al., 2013). 132 
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In all species, internal defence actors against ROS are prepared by the cells in 133 

before birth or hatching. For instance in pigs, proteins of the peroxiredoxins family 134 

were up-regulated with advancing gestational age in adipose tissue (Gondret et al., 135 

2018). The global antioxidant capacity only slightly increases during the few days 136 

after birth, in a moment when plasma concentration of hydroperoxides dramatically 137 

increases (Buchet et al., 2017). This explains why newborns suffer from oxidative 138 

stress in the days after birth. With the gradual development of the antioxidant 139 

system, the oxidative balance can be recovered in 7 days after birth in pigs (Yin et 140 

al., 2013). Similarly, most neonatal calves are experiencing oxidative stress during 141 

the first few weeks of age (Abuelo et al., 2019). During the early developmental 142 

stages in fishes such as trout, the antioxidant protection rather relies on antioxidant 143 

vitamins in the earliest embryonic stages, and after first-feeding, of antioxidant 144 

enzymes (Fontagné et al., 2008). However, similarly to mammals, the endogenous 145 

antioxidant defence system is not fully responsive, leading to pronounced lipid 146 

peroxidation when oxidized feed is ingested during this period (Fontagné-Dicharry et 147 

al., 2014). 148 

Importantly, the consequences of the redox imbalance during the first days after 149 

birth or hatching are more detrimental in situations where prior tissue development is 150 

impaired. In pigs, intrauterine growth restriction, a common feature observed in a 151 

subset of littermates for sows selected for high prolificacy, was associated with 152 

impaired mitochondrial biogenesis and energy homeostasis and with greater hepatic 153 

malondialdehyde (MDA) concentration, a marker of lipid peroxidation (Zhang et al., 154 
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2017). Depressed levels of proteins that regulate oxidative defence and increased 155 

levels of proteins involved in the response to oxidative stress have been reported by 156 

proteomic studies on intestine, liver and muscle from intrauterine growth retarded 157 

piglets (Wang et al., 2008). This means that a particular attention must be paid on 158 

stimulating the antioxidant capacities of piglets during the perinatal period, and 159 

especially those of the lightest weight. In ruminants, suboptimal intrauterine 160 

conditions can similarly affect the foetus (Abuelo et al., 2019). As compared with 161 

single foetuses, twinning in ewes led to intrauterine growth restriction, and this was 162 

associated with higher oxidative stress monitored in the cord blood (Sales et al., 163 

2018). Artificial feeding after birth to compensate for an insufficient milk production 164 

by the ewe in the large litters, further depressed the antioxidant capacity of the lambs 165 

when compared with those fed by their mothers, together with other negative 166 

indicators of animal health and welfare (Mialon et al., 2021). In poultry, oxidative 167 

stress was also increased by management practices before hatch. For instance, egg 168 

storage longer than 7 days, which is a common practice in farms for logistical 169 

reasons, negatively influenced the embryonic development and resulted in early 170 

embryonic mortality and lower hatchability (Fasenko, 2007; Pokhrel et al., 2018). 171 

Long egg storage influenced the redox balance, as illustrated by the lower total 172 

antioxidant status (TAS) in serum (Pertusa et al., 2017) and greater MDA 173 

concentrations in the serum and yolk sac (Yang et al., 2020). After hatching, birds 174 

have to cope with specific husbandry conditions and transports. Delayed placement 175 

in hatchery resulted in an increase in lipid peroxidation as proved by higher 176 
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thiobarbituric acid reactive substances (TBARS) in blood and the liver (Foury et al., 177 

2020), and negatively affected animal performance (Guilloteau et al., 2019). This 178 

dis-adaptive oxidative profile was also manifested by altered concentrations in 179 

metabolites involved in the antioxidant status and energy metabolism in the fecal 180 

metabolome, until at least 13 days after the delayed placement (Beauclercq et al., 181 

2019). Whereas no difference was detected in the redox balance indicators in blood 182 

at this time and later in age (Beauclercq et al., 2019; Foury et al, 2020), expression 183 

levels of various genes involved in oxidative stress (such as the transcription factors 184 

NFE2L2 and MEF2A) were modified. The differences were accentuated for males, 185 

which have a lower systemic anti-oxidative activity including lower uric acid 186 

concentration, TAS and ferric reducing ability of plasma (FRAP) than females.  187 

Altogether, these comparisons between species not only underline birth or hatching 188 

as a critical period for the venue of oxidative stress, but they also reveal how 189 

selection for reproduction traits and practices to manage it, further accentuate the 190 

redox imbalance and consequences in the young animals. Besides identifying these 191 

risk factors, possibilities during prenatal/pre-hatching periods may be shared in the 192 

different species to sustain the development of antioxidant capacities of animal 193 

tissues, and thereby to preserve health. Because intrauterine growth restricted 194 

piglets and lambs serve as animal models for a better understanding of the 195 

development of the human embryo and complication of pregnancy, there is a 196 

considerable literature dealing with orally-treated pups to correct oxidative stress 197 

soon after birth. Neonatal formula rich in proteins have been tested to accelerate 198 
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growth recovery, with consequences in the abundance of redox proteins such as 199 

peroxiredoxins, glutathione S-transferase and cyclophilin-A in tissues of growing 200 

intrauterine growth restricted piglets (Sarr et al., 2012). In pigs and ruminants as in 201 

Humans (Manuelian et al., 2021; Fardet and Chardigny, 2013),  other tested 202 

solutions include specific aminoacids with antioxidant and functional properties, and 203 

plants extracts rich in lipotropic and antioxidant compounds to improve antioxidant 204 

capacities during the postnatal period. Dietary antioxidant supplementations than 205 

can routinely be used in farms, have been also tested for gestating and lactating 206 

females to improve the redox status of their young (Abuelo et al., 2019). However, 207 

effects are not always conclusive, depending on the level and timing of 208 

supplementation and on the active principles tested. Reducing maternal stress may 209 

also have beneficial consequences on oxidative stress in the female and the young 210 

(Merlot et al., 2019; see section 5.1). In laying hens, supplying diets with exogenous 211 

antioxidants such as vitamin E, has positive effects on antioxidant status of the egg 212 

yolks and newly hatched chicks (Yang et al., 2020), showing again the benefit of 213 

preparing antioxidant defence through the nutrition of the female. Supplementation 214 

of broiler feeds with herbal plant extract like Melissa officinalis L. also has beneficial 215 

effects on the redox balance, with improved performance during the growth phase 216 

and different health effects (Travel et al., 2021). The antioxidant defence system 217 

during the early developmental stages in fish can be also sustained by 218 

supplementing diets of the broodstock with aminoacids such as methionine 219 

(Fontagné-Dicharry et al., 2017) and with selenium (Wischhusen et al., 2019). If the 220 
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parental selenium supplementation can improve antioxidant status and performance 221 

of the progeny, this may however induce a lower stress resistance in the longer term 222 

(Wischhusen et al., 2020a) due to alteration of the Methionine cycle and epigenetic 223 

changes (Wischhusen et al., 2020b). Therefore, any strategies for parental feeding 224 

must be investigated at short and long term before definitive recommendations can 225 

be formulated. 226 

Juvenile transitions 227 

Other critical periods for the venue of oxidative stress occur later in the development, 228 

when physiological transitions are abruptly imposed to the young animals (Table 2). 229 

In these situations, oxidative stress is more likely the consequence of systemic 230 

inflammation rather than the cause of systemic disorders. Indeed, in conventional 231 

farming systems for pigs and dairy calves, weaning is lived as the abrupt separation 232 

from the mother, and this is also associated with a dietary switch from milk to solid 233 

feeds rich in plant raw materials. Weaning may generate immune and inflammatory 234 

responses that can reach a systemic dimension (McCracken et al., 1999; Gilbert et 235 

al., 2019). For instance, intestinal dysfunction is often observed just after weaning 236 

and it is clearly associated with inflammatory response and oxidative stress at both 237 

the systemic and intestinal levels, which are manifested by changes in the 238 

expression levels of cytokines and antioxidant enzymes together with increased 239 

concentrations of lipid oxidation markers in pigs (Zhou et al., 2018). In pigs, 240 

hydroperoxides concentrations increased whereas the blood antioxidant potential 241 

(BAP) decreased during the days just after weaning, leading an increase in the 242 
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oxidative stress index (hydroperoxides / BAP ratio) between 5 and 12 days after 243 

weaning (Buchet et al., 2017). Other redox indicators such as plasma MDA, FRAP 244 

and erythrocyte GSH content indicate that consequences of oxidative stress may 245 

last at least 28 days after weaning (Degroot et al., 2020). The local and systemic 246 

inflammatory responses are probably the main cause of the production of oxidation 247 

products during the days after weaning. In support, oxidative stress was higher in 248 

piglets with post-weaning diarrhoea than in those with no diarrhea (Buchet et al., 249 

2017). Importantly, antioxidant defence and clearance of dysfunctional mitochondria 250 

at weaning were more compromised in intrauterine growth restricted piglets than in 251 

their normal littermates (Novais et al., 2021), reinforcing the importance of prenatal 252 

events in the adaptation capacity to postnatal challenges. Indicators of oxidative 253 

stress were also observed in the exhaled breath condensate in calves soon after 254 

weaning. Indeed, oxidative stress may result from respiratory infections due to 255 

stress-induced alterations in the immune function at this moment (Ranade et al., 256 

2014). In both species, another cause of oxidative stress may be the anorexia 257 

observed during the first days after weaning. Anorexia reduces the intake of all 258 

nutrients, and among them, of those with antioxidant properties at the time when 259 

their use is precisely needed to neutralize the oxidative products generated by 260 

inflammation (Amazan et al., 2012). For instance in pigs, blood concentration of 261 

vitamin E declined sharply, and to a lesser extent, that of vitamin A (Buchet et al., 262 

2017) in the days following weaning. 263 
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Even if oxidative stress might be the consequence rather than the cause of 264 

stress and disorders observed just after weaning, it is important to improve 265 

antioxidant defence before weaning to limit the post-weaning alterations of 266 

performance. Indeed, piglets whose growth was the less affected during the 3 weeks 267 

following weaning in commercial farms, were those whose oxidative stress 268 

increased the least, and for which blood vitamin E concentration before weaning was 269 

the highest (Buchet et al., 2017). Moreover, the oxidative status of piglets was 270 

improved thanks to the reduction of hydroperoxides concentration in the blood when 271 

the starter diet included a premix combining vitamins E, A, C, polyphenols and trace 272 

elements such as zinc and selenium, and this was associated with increased 273 

post-weaning growth rate of the supplemented piglets (Robert et al., 2009). In 274 

calves, parenteral supplementation of minerals and vitamins with antioxidant effects 275 

also prevented the decrease in variables related to the immune system, improved 276 

antibody responses and had positive effects on BW (Mattioli et al., 2020). Moreover, 277 

monitoring changes in salivary biomarkers of anti-oxidant capacity, such as Trolox 278 

equivalent antioxidant capacity (TEAC), FRAP and cupric ion reducing antioxidant 279 

capacity (Cuprac), seems a promising approach to characterize stressful conditions 280 

in calves at weaning (Rubio et al., 2021). These examples in the two species 281 

suggest that robustness of an animal might be associated, at least in part, with its 282 

own ability to limit oxidative stress. In support to this assumption, later in growth, it 283 

was observed that BAP as an antioxidant measure in plasma combined with 284 

circulating concentrations of metabolic and immune indicators provided an 285 
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animal-centred index to predict the extent of reduction in growth rate when growing 286 

pigs are facing sanitary (inflammatory) challenges (Le Floc’h et al., 2021). 287 

Challenges during rearing periods 288 

Physiological challenge: the pro-oxidant effects of high growth rate 289 

Since many decades, farm animals have been selected for productive performance, 290 

such as growth rate and yield of edible products (meat or flesh, eggs, milk) which are 291 

high-nutrient-demanding processes. At the cellular level, ROS generation takes 292 

place at the electron transport chain during the process of oxidative phosphorylation, 293 

so that ROS are normal by-products of mitochondrial metabolism associated to 294 

energy production. Any increase in cellular metabolism that generates greater 295 

energy and oxygen demands would then increase the activity of the mitochondrial 296 

respiratory chain and the production of ROS. This suggests that accelerated growth 297 

rate would be obligatory associated with accentuated risks for oxidative stress. In 298 

support, plasma concentrations of hydroperoxides continuously increased in 299 

growing pigs (Buchet et al., 2017). In addition, fast-growing lines and breeds have a 300 

deteriorated redox status when compared with slow-growing lines or breeds 301 

(Brambilla et al., 2002; Merlot et al., 2012). However, no particular diseases are 302 

observed in these situations, although high selected breeds are suggested to be less 303 

robust than unselected breeds. On the opposite, the extraordinary achievements of 304 

selection for fast growth rate and high breast meat yield in poultry resulted in the 305 

apparition of spontaneous myopathies (white striping, wooden breast, spaghetti 306 

muscles) in broilers and turkeys (Petracci et al., 2015). In these situations, the breast 307 
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muscle of the chickens displayed inflammation and oxidative stress (Baéza et al., 308 

2018; Petracci et al., 2019), as revealed by greater levels of lipids (MDA content) and 309 

proteins (carbonyls content) oxidation products (Soglia et al., 2016; Baldi et al., 310 

2018). When compared with normal muscles, they also had lower contents in 311 

anserine and carnosine, two dipeptides having antioxidant effects (Sundekilde et al., 312 

2017). Comparison between species thus suggests the existence of a physiological 313 

limit after which any improvement of growth rate would have detrimental effects on 314 

health.  315 

 Studies dealing with lines selected for residual feed intake, a measure of feed 316 

efficiency, provide more insights on the role of mitochondrial functionalities in 317 

managing the balance between oxidative products and antioxidants in animals 318 

selected for production performance. In pigs, the protein profile of mitochondria 319 

isolated from skeletal muscle in the low residual feed intake pigs (the more efficient) 320 

indicated an increase in anti-oxidant defence capacity as compared with high 321 

residual feed intake pigs (Grubbs et al., 2017). In good hygiene housing conditions, 322 

low residual feed intake pigs have lower antioxidant enzymes activities such as the 323 

glutathione reductase and catalase in adipose tissue and superoxide dismutase in 324 

muscle, and when reared in degraded hygiene conditions inducing an inflammatory 325 

response, the low residual feed intake pigs produced lower ROS than the high 326 

residual feed intake pigs (Sierzant et al., 2019). Similarly, low residual feed intake 327 

bulls (more efficient) had a lower antioxidant activity in the liver, which is interpreted 328 

as the consequence of a lower ROS production in those animals as compared with 329 
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high residual feed intake bulls (McKenna et al., 2021). Taken together, mitochondrial 330 

functionality can modify the venue of oxidative stress, so that there is no absolute 331 

relationships high production performance and the venue of oxidative stress. 332 

Dietary challenges: beyond the role of nutrients in growth performance 333 

Due to the close relationships between nutrient use for cellular energy production, 334 

oxidative phosphorylation and the oxido-reduction metabolism, any deficiency or 335 

excess in macro- and micro-nutrients can generate an imbalance between ROS 336 

production and antioxidant defense in tissues. The roles of the sulfur-containing 337 

aminoacids such as methionine (Table 3) and cysteine have been particularly 338 

examined. Indeed, these aminoacids are limiting for growth and lactation 339 

performance due to their involvement in protein synthesis in the different species, 340 

and considering that most forages and soybean meal have a low content in 341 

methionine. In aquaculture, plant ingredients included in aqua-feeds to reduce the 342 

use of ingredients derived from feed grade fisheries (i.e., fishmeal and fish oil) also 343 

contain less micronutrients such as methionine. Importantly, these aminoacids can 344 

directly modulate the redox status of animal tissues due to their involvement in the 345 

synthesis of GSH and taurine, two cellular compounds with antioxidant properties.  346 

In growing pigs, dietary methionine deficiency reduced the GSH content in the 347 

muscle and liver, increased the enzymatic antioxidant activities in muscle and 348 

adipose tissues, and lowered the total anti-oxidant power (FRAP and 349 

1,1-diphényl-2-picrylhydrazyl) in plasma (Castellano et al., 2015; Conde-Aguilera et 350 

al., 2020). Conversely, feeding finishing pigs with extra dietary methionine supply 351 
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above growth requirements increased the muscle content in total GSH and 352 

dipeptides with antioxidant properties such as anserine, but without any changes in 353 

the antioxidant enzyme activities in muscle (Lebret et al., 2018; Gondret et al., 2021). 354 

In addition, the lower TBARS values generated during a forced oxidation kinetics in 355 

muscle of pigs fed extra methionine supply further indicated lower oxidative stress in 356 

those pigs (Lebret et al., 2018). In ruminants, a rumen-protected form of methionine 357 

may be supplemented to the diet which is of special interest for improving 358 

performance of high-yielding dairy cows and liver metabolism (Durand et al., 1992; 359 

Bauchart et al., 1998). However, in growing bulls receiving high forage diet 360 

supplemented by methionine (Cantalapiedra et al., 2020), there was no 361 

improvement in endogenous antioxidants nor changes in the systemic redox status 362 

(Durand Denys, unpublished data). In broilers, suboptimum supply of Methionine 363 

also resulted in lower antioxidant concentrations in plasma and body tissues. 364 

However, although a higher content in GSH in the liver was observed with increased 365 

methionine concentrations in the diet (Conde-Aguilera et al., 2016), liver 366 

concentrations of TBARS and protein carbonyls were not responsive to dietary 367 

methionine concentration (Zeitz et al., 2018).  368 

In various fish species at different life stages, dietary methionine deficiency was 369 

also associated with an imbalance between oxidative products and antioxidants, 370 

with a decrease in GSH to oxidized gluthatione (GSSG) ratio and an increase in lipid 371 

peroxidation and protein oxidation observed in rainbow trout juveniles and in the fry 372 

fed a deficient methionine diet for 12 weeks (Fontagné-Dicharry Stéphanie, 373 
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unpublished data). These changes were associated with higher expression levels of 374 

genes coding for the antioxidant enzyme glutathione S-transferase π, and for the 375 

tumor necrosis factor, a pro-inflammatory cytokine, in the flesh (Alami-Durante et al., 376 

2018). Expression levels of genes coding for antioxidants such as glutathione 377 

S-transferase π, glutathione reductase and methionine sulfoxide reductase A1, were 378 

induced either directly by dietary methionine deficiency in the liver of the broodstock 379 

and in whole fry, or indirectly by the parental methionine intake as observed in the 380 

swim-up fry. Long-lasting parental effects of broodstock methionine-intake were 381 

observed in the fry, 21 days after first-feeding and irrespective of the fry diet, for the 382 

genes coding for methionine sulfoxide reductases A1 and B2 and superoxide 383 

dismutase 2 (Fontagné-Dicharry et al., 2017). However, in some studies, dietary 384 

methionine deficiency in rainbow trout juveniles decreased rather than increased 385 

carbonyls and GSH. This may be due to the sharp increase in mitochondrial 386 

degradation through mitophagy which decreased ROS production (Séité et al., 387 

2018). Similarly, feeding extra methionine decreased protein oxidation in rainbow 388 

trout juveniles but increased lipid peroxidation and antioxidant genes expression in 389 

rainbow trout fry (Fontagné-Dicharry Stéphanie, unpublished data). Discrepancies 390 

between studies may be related to the specific needs in methionine depending of 391 

age and growth period of the trout.  392 

These experiments illustrate the potential of dietary aminoacid contents for 393 

modulating oxidative stress in farm species, and further suggest that nutritional 394 

recommendations could be revised to better account for the effects on redox status 395 
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and not only on growth requirements. Other imbalanced feeding conditions such as 396 

glycemic index and balance in polyunsatured fatty acids (n-6 /n-3), can be also 397 

concerned, but are not detailed in this review.  398 

Environmental challenges  399 

The environment in which farm animals are reared is subjected to uncontrolled 400 

events that tackle the animal physiology. Different situations can be encountered in 401 

farm animals.  402 

Maybe not enough considered, the level of oxygen in the environment is of 403 

importance due to its role in the venue of oxidative stress. Hypoxia occurs in most 404 

aquatic environments, especially those with a high stocking density. In rainbow trout 405 

juveniles, chronic hypoxia reduced blood GSH content and increased hepatic activity 406 

and transcript expression of the antioxidant enzyme catalase (Fontagné-Dicharry et 407 

al., 2020). Acute hypoxic challenge also induced oxidative stress with increased lipid 408 

peroxidation and glutathione disulfide content and transcriptional regulation of 409 

antioxidant enzymes in rainbow trout fry (Wischhusen et al., 2020a). Water 410 

oxygenation is thus a common recommended practice in aquaculture systems. 411 

However, if not adequate, it can conversely lead to hyperoxia that also induced 412 

physiological stress responses, characterized by a higher TBARS content in flesh 413 

and lower antioxidant enzyme activities in the liver of rainbow trout juveniles 414 

(Kalinowski et al., 2019). The situation in fish may question the consequences of 415 

inadequate oxygen supply in terrestrial species. Although rare, this may concern 416 

extensive farming systems in hard mountain conditions (cows or sheep) and poultry 417 
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houses in altitude. Differences in oxygen availability to tissues can also be due to 418 

external and inner events. In poultry, ascites is a frequent metabolic disorder 419 

manifested by the abnormal build-up of fluid in the peritoneal spaces, which can be 420 

induced by several factors such as continuous light, insufficient ventilation in the 421 

poultry house, high altitude and cold environment (Decuypere et al., 2000). Ascites 422 

is caused by an imbalance between the oxygen requirement of tissues and the 423 

oxygen supply to tissues. In addition, lipid peroxidation further played an important 424 

role in the pathogenesis of pulmonary hypertension associated with ascites, since 425 

free radicals led to endothelial damage in both heart and lung cells (Aksit et al., 426 

2008). Controlling the early chick embryo environment may be a way to avoid these 427 

oxidative damage. The use of cold temperatures during egg incubation was proven 428 

to limit cold sensitivity later in age and the incidence of ascites (Shinder et al., 2011). 429 

Furthermore, chicks exposed to cyclically cold incubation temperatures exhibited 430 

increased antioxidant capacity, such as 8-fold higher catalase activity in the liver at 431 

hatch as compared to control-incubated chicks (Loyau et al. 2014). 432 

Due to relationships between environmental availability of oxygen and heat 433 

tolerance of the animals, it is also of interest to consider the effects of heat stress on 434 

redox status of the animals. Considering the global warming, severity and 435 

frequencies of heat waves will be more frequent in the coming years, which further 436 

justifies to undergo specific studies to investigate the effects of chronic heat stress 437 

on oxidative stress in farm species. As examples, the effects of heat stress on 438 

different indicators of oxidative stress have been characterized in chicken and laying 439 
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hens (Lin et al., 2006; 2008). In laying hens, a moderate heat exposure (32°C during 440 

21 days) at the end of the laying period (60 weeks) increased ROS concentration in 441 

blood during heat exposure, and triggered blood antioxidants, on a temporary basis 442 

(superoxide dismutase activity) or during the whole period (FRAP) (Lin et al., 2008). 443 

In meat type chicken, acute heat stress also led to an increase in TBARS 444 

concentrations in the liver but not in the heart (Lin et al., 2006). Solutions to mitigate 445 

oxidative stress due to heat conditions can reside in improving the long-term 446 

thermo-tolerance of the animals. In poultry, cyclic increases in incubation 447 

temperature of the eggs led to a better survival to acute heat exposure at 35-days of 448 

age in male chickens (Piestun et al., 2008), and this was associated with many 449 

changes in expression levels of genes involved in stress response and 450 

vascularization acting in tissue oxygenation (Loyau et al., 2016). These examples 451 

obtained in fishes and chicken underline the importance of environmental events in 452 

the venue of oxidative stress, and these events may be more frequent in the coming 453 

years and have wider effects on a large broad of farm systems, and especially those 454 

in loose and harsh conditions. 455 

Pro-inflammatory and stressful conditions 456 

Housing conditions 457 

Poor hygiene conditions and the lack of respecting biosecurity recommendations 458 

have been clearly identified as risk factors for health of animals reared indoors. Poor 459 

hygiene conditions often induce a systemic inflammatory response due to carbon 460 

dioxide, ammonia, temperature and(or) bacterial pressure. Among other problems 461 
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such as pulmonary diseases, the poor sanitisation levels have been associated with 462 

the generation of oxidative stress, as attested by a lower total antioxidant capacity in 463 

plasma (FRAP), greater plasma levels of hydroperoxides and an activation of 464 

antioxidant enzymes in tissues of growing pigs (Buchet et al., 2018; Sierzant et al., 465 

2019). During reproduction, stressful housing situations can also generate oxidative 466 

stress. For example, moving young nulliparous sows from group-housing pens to 467 

individual crates increased salivary cortisol, and this was associated with an 468 

increased expression of oxidative stress enzymes in serum (Marco-Ramell et al., 469 

2016). Greater plasma concentrations of hydroperoxides were also observed in 470 

sows housed in groups on concrete slatted floor during gestation when compared 471 

with sows housed in larger pens with deep straw litter favouring animal welfare 472 

(Merlot et al., 2019). After farrowing, the one-day old piglets born from the sows 473 

housed on concrete slatted floor have a lower blood antioxidant potential than piglets 474 

born from mothers that had been housed on straw (Quesnel et al., 2019). The 475 

cortisol whose secretion was increased in the group on concrete slatted floor, might 476 

play a role in this response, because studies in the avian species showed that 477 

glucocorticoids stimulated the production of oxidative products (Lin et al., 2004). In 478 

sheep, forced physical activity and transportation led to a higher cortisol 479 

concentration, an increase in the metabolism of carbohydrates and lipids; this 480 

resulted in the occurrence of oxidative stress proved by an increased MDA 481 

production and lower TAS (Gladine Cécile, unpublished data). 482 
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Self-medication behavior appears as an interesting strategy to reduce the 483 

consequences of production diseases. Self-medication has been defined as the 484 

ability of animals to select and use specific plants or substrates with medicinal 485 

properties to control or to prevent diseases or situations of discomfort. 486 

Self-medication is reported in ruminants which can consume plants associated with 487 

anti-parasitic properties to maintain health (Villalba et al, 2014). In cows and sheep, 488 

plant extracts rich in polyphenols, vitamin E or the combination of the two additives 489 

supplemented to n-3 polyunsaturated fatty acid-rich diets have been tested to 490 

reduce the oxidative stress induced by forced physical activity and transport. 491 

Although the dietary administration of polyphenols or Vit E did not prevent the 492 

induction of lipoperoxidation, the dietary administration of the two antioxidants 493 

reduced the increase in MDA production in sheep (Gladine Cécile, unpublished 494 

data). This synergic effect of the antioxidants cocktail has been confirmed in dairy 495 

cows (Gobert et al., 2009). This can be explain by the dual abilities of the lipophilic 496 

(vitamin E) and hydrophilic (polyphenols) antioxidant properties to break the 497 

lipoperoxidation chain and reduce the amounts in oxygenated radical species 498 

(Delosière et al., 2020). Plant extracts combined with vitamin E can be 499 

supplemented to polyunsaturated fatty acid-rich diets to limit oxidative stress in cull 500 

cows, even for pre-slaughter animal stress (Gobert et al., 2010; Delosière et al., 501 

2020). Strategies based on self-medication in ruminants have been also tested in 502 

poultry. For instance, lame chickens have a preference for a feed supplemented with 503 

an anti-inflammatory and analgesic drug rather than the same feed without the drug 504 
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(Danbury et al, 2000) and chicks can adjust essential oil consumption after a delayed 505 

placement by uptake of lemon verbena essential oil, which is known to have 506 

antioxidant, anti-inflammatory, sedative, and digestive effects (Guilloteau et al., 507 

2019). 508 

Surgical procedures 509 

Surgeries are used in farm animals at specific periods for castration, caesarian, 510 

visceral interventions, etc. For instance, during a high invasive surgery in sheep, 511 

although the antioxidant status estimated by TAS and the lipoperoxidation were not 512 

significantly altered, greater nitric oxide and lower GSH/GSSG ratio both indicated 513 

that the oxidation was triggered (Faure et al., 2017). To monitor the efficacy of 514 

drug-based pain alleviation protocols to surgeries, responses can be followed by 515 

using both behavioural and physiological indices. In addition to the most commonly 516 

used indicators (cortisol, haptoglobin, clinical signs), oxidative stress indicators are 517 

also well correlated with the efficacy of analgesia strategies. For instance, the 518 

multimodal analgesia (local anesthesia + non-steroidal anti-inflammatory drug) led 519 

to the lowest impact on redox status, thus limiting post-traumatic event (Durand et 520 

al., 2019). Painful procedures similarly induce changes in biochemical markers of 521 

oxidative stress (Ting et al., 2003), and of inflammation such as haptoglobin and 522 

serum amyloid A (Eckersall et al., 2001) in calves and lambs. Oxidative stress 523 

markers have also been proposed as relevant indicators of pain in pigs. In this 524 

species, salivary cortisol, ferric reducing ability of saliva and advanced oxidation 525 

protein products in saliva are correlated with the pain score measured in lame and 526 
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prolapsed animals (Contreras-Aguilar et al., 2019). These different examples further 527 

highlight the close relationships between stress hormones (cortisol or corticosterone 528 

depending on the species), inflammation and oxidative stress.  529 

Conclusion 530 

This review highlights several relationships between redox status and animal 531 

performance and health at critical periods (Fig. 1). Of note, the level of oxidative 532 

stress and its consequences are modulated by additional factors inherent to the 533 

animal (genotype, physiological maturity) and to management practices prior, during 534 

and after the challenges. The data from different species pointed to the central role 535 

of energy metabolism at the origin of pro-oxidative metabolites generation, whereas 536 

the antioxidant capacities orchestrated between various tissues are of importance to 537 

limit their deleterious effects. Therefore, the evaluation of the redox imbalance can 538 

be used as a non-specific but valuable indicator to evaluate the intensity of stressful 539 

events encountered by the animals. When measured before a well-known but 540 

inevitable challenge, it can be used to predict the robustness and more specifically 541 

the resilience of the animal. A synthetic index to estimate oxidative stress would be 542 

thus a valuable tool to rank animals according to risk and to evaluate acute or 543 

long-term effects of management practices on performance and health. However, 544 

this supposes a consensus about the best measures of pro-oxidative and antioxidant 545 

pathways and their interpretation along the productive life. It seems premature to 546 

identify a simple, generic and robust indicator of oxidative stress. However, specific 547 

indicators of the level of oxidative stress and of the level of antioxidants that the 548 
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animals can mobilise to respond to diverse challenges can be foreseen. They 549 

include the measurement of oxidation products such as lipid oxidation products 550 

(MDA, lipoperoxides), protein oxidation products (carbonyls) and GSH/GSSG ratio 551 

to evaluate the intensity of oxidative processes. Similarly, available antioxidant 552 

defence can be assessed by global test (FRAP, BAP, TAS, TEAC, Cuprac) in blood 553 

or plasma but must likely be associated with measurements of endogenous 554 

(catalase, superoxide dismutase, glutathione peroxidase) enzymatic defenses in 555 

different tissues. To data, there is no gold standard approach between species. In 556 

humans, considering the complexity of redox status evaluation, the 5R redox 557 

principles are recommended with different factors measured at the same time to 558 

achieve real precision (Meng et al., 2021). The development of agro-ecological 559 

practices in farm animals reinforces the needs to better understand the internal 560 

levers from animal physiology to control the level of oxidative stress. Genetic 561 

selection for robustness but also the ability of the animals to self-regulate their 562 

physiology through feeding preferences are possible strategies to be explored and 563 

combined in the future. 564 
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Table 1 

Post-natal period events with increased oxidative process in pigs, ruminants, poultry and 

fishes.  

Species1 Critical 

stage 

Main 

challenge 

Additional 

challenge 

Redox status 

involvement 

Aggravating 

factors 

Levers to limit oxidative 

stress 

Pig Birth Hypo- to 

hyperoxia 

Amniotic 

fluid to 

colostrum 

feeding  

Blood 

hydroperoxides ↑ 

Expression of 

peroxiredoxins in 

adipose tissue ↑  

Hepatic MDA content 

↑ 

Low BW of piglets Neonatal diet rich in 

proteins 

       

Ruminant Birth Hypo- to 

hyperoxia 

Amniotic 

fluid to 

colostrum 

feeding 

Blood ROS ↑ Feeding 

newborns with 

milk replacer 

Dietary 

supplementation of 

lactating females and 

calves with antioxidants 

and selenium 

       

Poultry Hatching Hypo- to 

hyperoxia 

Yolk sac to 

concentrate 

diet feeding  

Lipid peroxidation in 

skeletal muscles and 

heart 

Long egg storage 

before incubation 

Delayed 

placement of 

chicks in farms 

Short egg storage 

before incubation 

Short delay between 

hatching and placement 

in farms 

Dietary 

supplementation of 

breeders with 

antioxidants 

       

Fish Hatching Active 

feeding 

Egg yolk to 

larval diet 

Lipid peroxidation ↑ 

Vitamins A, C and E 

↓ 

GSH/GSSG ↓ 

Antioxidant enzyme 

activities ↑ 

High 

concentration of 

long chain n-3 

polyunsaturated 

fatty acids in diet 

and animal 

tissues. 

Incomplete 

development of 

the endogenous 

antioxidant 

Dietary 

supplementation of 

broodstock with vitamin 

A, methionine, selenium 
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system 

Abbreviations: GSH = reduced glutathione; GSSG = oxidized glutathione disulphide; MDA = malondialdehyde; ROS = 

Reactive oxygen species.  

1Examples in different species are mainly based on our own works, and not an overview of all references. This underlines that 

depending of the lab history and skills, the used indicators may vary and no systematic studies have been considered for one or 

more challenges.  
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Table 2 

Juvenile transition events with increased oxidative process in pigs and ruminants.  

Species1 Critical 
stage 

Main 
challenge 

Additional 
challenge 

Redox status 
involvement 

Aggravating 
factors 

Levers to limit 
oxidative stress 

Pig Weaning Dietary 
transition, 
separation 
from the 
mother, 
social 
stress 

New 
environment,  
high rearing 
density, animal 
mixing, cold 
stress  

Hydroperoxides 
in blood and liver 
↑ 
Hepatic MDA 
content ↑ 
Glutathione 
peroxidase 
activity in liver ↓  
Vitamins A and E 
in blood ↓ 

Early stage, low 
BW, additional 
gut health 
disorders 

Dietary 
supplementation 
with antioxidants 

       

Ruminant Weaning Dietary 
transition, 
separation 
from the 
mother 

New 
environment, 
social stress 

Hydroperoxides 
in exhaled breath 
condensate ↑   

 Dietary 
supplementation 
with minerals and  
antioxidants  

Abbreviations: MDA = malondialdehyde. 

1Examples in different species are mainly based on our own works, and not an overview of all references. This also underlined 

that depending of the labs history and skills, indicators may vary and no systematic studies have been considered for one or 

more challenges  
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Table 3  

Synthesis on dietary methionine deficiency and redox status of pigs, ruminants, poultry and 
fishes.  

Species1 Redox status 

Pig Glutathione content in muscles and liver ↓ 

Antioxidant enzyme activities (catalase, superoxide dismutase or 

glutathione peroxidase) in muscle and adipose tissues ↑ 

Ruminant glutathione peroxidase and glutathione reductase mRNA in placenta 

Poultry Glutathione and vitamin E contents in liver ↓ 

TBARS value and carbonyl contents in blood ↑  

Vitamin E in blood ↓ 

Antioxidant enzyme activities (Catalase, superoxide dismutase, and 

glutathione peroxidase) in jejunum ↑ 

Fish Glutathione content in plasma and liver ↓ 

Protein carbonyls in liver ↑ 

Glutathione transferase-π transcript expression in liver, muscle and fry ↑ 

Abbreviations: TBARS = thiobarbituric acid reactive substances. 

1Examples in different species are mainly based on our own works, and not an overview of all 

references. This also underlined that depending of the labs history and skills, indicators may vary and 

no systematic studies have been considered for one or more challenges  
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Figure captions  

 

Fig. 1. Schematic representation of the main internal and external factors inducing 

oxidative stress in pigs, ruminants, poultry or fishes.  

 

 






