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1. Introduction 

 

Since 2003, Central America has been the scene of epidemics of coffee leaf rust (CLR) on Coffea 

arabica that have caused severe socio-economic crises, particularly from 2012 on (Avelino et al., 

2015). In fact, C. arabica is not only the cultivated species of the Coffea genus the most 

susceptible to CLR, but is the main source of income for hundreds of thousands of smallholders 

and harvesters in the region. The causal fungal pathogen, Hemileia vastatrix, is an obligate 

parasite that infects leaves and causes them to fall prematurely; severe defoliation due to CLR 

can cause the death of branches. Cerda et al. (2017) showed that CLR epidemics cause not only 

primary yield losses, i.e. in the current year, but also secondary yield losses, i.e. in the following 

years, due to the death of branches in the first year. Considering the significant socio-economic 

stakes, in 2016, the European Union started a project called Procagica (Programa 

Centroamericano para la Gestión de la Roya del Café) aimed at building a regional network of 

national early warning systems to prevent new severe epidemics at national and regional levels in 

Central America.  

Until now, scattered scientific and empirical knowledge concerning the highly complex CLR-

coffee pathosystem has been an obstacle to the development of CLR forecasting models. Most 

existing models developed to forecast CLR development use linear regressions or semi-

mechanistic approaches (before the year 2000) and machine learning (after 2000, Merle, 2019). 

Predictors used in regression models were mostly linked to meteorology, i.e. temperature, rainfall 

and relative humidity, but also included the stock of inoculum and number of coffee leaves 

(Avelino and Rivas, 2013). More recent models use other predictors such as cropping  practices, 

e.g. planting density, use of fungicides, use of fertilizers, use of shade trees (Avelino et al., 2006; 

Corrales et al., 2016, 2015). Bebber et al. (2016) proposed a mechanistic model to assess the 

risk of H. vastatrix infection based on temperature and relative humidity. This model represents 

an important advance in our understanding of how CLR epidemics function, but did not account 

for other processes such as leaf colonization or sporulation, both of which determine the latent 

period, nor spore dispersal. All these models help understand some of the interactions among the 

processes at stake by simplifying the relationships, but they are not able to test a large range of 

possible scenarios with multiple interactions between factors. 

Models to forecast the risk of CLR should take advantage of available knowledge on the 

biophysical functioning of the CLR-coffee pathosystem and in particular empirical knowledge 

provided by CLR experts to unravel the multiple interactions at play in the pathosystem. One 

example of multiple interactions leading to mathematical modeling issues when attempting to 
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forecast CLR are the antagonistic effects of shade on CLR: shade can reduce host physiological 

susceptibility to CLR, but at the same time, shorten the latent period and increase Lecanicilium 

lecanii hyperparasitism. Another example is the dynamics of CLR results from interactions 

between the population of pathogen and the population of leaves, both of which are influenced in 

different ways by the environment (notably meteorology and cropping practices; Avelino and 

Rivas (2013), Fig. 1). On the one hand, coffee leaves have their own dynamics linked to source-

sink relationships that are themselves influenced by the environment (de Reffye et al., 2021; Vezy 

et al., 2020), and by provoking defoliation,  CLR further modifies leaf dynamics. On the other 

hand, the development of CLR is influenced by leaf dynamics. Additionally, fruit phenology 

influences plant health: a high fruit load increases leaf physiological susceptibility to CLR (Costa 

et al., 2006; Kushalappa and Eskes, 1989a; López-Bravo et al., 2012), which is a particularity of 

the CLR-coffee pathosystem. The mutual interactions between the dynamics of the host and the 

pathogen and modeling become daunting when interactions with the environment and 

management practices are added.  

 

 

Figure 1. Based on the literature and expert knowledge, the most important factors 

affecting the life cycle of Hemileia vastatrix selected to build the ExpeRoya model. The 
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circles correspond to the factors that influence the rates of transition (represented by the valve 

symbols). The yellow circles represent the meteorological variables, the red circles represent 

factors linked to the cropping practices, the green circles represent factors linked to the host, the 

blue circle indicates factor linked to the pathogen, and the dark grey circle indicates the action of 

the hyperparasite Lecanicillium lecanii. The blue valve symbols represent the rates of transition 

linked to fungus life traits and the dark green valve symbol the rate of transition linked to the host 

dynamics. The effects of shade and nutrition on the epidemiological variables are indirect, by 

changing meteorological conditions or host status. Adapted from figure 1 in Avelino et al. (2004). 

 

Qualitative modeling can cope with the difficulty of incorporating numerous relationships linking 

production situations and injury profiles. The IPSIM (Injury Profile SIMulator) framework (Aubertot 

and Robin, 2013) is a qualitative and aggregative modeling approach that describes the effects of 

the cropping system and the plot environment on injuries, thereby making it possible to 

incorporate scattered knowledge on the system and all its complexity in a simplified way. 

Moreover, the model can be easily understood by the farmers, in our case coffee farmers, as it 

organizes knowledge in a way that is close to the organization of thought. This modeling 

approach incorporates different sources of knowledge: scientific and technical literature, expert 

knowledge, co-design workshops, existing models, etc. Involving experts makes this approach 

powerful and robust because it builds on empirical knowledge based on a very large number of 

field observations. In addition, expert knowledge helps design farming models able to account for 

the complexity of the interactions inherent to the system concerned, particularly when few data 

are available (Harou et al., 2021). The IPSIM framework has already been shown to be effective 

in predicting the incidence of eyespot on wheat (Aubertot and Robin, 2013), brown rust on wheat 

(Robin et al., 2013); fruit fly injuries on chayote crop (Deguine et al., 2021), and infestations of the 

weed Cirsium arvense (Lacroix, 2020).  

 

The aim of the present study was to improve forecast modeling of CLR to enable the provision of 

information on the monthly risk of an increase of CLR incidence at (i) national scale to help 

Central American coffee institutes design their alert bulletins and recommendations each month, 

and at (ii) plot scale to provide farmers with more specific information concerning the risk of CLR 

on their farms. For this purpose, we adopted the IPSIM modeling framework to account for all the 

complexity of the coffee-CLR pathosystem and all the major biotic and abiotic variables that drive 

the system. We named the model ExpeRoya because it is based on expert knowledge and on the 

scientific literature on CLR and because Roya is the Spanish word for ‘rust’.  
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2. Materials and Methods 

 

2.1. Design of the ExpeRoya model  

We used the IPSIM framework, which is based on the DEX method, a qualitative and hierarchical 

multi-attribute method mainly used to evaluate and analyze decision problems, implemented with 

Dexi software (Bohanec, 2020; https://kt.ijs.si/MarkoBohanec/dexi.html). DEX is based on the 

decomposition of a complex decision problem into smaller, less complex sub-problems that 

makes it possible to gather and structure different sources of knowledge in rule-based models. 

This framework forms the cornerstone of the design of ExpeRoya.   

ExpeRoya involves the following components (Fig. 2): 

1. Input attributes: these are the entry variables in the format of vectors of values that are 

assessed by ExpeRoya.  

2. Multi-attribute model: a static and deterministic model that embeds the characteristics of 

the system in “if-then” deterministic aggregative rules. ExpeRoya is composed of two 

submodels: the first describes CLR dynamics and the second describes coffee tree 

dynamics. 

3. Final output: Assessment of the ultimate response variable, the monthly risk of increase 

in CLR incidence. For CLR, incidence is usually used as the indicator of the level of 

infection of a coffee crop population. It is defined by the proportion of leaves affected by 

CLR. Therefore, we defined the final output as the rate of increased CLR incidence each 

month. 
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Figure 2. General framework of the multi-attribute model ExpeRoya. The model is composed 

of (i) 12 input attributes numbered A1 to A12, two meteorological variables shown in yellow, four 

management variables shown in red, five variables linked to the coffee tree shown in green, and 

one variable for incidence recorded at the monitoring date, which is a proxy of the stock of 

inoculum, in blue, (ii) a multi-attribute model composed of two submodels describing coffee leaf 

rust (CLR) and coffee dynamics, and (iii) the final output, which is the final assessed variable of 

the model, i.e. the risk of increased incidence of CLR each month. 

 

All ExpeRoya attributes are qualitative, meaning they are described by categories. These 

categories can be (i) ordinal, meaning that they are organized in a specific order (e.g. non-

numeric ranked variables such as “small”, “medium” and “high”, or numeric intervals such as [0-

20], [20-50], [50-100]), or (ii) nominal, meaning that the possible names or categories do not 

follow a natural order (e.g. phenology of the coffee tree, with three periods of phenological 

development).  In the following section, these qualitative attributes are defined based on strictly 

quantitative explanations that allow automated processing of data. 

In ExpeRoya, the temporal scale is the month, and the spatial scales are either the landscape 

scale (national scale) or the plot scale.  
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The Dexi version of ExpeRoya is available in the Cirad Dataverse repository (Motisi, 2021). 

 

2.2. Input attributes 

The risk of an increase in CLR incidence is based on 12 input attributes (A1 to A12 in Fig. 2 and 

see the “Input attributes” column in Table 1). The rules for defining each category are also 

detailed in Table 1. Several processes can be computed from the same input attributes (e.g. 

rainfall, CLR incidence, fruit phenology and fruit load). For example, daily rainfall is used to 

calculate three processes: spore loss through rain wash-off, infection of leaves by wetness, and 

emergence of new leaves. Therefore, at the lowest levels of the multi-attribute tree (Fig. 3), it is 

possible to describe 21 basic processes (P1 to P21 detailed below and see the “Processes 

described” column in Table 1) originating from the 12 input attributes.  

 

Table 1. Input attributes of ExpeRoya model. The attributes are numbered from A1 to A12, and 

the processes they described are numbered from P1 to P21. (*) The model at national scale 

usually falls in this category. 

Type of input 

attribute 
Input attributes 

Processes 

described 
Categories 

Rules 

defining the 

categories 

References 

Meteorology A1. Rainfall 

P1. Spore loss by 

rain wash-off 

Insufficient 

wash-off 

< 3 days with 

10mm of 

daily rainfall 
Avelino et al., 

2020; Lasso 

et al., 2020; 

Merle et al., 

2020 

Regular 

wash-off 

[3-5] days 

with 10mm 

of daily 

rainfall 

Sufficient 

wash-off 

> 5 days with 

10mm of 

daily rainfall 

P2. Infection of 

leaves by 

High 

infection 

> 7 days with 

5mm of daily 

(Guzman and 

Gomez, 
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wetness rainfall 1987) 

Medium 

infection 

[3-7] days 

with 5mm of 

daily rainfall 

Low 

infection 

< 3 days with 

5mm of daily 

rainfall 

P3. Leaf 

emergence 

Favorable 

for leaf 

emergence 

> 10 days 

with 1mm of 

daily rainfall 

(DaMatta et 

al., 2007) 

Moderately 

favorable 

for leaf 

emergence 

[5-10] days 

with 1mm of 

daily rainfall 

Unfavorable 

for leaf 

emergence 

< 5 days with 

1mm of daily 

rainfall 

A2. Temperature 
P4. Latent period 

by temperature 

Short latent 

period 

> 10 days 

with 

temperature 

ranging from 

22°C to 24°C 
Nutman et al, 

1963; 

Kushalappa 

et al, 1983 

Medium 

latent 

period 

[5-10] days 

with 

temperature 

ranging from 

22°C to 24°C 

Long latent 

period 

< 5 days with 

temperature 

ranging from 
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22°C to 24°C 

Crop 

management 

A3. Fungicide 

application 

Effect of 

fungicide 

application on 

the loss of 

inoculum of: 

P5. Hemileia 

vastatrix,  

and  

P6. the 

hyperparasite 

Lecanicillium 

lecanii  

Yes 

Fungicide 

was applied 

during the 

month prior 

to monitoring  

(González et 

al., 2014) 

No 
No fungicide 

was applied 

A4. Coffee 

nutrition 

P7. Effect of 

nutrition on leaf 

emergence 

Yes 

On average, 

trees have no 

deficiencies 

Costa el al., 

2006, Lopez 

Bravo et al., 

(2012) No 

On average, 

trees need 

fertilization 

A5. Shade 

Effect of shade 

cover on: 

P8. microclimate, 

P9. 

hyperparasitism, 

and  

P10. host 

High 
> 60% of 

shade 

Lopez-Bravo 

et al. (2012), 

Boudrot et al. 

(2016) and 

Avelino et al. 

(2020) 

Medium 
[40% - 60%] 

of shade 

Low 
< 40% of 

shade(*) 

A6. Pruning 

P11. Effect of 

pruning on the 

loss of inoculum 

Total 

pruning 

Cutting from 

the tree to 

the base, 

100% of the 

Expert 

knowledge 
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leaves are 

removed 

50% pruning  

Drastic 

pruning of 

the tree with 

50% of the 

leaves 

removed 

25% pruning  

Light pruning, 

or 

maintenance 

pruning of 

the tree, with 

25% of the 

leaves 

removed 

No pruning 
0% of leaves 

removed 

Host A7. Fruit load 

Effect of fruit 

load on : 

P12. leaf 

physiological 

susceptibility, 

P13. defoliation, 

and  

P14. leaf 

emergence 

High 

> 250 fruiting 

nodes per 

tree 

equivalent to 

> 40q/ha 
López-Bravo 

et al. (2012) 

(Avelino et 

al., 1993) Medium 

[100-250] 

fruiting 

nodes 

equivalent to 

17-40q/ha 

Low 
< 100 fruiting 

nodes 
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equivalent to 

< 17q/ha 

P
h

en
o

lo
g

y 
o

f 
th

e 
co

ff
ee

 t
re

e 
A8. Date 

of 

flowering 

P15. Coffee berry 

growth 

From 

flowering to 

the 

beginning of 

harvest 

Average date 

of the main 

flowering 

Kushalappa 

and Eskes, 

1989 

A9. Date 

of the 

beginning 

of harvest 

P16. Coffee berry 

maturity 

During 

harvest 

Average date 

of the 

beginning of 

harvest 

A10. Date 

of the 

end of 

harvest 

P17. Coffee trees 

without berry 

From the 

end of 

harvest to 

the 

beginning of 

flowering 

Average date 

of the end of 

harvest 

A11. Genetic 

resistance 

P18. Genetic 

susceptibility of 

the cultivar 

Susceptible 

 
 

Expert 

knowledge  

Moderately 

susceptible 

 

 

Resistant 

 
 

Pathogen 

A12. CLR 

incidence at the 

date of 

monitoring 

P19. Hemileia 

vastatrix 

inoculum stock 

before 

hyperparasitism 

(Lecanicillium 

High 

inoculum 

stock 

> 30% of 

incidence 
Merle et al, 

2020 Medium 

inoculum 

stock 

[10-30%] of 

incidence 
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lecanii) Low 

inoculum 

stock 

< 10% of 

incidence 

P20. Effect of the 

inoculum stock 

on the efficacy of 

fungicide 

application 

High 

inoculum 

stock 

> 30% of 

incidence 

Rivillas et al, 

2011; 

Zambolim, 

2016 

Medium 

inoculum 

stock 

[10-30%] of 

incidence 

Low 

inoculum 

stock 

< 10% of 

incidence 

 

P21. Effect of 

incidence on the 

rate of 

defoliation 

High 

defoliation  

> 20% of 

monthly 

defoliation 

when 

incidence is 

>36% 

Avelino 

(unpublished 

data, 

Appendix 1) 

Medium 

defoliation  

[6-20%] of 

monthly 

defoliation 

when 

incidence is 

[0-36%]  

Regular 

defoliation  

<= 6% of 

monthly 

defoliation 

when 

incidence is 

equal to 0% 
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In section 2.3 below, we detail how the tree attributes were aggregated and provide justifications 

for the choices made concerning the thresholds of each category. 

 

Rainfall (A1) and Temperature (A2) are the meteorological attributes of the model, they are 

calculated in a window covering the 15 days that precede the monitoring date. This time window 

is based on the known length of the CLR incubation period in field conditions, which ranges 

varies from 29 to 62 days (Kushalappa and Chaves, 1980). Monitored incidence, one of the 

predictors of incidence one month after the monitoring date, is therefore a reflection of the 

meteorological conditions that occurred in the two preceding months. To reduce redundancy 

between predictors, we chose to limit the period of consideration of the meteorological attributes 

of the model to 15 days. These attributes are calculated as follows:  

A1. Rainfall: this attribute contributes to three basic processes: 

- Rainfall, as a proxy of rain wash-off linked to spore loss (P1): Beyond 10 mm per day, 

rain removes the spores from the lesions and carries them to the ground (Avelino et al., 

2020; Lasso et al., 2020; Merle et al., 2020). As H. vastatrix is an obligate parasite, any 

spore that reaches the ground is lost for the growth of the epidemic. Hence we classified 

the number of rainy days with more than 10 mm of rainfall in three ordinal categories for 

spore loss by rain wash-off: “insufficient” (< 3 days), “regular” ([3-5] days) and “sufficient” 

(> 5 days) wash-off.  

- Rainfall, as a proxy of leaf wetness linked to infection (P2): suitable temperatures and 

leaf wetness are preconditions for CLR infection (Kushalappa et al., 1983). Infection 

response to temperature is quadratic (convex) with optimal temperatures between 22 °C 

and 24 °C (Kushalappa et al., 1983; Nutman et al., 1963) while infection increases 

linearly with an increase in the duration of wetness in the first 24 h (Kushalappa et al., 

1983). As the effect of temperature on infection is included in the effect on the latent 

period (which starts from germination), we considered humidity to be the most influential 

factor for infection. We thus classified the number of days with more than 5 mm of rainfall 

(Guzman and Gomez, 1987) in three ordinal categories for infection efficacy: “high” (> 7 

days), “medium” ([3-7] days) and “low” (< 3 days) infection. 

- Rainfall linked to leaf emergence (P3): Meteorological constraints to leaf emergence were 

analyzed as follows. First, we consider that temperature is not a limiting factor since the 

average temperature in coffee producing areas is above the 10 °C threshold for coffee 

tree growth (Pezzopane et al., 2012; Rodríguez et al., 2011). Second, rainfall patterns 

show intra-annual and inter-annual variability. Coffee producing areas often have marked 
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rainy and dry seasons, and are exposed to other inter-annual climatic phenomena such 

as El Niño and La Niña. Assuming that leaves are the last organs in the coffee tree to be 

allocated carbon and water (Vezy et al., 2020), we chose to use rainfall as a limiting 

factor for leaf emergence (Table 1). We classified the number of rainy days with more 

than 1 mm of rainfall (DaMatta et al., 2007) in three ordinal categories of rainfall for leaf 

emergence: “favorable” (> 10 days), “moderately favorable” ([5-10] days) and 

“unfavorable” (< 5 days) to leaf emergence. 

A2. Temperature linked to the latent period (P4): According to Kushalappa et al. (1980), the latent 

period is shortened by extreme minimum and maximum temperatures, 22 °C to 24 °C being the 

optimum range for a short latent period (Kushalappa and Martins, 1980). This range also suffices 

for germination (with an optimum of about 22-23 °C; Nutman et al. 1963; Kushalappa et al. 1983), 

which is included in the latent period. We thus classified the number of days with an average 

temperature of between 22 °C and 24 °C in three ordinal categories for latent period: “short” (> 10 

days), “medium” ([5-10] days) and “long” (< 5 days) latent period. 

 

Other attributes are described below:  

A3. Fungicide application and its effect on the loss of inoculum (P5): this attribute is updated 

monthly by two ordinal categories “yes” or “no” in response to the question whether fungicides 

were applied in the past month. The effect of fungicide on CLR (P5) and on the hyperparasite 

Lecanicillium lecanii (P6) is assumed to last from one to two months after application (Rivillas et 

al., 2011; Zambolim, 2016).  

A4. Coffee nutrition and its effect on leaf emergence (P7): this attribute is defined for the whole 

coffee growing period by two ordinal categories “yes” or “no” in response to the question whether 

nutrition is sufficient for the growth and development of coffee tree. The two categories reflect 

whether the quantity and type of fertilizer applied are sufficient (or not) based on soil analyses 

and expected yield. 

A5. Shade and its effect on microclimate (P8), hyperparasitism (P9) and host (P10): this attribute 

is defined by the average percentage of shade that has an impact on CLR dynamics, deduced 

from Avelino et al. (2020), Boudrot et al. (2016) and López-Bravo et al. (2012). Shade is 

described by three ordinal categories: “high” (> 60%), “medium” ([40-60%]) and “low” (< 40%).  

A6. Pruning and its effect on the loss of inoculum (P11): Pruning the coffee tree is applied once a 

year and is an effective management practice to control CLR dynamics; removing diseased 

leaves reduces the stock of CLR inoculum. Pruning is described by four ordinal categories 

Journal Pre-proof



 

 

15 

 

according to the degree of pruning commonly applied: “total pruning” (stumping or cutting down 

the coffee tree), “50% pruning” (removal of 50% of the leaves of the coffee tree by, for example, 

removing half the branches), “25% pruning” (removal of 25% of the leaves), and “no pruning”. 

A7. Fruit load, and its effect on leaf physiological susceptibility (P12), defoliation (P13) and leaf 

emergence (P14): fruit load affects leaf physiological susceptibility to CLR as described by 

(López-Bravo et al., 2012). From these authors, we deduced three ordinal categories for fruit 

load: “high” (> 250 fruiting nodes per tree, equivalent to > 1,840 kg of green coffee/ha), “medium” 

([100-250] fruiting nodes per tree, equivalent to 780-1,840 kg of green coffee/ha) and “low” (< 100 

fruiting nodes, equivalent to < 780 kg of green coffee/ha). The same fruit load categories are 

used to describe defoliation and leaf emergence. 

A8. Date of flowering, A9. Date of the beginning of harvest and A10. Date of the end of harvest 

are the three nominal attributes we used to define three categories of the phenology of the coffee 

tree: “between flowering and the beginning of harvest”, “during harvest” and “between the end of 

harvest and the beginning of flowering”. According to Kushalappa and Eskes (1989b), host 

predisposition to H. vastatrix infection increases with fruit growth. These three categories 

describe the processes of coffee berry growth (P15), coffee berry maturity (P16) and coffee tree 

without berries (P17), respectively. 

A11. Genetic resistance: this attribute describes the genetic susceptibility (P18) of the cultivar and 

was defined by three ordinal categories: “susceptible”, “moderately susceptible” and “resistant”. 

Moderately susceptible varieties are generally those that originate from the Timor hybrid and 

whose resistance is incomplete after being broken down by CLR (Silva et al., 2006). Another 

possible reason to be in this category is when resistant varieties are mixed with susceptible ones. 

A12. CLR incidence on the monitoring date: CLR incidence on the date the disease is monitored 

(by farmers or by extension officers) evaluates three different basic processes: 

- CLR incidence as a proxy of the stock of H. vastatrix inoculum before hyperparasitism 

(P19), to explain the development of the hyperparasite L. lecanii, the higher the CLR 

incidence, the higher the hyperparasitism (Merle et al., 2019). Here “incidence” describes 

three ordinal categories, “high” (incidence >30%), “medium” ([10-30%] of incidence) and 

“low” (<10%) stocks of inoculum.  

- CLR incidence as a proxy of the stock of inoculum (P20) to determine the efficacy of the 

fungicide spray, the higher the incidence, the lower the fungicide efficacy. Here 

“incidence” describes three ordinal categories, “high” (incidence > 30%), “medium” ([10-
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30%] of incidence) and “low” (< 10%) inoculum stock (adapted from Rivillas et al., 2011; 

Zambolim, 2016).  

- CLR incidence as an indicator of leaf defoliation (P21) (Brown et al., 1995). We use CLR 

incidence as a predictor of defoliation (Avelino, unpublished data, Appendix 1). Here 

“defoliation” describes three ordinal categories, “high” (monthly defoliation > 20% when 

incidence is > 36%), “medium” ([6-20%] of monthly defoliation when incidence is [0-

36%]), and “regular” defoliation (monthly defoliation <= 6% when incidence is equal to 

0%). 

 

2.3. Aggregate attributes 

The aggregate attributes are intermediate variables resulting from the aggregation of each 

variable of the hierarchical model tree (from the input attributes to the final output, see 

aggregation tables in Appendix 2 and Cirad Dataverse (Motisi, 2021)) according to the rules 

defined by a group of experts of the CLR-coffee pathosystem and based on the literature. 

Aggregate attributes are grouped in two submodels (Fig. 3): 

1. The CLR submodel defined by the subtree Disease increase considering fungicide 

application. 

2. The coffee submodel defined by three subtrees, Overall host susceptibility, Defoliation 

and Leaf emergence. 
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Figure 3. Hierarchical structure of the ExpeRoya model. The model structure is a tree that 

aggregates variables in a hierarchical way according to available knowledge on CLR and host 

dynamics. The CLR submodel (dotted orange frame) is described by a subtree Disease increase 

considering fungicide application and the coffee submodel (dotted green frame) is defined by 

three subtrees, Overall host susceptibility (genetic and physiological susceptibility, G+P), 

Defoliation, and Leaf emergence. Note that this structure shows that some input attributes are 

used several times for different calculation rules (Table 1). The white and grey boxes represent 

aggregate attributes, the white boxes represent intermediate aggregate attributes which, by 

successive aggregations, form the four subtrees represented by the grey boxes.  

 

2.4. The CLR submodel 

At the lowest level of aggregation, this submodel describes the main processes of the CLR life 

cycle, driven by hyperparasitism, loss of spores, infection and the latent period in interaction with 

Overall host susceptibility (G+P) (from the coffee submodel coffee dynamics). 

Compared to full sun, shade modifies the effect of each meteorological variable on the processes. 

We detail the rationale for aggregation of the variables that lead to the growth of the pathogen 

population in the following subsections. 

2.4.1. Stock of Hemileia vastatrix inoculum after hyperparasitism by Lecanicillium 

lecanii 

L. lecanii is more often present when there are large levels of CLR (Merle et al, 2020), high levels 

of shade or low light intensities (Galvao and Bettiol, 2014; Perfecto et al., 2014; Staver et al., 

2001; Zewdie et al., 2021), while the application of fungicides reduces the inoculum of the 

hyperparasite L. lecanii (González et al., 2014).  

We thus classified the aggregate attribute Inoculum stock after hyperparasitism in three 

categories, “high”, “medium” and “low”, as the result of the interaction between the original stock 

of inoculum of H. vastatrix (deduced from the CLR incidence, P14 in Table 1), shade (P9, Table 

1) and the applications of fungicide that reduce the effect of L. lecanii (P6, Table1). 

2.4.2. Spore loss  

While rainfall greater than 10 mm leads to spore wash-off (Avelino et al., 2020; Lasso et al., 2020; 

Merle et al., 2020), dense shade counteracts this effect because the shade tree canopy intercepts 
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the rainwater and limit its wash-off effect, thereby reducing loss of spores in the understorey 

(Avelino et al., 2020).  

We thus classified the aggregate attribute Spore loss in three categories, “insufficient”, “regular” 

and “sufficient” wash-off as a result of the interaction between shade (P8, Table 1) and the 

number of days with rainfall greater than 10 mm (Spore loss caused by rain wash-off, P1, Table 

1) (Fig.3). 

2.4.3. Infection  

Infection depends on leaf wetness (see section 2 Rainfall, as a proxy of leaf wetness linked to 

infection (P2) and Table 1), and shade was found to increase wetness (López-Bravo et al., 2012). 

We thus classified the aggregate attribute Infection in three categories, “high”, “medium” and 

“low” as the result of the interaction between shade (P8, Table 1) and the duration of leaf wetness 

(P2, Table 1).  

2.4.4. Latent period 

Temperatures between 22 °C and 24 °C favor a short latent period (Kushalappa et al., 1983; 

Nutman et al., 1963) and shade keeps temperatures at this optimum (López-Bravo et al., 2012). 

We thus classified the aggregate attribute Latent period in three categories, “short”, “medium” and 

“long” as the result of the interaction between shade (P8, Table 1) and temperature (P4, Table 1).  

2.4.5. Efficacy of the fungicide application  

The higher the incidence, i.e. the greater the amount of available inoculum, the less effective the 

fungicides in controlling the disease (Rivillas et al., 2011; Zambolim, 2016).  

We thus classified the aggregate attribute Efficacy of fungicide application in three categories, 

“good”, “medium” and “poor” as a result of the interaction between fungicide application (binary 

response, “yes” or “no”; P5, Table 1) and inoculum stock (P20, Table 1) (Fig.3). This attribute 

does not include the quality of the fungicide sprays, which depends on the doses used, the pH of 

the water, and calibration of the equipment. In ExpeRoya we assume all these aspects are 

adequate.  

 

Thereafter, the higher levels of the CLR submodel were linked to each of the subtrees in the 

coffee submodel (Fig. 3, Appendix 2): Overall host susceptibility, Defoliation and Leaf emergence. 
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2.5. The coffee submodel 

2.5.1. Overall host susceptibility (G+P) 

The aggregate attribute Overall host susceptibility (G+P), was defined by the interaction between 

the physiological susceptibility (P) and the genetic susceptibility (G) of the cultivar. 

Host physiological susceptibility to CLR is linked to the phenology of the fruit (Kushalappa and 

Eskes, 1989b), a high fruit load increases leaf physiological susceptibility to CLR (Costa et al., 

2006; López-Bravo et al., 2012).  

Zambolim (2016) found no clear relationship between coffee tree nutrition and coffee 

physiological susceptibility to CLR. This result may be due to opposing effects of leaf nutrition on 

the physiological susceptibility of the leaf to CLR. In fact, it is known that appropriate coffee 

nutrition increases fruit load (Van Oijen et al., 2010; Vezy et al., 2020), which can potentially 

increase host susceptibility to CLR. On the other hand, nutrition is also often mentioned as a way 

to reduce host physiological susceptibility in different pathosystems (Dordas, 2008; Walters and 

Bingham, 2007) and particularly in C. arabica-H. vastatrix (Toniutti et al., 2017). Therefore, the 

opposing effects of nutrition and leaf susceptibility may offset one another resulting in no clear 

effect of nutrition on coffee susceptibility at field scale.  

However, from an arithmetic point of view, Avelino et al. (2006) proposed a negative effect of 

nutrition on CLR incidence: by stimulating leaf emergence, nutrition increases the number of new 

healthy leaves thus diluting the disease (“dilution effect” modeled by Ferrandino (2008), see 

2.5.3.). 

Finally, shade reduces host physiological susceptibility compared to a coffee tree growing in full 

sun (Eskes, 1982). 

We thus defined the aggregate attribute Leaf physiological susceptibility according to the 

interaction between fruit load (P12, Table 1), coffee tree phenology (P15 to P17, Table 1) and 

shade (P10, Table 1).  

We classified the final aggregate attribute of the subtree “Overall host susceptibility (G+P)” in four 

categories, “high”, “medium”, “low” and “null” susceptibility as the result of the interaction between 

Leaf physiological susceptibility and genetic susceptibility (P18, Table 1). 

2.5.2. Defoliation 

High incidence increases the number of fallen leaves (Brown et al., 1995). We used the 

relationship defined experimentally by Avelino (unpublished data, Appendix 1) to describe the 
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effect of incidence on defoliation. Additionally, a high fruit load (number of fruiting nodes per tree) 

increases the risk of defoliation of the coffee tree relative to source-sink relationships in the tree 

(de Reffye et al., 2021; Vezy et al., 2020). From López-Bravo et al. (2012), Zambolim et al. (1992) 

and Carvalho et al. (2001) it can be deduced that with a high fruit load, on average, the maximum 

incidence of epidemics is reached faster than with a lower fruit load. This is possibly linked to 

defoliation, which rapidly reduces the number of susceptible tissues.  

Defoliation also depends on the phenology of the coffee tree (Costa et al., 2006). Before harvest, 

defoliation is positively linked to fruit growth and incidence; the stresses linked to fruit load and 

CLR incidence are exacerbated during harvest, thereby increasing leaf senescence, while after 

harvest these stresses decrease.  

We thus classified the final aggregate attribute of the subtree Defoliation in three categories, 

“high”, “medium” and “regular” (baseline defoliation level defined when CLR incidence is null, 

Appendix 1) as the result of the interaction between incidence (P21, Table 1), fruit load (P13, 

Table 1) and phenology of coffee plant (P15 to P17, Table 1). 

2.5.3. Leaf emergence 

As CLR incidence is the ratio of infected leaves to the total number of leaves, a variation in 

incidence may be due to a variation in the numerator due to coffee CLR growth, and in the 

denominator due to leaf emergence. The coffee submodel characterizes the leaf appearance 

dynamics to account for the dilution effect (Ferrandino, 2008) caused by leaf emergence that has 

already been reported for CLR (Kushalappa and Ludwig, 1982; López-Bravo et al., 2012).  

Like defoliation, the lowest level of the process of leaf emergence was defined by the interaction 

between fruit load (P14, Table 1) and fruit phenology (P15 to P17, Table 1) to account for the 

influence of the source-sink relationship on leaf dynamics (Avelino et al., 1993; Vezy et al., 2020). 

Fruit load competes with vegetative growth (DaMatta et al., 2007), and possibly to a greater 

extent during the final stages of fruit development (Taugourdeau et al., 2014). We next 

aggregated the input attribute rainfall (P3, Table 1) as a limiting factor for leaf emergence, 

followed by the input attribute nutrition (P7, Table 1) as a stimulating factor for leaf emergence. 

Finally, the effect of shade, which reduces leaf emergence (DaMatta, 2004; López-Bravo et al., 

2012), was introduced at the highest level of the subtree Leaf emergence. 

We thus classified the final aggregate attribute of the subtree Leaf emergence in three categories, 

“Favorable”, “Moderately favorable” and “Unfavorable” for leaf emergence as the result of the 

interaction between fruit load, coffee tree phenology, rainfall, coffee nutrition and shade. 
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The aggregate attribute of the subtree Defoliation interacts with the aggregate attribute of the 

subtree Leaf emergence statistically by counterbalancing the “dilution effect” of leaf emergence 

on disease incidence. In these interactions, we also assume that high defoliation due to rust 

reduces the stock of inoculum. 

2.5.4. Pruning 

Like defoliation, pruning the coffee tree reduces the stock of inoculum by removing infected 

leaves consequently reducing the risk that CLR incidence will increase in the following month. We 

aggregated pruning (P11, Table 1) to the whole model tree just below the final output of the 

model, i.e., the risk of an increase in CLR incidence in the following month. 

2.6. Aggregation of the two submodels 

The aggregation rulesets for submodels CLR and Coffee are presented in Appendix 2. In all, 20 

tables represent the aggregation of 44 attributes. Each attribute is described by either 2, 3, or 4 

categories. The model defines a total of 229 possible interactions to describe the final output. 

 

ExpeRoya was computed in R (R Core Team, 2017) and a user-interface was implemented in R 

shiny, the latter is available on the Pergamino platform (https://www.redpergamino.net/app-

experoya). 

  

2.7. Attribute weights  

The relative influence of each attribute on the final output was calculated as normalized local and 

global weights using software Dexi. Calculation was based on a simple sensitivity analysis to 

input variables for quantitative models. The higher the weight, the greater the contribution of the 

attribute to the output. Local weights define the relative contribution of each attribute belonging to 

the same node. Total weights define the contribution of each attribute to the final output relative to 

all the other attributes. 

 

2.8. Social evaluation of the model 

The social evaluation of the model consisted of comparing the formalism developed in the model 

with the experts' opinions. Two methods were used for the social evaluation, (i) qualitative 

evaluation with experts and practitioners during workshops organized during the Procagica 
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project, and (ii) quantitative evaluation through a survey of CLR experts selected based on their 

referenced works on CLR (particularly researchers) and their known level of knowledge on CLR 

(particularly actors of coffee technical services).  

The experts selected for the social evaluation were not the same as the experts who participated 

in the construction of ExpeRoya. 

2.8.1. Qualitative evaluation through workshops held during the design phase of 

ExpeRoya  

During the design phase, incremental versions of ExpeRoya were used in a succession of 19 

workshops (regional and national in Central America). Most of the partners (coffee farmers, 

members of coffee technical institutes and researchers) of the project were consulted several 

times as the model increased in complexity. During the workshops, exchanges between 

participants made it possible to evaluate their interest and their willingness to help produce 

monthly bulletins on CLR risks using the tool. 

During the workshops, members of technical services used the model, examined the outputs, and 

explored various scenarios by modifying the values of the input attributes. 

 

2.8.2. Quantitative evaluation of the final version of ExpeRoya through a survey 

The final version of ExpeRoya was quantitatively evaluated through a survey: 17 CLR experts 

agreed to take part in the survey out of the original 30 experts contacted by email. Seven of the 

17 experts who responded to the survey belonged to organizations involved in the Procagica 

project (Icafé, Costa Rica; Centa-café, El Salvador; Ihcafe, Honduras; IICA, Nicaragua; Indocafé, 

Dominican Republic; Cirad, France).  

The questionnaire (Appendix 3) was designed using Google Form and was available in English 

(https://forms.gle/xUxn53gEzhSV12GQ9) and in Spanish (https://forms.gle/G98cu23kr47xghd88). 

The experts came from Latin America, Canada and France. The questions were framed to 

facilitate elicitation of expert opinion (Morgan, 2014). The questions were either quantitative, to 

describe the functional responses of the disease processes and host dynamics to their related 

input attributes (only one biophysical attribute), or qualitative, (i) to describe interactions between 

multiple attributes and (ii) to enable free-text answers so experts could clarify or add their own 

comments on the description of the relationships. 
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The questionnaire comprised 31 questions, in addition, the expert was asked to state the degree 

of confidence of each of her/his responses on a scale from 1 to 10. The questions were multiple-

choice and were designed to compare the formalism incorporated in the model with the experts’ 

knowledge component by component.  

 

Evaluation of the quantitative relationships. The questions concerning the quantitative 

relationships aimed to enable the experts to quantitatively describe (i) the functional responses of 

the CLR processes and host dynamics to their related input attributes and (ii) the prevalence of 

the attributes in the interactions.  

The questions were in the form of a double entry table with, row-wise, the categories of the input 

attribute (the variable to be explained) and column-wise, the explanatory variable discretized over 

the intervals of values that this variable could take. For example, for the efficacy of fungicides, the 

variable to be explained "efficacy of fungicides" was described in one row by three categories, 

"low efficacy", "medium efficacy" and "high efficacy", and the explanatory variable "incidence" 

was described in one column by seven values [0, 5, 10, 15, 20, 25, > 30%]. 

To analyze the responses, we fitted a binomial model by transforming the values of the variable 

to be explained into an interval ranging from 0 to 1. For example, for the efficacy of fungicides, 

“low efficacy” took the value 0, “medium efficacy” 0.5, and “high efficacy” 1.  

For the categories that associate a number of days with a threshold, we computed the variable 

number of days*threshold to account for the different thresholds chosen by the experts. 

 

Evaluation of the qualitative relationships. The questions concerning the qualitative 

relationships aimed at obtaining experts’ descriptions of the interactions between multiple input 

attributes. These questions were designed to follow a gradient of increasing complexity reflecting 

the increasing complexity of the relationships within the CLR-coffee pathosystem (depending on 

the scale of observation of each process, e.g. aggregation of attributes from high-level nodes to 

lower levels nodes). The questions were either multiple-choice, or in the case multiple attributes, 

double entry tables. 

For the quantitative and qualitative relationships, we averaged the experts’ responses by only 

accounting for answers ranked with a degree of confidence of more than 5 (range 0-10) and 

computed the average experts’ response by weighting each expert’s response with her/his 

degree of confidence. 
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The results were analyzed using R programming language (R Core Team, 2017).  

2.9. The model “in action” 

To illustrate the behavior of the model, we simulated the cropping season in 2012, a year that 

was favorable for CLR (Avelino et al., 2015). We uploaded simulated weather data including daily 

mean temperature and daily rainfall from the Nasa data access viewer 

(https://power.larc.nasa.gov/data-access-viewer/) for three locations at increasing altitudes: San 

Vito, Costa Rica (8.8202, -82.9579; 899 m a.s.l.), Antigua, Guatemala (14.5748, -90.7747; 1,156 

m a.s.l.) and Las Margaritas, Mexico (16.456, -91.9022; 1,487 m a.s.l.). We tested effects on the 

forecasted monthly increase in CLR under (i) High (>60%), Medium ([40-60%]) and Low (<40%) 

shade cover (see Table 1 for details on the thresholds of the attributes), (ii) High (25%), Medium 

(10%) and Low (3%) incidence at the first monitoring date of the simulation and (iii) fungicide 

application (yes/no). To simulate the course of the epidemics, we applied realistic increases in 

incidence rates using the incidence at the monitoring date and the risk category for an increase in 

CLR in the following month (Drastic increase, Stable increase, Decrease; Appendix 4). To 

compare the situations, we applied daily rainfall recorded in Antigua (Guatemala) to San Vito 

(Costa Rica) and Las Margaritas (Mexico). Finally, for fungicide applications, we used the rules 

included in the standard recommendations for coffee production systems (Rivillas et al., 2011), 

i.e., fungicide should only be applied (i) after flowering and before harvest, (ii) if the incidence at 

the monitoring date is greater than 3%, (iii) if no fungicide was applied in the month preceding the 

monitoring date, and (iv) with a limit of 4 applications. All the other attributes of the model were 

fixed: medium fruit load (17-40q/ha), susceptible cultivar, no fertilization and no pruning,  

 

3. Results and Discussion  

3.1. Structure of the ExpeRoya model and weights of the attributes 

The model is a nested hierarchical model in which the variables are qualitative (ordinal and 

nominal) and, based on various sources of knowledge (literature, data, and empirical and 

scientific knowledge accumulated by CLR experts), aggregated in a comprehensive way to 

systematically describe the pathways and the interactions involved in the dynamics of the CLR-

coffee pathosystem. 

The weights of each model attribute depends on the arrangement of the attributes in the model 

architecture. The variables in the lowest parts of the tree contribute less to the value of the final 
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output than those in the highest hierarchical levels of the tree. The overall and local weights of 

each variable computed to forecast CLR (Fig. 4) are consistent with expert opinion (evaluated by 

members of the technical services during Procagica workshops).  

The risk of a monthly increase in CLR incidence is explained at the highest level by the 

interaction between Pruning and Incidence increase without pruning (Fig. 4). They both have the 

same importance in explaining the final output (each weighs 50% of the final output). Incidence 

increase without pruning is explained by the interaction between Disease increase considering 

fungicides (35% of the total weight), Defoliation (8% of the total weight) and Leaf emergence (8% 

of the total weight).  

Management practices linked to Fungicide application and coffee tree characteristics linked to 

Genetic resistance contribute more (17%) to the risk of monthly increase in CLR incidence than 

the meteorological variables (10%), after summing the overall weights of rainfall, temperature, 

and shade (which modify the meteorological variables). This corroborates the general opinion of 

the experts. It also questions the widespread belief that climate is the main cause of CLR 

outbursts that led to vast efforts and investments to monitor and forecast climate for CLR risk 

management, thereby shifting the focus away from coffee growers. 

 

Journal Pre-proof



 

 

27 

 

 

Figure 4. Average normalized weights of each attribute of the ExpeRoya model. Screenshot 

of Dexi software (Bohanec, 2020). The local weights (Loc. norm.) define the relative contribution 

of each attribute belonging to the same node. The overall weights (Glob. norm.) define the 

contribution of each attribute relative to all the other attributes compared with the uppermost 

node. The same attributes used in different aggregation tables are shown in italics. Note: 

attributes with low overall weights can nevertheless have a high local weight, meaning they play a 

role in certain circumstances. For example, Fungicide application affecting L. lecanii and linked to 

Inoculum stock (of H. vastatrix) after hyperparasitism has a negligible overall weight (less than 

1%, which was rounded off to 0%) but nevertheless explains 20% of the attribute Inoculum stock 

after hyperparasitism, meaning it plays a role in certain local interactions.  
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3.2. Social evaluation of the model 

3.2.1. Qualitative evaluation took place at workshops organized during the design 

stage of ExpeRoya  

During the workshops, the participants agreed with the formalism of the model and the results of 

the model scenarios were in line with what the participants knew about the system. Today, coffee 

technical services in Honduras and Nicaragua use ExpeRoya to help forecast increases in CLR. 

As a result, they can take preventative measures instead of basing their decisions on surveillance 

only, and they can rapidly react to the observed incidence of CLR. Honduras IHCAFE also uses 

the forecasts in its monthly alerts. Central American coffee institutes have access to the 

ExpeRoya user-friendly web interface available via https://www.redpergamino.net/app-experoya, 

hosted by the Pergamino platform (http://www.redpergamino.net/).  

 

3.2.2. Quantitative evaluation of the final version (V1) of ExpeRoya through a survey 

Evaluation of the quantitative relationships 
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Figure 5. The functional responses of the disease processes (y-axis) to their related input 

attributes (x-axis) incorporated in the ExpeRoya model (red lines) corroborate expert knowledge 

(black lines, represent the weighted average of the responses with a degree of confidence 

greater than 5). A) question 1.4; B) question 2.1; C) question 2.5; D) question 3.3; E) question 4.5 

and F) question 6.12 of the survey available in English and in Spanish (Appendix 3). 

 

All the experts were able to quantitatively describe the functional responses of the biophysical 

processes in the multiple-choice questionnaire. Overall, the patterns described by the experts 

were consistent with the formalism incorporated in ExpeRoya.  

The relationship between incidence and fungicide efficacy described by the experts and the one 

incorporated in the model are extremely close (Fig. 5A), which is surprising because this 

relationship is not explicitly described in the literature. 

The relationship between rainfall and the efficacy of spore dispersal was on average 

overestimated by the experts compared to ExpeRoya (Fig. 5B) for low rainfall amounts, but the 

threshold beyond which spore wash-off occurs was on average around 8 mm, which is close to 

the 10-mm threshold reported in the literature (Avelino et al., 2020; Lasso et al., 2020; Merle et 

al., 2020). Indeed, beyond the 10-mm threshold, the reduction in spore dispersal is indicative of 

spore wash-off. When experts were asked to explicitly define the threshold of rainfall for spore 

wash-off (question 2.3 of the survey, Appendix 3), only 5% of the experts cited the 10 mm 

threshold used in ExpeRoya. However, the pattern of the functional response of spore wash-off 

described by the experts (question 2.5 of the survey, Appendix 3; Fig. 5C) was close to the 

functional response incorporated in ExpeRoya. These results show that the experts were able to 

explicitly define different thresholds depending on the processes they took into consideration. 

Also, in the free-text answer to question 2.9 of the survey, they pointed out that other variables 

such as rainfall intensity, the size of the raindrops and the duration of the rainfall event must be 

taken into account when describing spore dispersal and wash-off. 

The relationship between infection and leaf wetness described by the experts was on average 

close to the relationship in ExpeRoya, although it was slightly overestimated by the experts at low 

duration of wetness and underestimated at high duration of wetness, compared to the model (Fig. 

5D). A majority (56%) of the experts selected 5 mm of daily rainfall as a proxy of leaf wetness 

(question 3.1 of the survey, Appendix 3) as specified in ExpeRoya (Guzman and Gomez, 1987). 

The relationship between the latent period and temperature was the most difficult for the experts 

to assess (question 4.5 of the survey, Appendix 3; Fig. 5E). While the experts’ relationship pattern 
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was close to that described in the ExpeRoya, the experts' average curve revealed an optimum of 

25 °C corresponding to a latent period of three weeks, versus an optimum ranging between 22 °C 

and 24 °C for a latent period of one week in ExpeRoya, which corresponds to the literature 

(Kushalappa et al., 1983; Nutman et al., 1963). The experts also tended to indicate that high 

temperatures are less limiting to CLR growth than low temperatures, whereas the ExpeRoya 

considers a symmetric relationship of the latent period as a function of temperature.  

Finally, the experts’ assessment of the relationship between the number of rainy days (i.e., days 

with more than 1 mm of rainfall) and leaf emergence was very close to the one incorporated in 

ExpeRoya (Fig. 5F). 

The discrepancies between the experts’ answers and the model may be partly due to the difficulty 

for the experts to describe the shape of a curve based on a table (used in the Google Form) that 

does not represent a graph.  

 

Evaluation of the qualitative relationships 

For each qualitative relationship (interactions between multiple input attributes), the experts were 

asked to select one response. We evaluated the degree of agreement between the experts’ 

opinions and ExpeRoya by computing the percentage of experts who selected the same 

response as that specified in ExpeRoya (percentages in red in Figure 6) and the percentage of 

experts who selected other responses (percentages in grey in Figure 6). Among all the 

relationships, a majority of experts chose 28 relationships out of the 47 relationships proposed, 

i.e. we obtained 60% of hits (Fig. 6).  
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Figure 6. Distribution of the experts’ responses to questions involving qualitative 

relationships (interactions between multiple input attributes). The graph shows the 

percentage of experts who chose a given relationship between two attributes at least. The dots 

are in red when they match ExpeRoya and in grey otherwise. We defined hit percentages when 

the majority of experts chose the ExpeRoya response.  

 

The observed range of experts’ responses when dealing with a large number of interactions is 

indicative of discrepancies between experts’ projections based on the same information. The 

variability of the experts’ responses of course depends on the weight that each person gives to 

each process (Morgan, 2014). However, this variability also depends on the difficulty people have 
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processing a large number of factors when making decisions. Such a process entails a level of 

conceptual complexity that has been shown to limit human information processing capacity to 

three- to four-way interactions (Halford et al., 2005). 

The experts’ responses to question 7.3 (Appendix 3) illustrate this complexity: 38% of the experts 

estimated that the incidence would be stable or increase slightly in the following month, whereas 

ExpeRoya forecast a dramatic increase in incidence that was only suggested by 15% of the 

experts. Figure 7 shows the hierarchy of the combinations of attributes proposed in question 7.3 

based on which ExpeRoya forecasts a dramatic increase in incidence.  
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Figure 7. Hierarchical tree representing the output of ExpeRoya with the input attributes 

proposed in question 7.3 of the survey (Appendix 3). The color code of the nodes indicates the 

point of view of a coffee farmer: green when his/her opinion is favorable, orange when it is 

moderately favorable, red when it is unfavorable, dark red when it is drastically unfavorable, and 

grey when it is a non-ordered attribute. At the time of the survey, the level of defoliation proposed 

was low, but as ExpeRoya has evolved since then, we show here the results with the latest 

version of the model (Version 1.3), i.e., medium defoliation (orange node). 

 

One way to compensate for human error in integrating and processing a large number of 

variables is to automate responses using a well-defined framework. This is the main challenge of 

system modeling for decision making. Agro-ecological systems, such as coffee farms and coffee 

producing areas, are made up of countless variables and interactions; we show that a qualitative 

hierarchical model such as ExpeRoya can integrate this complexity in a simple way and in line 

with expert opinion, which helps explain its high level of adoption by practitioners.  

 

3.3. Obtaining accurate CLR forecasting with ExpeRoya 

The mechanistic and multi-attribute approach used in ExpeRoya allows the production of 

accurate and realistic scenarios (rather than providing precise quantitative information), especially 

for monthly alerts on CLR. ExpeRoya can process 229 interactions from only 12 input attributes 

corresponding to meteorological variables, management practices, host characteristics and the 

estimated stock of inoculum, that are all easily acquired in the field. The aim of the IPSIM 

framework (Aubertot and Robin, 2013) from which ExpeRoya is derived, is not to precisely 

calculate the levels of the output response (e.g. to the nearest percentage incidence) but to 

obtain accurate levels of the response that enable the identification of trends and, in our case, to 

predict possible future CLR incidence. This particular feature enables farmers and extension 

officers to make rapid and appropriate decisions based on the observed on-farm or national 

incidence of CLR.
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3.4. The model “in action” 

 

 

Figure 8. ExpeRoya simulations of the course of epidemics for three locations at increasing 

altitude in Latin America (Costa Rica, Guatemala and Mexico) using simulated weather data for 

the year 2012, which was favorable for CLR, with varying (i) temperatures but the same rainfall at 

the three locations (Appendix 5), (ii) shade cover (High shade (green lines), Medium shade 

(orange lines), Low shade or Full sun (red lines)), (ii) initial incidence (3%, 10% and 25%) at the 

beginning of the simulation (January 15, 2012) and (iii) application of fungicides (no fungicide 

(upper panel), with fungicides (lower panel)). All the other attributes of the model were fixed: 

medium fruit load (17-40q/ha), susceptible cultivar, no coffee fertilization and no pruning. In the 

lower panel “With fungicides”, the dots represent the fungicide applied for each degree of shade 

(High shade (green lines), Medium shade (orange lines), Low shade or Full sun (red lines)). The 

vertical grey lines represent the flowering date (April1, 2012) and the harvest date (October 1, 

2012). Note that this figure is simply an illustration of how the model can be used over time and 

can discriminate between situations: as ExpeRoya was designed to be used with real data 

acquired at monthly intervals, and entry attributes that are updated each month, those simulations 

do not represent forecasts that could have been made with real monitoring data. 
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By accounting for the fact the same rainf all data were used for the three locations (so as to be 

able to compare the situations), the simulations produced with ExpeRoya satisfactorily describe 

the expected effect of altitude (which is a proxy for temperature) on the incidence of CLR: the 

higher the altitude, the cooler the temperature and hence the lower the incidence (Fig. 8). In San 

Vito, Costa Rica (the lowest elevation) more events with short and medium latent periods 

occurred than at the higher altitudes of Antigua, Guatemala and Las Margaritas, Mexico 

(Appendix 5). However, the altitude effect is counterbalanced when initial incidence (which is a 

proxy of the stock of inoculum) is greater than 3% or when there is shade. In our simulations, the 

incidence of CLR in coffee crops in full sun is much lower (max 20%) than under shade (where 

incidence can reach 50%) because shade increases the conditions that favor the spread of CLR: 

it buffers temperatures and reduces spore wash-off. If fungicide is applied, the application is only 

efficient if CLR incidence is below 10% and is not efficient at all if CLR incidence if greater than 

30%. These results lead us to envisage the use of preventive methods as an alternative to the 

systematic use of fungicides. However, these simulations should be interpreted with caution, as 

ExpeRoya was designed to be used with real data acquired at monthly intervals, and entry 

attributes that are updated each month. It is also important to note that Figure 8 is simply an 

illustration of how the model can be used over time and can discriminate between situations.  

 

4. Conclusion 

Until now, the high complexity of the CLR-coffee pathosystem, comprising a large number of 

processes and system covariates, has been an obstacle to the development of mechanistic 

models. As a result, only a few mechanistic models have been developed (e.g. Bebber et al., 

2016; Kushalappa et al., 1983) thereby limiting the range of possible scenarios with multiple 

interactions between factors. The model ExpeRoya improves forecasting of CLR. ExpeRoya is 

able of capturing the multifactorial feature of the CLR-coffee system by incorporating the main 

disease processes, host dynamics, and cropping practices - all of which interact with 

meteorological variables - in a comprehensive framework to forecast the monthly risk of an 

increase in CLR at the plot and national levels. ExpeRoya is powerful: it makes it possible to 

compute 229 possible interactions that exist within the CLR-coffee pathosystem based on only 12 

input variables that are easily acquired in the field. ExpeRoya is a user-friendly model designed 

for all actors of the coffee sector, particularly for smallholder farmers and agricultural extension 

officers. Coffee technical services in Central America already use ExpeRoya hosted by the 

platform Pergamino (https://www.redpergamino.net/app-experoya), to help them prepare their 

monthly risk alert for producers and extension staff. ExpeRoya is adaptable: users can modify the 

model according to advances in knowledge and/or their own expertise of the system. ExpeRoya 
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is part of a modeling strategy developed in a European Union project called Procagica initiated in 

2016. Procagica aimed at implementing a regional network of national early warning systems to 

prevent new severe epidemics at national and regional levels in Central America. As part of this 

project, Cirad developed a toolbox that includes ExpeRoya, to help develop strategies for 

mitigating the effect of CLR on coffee producers’ livelihoods, especially the most vulnerable 

producers.  

In sum, ExpeRoya is both a framework and a proof of concept that improves both forecasting and 

the comprehensive modeling of CLR. We believe that beyond the context of forecasting CLR, 

ExpeRoya will be useful for many other CLR modeling approaches (e.g., statistical models, 

agent-based modeling, models based on machine learning) because it gathers a considerable 

amount of information on the behavior of the CLR-coffee pathosystem. The ExpeRoya framework 

presented here will certainly be useful for the design of multi-attribute models for other 

pathosystems. 
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Appendices 

Appendix 1 

Effect of incidence of coffee leaf rust on monthly defoliation of coffee trees 

 

We used the model for daily defoliation (Fig. A1.1) to deduce the model for monthly defoliation 

used in ExpeRoya (Fig. A1.2) 

 

 

Fig. A1.1. Daily defoliation of coffee tree according to incidence of coffee leaf rust. Daily 

total defoliation is calculated between two successive dates of incidence assessments and 

averaged per day. The interval between two successive assessments in our dataset was 29.3 

days on average, with a minimum of 17 days and a maximum of 51 days. Data come from three 

Journal Pre-proof



 

 

43 

 

plots (two around Lake Yojoa in Honduras, and one at Turrialba, Costa Rica) that were monitored 

during two consecutive years (1994 and 1995 in Honduras, 2008 and 2009 in Costa Rica). 

 

The linear model adjusted to the data:  

daily_defoliation = 0.2249+ 0.0128* incidence  

 

Where “daily_defoliation” is the percentage of daily total defoliation (healthy and diseased leaves) 

with respect to the total number of leaves present at the time when coffee leaf rust incidence 

(“incidence” in the equation) was assessed.  
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Monthly defoliation used in ExpeRoya 

The monthly defoliation is deduced from the daily defoliation as follows: 

monthly_defoliation = 30*(0.2249+ 0.0128* incidence) 

 

 

Fig. A1.2. Monthly defoliation of coffee tree according to incidence of coffee leaf rust. In 

ExpeRoya, defoliation is described by three ordinal categories, “High defoliation” (>20% of 

monthly defoliation when incidence is >36%), “Medium defoliation” ([6-20%] of monthly defoliation 

when incidence is [0-36%]) and “Regular defoliation” (<= 6% of monthly defoliation when 

incidence is equal to 0%). 

  

Journal Pre-proof



 

 

45 

 

Appendix 2 

ExpeRoya model aggregation tables. The hierarchical structure of the model is available in the 

Dexi version in Cirad Dataverse (Motisi, 2021) and is summarized in Figure 3 in the main text. 

See Materials and Methods for justifications of the combinations of tables. 

 

Table A2.1. Inoculum stock after hyperparasitism by Lecanicilium lecanii described by 18 

interactions between (i) Shade (Process P9, Table 1), (ii) Incidence related to inoculum (Process 

P19, Table 1) and Fungicide (Process P6, Table 1). 
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Table A2.2. Spore loss described by 9 interactions between (i) the effect of rain wash-off on 

spore loss (Process P1, Table 1) and (ii) Shade (Process P8, Table 1). 

 

 

 

Table A2.3. Inoculum stock available for infection described by 9 interactions between (i) 

Inoculum stock after hyperparatism (Table A2.1) and (ii) Spore loss (Table A2.2). 
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Table A2.4. Infection described by 9 interactions between (i) Infection of leaves by wetness 

(Process P2, Table 1) and (ii) Shade (Process P8. Table 1). 

 

 

 

Table A2.5. The latent period described by 9 interactions between (i) Effect of temperature on 

the latent period (Process P4, Table 1) and (ii) Shade (Process P8, Table 1). 
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Table A2.6. Pathogen population growth described by 27 interactions between (i) Inoculum 

stock available for infection (Table A2.3), (ii) Infection (Table A2.4) and (iii) the Latent period 

(Table A2.5).  
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Table A2.7. Fruit effect on leaf physiological susceptibility described by 9 interactions 

between (i) Coffee phenology (Processes P15 to P17, Table 1) and (ii) Fruit load (Process P12, 

Table 1). 

 

 

 

Table A2.8. Leaf physiological susceptibility described by 9 interactions between (i) Shade 

(Process P10, Table 1) and (ii) Fruit effect on the physiological susceptibility (Table A2.7).  
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Table A2.9. Overall host susceptibility (genetic and physiological, G+P) described by 9 

interactions between (i) Leaf physiological susceptibility (Table A2.8) and (ii) Level of genetic 

resistance (Process P18, Table 1). 

 

 

 

Table A2.10. Disease growth described by 12 interactions between (i) Pathogen population 

growth (Table A2.6) and (ii) Overall host susceptibility (G+P) (Table A2.9). 
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Table A2.11. Fungicide efficacy described by 6 interactions between (i) the incidence related to 

inoculum (Effect of the inoculum stock on the efficacy of fungicide applications, Process P20, 

Table 1) and (ii) Fungicide application (Process P5, Table 1). 

 

 

 

Table A2.12. Disease increase considering fungicide application described by 9 interactions 

between (i) Disease growth (Table A2.10) and (ii) Fungicide efficacy (Table A2.11). 
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Table A2.13. Fruit effect on defoliation described by 9 interactions between (i) Coffee 

phenology (Processes P15 to P17, Table 1) and (ii) Fruit load (Process P13, Table 1). 

 

 

 

Table A2.14. Defoliation described by 9 interactions between (i) Incidence on defoliation 

(Process P21, Table 1) and (ii) Fruit effect on defoliation (Table A2.13). 
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Table A2.15. Fruit effect on leaf emergence described by 9 interactions between (i) Coffee 

phenology (Processes P15 to P17, Table 1) and (ii) Fruit load (Process P14, Table 1). 

 

 

 

Table A2.16. Fruit x meteorology described by 9 interactions between (i) Fruit effect on leaf 

emergence (Table A2.15) and (ii) Rainfall (Process P3, Tables 1). 

 

 

 

Table A2.17. Fruit x meteorology x nutrition described by 6 interactions between (i) Fruit x 

Meteorology (Table A2.16) and (ii) Coffee nutrition (Process P7, Table 1). 
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Table A2.18. Leaf emergence described by 9 interactions between (i) Shade (Process P10, 

Table 1) and (ii) Fruit x meteorology x nutrition (Table A2.17).  

 

 

 

Table A2.19. Incidence increase without pruning described by 27 interactions between (i) 

Disease growth x fungicides (Table A2.12), (ii) Defoliation (Table A2.14) and (iii) Leaf emergence 

(Table A2.18). 
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Table A2.20. Risk of monthly increase in CLR incidence described by 16 interactions between 

(i) Pruning (Process P11, Table 1) and (ii) Incidence increase without pruning (Table A2.19). 
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Appendix 3 

Links to the questionnaires of the survey 

- English version https://forms.gle/xUxn53gEzhSV12GQ9 

- Spanish version https://forms.gle/G98cu23kr47xghd88 

 

 

Appendix 4 

Figure A4. Increase in the incidence of CLR in a susceptible variety of coffee Arabica in the 

following month depending on (i) incidence at the monitoring date (Low (<5%), Medium ([5-20%]) 

and High incidence (>40%)) and (ii) the risk category for an increase in CLR in the following 

month (Incidence will increase drastically, Incidence will increase, Incidence is stable or will 

increase slightly, Incidence will decrease). 
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Appendix 5 

 

 

Figure A5.1. Daily rainfall and temperatures used for ExpeRoya simulations at three locations 

of increasing altitude in Latin America (Costa Rica (899 m a.s.l.), Guatemala (1,156 m a.s.l.) and 

Mexico (1,487 m a.s.l.)). To be able to compare the different situations, the same daily rainfall 
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dataset was used for the three locations, whereas the temperatures datasets differed with the 

location. 

 

 

 

 

Figure A5.2. Effect (a) of rainfall on spore loss due to wash-off by rain, infection of leaves due to 

leaf wetness and leaf emergence and (b) of temperature on the latent period at three locations at 

increasing altitudes in Latin America (Costa Rica, Guatemala and Mexico). The weather was 

simulated for 2012, a year favorable for CLR. To be able to compare the different situations, in 

panel (a) the same daily rainfall dataset was used for the three locations, whereas in panel (b) the 

temperatures datasets differed with the location (cf. figure A5.1). 
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Abstract 

CONTEXT 

Coffee leaf rust (CLR) epidemics on Coffea arabica have led to severe socio-economic crises 

in Latin America starting in 2008. Until now, the scattered nature of scientific and empirical 

knowledge of the highly complex CLR-coffee pathosystem has been an obstacle to the 

development of CLR forecasting models. 

OBJECTIVE 

To help prevent new severe epidemics, we built ExpeRoya, a qualitative model, based on a 

review of the scientific literature and expert opinion, to forecast the risk of a monthly increase in 

the incidence of CLR at plot and landscape levels. 

METHODS 

We adopted the IPSIM (Injury Profile SIMulator) framework, a qualitative and aggregative 

modeling approach that describes the effects of the cropping system and the plot environment on 

injuries, thereby making it possible to incorporate scattered knowledge on the system and all its 

complexity in a simplified way. Involving experts makes this approach powerful and robust 

because it builds on empirical knowledge based on a very large number of field observations. We 

argue that broad expert knowledge provides more accurate information on the manifold 

interactions in the system than existing quantitative models can. The structure of ExpeRoya was 

discussed with coffee sector experts in 19 workshops and validated in an online survey with 17 

CLR experts. 

RESULTS AND CONCLUSIONS 

ExpeRoya successfully integrates in a simple way 229 multiple interactions that exist within the 

CLR-coffee pathosystem based on only 12 input variables easily acquired in the field: one 

incidence monitoring variable; two meteorological variables (temperature and rainfall), four crop 

management variables (management of shade cover, fungicide application, nutrition and pruning 

of coffee trees) and five coffee tree characteristics (dates of flowering, beginning and end of 

harvest, fruit load and cultivar genetic resistance). Coffee institutes in Honduras and Nicaragua 

now use ExpeRoya, hosted by the platform Pergamino (https://www.redpergamino.net/app-

experoya), to assist them in preparing their monthly CLR warning bulletins for growers. ExpeRoya 

is an improved forecasting model of CLR by fully incorporating the main biophysical factors 

affecting CLR at the plot and landscape levels. 

SIGNIFICANCE 

ExpeRoya is both a framework and a proof of concept that improves both forecasting and the 

comprehensive modeling of CLR. ExpeRoya is a powerful yet user-friendly model designed for all 

actors of the coffee sector, particularly smallholder farmers and extension agents. ExpeRoya is 
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adaptable: users can modify the model according to advances in knowledge and/or their own 

expertise of the system. ExpeRoya can help prevent future socio-economic crises. 
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Highlights 

 Until now, scattered knowledge on the multifactorial coffee leaf rust (CLR)-coffee 

pathosystem has been an obstacle to CLR forecasting models 

 Our ExpeRoya model accounts for interactions between disease, host, cropping practices 

and weather to forecast the monthly increase in CLR incidence 

 ExpeRoya is powerful, it integrates in a simple way 229 multiple relationships to forecast 

the risk of CLR increase at plot and landscape levels 

 Coffee institutes from Latin America already use ExpeRoya to assist them in preparing 

their monthly CLR warning bulletins for producers 

 ExpeRoya is adaptable and user-friendly; it can help prevent future socio-economic 

crises of the coffee sector 
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Appendix 2 

ExpeRoya model aggregation tables. The hierarchical structure of the model is available in the 

Dexi version in Cirad Dataverse (Motisi, 2021) and is summarized in Figure 3 in the main text. 

See Materials and Methods for justifications of the combinations of tables. 

 

Table A2.1. Inoculum stock after hyperparasitism by Lecanicilium lecanii described by 18 

interactions between (i) Shade (Process P9, Table 1), (ii) Incidence related to inoculum (Process 

P19, Table 1) and Fungicide (Process P6, Table 1). 

 
Shade 

Incidence related to 
inoculum 

Fungicide
s 

Inoculum stock after 
hyperparasitism 

1 High Low quantity of inoculum Yes Low quantity of inoculum 
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Table A2.2. Spore loss described by 9 interactions between (i) the effect of rain wash-off on 

spore loss (Process P1, Table 1) and (ii) Shade (Process P8, Table 1). 

 

Spore loss by rain wash-off Shade Spore loss 

1 Insufficient wash-off High Low loss 

2 Insufficient wash-off Medium Low loss 

3 Insufficient wash-off Low shade or Full sun Low loss 

4 Regular wash-off High Low loss 

5 Regular wash-off Medium Low loss 

6 Regular wash-off Low shade or Full sun Regular loss 

7 Efficient wash-off High Regular loss 

8 Efficient wash-off Medium High loss 

9 Efficient wash-off Low shade or Full sun High loss 

 

Table A2.3. Inoculum stock available for infection described by 9 interactions between (i) 

Inoculum stock after hyperparatism (Table A2.1) and (ii) Spore loss (Table A2.2). 

2 High Low quantity of inoculum No Low quantity of inoculum 

3 High 
Medium quantity of 
inoculum Yes Medium quantity of inoculum 

4 High 
Medium quantity of 
inoculum No Medium quantity of inoculum 

5 High High quantity of inoculum Yes High quantity of inoculum 

6 High High quantity of inoculum No Medium quantity of inoculum 

7 Medium Low quantity of inoculum Yes Low quantity of inoculum 

8 Medium Low quantity of inoculum No Low quantity of inoculum 

9 Medium 
Medium quantity of 
inoculum Yes Medium quantity of inoculum 

10 Medium 
Medium quantity of 
inoculum No Medium quantity of inoculum 

11 Medium High quantity of inoculum Yes High quantity of inoculum 

12 Medium High quantity of inoculum No Medium quantity of inoculum 

13 
Low of Full 
sun Low quantity of inoculum Yes Low quantity of inoculum 

14 
Low of Full 
sun Low quantity of inoculum No Low quantity of inoculum 

15 
Low of Full 
sun 

Medium quantity of 
inoculum Yes Medium quantity of inoculum 

16 
Low of Full 
sun 

Medium quantity of 
inoculum No Medium quantity of inoculum 

17 
Low of Full 
sun High quantity of inoculum Yes High quantity of inoculum 

18 
Low of Full 
sun High quantity of inoculum No High quantity of inoculum 
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Inoculum stock after hyperparasitism Spore loss Inoculum stock available for infection 

1 Low quantity of inoculum Low loss Low quantity of spores 

2 Low quantity of inoculum Regular loss Low quantity of spores 

3 Low quantity of inoculum High loss Low quantity of spores 

4 Medium quantity of inoculum Low loss Medium quantity of spores 

5 Medium quantity of inoculum Regular loss Low quantity of spores 

6 Medium quantity of inoculum High loss Low quantity of spores 

7 High quantity of inoculum Low loss High quantity of spores 

8 High quantity of inoculum Regular loss Medium quantity of spores 

9 High quantity of inoculum High loss Low quantity of spores 

 

Table A2.4. Infection described by 9 interactions between (i) Infection of leaves by wetness 

(Process P2, Table 1) and (ii) Shade (Process P8. Table 1). 

 

Infection of leaves by wetness Shade Infection 

1 High infection High High infection 

2 High infection Medium High infection 

3 High infection Low shade of Full sun High infection 

4 Medium infection High High infection 

5 Medium infection Medium High infection 

6 Medium infection Low shade of Full sun Medium infection 

7 Low infection High Medium infection 

8 Low infection Medium Medium infection 

9 Low infection Low shade of Full sun Low infection 

 

Table A2.5. The latent period described by 9 interactions between (i) Effect of temperature on 

the latent period (Process P4, Table 1) and (ii) Shade (Process P8, Table 1). 

 

Latent period by temperature Shade Latent period 

1 Short latent period High Short latent period 

2 Short latent period Medium Short latent period 

3 Short latent period Low shade or Full sun Short latent period 

4 Regular latent period High Short latent period 

5 Regular latent period Medium Regular latent period 

6 Regular latent period Low shade or Full sun Regular latent period 

7 Long latent period High Regular latent period 

8 Long latent period Medium Regular latent period 

9 Long latent period Low shade or Full sun Long latent period 
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Table A2.6. Pathogen population growth described by 27 interactions between (i) Inoculum 

stock available for infection (Table A2.3), (ii) Infection (Table A2.4) and (iii) the Latent period 

(Table A2.5).  

 

Inoculum stock available for 
infection Infection Latent period Pathogen population growth 

1 Low quantity of spores High infection Short latent period 
Increase in the pathogen 
population 

2 Low quantity of spores High infection 
Regular latent 
period Stable pathogen population 

3 Low quantity of spores High infection Long latent period Stable pathogen population 

4 Low quantity of spores 
Medium 
infection Short latent period Stable pathogen population 

5 Low quantity of spores 
Medium 
infection 

Regular latent 
period 

Decrease in the pathogen 
population 

6 Low quantity of spores 
Medium 
infection Long latent period 

Decrease in the pathogen 
population 

7 Low quantity of spores Low infection Short latent period Stable pathogen population 

8 Low quantity of spores Low infection 
Regular latent 
period 

Decrease in the pathogen 
population 

9 Low quantity of spores Low infection Long latent period 
Decrease in the pathogen 
population 

1
0 Medium quantity of spores High infection Short latent period 

Increase in the pathogen 
population 

1
1 Medium quantity of spores High infection 

Regular latent 
period 

Increase in the pathogen 
population 

1
2 Medium quantity of spores High infection Long latent period Stable pathogen population 
1
3 Medium quantity of spores 

Medium 
infection Short latent period 

Increase in the pathogen 
population 

1
4 Medium quantity of spores 

Medium 
infection 

Regular latent 
period Stable pathogen population 

1
5 Medium quantity of spores 

Medium 
infection Long latent period Stable pathogen population 

1
6 Medium quantity of spores Low infection Short latent period Stable pathogen population 
1
7 Medium quantity of spores Low infection 

Regular latent 
period 

Decrease in the pathogen 
population 

1
8 Medium quantity of spores Low infection Long latent period 

Decrease in the pathogen 
population 

1
9 High quantity of spores High infection Short latent period 

Increase in the pathogen 
population 

2
0 High quantity of spores High infection 

Regular latent 
period 

Increase in the pathogen 
population 

2
1 High quantity of spores High infection Long latent period Stable pathogen population 
2
2 High quantity of spores 

Medium 
infection Short latent period 

Increase in the pathogen 
population 

2 High quantity of spores Medium Regular latent Increase in the pathogen 
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3 infection period population 

2
4 High quantity of spores 

Medium 
infection Long latent period Stable pathogen population 

2
5 High quantity of spores Low infection Short latent period 

Increase in the pathogen 
population 

2
6 High quantity of spores Low infection 

Regular latent 
period Stable pathogen population 

2
7 High quantity of spores Low infection Long latent period Stable pathogen population 

 

Table A2.7. Fruit effect on leaf physiological susceptibility described by 9 interactions 

between (i) Coffee phenology (Processes P15 to P17, Table 1) and (ii) Fruit load (Process P12, 

Table 1). 

Table A2.8. Leaf physiological susceptibility described by 9 interactions between (i) Shade 

(Process P10, Table 1) and (ii) Fruit effect on the physiological susceptibility (Table A2.7).  

 
Shade Fruit effect on leaf physiological susceptibility Leaf physiological susceptibility 

1 High High susceptibility Medium susceptibility 

2 High Medium susceptibility Low susceptibility 

3 High Low susceptibility Low susceptibility 

4 Medium High susceptibility Medium susceptibility 

5 Medium Medium susceptibility Medium susceptibility 

6 Medium Low susceptibility Low susceptibility 

7 Low shade or Full sun High susceptibility High susceptibility 

8 Low shade or Full sun Medium susceptibility High susceptibility 

9 Low shade or Full sun Low susceptibility Medium susceptibility 

 

Coffee phenology Fruit load 
Fruit effect on leaf physiological 
susceptibility 

1 From flowering to the beginning of harvest High fruit load Medium susceptibility 

2 From flowering to the beginning of harvest 
Medium fruit 
load Low susceptibility 

3 From flowering to the beginning of harvest Low fruit load Low susceptibility 

4 During harvest High fruit load High susceptibility 

5 During harvest 
Medium fruit 
load High susceptibility 

6 During harvest Low fruit load Medium susceptibility 

7 
From the end of harvest to the beginning of 
flowering High fruit load Low susceptibility 

8 
From the end of harvest to the beginning of 
flowering 

Medium fruit 
load Low susceptibility 

9 
From the end of harvest to the beginning of 
flowering Low fruit load Low susceptibility 
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Table A2.9. Overall host susceptibility (genetic and physiological, G+P) described by 9 

interactions between (i) Leaf physiological susceptibility (Table A2.8) and (ii) Genetic resistance 

(Process P18, Table 1). 

 

Leaf physiological susceptibility Genetic resistance Overall host susceptibility (G+P) 

1 High susceptibility Susceptible High susceptibility 

2 High susceptibility Moderately susceptible Medium susceptibility 

3 High susceptibility Resistent Null susceptibility 

4 Medium susceptibility Susceptible Medium susceptibility 

5 Medium susceptibility Moderately susceptible Medium susceptibility 

6 Medium susceptibility Resistent Null susceptibility 

7 Low susceptibility Susceptible Medium susceptibility 

8 Low susceptibility Moderately susceptible Low susceptibility 

9 Low susceptibility Resistent Null susceptibility 

 

Table A2.10. Disease growth described by 12 interactions between (i) Pathogen population 

growth (Table A2.6) and (ii) Overall host susceptibility (G+P) (Table A2.9). 

 

Pathogen population growth 
Overall host susceptibility 
(G+P) Disease growth 

1 
Increase in the pathogen 
population High susceptibility 

Favorable for an increase in the pathogen 
population 

2 
Increase in the pathogen 
population Medium susceptibility 

Favorable for an increase in the pathogen 
population 

3 
Increase in the pathogen 
population Low susceptibility 

Moderately for an increase in the pathogen 
population 

4 
Increase in the pathogen 
population Null susceptibility 

Unfavorable for an increase in the pathogen 
population 

5 Stable pathogen population High susceptibility 
Moderately for an increase in the pathogen 
population 

6 Stable pathogen population Medium susceptibility 
Moderately for an increase in the pathogen 
population 

7 Stable pathogen population Low susceptibility 
Unfavorable for an increase in the pathogen 
population 

8 Stable pathogen population Null susceptibility 
Unfavorable for an increase in the pathogen 
population 

9 
Decrease in the pathogen 
population High susceptibility 

Unfavorable for an increase in the pathogen 
population 

1
0 

Decrease in the pathogen 
population Medium susceptibility 

Unfavorable for an increase in the pathogen 
population 

1
1 

Decrease in the pathogen 
population Low susceptibility 

Unfavorable for an increase in the pathogen 
population 

1
2 

Decrease in the pathogen 
population Null susceptibility 

Unfavorable for an increase in the pathogen 
population 
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Table A2.11. Fungicide efficacy described by 6 interactions between (i) the incidence related to 

inoculum (Effect of the inoculum stock on the efficacy of fungicide applications, Process P20, 

Table 1) and (ii) Fungicide application (Process P5, Table 1). 

 

Incidence related to inoculum Fungicide application Fungicide efficacy 

1 Low quantity of inoculum Yes High efficacy 

2 Low quantity of inoculum No Low efficacy 

3 Medium quantity of inoculum Yes Regular efficacy 

4 Medium quantity of inoculum No Low efficacy 

5 High quantity of inoculum Yes Low efficacy 

6 High quantity of inoculum No Low efficacy 
Table A2.12. Disease increase considering fungicide application described by 9 interactions 

between (i) Disease growth (Table A2.10) and (ii) Fungicide efficacy (Table A2.11). 

 
Disease growth 

Fungicide 
efficacy 

Disease increase considering fungicide 
application 

1 
Favorable for an increase in the pathogen 
population High efficacy Decrease in the pathogen population 

2 
Favorable for an increase in the pathogen 
population Regular efficacy Stable pathogen population 

3 
Favorable for an increase in the pathogen 
population Low efficacy Increase in the pathogen population 

4 
Moderately for an increase in the pathogen 
population High efficacy Decrease in the pathogen population 

5 
Moderately for an increase in the pathogen 
population Regular efficacy Decrease in the pathogen population 

6 
Moderately for an increase in the pathogen 
population Low efficacy Stable pathogen population 

7 
Unfavorable for an increase in the pathogen 
population High efficacy Decrease in the pathogen population 

8 
Unfavorable for an increase in the pathogen 
population Regular efficacy Decrease in the pathogen population 

9 
Unfavorable for an increase in the pathogen 
population Low efficacy Decrease in the pathogen population 

 

Table A2.13. Fruit effect on defoliation described by 9 interactions between (i) Coffee 

phenology (Processes P15 to P17, Table 1) and (ii) Fruit load (Process P13, Table 1). 

 
Coffee phenology Fruit load Fruit effect on defoliation 

1 From flowering to the beginning of harvest High fruit load 
Moderately favorable for 
defoliation 

2 From flowering to the beginning of harvest 
Medium fruit 
load Unfavorable  for defoliation 

3 From flowering to the beginning of harvest Low fruit load Unfavorable  for defoliation 
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4 During harvest High fruit load Favorable  for defoliation 

5 During harvest 
Medium fruit 
load Favorable  for defoliation 

6 During harvest Low fruit load 
Moderately favorable for 
defoliation 

7 
From the end of harvest to the beginning of 
flowering High fruit load Favorable  for defoliation 

8 
From the end of harvest to the beginning of 
flowering 

Medium fruit 
load Favorable  for defoliation 

9 
From the end of harvest to the beginning of 
flowering Low fruit load 

Moderately favorable for 
defoliation 

 

Table A2.14. Defoliation described by 9 interactions between (i) Incidence on defoliation 

(Process P21, Table 1) and (ii) Fruit effect on defoliation (Table A2.13). 

 
Incidence on defoliation Fruit effect on defoliation Defoliation 

1 Regular effect of incidence on defoliation Favorable for defoliation High defoliation 

2 Regular effect of incidence on defoliation Moderately favorable for defoliation Medium defoliation 

3 Regular effect of incidence on defoliation Unfavorable for defoliation Low or null defoliation 

4 Medium effect of incidence on defoliation Favorable for defoliation High defoliation 

5 Medium effect of incidence on defoliation Moderately favorable for defoliation Medium defoliation 

6 Medium effect of incidence on defoliation Unfavorable for defoliation Medium defoliation 

7 High effect of incidence on defoliation Favorable for defoliation High defoliation 

8 High effect of incidence on defoliation Moderately favorable for defoliation High defoliation 

9 High effect of incidence on defoliation Unfavorable for defoliation High defoliation 

 

Table A2.15. Fruit effect on leaf emergence described by 9 interactions between (i) Coffee 

phenology (Processes P15 to P17, Table 1) and (ii) Fruit load (Process P14, Table 1). 

 
Coffee phenology Fruit load Fruit effect on leaf emergence 

1 From flowering to the beginning of harvest High fruit load 
Moderately favorable for vegetative 
growth 

2 From flowering to the beginning of harvest 
Medium fruit 
load Favorable for vegetative growth 

3 From flowering to the beginning of harvest Low fruit load Favorable for vegetative growth 

4 During harvest High fruit load Unavorable for vegetative growth 

5 During harvest 
Medium fruit 
load Unavorable for vegetative growth 

6 During harvest Low fruit load 
Moderately favorable for vegetative 
growth 

7 
From the end of harvest to the beginning of 
flowering High fruit load Favorable for vegetative growth 

8 
From the end of harvest to the beginning of 
flowering 

Medium fruit 
load Favorable for vegetative growth 
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9 
From the end of harvest to the beginning of 
flowering Low fruit load Favorable for vegetative growth 

 

Table A2.16. Fruit x meteorology described by 9 interactions between (i) Fruit effect on leaf 

emergence (Table A2.15) and (ii) Rainfall (Process P3, Tables 1). 

 
Fruit effect on leaf emergence Rainfall Fruit x meteorology 

1 Unfavorable for vegetative growth Favorable for vegetative growth 
Moderately favorable for vegetative 
growth 

2 Unfavorable for vegetative growth 
Moderately favorable for vegetative 
growth Unfavorable for vegetative growth 

3 Unfavorable for vegetative growth Unfavorable for vegetative growth Unfavorable for vegetative growth 

4 
Moderately favorable for vegetative 
growth Favorable for vegetative growth 

Moderately favorable for vegetative 
growth 

5 
Moderately favorable for vegetative 
growth 

Moderately favorable for vegetative 
growth 

Moderately favorable for vegetative 
growth 

6 
Moderately favorable for vegetative 
growth Unfavorable for vegetative growth Unfavorable for vegetative growth 

7 Favorable for vegetative growth Favorable for vegetative growth Favorable for vegetative growth 

8 Favorable for vegetative growth 
Moderately favorable for vegetative 
growth 

Moderately favorable for vegetative 
growth 

9 Favorable for vegetative growth Unfavorable for vegetative growth Unfavorable for vegetative growth 

 

Table A2.17. Fruit x meteorology x nutrition described by 6 interactions between (i) Fruit x 

Meteorology (Table A2.16) and (ii) Coffee nutrition (Process P7, Table 1). 

 
Fruit x meteorology 

Coffee 
nutrition Fruit x meteorology x nutrition 

1 Favorable for vegetative growth Sufficient Favorable for vegetative growth 

2 Favorable for vegetative growth Insufficient 
Moderately favorable for vegetative 
growth 

3 
Moderately favorable for vegetative 
growth Sufficient 

Moderately favorable for vegetative 
growth 

4 
Moderately favorable for vegetative 
growth Insufficient Unfavorable for vegetative growth 

5 Unfavorable for vegetative growth Sufficient Unfavorable for vegetative growth 

6 Unfavorable for vegetative growth Insufficient Unfavorable for vegetative growth 
Table A2.18. Leaf emergence described by 9 interactions between (i) Shade (Process P10, 

Table 1) and (ii) Fruit x meteorology x nutrition (Table A2.17).  

 
Shade Fruit x meteorology x nutrition Leaf emergence 

1 High Favorable for vegetative growth Medium emergence 

2 High Moderately favorable for vegetative growth Low emergence 

3 High Unfavorable for vegetative growth Low emergence 
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4 Medium Favorable for vegetative growth Medium emergence 

5 Medium Moderately favorable for vegetative growth Low emergence 

6 Medium Unfavorable for vegetative growth Low emergence 

7 Low shade or Full sun Favorable for vegetative growth High emergence 

8 Low shade or Full sun Moderately favorable for vegetative growth Medium emergence 

9 Low shade or Full sun Unfavorable for vegetative growth Low emergence 

 

Table A2.19. Incidence increase without pruning described by 27 interactions between (i) 

Disease growth x fungicides (Table A2.12), (ii) Defoliation (Table A2.14) and (iii) Leaf emergence 

(Table A2.18). 

 

Disease increase considering fungicide 
application Defoliation Leaf emergence 

Incidence increase without 
pruning 

1 Increase in the pathogen population High defoliation High emergence 
Incidence is stable or will increase 
slightly 

2 Increase in the pathogen population High defoliation 
Medium 
emergence 

Incidence is stable or will increase 
slightly 

3 Increase in the pathogen population High defoliation Low emergence Incidence will increase 

4 Increase in the pathogen population 
Medium 
defoliation High emergence Incidence will increase 

5 Increase in the pathogen population 
Medium 
defoliation 

Medium 
emergence Incidence will increase 

6 Increase in the pathogen population 
Medium 
defoliation Low emergence Incidence will increase drastically 

7 Increase in the pathogen population 
Low or null 
defoliation High emergence Incidence will increase 

8 Increase in the pathogen population 
Low or null 
defoliation 

Medium 
emergence Incidence will increase 

9 Increase in the pathogen population 
Low or null 
defoliation Low emergence Incidence will increase drastically 

1
0 Stable pathogen population High defoliation High emergence Incidence will decrease 
1
1 Stable pathogen population High defoliation 

Medium 
emergence Incidence will decrease 

1
2 Stable pathogen population High defoliation Low emergence Incidence will decrease 
1
3 Stable pathogen population 

Medium 
defoliation High emergence Incidence will decrease 

1
4 Stable pathogen population 

Medium 
defoliation 

Medium 
emergence Incidence will decrease 

1
5 Stable pathogen population 

Medium 
defoliation Low emergence Incidence will decrease 

1
6 Stable pathogen population 

Low or null 
defoliation High emergence Incidence will decrease 

1
7 Stable pathogen population 

Low or null 
defoliation 

Medium 
emergence Incidence will decrease 

1 Stable pathogen population Low or null Low emergence Incidence is stable or will increase 
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8 defoliation slightly 

1
9 Decrease in the pathogen population High defoliation High emergence Incidence will decrease 
2
0 Decrease in the pathogen population High defoliation 

Medium 
emergence Incidence will decrease 

2
1 Decrease in the pathogen population High defoliation Low emergence Incidence will decrease 
2
2 Decrease in the pathogen population 

Medium 
defoliation High emergence Incidence will decrease 

2
3 Decrease in the pathogen population 

Medium 
defoliation 

Medium 
emergence Incidence will decrease 

2
4 Decrease in the pathogen population 

Medium 
defoliation Low emergence Incidence will decrease 

2
5 Decrease in the pathogen population 

Low or null 
defoliation High emergence Incidence will decrease 

2
6 Decrease in the pathogen population 

Low or null 
defoliation 

Medium 
emergence Incidence will decrease 

2
7 Decrease in the pathogen population 

Low or null 
defoliation Low emergence Incidence will decrease 

 

 

 

 
Pruning Incidence increase without pruning Risk of monthly increase in CLR incidence 

1 Total pruning Incidence will increase drastically Incidence will decrease 

2 Total pruning Incidence will increase  Incidence will decrease 

3 Total pruning Incidence is stable or will increase slightly Incidence will decrease 

4 Total pruning Incidence will decrease Incidence will decrease 

5 50% pruning Incidence will increase drastically Incidence is stable or will increase slightly 

6 50% pruning Incidence will increase  Incidence will decrease 

7 50% pruning Incidence is stable or will increase slightly Incidence will decrease 

8 50% pruning Incidence will decrease Incidence will decrease 

9 25% pruning Incidence will increase drastically Incidence will increase  

10 25% pruning Incidence will increase  Incidence is stable or will increase slightly 

11 25% pruning Incidence is stable or will increase slightly Incidence will decrease 

12 25% pruning Incidence will decrease Incidence will decrease 

13 No pruning Incidence will increase drastically Incidence will increase drastically 

14 No pruning Incidence will increase  Incidence will increase  

15 No pruning Incidence is stable or will increase slightly Incidence is stable or will increase slightly 

16 No pruning Incidence will decrease Incidence will decrease 
Table A2.20. Risk of monthly increase in CLR incidence described by 16 interactions between 

(i) Pruning (Process P11, Table 1) and (ii) Incidence increase without pruning (Table A2.19). 
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