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Abstract

High-dimensional data, with many more covariates than observations, such as genomic
data for example, are now commonly analysed. In this context, it is often desirable to be
able to focus on the few most relevant covariates through a variable selection procedure.
High-dimensional variable selection is widely documented in standard regression models,
but there are still few tools to address it in the context of non-linear mixed-effects models.
In this work, variable selection is approached from a Bayesian perspective and a selection
procedure is proposed, combining the use of spike-and-slab priors and the SAEM algorithm.
Similarly to LASSO regression, the set of relevant covariates is selected by exploring a grid of
values for the penalisation parameter. The proposed approach is much faster than a classical
MCMC algorithm and shows very good selection performances on simulated data.

Keywords Bayesian variable selection · Non-linear mixed-effects models · High-dimensional data ·
Spike-and-slab prior · SAEM algorithm

1 Introduction

Mixed-effects models have been introduced to analyse observations collected repeatedly on several individuals
in a population of interest (Lavielle, 2014; Pinheiro and Bates, 2000). This type of data is particularly
common in the fields of pharmacokinetics or when modelling biological growth for example. In this case, the
intrinsic variability of the data is then attributable to different sources (intra-individual, inter-individual,
residual) whose consideration is essential to characterise without bias the biological mechanisms behind the
observations. Mixed-effects models allow the study of the responses of individuals with the same overall
behaviour but with individual variations characterised by random individual parameters that are not observed.
Thus, mixed-effects models are latent variables models. Parameter inference is therefore difficult because
the likelihood and classical estimators do not have an explicit form. A widely used solution is to use an EM



Bayesian variable selection in non-linear mixed-effects models

(Expectation-Maximisation) algorithm, or any variant, to compute the maximum likelihood estimator or the
maximum a posteriori estimator in a Bayesian framework (Dempster et al., 1977).
Moreover, the description of inter-individual variability may involve a number of covariates much larger than
the number of individuals. In this high-dimensional context, it is often desirable to be able to focus on the few
most relevant covariates through a variable selection procedure. However, in mixed-effects models, identifying
the influential covariates is difficult, as the selection concerns latent variables in the model. Recent years have
seen the emergence of varied contributions on high-dimensional covariate selection in mixed-effects models.
The proposed tools are very different according to whether the regression function is linear or non-linear with
respect to the individual parameters. More precisely, the linear case allows the development of criteria whose
calculation and/or theoretical study involve explicit quantities, which is rarely the case when the model is
non-linear. In linear mixed-effects models, many rely on the use of regularised methods (see Schelldorfer
et al. (2011) and Fan and Li (2012) for example) and most of them include theoretical consistency results
that guarantee the good properties of the proposed methods. In the more general framework of non-linear
mixed-effects models (NLMEM), on the other hand, there are few results and the only published works
concern computational aspects. Bertrand and Balding (2013) compare a stepwise approach using an empirical
Bayes estimate, and penalised regression approaches like Ridge, LASSO and HyperLASSO penalties, and
Ollier (2021) proposes a proximal gradient algorithm for computing a LASSO estimator. To our knowledge,
these are the only contributions that handle high-dimensional variable selection in NLMEM.
Bayesian approaches to variable selection have not received a lot of attention in the NLMEM context. The
focus for their development has been classical statistical models like linear regression or generalised linear
model, for which Bayesian variable selection has been intensively developed in recent years. These methods
encourage sparsity in the regression vector by using a variety of priors (see for example Tadesse and Vannucci
(2021) and the references therein) which may have better properties than the double-exponential prior
associated with the LASSO penalty. Very recently, Lee (2022) proposed an overview of the formulation,
interpretation and implementation of Bayesian non-linear mixed-effects models. In particular, he discussed
Bayesian inference methods, priors options, and model selection methods in this context. However, these
Bayesian approaches are based on Markov Chain Monte-Carlo (MCMC) methods which seldom scale well
enough to be usable for high-dimensional variable selection. The main objective of this paper is to propose a
fast Bayesian spike-and-slab approach that can be used to identify the relevant covariates in a non-linear
mixed-effects model, in a high-dimensional context. More precisely, we extend the EMVS approach of Ročková
and George (2014) to the NLMEM setting. Like EMVS, the proposed approach involves two major steps. The
first step is, for different values of the spike hyperparameter, to select a local version of the median probability
model (Barbieri and Berger, 2004) using the Stochastic Approximation version of the EM algorithm (SAEM,
see Delyon et al. (1999) and Kuhn and Lavielle (2004)). The second step consists in selecting the "best"
model among those kept after the first step, using an extension of the BIC criterion (Chen and Chen, 2008).
An important difference with Ročková and George (2014) is that our approach is applied to NLMEM and
not to classical linear regression models. Due to the model non-linearity and to the latent nature of the
model random effects, the central so-called Q-quantity of the EM algorithm often does not have a closed
form expression and posterior distributions are difficult to compute. To overcome these issues, we propose
an inference method using the SAEM algorithm, rather than simply the EM algorithm as in Ročková and
George (2014). Another important difference is that optimal model selection among the sub-models obtained
in the first step does not require the calculation of the marginal posterior of the models for a spike parameter
being equal to 0, as in Ročková and George (2014), but only of the log-likelihood of the NLMEM taken at
the maximum likelihood estimator.
The plan of this article is as follows. Section 2 describes the non-linear mixed-effects model to fix the notations,
summarises the main objective of our procedure, and defines and motivates the hierarchical prior formulations.
Section 3 details the key tools for our approach: the SAEM algorithm, to compute the maximum a posteriori
estimator of the model parameters, and a thresholding rule to select a local version of the median probability
model and put some coefficients of the regression vector to zero. Next, Section 4 describes the variable
selection procedure. Section 5 evaluates the selection performance of our method through an intensive
simulation study, and presents a comparison with the classical MCMC methods. Finally, Section 6 concludes
with a summary discussion and prospects for future research.
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2 Statistical model

2.1 Mixed-effects model and notations

The formalism used in this paper is that of Lavielle (2014) and Pinheiro and Bates (2000). Let n be the
number of individuals and ni the number of observations for individual i. Without loss of generality and
to lighten the calculations, we assume that ni = J for all 1 ≤ i ≤ n. Consider the following non-linear
mixed-effects model: for all 1 ≤ i ≤ n and 1 ≤ j ≤ J ,{

yij = g(ϕi, tij) + εij , εij
i.i.d.∼ N (0, σ2), (1a)

ϕi = µ+ t
βVi + ξi, ξi

i.i.d.∼ N (0,Γ2), (1b)
where t

X denotes the transpose of a vector or matrix X. This model is described on two levels. First,
at the individual level, Equation (1a) describes the intra-individual variability, where the observations yij
in R represent the response of individual i at time tij . It is assumed that all individuals follow the same
known functional form g which depends non-linearly on an individual parameter ϕi which is assumed to be
real in this work. Thus, this function governs the intra-individual behaviour. The variance σ2 > 0 of the
Gaussian measurement noise is assumed unknown. Then, at the population level, Equation (1b) describes
the inter-individual variability. For all i ∈ {1, . . . , n}, the individual parameter ϕi is modelled as a Gaussian
random variable whose mean is specified as the sum of an intercept µ in R and a linear combination of
known covariates measured on individual i and contained in the vector Vi = t(Vi1, . . . , Vip) ∈ Rp. The term
"covariates" refers to explanatory variables which may be relevant to explain inter-individual variability. This
term is used to distinguish them from other explanatory variables such as the time variable for example. The
number of covariates is denoted by p, β = t(β1, . . . , βp) ∈ Rp is an unknown covariate fixed effects vector, and
the inter-individual variance Γ2 > 0 is assumed unknown. Thus, the inter-individual variability is separated
into two parts: on the one hand, β models the variability that can be explained by the covariates Vi, and on
the other hand, ξi represents the part of variation that is not explained by the measured covariates. In the
following, yi = (yij)1≤j≤J , y = (yi)1≤i≤n and ϕ = (ϕi)1≤i≤n respectively denote the vector of observations
for individual i, the vector of all observations and the vector of all individual parameters. Let us also note
θ = (µ, β,Γ2, σ2) the unknown parameter, also-called the population parameter.
The goal of the present work is to identify the relevant covariates, i.e. those that best explain the variability
between individuals. This can be framed as identifying the non-zero elements in β. Indeed, for 1 ≤ ` ≤ p,
the parameter β` describes the effect of the covariate ` on the individual parameter. More precisely, β` = 0
means that the covariate ` has no effect on the individual parameter ϕi and β` 6= 0 means that the covariate
` gives some information on this parameter. Identifying the relevant covariates amounts to selecting the
support of β, noted S∗β :

S∗β =
{
` ∈ {1, . . . , p}

∣∣∣∣β∗` 6= 0
}
,

where β∗ is the true covariate fixed effects vector. To solve this problem in a high-dimensional context, that
is when p >> n, it is natural to assume that the vector β∗ is sparse, which means that many β∗` are zero.
An important point here is that model (1) is a model with incomplete-data. Indeed, although the first layer
(1a) is observed, it is not the case for the individual parameters ϕ. The main difficulty here is that variable
selection concerns latent variables of the model.

2.2 Prior specification

To solve this variable selection problem, it is convenient to adopt a Bayesian approach. The purpose of this
section is to describe the prior distribution on θ = (µ, β,Γ2, σ2). First, in order to find the non-zero coefficients
of β, a spike-and-slab mixture prior (George and McCulloch, 1993, 1997; Ročková and George, 2014) is
considered. To facilitate the formulation of this prior, a vector of binary latent variables δ = (δ`)1≤`≤p is
introduced, such as:

∀1 ≤ ` ≤ p , δ` =
{

1 if covariate ` is to be included in the model,
0 otherwise. (2)

Thus, δ` = 1 indicates that the covariate ` provides information on the individual parameter. In other words,
δ characterises the support of β. The support S∗β can therefore be reformulated as follows:

S∗β =
{
` ∈ {1, . . . , p}

∣∣∣∣δ∗` = 1
}
, (3)

3
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where δ∗ denotes the true support. Then, one would like to find δ̂ that maximises the posterior probability
π(δ|y). While it is possible to sample from the posterior distribution using Monte Carlo Markov Chain
methods, for computational efficiency we are particularly interested in obtaining an estimator δ̂ corresponding
to the most promising support, that is the one which is the most compatible with the data and the prior
distribution.
The prior formulations proposed here are based on the non-conjugate version of the hierarchical priors of
George and McCulloch (1997), summarised as follows:

π(β|δ) = Np(0, Dδ), where Dδ = diag(a1, . . . , ap) with a` = (1− δ`)ν0 + δ`ν1, 0 < ν0 < ν1, (4a)
π(µ) = N (0, σ2

µ), with σ2
µ > 0, (4b)

π(σ2) = IG
(
νσ
2 ,

νσλσ
2

)
, with νσ, λσ > 0, (4c)

π(Γ2) = IG
(
νΓ

2 ,
νΓλΓ

2

)
, with νΓ, λΓ > 0, (4d)

π(δ|α) = α|δ|(1− α)p−|δ|, with α ∈ [0, 1] and |δ| =
p∑
`=1

δ`, (4e)

π(α) = Beta(a, b), with a, b > 0. (4f)

The key prior distribution used for variable selection in this method is the spike-and-slab Gaussian mixture
prior (4a) on β. In this prior, ν0 and ν1 are parameters controlling the penalisation inducing sparsity in the
vector β. More precisely, (β`)1≤`≤p are independent conditionally on δ, with π(β`|δ` = 0) = N (0, ν0) and
π(β`|δ` = 1) = N (0, ν1). The general recommendation for this type of prior is to set ν0 small, to encourage
the exclusion of insignificant effects, and ν1 large enough to accommodate all plausible β values (see George
and McCulloch, 1997). Indeed, when δ` = 0, the prior constrains β` to very small values which implies
that covariate ` has no impact in the model. Thus, through the values δ`, the spike-and-slab prior makes it
possible to distinguish the selected covariates from the rest.
Note that, since ϕ is unobserved, one cannot simply centre the variable on which the selection is made as is
usually the case in more standard models, and so inclusion of an intercept µ is necessary. Thus, a vaguely
informative Gaussian prior (4b) is used for µ, with σ2

µ large enough. This choice of prior has the advantage
of simplifying the calculations for parameter inference, thanks to a useful reformulation β̃ = t(µ, β) ∈ Rp+1

and, for all 1 ≤ i ≤ n, Ṽi = (Ṽi`′)0≤`′≤p = t(1, Vi) ∈ Rp+1, so that µ + t
βVi = t

β̃Ṽi. Then, by introducing
δ̃ = (1, δ) ∈ {1} × {0, 1}p to force the inclusion of the intercept in the model, Equations (4a) and (4b) can be
rewritten as:

π(β̃|δ̃) = Np+1(0,diag(ã0, . . . , ãp)), where ã`′ = (1− δ̃`′)ν0 + δ̃`′(1`′>0ν1 + 1`′=0σ
2
µ), for 0 ≤ `′ ≤ p.

For variance parameters σ2 and Γ2, inverse-gamma priors are chosen ((4c) and (4d)), which prohibit negative
values. One possibility is to set νσ, λσ, νΓ, λΓ equal to 1 for example, to make them relatively non-influential.
Following Ročková and George (2014), the i.i.d. Bernoulli prior (4e) is used for the inclusion variable δ,
where the hyperparameter α can be seen as the proportion of relevant covariates in the model, and a Beta
distribution prior (4f) is chosen on α. To encourage sparsity in the model, Castillo and van der Vaart (2012)
suggest choosing a small and b large, a = 1 and b = p for example. See Ročková and George (2014) for more
details on these choices of priors and the choice of hyperparameters values.

3 Maximum a posteriori inference and thresholding

The purpose of this section is to discuss the estimation of Θ = (θ, α) = (β̃,Γ2, σ2, α) in model (1) - (4). Recall
that Ξ = (ν0, ν1, σ

2
µ, νσ, λσ, νΓ, λΓ, a, b) are fixed hyperparameters. In the following, model (1) - (4) is called

SSNLME (Spike-and-Slab Non-Linear Mixed-Effects) model. Note that ϕ, which is not observed, could be
considered as a parameter to be estimated, included in Θ. However, to design a scalable inference scheme, we
consider it as a latent variable which we marginalise out of the posterior. This enables us to use an EM-type
approach which is considerably faster than a full MCMC approach (see details in Subsection 5.5).

4
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The EM-type approach proposed in Section 4 requires to compute the maximum a posteriori (MAP) estimator
for Θ:

Θ̂MAP = argmax
Θ∈Λ

π(Θ|y), with π(Θ|y) = pΘ(y)π(Θ)∫
Λ pΘ(y)π(Θ)dΘ , (5)

where pΘ(y) and π(Θ) respectively denote the probability density of y conditionally to Θ, and the prior
density of Θ, and Λ denotes the parameter space. However, since the individual parameters ϕ are marginalised
out, the pΘ(y) distribution is not explicit. Denoting Z = (ϕ, δ) ∈ Z the latent variables, the marginalised
posterior distribution π(Θ|y) takes the form:

π(Θ|y) =
∫
Z
π(Θ, Z|y)dZ, with π(Θ, Z|y) = p(y|Θ, Z)p(Θ, Z)∫

Z
∫

Λ p(y|Θ, Z)p(Θ, Z)dΘdZ ,

where p(y|Θ, Z) and p(Θ, Z) respectively designate the probability density of y conditionally to (Θ, Z), and
the joint distribution of Θ and Z.
Targeting only the maximum a posteriori replaces a sampling problem by an optimisation problem, which
turns out to be much more scalable than exploring the full posterior. Equation (5) is an optimisation problem
in an incomplete data model, which is gainfully tackled using the Stochastic Approximation version of the
EM algorithm (SAEM, Delyon et al. (1999)). Often in the literature, the EM algorithm and its extensions
are presented in the frequentist framework for the calculation of the maximum likelihood estimator (MLE).
Nevertheless, these algorithms are also very well adapted to the computation of the MAP (Dempster et al.,
1977).

3.1 General description of SAEM algorithm

In this subsection, we consider the general framework of an incomplete data model with observations y and
latent variables Z that characterise the distribution of observations. It it assumed that the density of the
complete data (y, Z) is parameterised by Θ, which is unknown and associated with a prior π(Θ). The EM
algorithm is iterative and allows to build a sequence (Θ(k))k of parameter estimates, which under certain
regularity conditions converges to a local maximum of the observed posterior distribution

π(Θ|y) =
∫
π(Θ, Z|y)dZ,

(see Delyon et al. (1999) for more details). However, this integral is generally intractable and the idea is to
maximise it by iteratively maximising an easier quantity:

Q(Θ|Θ′) = EZ|y,Θ′ [log(π(Θ, Z|y))|y,Θ′],

the conditional expectation of the complete log-posterior log(π(Θ, Z|y)) given the observations y and the
current value of the parameter estimates Θ′. However, the quantity Q(Θ|Θ′) does not always have a closed
form. This is especially the case in non-linear mixed-effects models like SSNLME model. The SAEM
algorithm is an alternative to the EM algorithm when the E-step, i.e. the computation of the Q quantity,
is intractable (Delyon et al., 1999). The idea of the SAEM algorithm is to approximate Q(Θ|Θ′) by a
stochastic approximation procedure. More precisely, the E-step of the EM algorithm is replaced by two steps:
a simulation step (S-step) and a stochastic approximation step (SA-step). Then the k-th iteration of the
SAEM algorithm proceeds as follows:

1. S-step (Simulation): simulate a realisation Z(k) of the latent variables according to the conditional
distribution π(Z|y,Θ(k)).

2. SA-step (Stochastic Approximation): update the approximation Qk+1(Θ) of Q(Θ|Θ(k)) by a stochastic
approximation method, according to:

Qk+1(Θ) = Qk(Θ) + γk(log π(Θ, Z(k)|y)−Qk(Θ)),

where (γk)k is a sequence of step sizes decreasing towards 0 such that ∀k, γk ∈ [0, 1],
∑
k γk = ∞

and
∑
k γ

2
k <∞.

3. M-step (Maximisation): update the parameter value by computing:

Θ(k+1) = argmax
Θ∈Λ

Qk+1(Θ).

5
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Remark 1. If the model belongs to the curved exponential family, that is the complete log-posterior can be
written as:

log(π(Θ, Z|y)) = −ψ(Θ) +
〈
S(y, Z), φ(Θ)

〉
,

where ψ and φ denote two functions of Θ, with 〈·, ·〉 denoting the scalar product, and S(y, Z) the minimal
sufficient statistics of the model, then,

Q(Θ|Θ(k)) = −ψ(Θ) +
〈
EZ|y,Θ(k) [S(y, Z)|y,Θ(k)], φ(Θ)

〉
.

It is therefore sufficient to focus on the minimal sufficient statistics instead of Q(Θ|Θ(k)) itself. More precisely,
the SA-step and M-step of the SAEM algorithm are replaced by:

• SA-step: update Sk+1, the stochastic approximation of EZ|y,Θ(k) [S(y, Z)|y,Θ(k)], according to:

Sk+1 = Sk + γk(S(y, Z(k))− Sk).

• M-step: update the parameter value by computing:

Θ(k+1) = argmax
Θ∈Λ

{
− ψ(Θ) + 〈Sk+1, φ(Θ)〉

}
.

Note that theoretical convergence results of the SAEM algorithm are provided in Delyon et al. (1999) under
the assumption that the model belongs to the curved exponential family. The SSNLME model belongs to this
curved exponential family.
Remark 2. Note that the simulation step is not always directly feasible. This is particularly true in non-linear
mixed-effects models since the conditional distribution of the latent variables knowing the observations and
the current value of the parameters is known only to a nearest multiplicative constant. Kuhn and Lavielle
(2004) proposed an alternative which consists in coupling the SAEM method with an MCMC procedure. More
precisely, at the S-step, the idea is to generate m iterations of an MCMC procedure, which consists in drawing
Z(k) using the transition probability of a convergent Markov chain supposed to have the posterior π(Z|y,Θ(k))
as its stationary distribution. In practice, m does not need to be large and often m = 1 suffices. Theoretical
results for the convergence of the SAEM algorithm are extended to the MCMC-SAEM algorithm by Kuhn and
Lavielle (2004) and Allassonnière et al. (2010) in models belonging to the curved exponential family.

3.2 Central decomposition of the Q quantity in spike-and-slab non-linear mixed-effects models

In the following, the notations from Section 2 are used again, and || · || denotes the Euclidean norm on Rn.
The SSNLME model (1) - (4) is a particular latent variables model with y = (yij)i,j and Z = (ϕ, δ). The aim
here is to decompose the Q quantity of the SAEM algorithm in the particular case of the SSNLME model,
allowing then to describe an algorithm for computing the MAP estimator of Θ in the following subsection.
First, note that the quantity Q(Θ|Θ(k)) in model (1) - (4) is written as:

Q(Θ|Θ(k)) = E(ϕ,δ)|(y,Θ(k))[log(π(Θ, ϕ, δ|y))|y,Θ(k)] = Eϕ|(y,Θ(k))

[
∼
Q(y, ϕ,Θ,Θ(k))

∣∣∣∣y,Θ(k)
]
, (6)

where ∼
Q(y, ϕ,Θ,Θ(k)) = Eδ|(ϕ,y,Θ(k))[log(π(Θ, ϕ, δ|y))|ϕ, y,Θ(k)]. (7)

It is interesting to write Q(Θ|Θ(k)) as in Equation (6) because
∼
Q(y, ϕ,Θ,Θ(k)) has a closed form.

Proposition 3.1. Consider
∼
Q(y, ϕ,Θ,Θ(k)) defined by Equation (7) where Θ = (β̃,Γ2, σ2, α). Then:
∼
Q(y, ϕ,Θ,Θ(k)) = C +

∼
Q1(y, ϕ, θ,Θ(k)) +

∼
Q2(α,Θ(k)), (8)

where C is a normalisation constant which does not depend on Θ, and with:
∼
Q1(y, ϕ, θ,Θ(k)) =− 1

2σ2

∑
i,j

(yij − g(ϕi, tij))2 − 1
2Γ2 ||ϕ− Ṽ β̃||

2 − 1
2

p∑
`′=0

β̃2
`′

∼
d∗`′(Θ(k))

− nJ + νσ + 2
2 log(σ2)− n+ νΓ + 2

2 log(Γ2)− νΓλΓ

2Γ2 −
νσλσ
2σ2

6
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and
∼
Q2(α,Θ(k)) = log

(√
ν0

ν1

α

1− α

) p∑
`=1

p∗` (Θ(k)) + (a− 1) log(α) + (p+ b− 1) log(1− α).

Quantities p∗` (Θ(k)), 1 ≤ ` ≤ p, and
∼
d∗`′(Θ(k)), 0 ≤ `′ ≤ p, are defined as follows:

p∗` (Θ(k)) = E[δ`|ϕ, y,Θ(k)] = α(k)φν1(β(k)
` )

α(k)φν1(β(k)
` ) + (1− α(k))φν0(β(k)

` )
(9)

and

∼
d∗`′(Θ(k)) = E

[
1

(1− δ̃`′)ν0 + δ̃`′(1`′>0ν1 + 1`′=0σ2
µ)

∣∣∣∣ϕ, y,Θ(k)

]
=


1
σ2
µ

if `′ = 0,

d∗`′(Θ(k)) otherwise,
(10)

where φν(·) is the normal density with zero mean and variance ν and,

d∗` (Θ(k)) = 1− p∗` (Θ(k))
ν0

+ p∗` (Θ(k))
ν1

, 1 ≤ ` ≤ p.

Remark 3. Note that E[δ`|ϕ, y,Θ(k)] = E[δ`|Θ(k)] because the posterior distribution of δ given (ϕ, y,Θ(k))
depends on y and ϕ only through the current estimates Θ(k).

The separability of (8) into two distinct functions,
∼
Q1 which depends on (y, ϕ, θ,Θ(k)) and

∼
Q2 on (α,Θ(k)),

allows to update the estimations of θ and α independently from one another. Moreover, since
∼
Q2 does not

depend on ϕ, Proposition 3.1 allows to write that:

Q(Θ|Θ(k)) = C + Eϕ|y,Θ(k)

[
∼
Q1(y, ϕ, θ,Θ(k))

∣∣∣∣y,Θ(k)
]

+
∼
Q2(α,Θ(k)). (11)

However, even if
∼
Q(y, ϕ,Θ,Θ(k)) has a closed form, this is not the case of Q(Θ|Θ(k)) because the function g is

non-linear with respect to ϕi, and so π(ϕ|y,Θ(k)) is only known to a nearest multiplicative constant. Thus, it

is necessary to use a stochastic approximation method to approximate Eϕ|y,Θ(k)

[
∼
Q1(y, ϕ, θ,Θ(k))

∣∣∣∣y,Θ(k)
]
in

Equation (11). The originality of the present extension of the MCMC-SAEM algorithm is that it combines an

exact computation
∼
Q2(α,Θ(k)) and a stochastic approximation of Eϕ|y,Θ(k)

[
∼
Q1(y, ϕ, θ,Θ(k))

∣∣∣∣y,Θ(k)
]
instead

of a stochastic approximation of the entire quantity Q(Θ|Θ(k)). This results in the combination of an exact
EM algorithm and of an MCMC-SAEM algorithm for the estimation of α and θ respectively.

Also, let us notice that
∼
Q1(y, ϕ, θ,Θ(k)) takes an exponential form. More precisely,

∼
Q1(y, ϕ, θ,Θ(k)) = −ψ(θ,Θ(k)) +

〈
S(y, ϕ), φ(θ)

〉
, (12)

with:

• S(y, ϕ) = (s1(y, ϕ), s2(ϕ), s3(ϕ)) =
(∑

i,j(yij − g(ϕi, tij))2 ,
∑n
i=1 ϕ

2
i , ϕ

)
• φ(θ) =

(
− 1

2σ2 , − 1
2Γ2 , Ṽ β̃Γ2

)
• ψ(θ,Θ(k)) = ||Ṽ β̃||

2

2Γ2 + 1
2
∑p
`′=0 β̃

2
`′

∼
d∗`′(Θ(k))+nJ + νσ + 2

2 log(σ2)+n+ νΓ + 2
2 log(Γ2)+νΓλΓ

2Γ2 +νσλσ
2σ2

Thus, following Remark 1, it suffices to approximate stochastically Eϕ|y,Θ(k)
[
S(y, ϕ)

∣∣y,Θ(k)] at SA-step.

7
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3.3 MCMC-SAEM algorithm in spike-and-slab non-linear mixed-effects models

The use of the decomposition discussed in Subsection 3.2 leads to the following extension of the MCMC-SAEM
algorithm for computing the MAP estimator of Θ in the SSNLME model, where Λθ denotes the parameter
space restricted to θ, m is small (between 1 and 5), and K is usually in the order of a few hundred.

Algorithm 1
Input: K ∈ N∗, Θ(0) initial parameter, hyperparameters vector Ξ = (ν0, ν1, σ

2
µ, νσ, λσ, νΓ, λΓ, a, b), S0 = 0

and (γk)k a step sizes sequence decreasing towards 0 such that ∀k, γk ∈ [0, 1],
∑
k γk =∞ and

∑
k γ

2
k <∞.

for k = 0 to K − 1 do
1. S-Step: simulate ϕ(k) using the result of m iterations of an MCMC procedure with π(ϕ|y,Θ(k)) for

target distribution.
2. SA-Step: compute Sk+1 = Sk + γk(S(y, ϕ(k)) − Sk) with S(y, ϕ) defined by (12), where

Sk = (s1,k, s2,k, s3,k) ∈ R× R× Rn.

3. M-Step: update θ(k+1) = argmax
θ∈Λθ

{
−ψ(θ,Θ(k))+〈Sk+1, φ(θ)〉

}
and α(k+1) = argmax

α∈[0,1]

∼
Q2(α,Θ(k)),

which reduces to the following explicit forms in model (1)-(4):
• β̃(k+1) = (t

Ṽ Ṽ + Γ2(k)
D∗k)−1 t

Ṽ s3,k+1 where D∗k = diag(
∼
d∗`′(Θ(k)), 0 ≤ `′ ≤ p)

• Γ2(k+1) = ||Ṽ β̃
(k+1)||2 + νΓλΓ + s2,k+1 − 2〈s3,k+1, Ṽ β̃

(k+1)〉
n+ νΓ + 2

• σ2(k+1) = νσλσ + s1,k+1

nJ + νσ + 2

• α(k+1) =
∑p
`=1 p

∗
` (Θ(k)) + a− 1

p+ b+ a− 2
where ψ and φ are defined by (12), and

∼
Q2(α,Θ(k)), (p∗` (Θ(k)))1≤`≤p and (

∼
d∗`′(Θ(k)))0≤`′≤p are

defined in Proposition 3.1.
end for
Output: Θ̂MAP = (̂̃βMAP

, Γ̂2MAP , σ̂2MAP , α̂MAP ) = (β̃(K),Γ2(K)
, σ2(K)

, α(K)).

Remark 4. Note that for a linear mixed-effects model, that is when g is linear with respect to ϕi, a classical
EM algorithm is applicable. Indeed, denoting g(ϕi, tij) = A(tij)ϕi for all 1 ≤ i ≤ n, 1 ≤ j ≤ J , A(tij) ∈ R
and using the previous notations, the Q quantity has the following explicit form:

Q(Θ|Θ(k)) = C + Q̂1(y, ϕ, θ,Θ(k)) +
∼
Q2(α,Θ(k)),

with Q̂1(y, ϕ, θ,Θ(k)) = Eϕ|y,Θ(k)

[
∼
Q1(y, ϕ, θ,Θ(k))

∣∣∣∣y,Θ(k)
]
and more precisely:

Q̂1(y, ϕ, θ,Θ(k)) =− 1
2σ2

∑
i,j

[
(yij −A(tij)mi,k)2 +A(tij)2Σ2

i,k

]
− 1

2Γ2

∑
i

[
((Ṽ β̃)i −mi,k)2 + Σ2

i,k

]
− 1

2

p∑
`′=0

β̃2
`′

∼
d∗`′(Θ(k))− nJ + νσ + 2

2 log(σ2)− n+ νΓ + 2
2 log(Γ2)− νΓλΓ

2Γ2 −
νσλσ
2σ2

where Σ2
i,k = σ2(k)Γ2(k)

Γ2(k) ∑
j A(tij) + σ2(k) and mi,k =

Γ2(k) ∑
j yijA(tij) + σ2(k)(Ṽ β̃(k))i

Γ2(k) ∑
j A(tij) + σ2(k) are defined such that

π(ϕi|y,Θ(k)) = N (mi,k,Σ2
i,k).

3.4 Estimator thresholding

As in Ročková and George (2014), after obtaining an estimator Θ̂MAP , the support S∗β , defined in Equation (3),
can be naturally estimated as the most probable model conditionally on Θ̂MAP . Indeed, for all ` ∈ {1, . . . , p},

8
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the a posteriori inclusion probability of the covariate ` can be obtained as:

P(δ` = 1|y, β̂MAP
` , α̂MAP ) = π(β̂MAP

` |δ` = 1)π(δ` = 1|α̂MAP )
π(β̂MAP

` |δ` = 1)π(δ` = 1|α̂MAP ) + π(β̂MAP
` |δ` = 0)π(δ` = 0|α̂MAP )

. (13)

Then, δ̂, which is the most probable δ knowing that Θ = Θ̂MAP , can be computed as follows:

δ̂` = 1⇐⇒ P(δ` = 1|y, β̂MAP
` , α̂MAP ) ≥ 0.5

⇐⇒ |β̂MAP
` | ≥

√
2 ν0ν1

ν1 − ν0
log
(√

ν1

ν0

1− α̂MAP

α̂MAP

)
= sβ(ν0, ν1, α̂

MAP ).

Note that this estimator can be seen as a local version of the median probability model of Barbieri and Berger
(2004). Thus, the following subset of covariates is selected via a thresholding operation:

Ŝ =
{
` ∈ {1, . . . , p}

∣∣∣∣ |β̂MAP
` | ≥ sβ(ν0, ν1, α̂

MAP )
}
. (14)

Remark 5. Note that threshold sβ(ν0, ν1, α̂
MAP
ν0

) is the same for all the covariates but depends on the values
of the spike and slab hyperparameters ν0 and ν1 which act as tuning parameters for the penalty.
Remark 6. It is interesting to note that the thresholding rule is unchanged from the easier situation where the
individual parameters ϕi’s would have been directly observed, which would have fit into the framework treated
in Ročková and George (2014).

4 Covariate selection procedure

4.1 Model selection procedure

Similarly to LASSO regression (Tibshirani, 1996), it is interesting to exploit the flexibility of the spike-and-slab
prior to study different levels of sparsity in the vector β, and thanks to the speed of the MCMC-SAEM
algorithm, it is possible to explore a grid of values for the spike hyperparameter ν0 rather than focusing
on a single value. Indeed, mechanically, the higher ν0 is, the less covariates are included in the estimated
support of β. This is why it is more interesting to look at a grid of values and then to use a model selection
criterion to choose the optimal model. Let us note ∆ this grid, and |∆| the number of grid points. Then,
for all ν0 ∈ ∆, the MCMC-SAEM algorithm is executed to obtain the MAP estimate of Θ, Θ̂MAP

ν0
, which

is then used to determine a subset of relevant covariates Ŝν0 as explained in Subsection 3.4, Equation (14).
This first step reduces the total collection of 2p possible models to a smaller collection of |∆| � 2p promising
sub-models (Ŝν0)ν0∈∆ with high posterior probability. Next, a model selection criterion can be applied to
choose the "best" model from this collection.
As explained in Ročková and George (2014), a possible criterion is to maximise, along the grid, the marginal
posterior of δ under the prior with ν0 = 0. This corresponds to the so-called Dirac-and-slab prior, where the
spike is a Dirac distribution (Mitchell and Beauchamp, 1988). However, in our case, it is not possible to have
an explicit expression for this marginal and it is also difficult to obtain it numerically, so this criterion is not
convenient.
However, as the collection of models has been reduced to a small sub-collection (Ŝν0)ν0∈∆, that contains
at most |∆| models, an information criterion can be used to choose the final model. The eBIC criterion
(extended Bayesian Information Criterion, Chen and Chen (2008)) is preferred to the BIC criterion (Schwarz,
1978; Delattre et al., 2014) due to the high-dimensional framework because it allows to take into account
that the number of possible models with q ≤ p covariates increases quickly as q increases. Thus, covariate
selection here consists in choosing the "best" ν0 ∈ ∆, that is noted ν̂0, as the one that minimises the following
penalty function:

ν̂0 = argmin
ν0∈∆

{
eBIC(Ŝν0)

}
, (15)

where
eBIC(Ŝν0) = −2 log

(
p(y; θ̂MLE

ν0
)
)

+ peneBIC(ν0), (16)

with:

9
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• log (p(y; θ)) is the log-likelihood of the model (1),

• θ̂MLE
ν0

= (̂̃βMLE

ν0
, Γ̂2MLE

ν0
, σ̂2MLE
ν0

) is the maximum likelihood estimate (MLE) of the parameter
θ = (β̃,Γ2, σ2) in the sub-model Ŝν0 selected by thresholding process for this ν0,

• peneBIC(ν0) = Bν0 × log(n) + 2 log
((

p
Bν0

))
is a penalty function, with Bν0 the number of free

parameters in the sub-model Ŝν0 .

Note that the MLE and log-likelihood do not have an explicit form here because the individual parameters
are latent and the function g is non-linear with respect to ϕi. For every ν0 ∈ ∆, the estimate θ̂MLE

ν0
and the

log-likelihood log p(y; θ̂MLE
ν0

) are respectively computed with an MCMC-SAEM algorithm and importance
sampling techniques (see e.g. Kuhn and Lavielle (2005) and Lavielle (2014) for details) to derive the
corresponding value of eBIC(Ŝν0).
The proposed variable selection procedure can be summarised as in Algorithm 2.

Algorithm 2
Input: ∆ a grid of ν0 values, and all required arguments for MCMC-SAEM (Algorithm 1).

. Reduce the model collection:
for ν0 ∈ ∆ do
1. Compute the MAP estimate Θ̂MAP

ν0
by Algorithm 1.

2. Threshold the estimator β̂MAP
ν0

to define sub-model Ŝν0 according to Equation (14).
end for

. Compute the eBIC criterion:
for each unique sub-model among (Ŝν0)ν0∈∆ do
1. Compute the MLE estimate θ̂MLE

ν0
in sub-model Ŝν0 .

2. Compute the log-likelihood log p(y; θ̂MLE
ν0

).
3. Compute the associated eBIC(Ŝν0) criterion according to Equation (16).

end for

. Identify the best level of sparsity: compute ν̂0 defined by Equation (15).

Output: Ŝν̂0 .

Remark 7. Note that for Algorithm 2 it is possible to parallelise the computations along the grid because the
outputs of the algorithm for two given values of ν0 ∈ ∆ do not depend on each other.

4.2 Application on a detailed example

A data-set is simulated according to a logistic growth model that is model (1) with:

g(ϕi, tij) = ψ1

1 + exp
(
− tij − ϕi

ψ2

) ,
where ψ1 and ψ2 are known constants. This is a common and realistic model used in many fields of life
sciences, such as plant growth for example. Let us consider n = 200 individuals, p = 500 covariates and J = 10
observations per individual. For all i ∈ {1, . . . n}, for all j ∈ {1, . . . , J}, tij = tj = 150 + (j − 1)3000− 150

J − 1 .
For each individual, the p covariates are simulated independently according to standard normal distributions
N (0, 1). The parameter values are set to σ2 = 30, ψ1 = 200, ψ2 = 300, µ = 1200, β = t(100, 50, 20, 0, . . . , 0)
and Γ2 = 200. Thus, only the first three covariates are influential, i.e. S∗β = {1, 2, 3}.
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4.2.1 Convergence of the MCMC-SAEM algorithm

Algorithm 1, is initialised here with: ∀` ∈ {1, . . . , 10}, β(0)
` = 100, ∀` ∈ {11, . . . , p}, β(0)

` = 1, µ(0) = 1500,
σ2(0) = 100, Γ2(0) = 5000 and α(0) = 0.5. The hyperparameters are set to: ν0 = 0.02, ν1 = 12000,
νσ = λσ = νΓ = λΓ = 1, a = 1, b = p and σµ = 3000. In practice, to allow more flexibility during the first
iterations and thus to move away more quickly from the initial condition, it is usual to start the algorithm with
nburnin burn-in iterations, i.e. to use a step sizes sequence (γk)k of the form: γk = 1 for 0 ≤ k ≤ nburnin − 1
and γk = 1/(k − nburnin + 1)γ for nburnin ≤ k ≤ K − 1, where γ ∈]0.5, 1[, nburnin < K with K the number
of iterations of the SAEM algorithm (see Kuhn and Lavielle, 2005). Here, the step sizes are defined with
γ = 2/3, nburnin = 350 and K = 500.
Figure 1 represents the convergence graphs of one run of the MCMC-SAEM algorithm for µ, some components
of β, σ2, Γ2 and α. It is observed that the algorithm converges in a few iterations for any parameter. In
this example, after 500 iterations, the algorithm returns β̂MAP

1 = 95.7, β̂MAP
2 = 51.96, β̂MAP

3 = 22.46,
µ̂MAP = 1202, σ̂2

MAP
= 33.86, Γ̂2

MAP
= 1.77 and α̂MAP = 0.003. Moreover, the estimates of the null fixed

effects of the covariates are all less than 0.07 in absolute value. Note that the parameters are all relatively
correctly estimated, except for Γ2 but this was expected because of a over-fitting situation. Indeed, the
underestimation of Γ2 can be explained by the fact that since ν0 > 0, none of the estimates of the coefficients
of β is zero and therefore all the covariates are active in the model, which makes the variance estimation of
the random effect tend towards 0 in Equation (1b). This illustrates the need to threshold the estimators as
described in Subsection 3.4.

Figure 1: Convergence graphs of the MCMC-SAEM algorithm for µ, some components of β, σ2, Γ2 and α on
one simulated data-set, for ν0 = 0.02 and ν1 = 12000. The red dashed line corresponds to the true value of
the considered parameter.

4.2.2 Spike-and-slab regularisation plot and model selection

To illustrate how the variable selection works, the full procedure is applied on this simulated example on the
grid of ν0 values ∆ such that log10(∆) =

{
− 2 + k × 4

19 , k ∈ {0, . . . , 19}
}
. To have a visual representation
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of this procedure, a spike-and-slab regularisation plot inspired from Ročková and George (2014) is drawn. It
represents the evolution of the β` estimates for all ` ∈ {1, . . . , p} along the grid of ν0, and the value of the
selection threshold associated with ν0 ∈ ∆. The regularisation plot on Figure 2(A) shows the MAP estimates
of the covariate fixed effects vector β obtained for each ν0 ∈ ∆. The blue lines are associated with the three
relevant covariates, while the black lines are associated with the null fixed effects of the covariates. Moreover,
the red lines correspond to the selection threshold of the covariates. Thus, for each ν0 ∈ ∆, the selected
covariates Ŝν0 are those associated with a (β̂MAP

ν0
)` located outside the two red curves in the regularisation

plot. As expected, the larger ν0 is, the smaller the support of the associated β̂MAP
ν0

is. Indeed, on the one
hand, the selection threshold increases with ν0, and on the other hand, the larger ν0 is, the more (β̂MAP

ν0
)`’s

are truncated in the spike distribution. This can also be seen in Figure 3 which shows that the a posteriori
inclusion probability (13) of covariate 3 (associated to β3 = 20 the smallest non-zero covariate fixed effect)
decreases as ν0 increases. This illustrates the interest of going through a grid rather than focusing on a single
ν0 value.
Figure 2(B) represents the value of the eBIC criterion for all ν0 in ∆. As desired, it is minimal for the values
of ν0 for which exactly the right model is selected. The procedure returns the second value of ν0 ∈ ∆, i.e.
ν̂0 ≈ 0.016, and Ŝν̂0 = {1, 2, 3}. So, in this simulated example, our procedure returns exactly the right model,
that is the one with only the first three covariates.

Figure 2: Example of a regularisation plot (A) with eBIC criterion graph (B) for model selection. On (A),
the blue lines are associated with the three true relevant covariates, while the black lines are associated with
the null fixed effects of the covariates. The red lines correspond to the selection threshold of the covariates.

Figure 3: A posteriori inclusion probability of covariate 3 for each ν0 ∈ ∆.
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5 Simulation study and comparison with MCMC

5.1 Model for the simulation study

To test the effectiveness of the proposed variable selection procedure, an extensive simulation study was
conducted. It also considers a growth model like in Subsection 4.2, but here, for a more realistic scenario,
ψ = (ψ1, ψ2) is seen as an unknown fixed effect. Parameter ψ must also be estimated and therefore the
population parameters are θ = (µ, β, ψ,Γ2, σ2). The procedure presented earlier in this paper can easily be
extended to this case. Indeed, let us consider such a model:{

yij = g(ϕi, ψ, tij) + εij , εij
i.i.d.∼ N (0, σ2), (17a)

ϕi = µ+ t
βVi + ξi, ξi

i.i.d.∼ N (0,Γ2), (17b)

with:
g(ϕi, ψ, tij) = ψ1

1 + exp
(
− tij − ϕi

ψ2

) .
As the function g is not separable into ϕi and ψ, the model does not belong to the curved exponential family
since it is not possible to write

∼
Q1 as in Equation (12). As a result, the expression for the maximum argument

in ψ at M-step is not explicit. One solution would be to do numerical optimisation in ψ.
However, for ease of implementation of the MCMC-SAEM algorithm, following the idea of Kuhn and Lavielle
(2005), an extended model belonging to the curved exponential family is used to estimate the parameters:

yij
ind.∼ N (g(ϕi, ψ, tij), σ2) (18a)

ϕi
ind.∼ N (µ+ t

βVi,Γ2) (18b)
ψ ∼ N (η,Ω) (18c)

with ϕ and ψ independent, Ω = diag(ω2
1 , ω

2
2) known and θext = (µ, β, η, σ2,Γ2) the new population parameter

to be estimated. The estimation of η is then used as an estimation of ψ. As previously, the indicators δ
(Equation (2)) are introduced and we consider the same priors as in (4) for (µ, β, σ2,Γ2, δ, α). For η, the
following prior is chosen: for m = 1, 2, π(ηm) = N (0, ρ2

m), with ρ2
m > 0 known. This amounts to randomising

hyperparameters of the prior on ψ, implying a less informative prior than if η were fixed. Here, Θ = (θext, α)
is the population parameter and Z = (ϕ,ψ, δ) are the latent variables. The steps of the MCMC-SAEM
algorithm can be derived as in Section 3 (see appendix A). The estimation method is unchanged for parameters
(µ, β, σ2,Γ2, α) because the quantity

∼
Q1 is separable into (µ, β, σ2,Γ2, α) and η. The main difference is that

there is another latent variable ψ, which must also be simulated at the S-step. The thresholding procedure is
not modified.
Remark 8. In order to limit the estimation error between the initial model and this extended model, the
value of the covariance matrix is adapted during the iterations. Inspired by the results of Allassonnière and
Debavelaere (2021) for the case of the computation of the MLE, the following process is chosen: start with
a fairly large initial value Ω(0) = diag(ω2(0)

1 , ω2(0)

2 ) for a certain number κ of iterations, then multiply it by
0 < τ < 1, and iterate this process every κ iterations. Starting from a large initial value, the value of Ω
remains large enough during the first iterations to allow a rather fast convergence speed, then it is slowly
decreases towards 0, while remaining always strictly positive, to limit the estimation error between the initial
model and the extended model.

5.2 Simulation design

For this simulation study, individual profiles are simulated according to model (17) by considering J = 10
observations per individual and regular observation time points such that tij = tj = 150 + (j − 1)3000− 150

J − 1 ,
σ2 = 30, ψ1 = 200, ψ2 = 300, µ = 1200, β = t(100, 50, 20, 0, . . . , 0). Thus, only the first three covariates
are assumed influential and their respective intensities are contrasted. The individual covariates Vi ∈ Rp,
1 ≤ i ≤ n, are simulated independently according to a centred multivariate Gaussian distribution with
covariance matrix Σ ∈Mp(R). To test the sensitivity of the proposed procedure to the correlation that may
exist between covariates, different scenarios are tested corresponding to different structures for matrix Σ.
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Different values of n (number of subjects) and p (number of covariates) are used according to the scenario.
Several values of Γ2 (variance of the random effects) are also used in order to evaluate the performances of
the method in different "signal-to-noise" situations.

• Scenario with uncorrelated covariates. This is the baseline scenario where optimal performance
of Algorithm 2 is expected. This corresponds to Σ = Ip, where Ip is the identity matrix of size
p. The following values for n, p and Γ2 are used : n ∈ {100, 200}, p ∈ {500, 2000, 5000} and
Γ2 ∈ {200, 1000, 2000}.

• Scenarios with correlations between covariates.
1. The first scenario leaves the three influential covariates uncorrelated with all other covariates

whereas the non-influential covariates are correlated with each other. An autoregressive cor-
relation structure is considered between the non-influential covariates. This corresponds to

Σ =
(

I3 03,p−3

0p−3,3 (ρ|i−j|Σ )i,j∈{4,...,p}

)
, with |ρΣ| < 1.

2. In the second scenario, the third influential covariate is assumed to be correlated to every
non-influential covariate according to an autoregressive correlation structure. This corresponds

to Σ =
(

I3 A
t
A Ip−3

)
, with A =

 0 0 . . . 0
0 0 . . . 0

(ρ|3−j|Σ )j∈{4,...,p}

, |ρΣ| < 1.

3. The third scenario considers correlations between the sole influential covariates. Again, an autore-

gressive correlation structure is used. This corresponds to Σ =
(

(ρ|i−j|Σ )i,j∈{1,...,3} 03,p−3
0p−3,3 Ip−3

)
,

|ρΣ| < 1.
4. In the fourth scenario, an autoregressive correlation structure is used between the covariates with-

out making any distinction between the influential covariates and the non-influential covariates.
This corresponds to Σ = (ρ|i−j|Σ )i,j∈{1,...,p}, |ρΣ| < 1.

To study the impact of correlations between covariates according to the four scenarios above, the
following values for n, p, Γ2 and ρΣ are used: n = 200, p ∈ {500, 2000, 5000}, Γ2 ∈ {200, 2000} and
ρΣ ∈ {0.3, 0.6}.

For each of the five scenarios described above and each combination (n, p,Γ2) or (n, p,Γ2, ρΣ), 100 different
data-sets are simulated and the support of β is estimated by applying Algorithm 2 on each data-set. Note
that, in order to be able to compare covariates that do not have the same order of magnitude, the covariates
are centred and reduced. The performances in terms of exact selection of the true influential covariates,
over-selection and under-selection are examined (see Subsection 5.4).

5.3 Algorithmic settings

The following settings are used for Algorithm 2.

• The hyperparameter values are set to νσ = λσ = νΓ = λΓ = 1, a = 1, b = p, σµ = 3000,
ρ2

1 = ρ2
2 = 1200, ν1 = 12000, and the spike parameter ν0 runs through a grid ∆ defined as

log10(∆) =
{
− 2 + k × 4

19 , k ∈ {0, . . . , 19}
}
.

• The step sizes are defined with γ = 2/3, nburnin = 350 and K = 500 as explained in Subsection 4.2.1.

• The MCMC-SAEM algorithm is initialised with: ∀` ∈ {1, . . . , 10} β(0)
` = 100, ∀` ∈ {11, . . . , p}

β
(0)
` = 1, µ(0) = 1400, σ2(0) = 100, Γ2(0) = 5000, α(0) = 0.5 and η(0) = t(400, 400). Note that different

initialisations have been tested and have shown similar performances.
• At the beginning of the algorithm, Ω = diag(20, 20) and it is slowly reduced during the iterations as

explained in Remark 8 with κ = 40 and τ = 0.9.
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5.4 Results

5.4.1 Scenario with uncorrelated covariates

Figure 4 represents, for all (n, p,Γ2) combinations, the proportion of data-sets for which Algorithm 2 selects
the correct model (unpatterned bars), selects a model that contains the correct model (i.e. there are false
positives but not false negatives, striped bars), selects a model that is included in the correct model (i.e. there
are false negatives but not false positives, doted bars), or selects a model that contains both false positives
and false negatives (crosshatched bars). The procedure selects exactly the right model in a large majority of
cases for a sufficiently large number of individuals n. When n increases, the results improve, which suggests a
consistency property in selection. With n and p fixed, the more the inter-individual variance Γ2 is important,
the more the results degrade. Indeed, as Γ2 increases, the "signal-to-variability" ratio decreases, leading to
difficulties in detecting the third covariate associated with the lowest non-zero coefficient in β. It could also
be noted that with n and Γ2 fixed, the results deteriorate when p increases but the effect of p seems weak
when n is large. In addition, when the procedure fails, it is most often because it under-selects, that is, it
selects fewer variables than there are. Indeed, in most configurations for (n, p,Γ2), the proportion of data-sets
that select a model that is included in the correct model is higher than the proportions of the other failure
scenarios. It seems that the designed method tends to avoid false positives, even though this may result in
not having selected all the truly influential covariates.

(a) For n = 100 (b) For n = 200

Figure 4: Uncorrelated covariates. Proportion of data-sets on which Algorithm 2 selects the correct model
("Exact", unpatterned bars), a model that contains false positives (FP) but not false negatives (FN) ("FP but
not FN", striped bars), a model that contains false negatives but not false positives ("FN but not FP", doted
bars), or a model that contains both false positives and false negatives ("FP and FN", crosshatched bars) for
n = 100 (a) and n = 200 (b), and different values of p and Γ2.

5.4.2 Scenarios with correlated covariates

The results are presented in Figure 5 for ρΣ = 0.3 and in Figure 6 for ρΣ = 0.6. On these figures, one can
compare the selection performance of our procedure in the different scenarios of correlations between covariates
with the case without correlations (iid scenario). First, for scenario 1, that is when the non-active covariates
are correlated, quite similar performances to the iid scenario are observed, but with more over-selection.
Indeed, as a consequence of the correlation between irrelevant covariates, the latter tend to be selected more
often and in small groups. Then, in scenario 2, it is assumed that the third relevant covariate is correlated to
the non-active covariates. In this case, similar results to the iid scenario are observed. Indeed, the selection
performances of the proposed procedure are only slightly affected by this scenario of correlations. This
can be explained by the fact that, in this case, among the group of correlated covariates, the method will
tend to select only one (or at least a very limited number of covariates among them): the most intense is
chosen, i.e. the third true covariate. Next, scenario 3 describes correlations between the relevant covariates.
Like the previous scenario, the procedure tends to select few covariates among the correlated covariates
since they explain the response variable in a similar way. This also explains the degradation of the results
when ρΣ increases. Thus, this scenario is inclined to under-select more than the others. Finally, scenario
4 corresponds to a full correlation matrix between all covariates. Note that the correlation matrix chosen
for this scenario assumes a fairly strong correlation between the three true covariates. Thus, this scenario
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also leads to much under-selection compared to the iid case. However, it over-selects more than scenario 3
because of the correlations between the true and false covariates.

(a) For Γ2 = 200 (b) For Γ2 = 2000

Figure 5: Correlated covariates, ρΣ = 0.3. Proportion of data-sets on which Algorithm 2 selects the correct
model ("Exact", unpatterned bars), a model that contains false positives but not false negatives ("FP but not
FN", striped bars), a model that contains false negatives but not false positives ("FN but not FP", doted
bars), or a model that contains both false positives and false negatives ("FP and FN", crosshatched bars) for
Γ2 = 200 (a) and Γ2 = 2000 (b) and different values of p. Scenario "iid" corresponds to the case where the
covariates are not correlated and is used as a reference.

(a) For Γ2 = 200 (b) For Γ2 = 2000

Figure 6: Correlated covariates, ρΣ = 0.6. Proportion of data-sets on which Algorithm 2 selects the correct
model ("Exact", unpatterned bars), a model that contains false positives but not false negatives ("FP but not
FN", striped bars), a model that contains false negatives but not false positives ("FN but not FP", doted
bars), or a model that contains both false positives and false negatives ("FP and FN", crosshatched bars) for
Γ2 = 200 (a) and Γ2 = 2000 (b) and different values of p. Scenario "iid" corresponds to the case where the
covariates are not correlated and is used as a reference.

5.5 Comparison with an MCMC implementation

It is reasonably straightforward to implement an MCMC algorithm for full posterior inference on the spike-
and-slab variable selection for non-linear mixed-effects model. This makes it relevant to compare the run time
of a full MCMC approach and the MCMC-SAEM method proposed in this paper, and highlight the better
scaling properties of the latter. To build the most informative comparison, the same model with a smooth
spike is considered for both the MCMC and MCMC-SAEM approaches, remarking that spike-and-slab priors
with a Dirac spike are known to pose challenges for MCMC (see Bai et al., 2021). For the MCMC algorithm,
an efficient C++ implementation of an random walk adaptive MCMC is used through the Nimble software
(de Valpine et al., 2017), which uses an adaptive scheme proposed in Shaby and Wells (2010). To make the
comparison as fair as possible, we marginalise the sampler over the discrete inclusion variables δ, to mirror
the marginalisation in (7). This was found to appreciably improve the mixing of the MCMC algorithm. It is
possible to retrieve the δ variables from the posterior samples using their conditional posterior distribution.
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Common data-sets are simulated according to model (17) with the following parameters: n = 200 individuals,
p ∈ {500, 700, 1000, 1500, 2000, 2500} covariates, J = 10 observations per individual, σ2 = 30, ψ1 = 200,
ψ2 = 300, µ = 1200, β = t(100, 50, 20, 0, . . . , 0) and Γ2 = 200. For i ∈ {1, . . . n} and j ∈ {1, . . . , J},
tij = tj = 150+(j−1)3000− 150

J − 1 . Covariates are simulated independently and identically distributed accord-
ing to N (0, 1). The objective is to compare the time needed to estimate the parameters Θ = (µ, β, ψ,Γ2, σ2)
between the MCMC-SAEM algorithm proposed in this article (Algorithm 1 adapted to model (17), see
appendix A) and the full MCMC procedure described above. As explained in Subsection 5.2, to estimate
the parameters, we consider the extended model (18). The same model structure (18) and priors are used
for both approaches. For (µ, β,Γ2, δ, α) the priors are as in (4). For η, the prior of Subsection 5.1 is chosen:
for m = 1, 2, π(ηm) = N (0, ρ2

m), with ρ2
m > 0 known. To stabilise the MCMC procedure, the prior on σ2 is

modified to an uniform distribution on [0, 200] for both methods. This has very little consequence for the
variable selection procedure proposed in this article. Indeed, the only difference lies in the updating of σ2 at
the M-step of the MCMC-SAEM algorithm which becomes:

σ2(k+1)
=
{ s1,k+1

nJ
if s1,k+1

nJ
≤ 200

200 else.

The two methods are both initialised with: ∀` ∈ {1, . . . , 10}, β(0)
` = 100, ∀` ∈ {11, . . . , p}, β(0)

` = 1,
µ(0) = 1400, σ2(0) = 100, α(0) = 0.1 and η(0) = t(400, 400). In practice, to avoid convergence toward a local
maximum in the MCMC-SAEM algorithm, a simulated annealing version of SAEM (see Lavielle, 2014) is
implemented. Thus, in this method, Γ2 is initialised very large to explore the space during the first iterations,
with Γ2(0) = 5000. For the full MCMC procedure, a more plausible value of Γ2, Γ2(0) = 500, is chosen as
initialisation. The hyperparameters are set in the same way for both methods as well: ν0 = 0.04, ν1 = 12000,
σµ = 3000, νΓ = λΓ = 1, a = 1, b = p, Ω = diag(20, 20) and ρ2

1 = ρ2
2 = 1200.

We compare the two approaches for a single value of ν0, as it is standard practice to run an MCMC
spike-and-slab model for a single value (see for instance George and McCulloch (1997) or Malsiner-Walli
and Wagner (2018)). The MCMC algorithm was run for 3000 iterations, which was just enough to reach
convergence (assessed by comparing multiple chains) for a variety of ν0 and p values. The MCMC-SAEM
algorithm was run for 500 iterations and showed appropriate convergence. Under these conditions, for all
p ∈ {500, 700, 1000, 1500, 2000, 2500}, both methods were run for 50 different data-sets and the minimum
time was kept for each method. The results obtained are shown in Figure 7. In this figure, computation
times of full MCMC procedure (in purple) and of MCMC-SAEM (in blue) are represented by the points
for the different values of p. The lines represent the regression line associated with each method. Note
that a log10-log10 scale is used in this figure. This shows that both methods have an execution time that
grows polynomially with p. Furthermore, the polynomial complexity of the two methods, i.e. the slope of
the regression lines, is slightly lower for the MCMC-SAEM method. Thus, if we note respectively τMCMC

and τMCMC−SAEM the execution time associated with each of the methods under the conditions previously
described, empirically Figure 7 strongly suggests that τMCMC

τMCMC−SAEM
≈ 100.7p0.2. To sum up, the MCMC-

SAEM algorithm proposed in this paper appears 100.7p0.2 times faster than the classical MCMC procedure,
i.e. between 17 and 24 times faster for p between 500 and 2500. In other words, the proposed inference
method allows to browse a grid of about 20 values of the penalisation parameter ν0 while a classical MCMC
only looked at one value of this parameter.
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Figure 7: Comparison of computation times between MCMC (in purple) and Algorithm 1 (MCMC-SAEM, in
blue) inference methods in log10-log10 scale.

6 Conclusion and perspectives

The main objective of this paper was to propose a new procedure for high-dimensional variable selection in
non-linear mixed-effects models. In this work, variable selection is approached from a Bayesian perspective and
a selection procedure combining the use of spike-and-slab Gaussian mixture prior and the SAEM algorithm is
proposed. The spike-and-slab prior on the regression vector allows both the shrinkage towards zero of small
non-significant coefficients through the spike distribution, while the largely uninformative slab distribution
allows estimating influential covariates without bias from the penalisation. The speed of the SAEM algorithm
allows to explore different levels of sparsity in the model through the variance of the spike distribution ν0,
with the optimal level of sparsity being selected by minimising an eBIC criterion.
The proposed methodology showed very good selection performance on simulated data. Indeed, the proposed
procedure appears to select the right support in a large majority of cases. As expected, for different numbers
of covariates p fixed, the right support is selected more often as the number of individuals n increases and
the inter-individual variance Γ2 decreases. Even more interesting, this method is much faster than an MCMC
stochastic search alternative and can solve higher-dimensional variable selection problems.
In this work, the method has been restricted to the case where the individual parameters (ϕi)1≤i≤n are
assumed to be real. However, in many fields of application, such as in biological growth or pharmacokinetics,
the individual parameters are multiple. Thus, an important point for future research would be to adapt our
procedure to be able to handle a case where the individual parameters are multivariate.
Moreover, it was observed that a reasonable correlation between covariates has little effect on the selection
performances of the proposed procedure. However, when the level of correlation becomes high, the performance
decreases. This could be improved if structural information on the covariates were a priori known. Indeed,
in this article, through the i.i.d. Bernoulli prior on the indicators δ (4e), it is assumed that each covariate
has the same probability of being included in the model. However, there are situations, such as genomic
data, where certain covariates are a priori more likely to be included together in the model. This a priori
structural information on the covariates can be taken into account in our procedure by choosing a more
flexible prior on δ. In Stingo et al. (2010) and Stingo and Vannucci (2011), authors propose the independent
logistic regression prior or the Markov random field prior. This could be also considered in our methodology.
Another important remark is that, in this article, we considered a Gaussian distribution for p(y|ϕ, σ2) in
model (1). It is possible to relax this assumption and consider larger distribution classes, such as discrete
distributions like the Poisson distribution for example. The proposed methodology can therefore be applied
in many contexts.
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Appendix
Appendix A Simulation example: differences in the procedure

As it is explained in Subsection 5.2, our procedure can easily be adapted to a model where fixed effects must
be estimated. For this, within the framework of model (17), the extended model (18) is used to exponentialise
the model. Indeed, by considering ψ as a latent variable with a normal distribution centred in η, an unknown
parameter, and with a known covariance matrix Ω, and no longer as a parameter, it is possible to obtain an
exponential form similar to Equation (12) for

∼
Q1. The calculation of the quantity Q of the EM algorithm

becomes:

Q(Θ|Θ(k)) = E(ϕ,ψ,δ)|(y,Θ(k))[log(π(Θ, ϕ, ψ, δ|y))|y,Θ(k)] = E(ϕ,ψ)|(y,Θ(k))

[
∼
Q(y, ϕ, ψ,Θ,Θ(k))

∣∣∣∣y,Θ(k)
]
,

where:
∼
Q(y, ϕ, ψ,Θ,Θ(k)) = Eδ|(ϕ,ψ,y,Θ(k))[log(π(Θ, ϕ, ψ, δ|y))|ϕ,ψ, y,Θ(k)] = C +

∼
Q1(y, ϕ, ψ, θ,Θ(k)) +

∼
Q2(α,Θ(k)),

with
∼
Q1(y, ϕ, ψ, θ,Θ(k)) =− 1

2σ2

∑
i,j

(yij − g(ϕi, ψ, tij))2 − 1
2Γ2 ||ϕ− Ṽ β̃||

2 − 1
2

p∑
`′=0

β̃2
`′

∼
d∗`′(Θ(k))− nJ + νσ + 2

2 log(σ2)

− n+ νΓ + 2
2 log(Γ2)− νΓλΓ

2Γ2 −
νσλσ
2σ2 −

2∑
m=1

(ψm − ηm)2

2ω2
m

−
2∑

m=1

η2
m

2ρ2
m

and
∼
Q2(α,Θ(k)) = log

(√
ν0

ν1

α

1− α

) p∑
`=1

p∗` (Θ(k)) + (a− 1) log(α) + (p+ b− 1) log(1− α).

(p∗` (Θ(k)))1≤`≤p and (
∼
d∗`′(Θ(k)))0≤`′≤p are defined in Proposition 3.1, Equations (9) and (10).

Note that
∼
Q1 is still of the exponential form. Indeed,

∼
Q1(y, ϕ, ψ, θ,Θ(k)) = −Ψ(θ,Θ(k)) +

〈
S(y, ϕ, ψ), φ(θ)

〉
(19)

with:

• S(y, ϕ, ψ) =
(∑

i,j(yij − g(ϕi, ψ, tij))2 ,
∑n
i=1 ϕ

2
i , ϕ , ψ2 , ψ

)
• φ(θ) =

(
− 1

2σ2 , − 1
2Γ2 , Ṽ β̃Γ2 ,

(
− 1

2ω2
m

)
1≤m≤2

,

(
ηm
ω2
m

)
1≤m≤2

)

• Ψ(θ,Θ(k)) = ||Ṽ β̃||
2

2Γ2 + 1
2
∑p
`′=0 β̃

2
`′

∼
d∗`′(Θ(k)) + nJ + νσ + 2

2 log(σ2) + n+ νΓ + 2
2 log(Γ2) + νΓλΓ

2Γ2 +
νσλσ
2σ2 +

∑2
m=1

η2
m

2ω2
m

+
∑2
m=1

η2
m

2ρ2
m

The k-th iteration of the MCMC-SAEM algorithm on this model is therefore:

1. S-Step: simulate (ϕ(k),ψ(k)) using the result of some iterations of a Metropolis-Hastings within Gibbs
algorithm with π(ϕ,ψ|y,Θ(k)) for target distribution.

2. SA-Step: compute Sk+1 = Sk + γk(S(y, ϕ(k), ψ(k)) − Sk) with S(y, ϕ, ψ) defined by (19), where
Sk = (s1,k, s2,k, s3,k, s4,k, s5,k) ∈ R× R× Rn × R2 × R2.

21



Bayesian variable selection in non-linear mixed-effects models

3. M-Step: update θ(k+1) = argmax
θ∈Λθ

{
− ψ(θ,Θ(k)) + 〈Sk+1, φ(θ)〉

}
and α(k+1) = argmax

α∈[0,1]

∼
Q2(α,Θ(k)).

More precisely,

• β̃(k+1) = (t
Ṽ Ṽ + Γ2(k)

D∗k)−1 t
Ṽ s3,k+1 where D∗k = diag(

∼
d∗`′(Θ(k)), 0 ≤ `′ ≤ p)

• Γ2(k+1) = ||Ṽ β̃
(k+1)||2 + νΓλΓ + s2,k+1 − 2〈s3,k+1, Ṽ β̃

(k+1)〉
n+ νΓ + 2

• σ2(k+1) = νσλσ + s1,k+1

nJ + νσ + 2
• η

(k+1)
m = s5,k+1,m

1 + ω2
m

ρ2
m

• α(k+1) =
∑p
`=1 p

∗
` (Θ(k)) + a− 1

p+ b+ a− 2

As you can see,
∼
Q1 is separable into (µ, β, σ2,Γ2, α) and η, which means that the inference method used for

the parameters (µ, β, σ2,Γ2, α) is unchanged, i.e. the formulas to update these parameters in M-step are
identical, it is only the way to simulate the sufficient statistics that has changed.

Thus, thanks to this algorithm, it is obtained an estimation θ̂MAP
ν0

= (µ̂MAP
ν0

, β̂MAP
ν0

, η̂MAP
ν0

, Γ̂2,MAP
ν0

, σ̂2,MAP
ν0

),
and the estimation of η is used as an estimation of ψ. Then, to finish the model collection reduction step of
our procedure, Algorithm 2, the estimator β̂MAP

ν0
is thresholded to obtain a promising sub-model Ŝν0 given

by Equation (14). The selection threshold formula is unchanged because it only depends on the second layer
of the model (17).
For the model selection step, to compute the eBIC criterion, it is also necessary to go through the extended
model (18). Indeed, as described in Kuhn and Lavielle (2005), the MLE in the sub-model Ŝν0 is computed in
the extended model by using an MCMC-SAEM algorithm and the estimation of η is used as an estimation of
ψ. Then, the log-likelihood is approached by a Monte-Carlo method: for T large enough,

log
(
p(y; θ̂MLE

ν0
)
)
≈

n∑
i=1

log

(2πσ̂2MLE
ν0

)−J/2 1
T

T∑
t=1

exp

− J∑
j=1

(yij − g(ϕ(t)
i , ψ̂MLE

ν0
, tij))2

2σ̂2MLE
ν0


where p(y; θ) denotes the likelihood of model (17), and for all i ∈ {1, . . . n}, (ϕ(t)

i )t∈{1,...T} are simulated i.i.d.
according to p(ϕi; θ̂MLE

ν0
) = N (µ̂MLE

ν0
+

t
β̂MLE
ν0

Vi, Γ̂2MLE
ν0

).
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