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 16 

ABSTRACT  17 

Thermal ecology studies on the ecophysiological responses of organisms to temperature 18 

involve two paradigms: physiological rates are driven by body temperature and not directly by 19 

the environmental temperature, and they are largely influenced not only by its mean but also 20 

its variance. These paradigms together have been largely applied to macro invertebrates and 21 

vertebrates but rarely to microorganisms. According to these paradigms, foliar fungal 22 

pathogens are expected to respond directly to the fluctuations in leaf temperature, rather than 23 

in air temperature. We determined experimentally the impact of two patterns of leaf 24 

temperature variation of equal mean temperature, but differing in their daily amplitude, on the 25 

development of Zymoseptoria tritici, a fungus infecting wheat leaves. The highest daily 26 

thermal amplitude resulted in two detrimental effects for the pathogen fitness: an increase in 27 

the length of the latent period, i.e. the ‘generation time’ of the fungus when infecting its host 28 

plant, and a decrease in the density of fruiting bodies on the leaves. We discussed these 29 

empirical results, mainly the impact of both the daily thermal amplitude and the fluctuation 30 

frequency on the pathogen development in planta, in the light of the mathematical effect of 31 

the integration of non-linear functions. We concluded that it is necessary to take into account 32 

daily leaf temperature amplitudes to improve our understanding and prediction of the 33 

development of foliar fungal pathogens and other micro-organisms living in the phyllosphere 34 

in the climate change context. 35 

 36 
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1. INTRODUCTION 39 

Most organisms grow and evolve in fluctuating environments (Du and Ji 2006). This is 40 

particularly true regarding temperature, a factor that affects many, if not all, physiological 41 

processes involved in growth and development (Angilletta 2009). Temperature fluctuates at 42 

various time scales, from minute to years, with periodicity over daily and yearly periods, and 43 

each time scale can matter for different physiological processes from thermal tolerance (small 44 

time scales) to diapause/quiescence strategies (long time scales) (Dillon et al. 2016). The 45 

exchange of energy (radiation, convection, conduction, latent heat) between an organism and 46 

its environment generates temperature deviations between the body of organisms and their 47 

surrounding air. In ectotherms, the body temperature, subjected to fluctuating solar radiation 48 

and wind, and to night sky radiation cooling, is expected to fluctuate more intensively and 49 

rapidly than air temperature (Gates 1980). This paradigm also applies to plant surfaces, which 50 

generate a particular thermal environment for the large variety of organisms living on them, 51 

from phytophagous arthropods to bacteria and fungal pathogens. 52 

Leaf dwelling organisms experience variations in the temperature of the leaf surface rather 53 

than in ambient air (Pincebourde and Woods 2012; Pincebourde et al. 2021; Scherm and van 54 

Bruggen 1993). Temperature heterogeneity in space and time over leaf surface can depart 55 

largely from ambient air, with deviation of up to 20°C between a specific leaf area and 56 

ambient air (Saudreau et al. 2017). The potential effects of large thermal amplitude on 57 

biological processes within the leaf envelope have been considered in studies on the effect of 58 

climate variations on arthropod development (Bradshaw et al. 2000; Kingsolver 1979; 59 

Pincebourde and Casas 2006; Potter et al. 2009 ; Pincebourde et al. 2016). The influence of 60 

the ‘phylloclimate’ (the microclimatic conditions occurring in the phyllosphere; Chelle 2005) 61 

is presumed to be high on the whole leaf microbiota (Pincebourde and Woods 2012; Vacher et 62 

al. 2016). Many studies focused on the impact of (constant) temperature on plant disease 63 



cycles (incubation, latent period, senescence, etc.), both by experimental and modeling 64 

approaches (de Wolf & Isard, 2007), but the impact of the fluctuation of leaf temperature on 65 

the development of leaf fungal pathogens has never been studied, except partly by Bonde et 66 

al. (2012). Some studies focused on entire living plants or detached leaves (e.g. Scherm and 67 

van Bruggen 1994a; Xu 1996; Shakya et al., 2015) but were based on air temperature 68 

fluctuations, while some others were carried out on artificial media instead of leaf (e.g. Zhan 69 

and McDonald 2011; Boixel et al., 2018). This last experimental approach has two main 70 

drawbacks: (i) a Petri dish or wells of a microplate does not have the same energy budget as a 71 

living leaf; (ii) only the direct effect of temperature on the fungus can be observed, while the 72 

complex interrelationship between environmental temperature, leaf temperature, and the foliar 73 

and fungal responses are ignored. Therefore, the use of artificial media limits our ability to 74 

apply growth predictions to more natural situations. 75 

Mean temperature can be an uninformative, even misleading, descriptor of a fluctuating 76 

thermal environment (Kingsolver et al. 2004). Thermal fluctuations likely matter for the 77 

growth of fungal pathogens. Scherm & van Bruggen (1994b) were the first to demonstrate 78 

theoretically that the difference between growth of plant fungal pathogens at constant versus 79 

fluctuating temperatures is maximized when the mean temperature is close to one of the three 80 

cardinal temperatures (minimal, optimal and maximal temperatures) and/or when the 81 

temperature range over which the growth response is approximately linear is narrow. As an 82 

example, the use of daily mean temperature to predict the incubation period (for plant 83 

pathologists, the time needed for the first symptoms to appear) and the latent period (the 84 

‘generation time’, i.e. the duration between inoculation and the appearance of fruiting bodies 85 

releasing contaminating spores) of a fungal pathogen under field conditions may result in 86 

errors when the underlying rate function is non-linear (Xu 1996). A higher resolution in 87 

temperatures is therefore required, and several studies showed that the hourly time step 88 



increased the accuracy of predictions (Narouei-Khandan et al. 2020; Salotti & Rossi 2021). 89 

The model developed by Narouei-Khandan et al. (2020) to simulate effects of daily 90 

amplitudes on the development of late blight highlighted a significant interaction between 91 

average air temperature and amplitude in their effects on the area under the disease progress 92 

curve (AUDPC) as predicted from growth chamber data on a single infection cycle. Greater 93 

effects of amplitudes were observed at the extreme temperatures (including the optimal 94 

temperature), and no amplitude effect at the inflection point of the optimal temperature curve. 95 

The importance of daily temperature fluctuations was also demonstrated by Salotti & Rossi 96 

(2021) for the development of Ascochyta blight on chickpeas. Environmental sampling rate, 97 

such as the frequency of temperature recording (duration of time step), relative to the 98 

frequency of leaf temperature changes, is therefore crucial when predicting organism fitness, 99 

yet few studies have quantified its importance.  100 

The objective of this study was to assess the relevance of using leaf temperature rather than 101 

air temperature as climatic driver by (i) comparing daily amplitudes of leaf and air 102 

temperatures in field conditions, and (ii) comparing the in planta development of a foliar 103 

fungal pathogen under two leaf temperature regimes of equal mean but differing in their daily 104 

leaf thermal amplitude (DLTA). As a case study, we used the fungus Zymoseptoria tritici 105 

(formerly Mycosphaerella graminicola), the causal agent of Septoria tritici blotch disease on 106 

wheat. Present wherever wheat is grown and developing throughout the wheat growing season 107 

(Suffert and Sache 2011), the pathogen is exposed to a wide range of mean and amplitude 108 

temperatures across its geographical distribution (Suffert et al. 2015). Finally, we used a 109 

simple mathematical model based on a non-linear relationship of fungal performance to 110 

temperature (see Supplementary Materials) to provide additional support for discussing on the 111 

importance of daily temperature amplitude relative to both the shape of the nonlinear growth 112 

curve and the frequency of temperature recordings.  113 



 114 

2. MATERIAL AND METHODS 115 

2.1. Comparison between leaf and air temperatures in field conditions 116 

2.1.1. Study site 117 

Field experiments were conducted on a winter wheat (Triticum aestivum, cv Tremie) plot 118 

established on a deep silt loam soil, at INRAE Thiverval-Grignon, France (48° 50' 43" N, 1° 119 

56' 45" E). The crop was conducted as a conventional crop with high sowing density (250 120 

grains.m-2; sowing date 25 October 2011) and nitrogen supply (210 kg.ha-1). No irrigation was 121 

supplied.  122 

2.1.2. Temperature measurements 123 

During the development of the flag leaf (from 14 May 2012 to 11 July 2012), the 124 

environmental temperature was estimated from the air temperature (TairWS) measured by a 125 

weather station (WS). TairWS was measured at 2 m height above a grass canopy at an hourly 126 

time step by a standardized weather station (model Enerco 516i, CIMEL Electronique, Paris, 127 

France) located 200 m from the field experiment plot without any topographical discontinuity 128 

between them. During the same period, the temperature of nine flag leaves (Tleaf) was 129 

measured with thin T-type thermocouples (diameter 0.2 mm) in contact with the abaxial 130 

surface of the flag leaf (so, the thermocouples were always under the leaf shade). The contact 131 

of thermocouples with leaves was checked three times a week. The thermocouples were 132 

connected to data-loggers (CR10 and CR1000, Campbell Scientific, North Logan, UT, USA), 133 

using multiplexers (AM25T and AM32, Campbell Scientific), retrieving the temperature 134 

every 20 s. The thermocouples and data-loggers were calibrated before and after the 135 

experiment. 136 



2.2. Effect of the daily leaf temperature amplitude (DLTA) on the 137 

development of Z. tritici in growth chamber experiments 138 

The experimental study was designed in growth chamber to quantify the effect of daily leaf 139 

thermal amplitude (DLTA) on the development of Z. tritici. The fungal development, here 140 

lesion development on plants, was estimated by three components of fitness (also considered 141 

as pathogenicity or aggressiveness components by plant pathologists): (i) the incubation 142 

period, (ii) the latent period, and (iii) the density of asexual fruiting bodies (pycnidia) on 143 

lesions.  144 

2.2.1. Plant material 145 

Seeds of wheat (Triticum aestivum L., cv Apache) were sown in Jiffy peat pots (Jiffy Strip 146 

Planter, Stange, Norway). Two weeks after seeding, when coleoptiles emerged, plants were 147 

vernalized in two controlled growth chambers (Strader, Pellouailles-les-Vignes, France), 148 

equipped with HPI-T PLUS lamps (400W; Philips Electronics NV, Amsterdam, the 149 

Netherlands) for eight weeks at 5°C with a 10 h light period and a 14 h dark period. Seedlings 150 

were subsequently transplanted into 1-liter pots filled with commercial potting soil mixed 151 

with 5 g of fertilizer (Osmocote Exact, Scotts, Heerlen, Netherlands) and placed in a 152 

controlled growth chamber at 16°C with a 14 h light period and a 9 h dark period. Plants were 153 

sprayed with Spiroxamine (Aquarelle SF at 2 ml.l-1, Bayer CropScience, Lyon, France) to 154 

prevent infection by powdery mildew (Blumeria graminis f. sp. tritici). Before inoculation, 155 

plants were separated into two groups and placed in two identical growth chambers. 156 

Throughout the experiment, tillers were eliminated weekly to a final count of only three stems 157 

per pot.  158 



2.2.2. Fungal material and leaf inoculation 159 

Three isolates of Z. tritici were used: INRA08-FS0001 (hereafter, isolate 1), INRA08-160 

FS0002 (isolate 2) and INRA08-FS0003 (isolate 3) (Suffert et al. 2013). Isolates 1 and 2 were 161 

collected in 2008 from a wheat field located in Grignon (France); isolate 3 was collected the 162 

same year from a wheat field located in Le Rheu (West part of France). In each growth 163 

chamber, 144 leaves were inoculated with a single isolate. Three blastospore suspensions 164 

were prepared the day of inoculation by flooding with water the surface of 5-day-old culture 165 

on Petri dishes and then scraping the potato dextrose agar surface with a glass rod to release 166 

blastospore. Concentration was adjusted to 105 blastospore ml-1 and three drops of Tween 20 167 

(Sigma-Aldrich, St. Louis, MO, USA) were added to the suspensions to prevent the drift of 168 

inoculum when applied on the leaves. The suspensions were applied with a paint brush over a 169 

length of 25 mm on penultimate (rank F2) and flag (rank F1) leaves of the main tiller at 170 

growth stage 39 when the flag leaf was fully emerged (Suffert et al. 2013). Inoculated leaves 171 

were enclosed for 72 h in a transparent polyethylene bag moistened with water to provide 172 

wetness requirement for infection. In the growth chamber, the light regime consisted of a 10-h 173 

light period and a 14-h dark period. Once the infection was completed, to avoid artifacts 174 

related to variation in exposure to light, inoculated leaves were maintained horizontally with 175 

nylon wires at the height of each leaf layer, as described by Bernard et al. (2013). 176 

2.2.3. Daily leaf thermal amplitude (DLTA) patterns 177 

During the first 72 h after inoculation, plants were maintained at a similar thermal regime 178 

(18 ± 2°C) in two identical growth chambers (same dimensions, same thermal regulation 179 

system, same lighting system; Strader, Pellouailles-les-Vignes, France), to ensure comparable 180 

optimal conditions for infection. Then, at 3 days post-inoculation (dpi) and throughout the 181 

experiment, the two growth chambers were set up differently to generate a different DLTA , 182 

namely  ± 2.5°C (DLTA5) and ± 5°C (DLTA10) (Fig. 1), while maintaining the daily mean 183 



leaf temperature near an optimal temperature of about 18°C for both in order to maximize the 184 

effect of DLTA, as proposed by Scherm and van Bruggen (1994b). Importantly, these two 185 

contrasting leaf temperature regimes were obtained by playing on the different components of 186 

the leaf energy balance (air temperature, PAR and NIR lightning) at the level of each 187 

individual leaf. On the one hand, this mean temperature (18°C) matched with the optimal 188 

temperature of isolates 1, 2 and 3 (18.1°C, 18.5°C and 18.9°C, respectively, so 18.4°C in 189 

average; Bernard et al., 2013) and, more generally, with the average optimal temperature 190 

(18.3°C) estimated in planta using 110 Z. tritici isolates collected in the field at our study site 191 

(Boixel et al., 2022). On the other hand, these DLTAs are consistent with the daily 192 

temperature fluctuations which are recorded in winter (DLTA5) and spring (DLTA10) in 193 

Western Europe (Klein Tank et al. 2002). Moreover, the lighting systems in the two growth 194 

chambers were identical, with irradiance at the height of plant pots at different locations in the 195 

growth chamber varying from 238 to 353 µmol.s-1.m-2 with an average of 307 µmol.s-1.m-2. 196 

The relative humidity (RH), measured every 15 min, varied correlatively (RHDTLA10 = 1.005 × 197 

RHDTLA5; r2 = 0.998) in the two growth chambers, with mean(RH) = 75.6 % and 76.0 %, 198 

max(RH) = 95.3 % and 96.3 %, and min(RH) = 56.0 % and 53.3 % for DLTA10 and DLTA5,  199 

respectively.  200 



    201 

 202 

Fig. 1. (a) Leaf temperatures for the two treatments recorded on a four-day period; leaves 203 

experiencing the same mean leaf temperature (18.2°C and 18.3°C, respectively) but distinct 204 

daily leaf thermal amplitude (DLTA): � = 5.1°C (DLTA5, dashed blue line) and � = 10.0°C 205 

(DLTA10, solid red line). The same pattern of leaf thermal amplitude was repeated 206 



throughout the experiment (61 days). (b) Histogram of the leaf DLTAs averaged over the 207 

experiment duration for the two treatments: DTLA5 = 5.1 ± 0.3°C (blue bars); DLTA10 = 208 

10.0 ± 0.2°C (orange bars). 209 

2.2.4. Leaf temperature measurement 210 

The temperature of each inoculated leaf was continuously measured with thin T-type 211 

thermocouples (diameter 0.2 mm) positioned under the leaf in contact with the inoculated area 212 

(Fig. 2; Bernard et al. 2013). Each thermocouple was connected to a data-logger, retrieving 213 

leaf temperature every 20 s. This allowed us to calculate temperature averages at increasing 214 

time steps, from 15 min to 24 h (0.25, 1, 2, 6 and 24 h), and to test the effect of temporal 215 

sampling temperature when modeling lesion development (see Supplementary Material S1). 216 

Due to the high number of leaves (N = 288), four data-loggers (CR10 and CR1000, Campbell 217 

Scientific) using multiplexers (AM25T and AM32, Campbell Scientific) were used. The 218 

contact of thermocouples with leaves was checked three times a week. The thermocouples 219 

were calibrated before and after the experiment. To avoid bias from using multiple data-220 

loggers, the temperature of a single brass block was continuously measured by each data-221 

logger. Temperature data homogenization was performed based on brass block temperature 222 

measurements and on results of pre and post experiment calibrations. The analysis of the two 223 

sets of leaf temperature measured every 15 minutes showed that the set-up of the two 224 

chambers did generate distinct distributions of the daily leaf temperature amplitude (Fig. 1), 225 

whose mean value was significantly different (Welch Two Sample t-test, p-value < 2.2e-16). 226 

 227 



 228 

Fig. 2. (A) Wheat plants in one of the two growth chambers. (B) Inoculated leaves held in a 229 

horizontal position between two nylon wires. (C) T-type thermocouples positioned under the 230 

leaf in contact with the inoculated area. 231 

2.2.5. Assessment of lesion development and pycnidia density 232 

Starting 11 dpi, the development of each lesion was assessed 16 times, every 2 to 4 days. 233 

The respective percentage of the inoculated area covered by chlorosis, necrosis, and pycnidia 234 

(0, 1, 2, 3 and 5%, then increments of 5% up to 100%) was estimated visually by the same 235 



assessor throughout the experiment (more details on methodology in Suffert et al. 2013). 236 

Disease assessment ended 61 dpi when the leaf apical senescent area coalesced with the 237 

diseased area. Finally, the number of pycnidia was counted by eyes on digitized images (1200 238 

× 1200 PPI) of the adaxial side of each leaf. The density of pycnidia was obtained by dividing 239 

the number of pycnidia by the inoculated area.  240 

2.2.6. Estimation of incubation period and latent period 241 

Incubation period was estimated for each leaf by the time elapsed from inoculation to the 242 

first day with visible chlorosis. Latent period was estimated by the time elapsed from 243 

inoculation to 37% of the maximum sporulating area, assessed by fitting a Gompertz model to 244 

the area covered by pycnidia (Bernard et al. 2013; Suffert et al. 2013). The value 37% 245 

corresponds to the ordinate at the inflection point of a Gompertz curve (Winsor 1932). 246 

Incubation period and latent period were expressed in dpi. Disease curve fitting was 247 

performed using R software v. 3.4.2 (R Core Team, 2013).  248 

2.3 Statistical analysis  249 

Leaf and air temperature metrics under field conditions were compared performing 250 

Pearson correlations using the R software v. 3.4.2 (R Core Team, 2013). The influence of 251 

daily leaf temperature amplitude (DLTA) on the development of Z. tritici was analyzed using 252 

a Repeated Measure ANOVA (RM-ANOVA, under SYSTAT 13.1 software, SYSTAT Inc.) 253 

to include the property that each dependent variable (respective percentage of the inoculated 254 

leaf covered by chlorosis, necrosis, and pycnidia) was measured repetitively through time on 255 

the same leaves. In this RM-ANOVA, both the DLTA (DLTA5 and DLTA10) and the 256 

identity of the isolate were designed as factors. The rank of a given leaf for each individual 257 

plant (penultimate (F2) and flag (F1) leaves) was included as a covariate to remove the 258 

variability induced by a potentially different response between these two categories of leaves. 259 



In the repeated measure procedure, the dpi was used to include the factor time and to estimate 260 

the within-subject variability (the identity of individual leaves). This statistical approach 261 

allowed us to analyze the interaction terms between time (dpi) and all factors (DLTA and 262 

isolate) on within-subject effect sizes. The between-subject analysis also included the 263 

interaction term between DLTA and isolate identity. Finally, we analyzed the latent and the 264 

incubation periods with a classic ANOVA since these variables were unique values for each 265 

individual leaf. A Tukey's Honestly-Significant-Difference Test was used to run pair-wise 266 

comparisons whenever this was needed. The conditions required to run an analysis of 267 

variance were checked for all variables using a Shapiro-Wilk Test (for normality) and a 268 

Levene test (for homogeneity of variances based on the mean or median). Statistical 269 

significance was estimated at a threshold of 0.05. 270 

 271 

3. RESULTS 272 

3.1. Comparison between leaf and air temperatures in field conditions 273 

The daily mean leaf temperature was very similar to (P = 0.88), and correlated to the daily 274 

mean air temperature (R² = 0.98; Fig. 3a). In 90% of cases, the difference between the two 275 

mean temperatures was below 0.7°C. In contrast, the daily amplitude was higher for leaf 276 

temperature than for air temperature (Fig. 3b; P < 0.001). On average, the daily amplitude 277 

was 5.8°C higher for the leaf temperature (14.1 ± 3.8°C) than for the air temperature (8.3 ± 278 

2.9°C). We refined these differences in amplitude by analyzing the daily minimum and 279 

maximum of these two temperature metrics. The daily minimum temperature of air from the 280 

weather station and of leaves were correlated (R² = 0.91); leaves were generally cooler than 281 

air, which could be explained by the radiative heat loss during nighttime in the case of clear 282 



skies (Tleaf_min = 1.07; Tairws_min - 2.8 °C). The daily maximum temperature of air from 283 

weather station and of leaves were less correlated (R² = 0.79); leaves were generally warmer 284 

than ambient air, which could be explained by the radiative forcing (Tleaf_max = 0.94; 285 

Tairws_min  + 4.6 °C). For a day randomly chosen during this period (7 July 2010), we 286 

present the corresponding range of development rate of Z. tritici depending on whether the 287 

leaf temperature or the air temperature is considered (Bernard et al. 2013) (Fig. 4c). This 288 

comparison illustrates the extent to which daily leaf temperature fluctuation may push the 289 

pathogen toward lower developmental rate, close to the upper temperature limit. 290 

 291 

Fig. 3. (a) Relationship between daily mean leaf temperature and daily mean air temperature 292 

measured from 14 May to 11 July 2012. Leaf temperature corresponds to the mean 293 



temperature of upper leaves measured by a thermocouple in a wheat plot (Thiverval-Grignon, 294 

France). The air temperature corresponds to the temperature measured by a weather station 295 

located ~200 m from the plot. (b) Frequency of daily leaf (white bars) and daily air (black 296 

bars) temperature amplitudes (daily Tmax – Tmin) measured from 14 May to 11 July 2012. 297 

(c) Example of the ranges of air (Tairws) and leaf temperatures (Tleaf) measured during a 298 

single day (10 July 2012) and the corresponding ranges of development rate of Zymoseptoria 299 

tritici, visualized here using an asymmetric reaction norm from Bernard et al. 2013 (S1.2). 300 

3.2. Effect of the daily leaf temperature amplitude (DLTA) on the 301 

development of Z. tritici in growth chamber conditions 302 

3.2.1. Effect of DLTA on lesion development 303 

The development of necrotic area differed according to the daily leaf temperature 304 

amplitudes (marginally) and according to the three isolates (Table 1; Fig. 4a-c). The absence 305 

of interactive effect of DLTA and isolate indicates that all isolates responded similarly to 306 

DLTA (Table 1). Necrosis displayed a strong temporal dynamics and the significant 307 

interaction terms of the RM-ANOVA (dpi × DLTA, dpi × isolates) indicated that the temporal 308 

dynamics differed according to the DLTA and to the isolate (Table 1). Necrosis appeared first 309 

at 20 dpi on 27.8% and 15.6% of the leaves (all isolates together) under DLTA5 and 310 

DLTA10, respectively. At 20 dpi, the mean necrotic area was smaller for DLTA10 than for 311 

DLTA5 for the three isolates. Final mean necrotic area under the two DLTAs was similar for 312 

all isolates, reaching more than 98% of the inoculated area.  313 

 314 

Table 1. Statistical report of the RM-ANOVA on the effects of DLTA (daily leaf temperature 315 

amplitude, 2 levels), isolate (3 levels), the rank of the leaf (2 levels, defined as a covariate), 316 

time (dpi: days post inoculation) and all interactions on the respective percentage of the 317 



inoculated leaf covered by chlorosis, necrosis, and sporulating. Significant P-values are 318 

indicated in bold. 319 

Variable Level Source df Mean square F-ratio P-value 

Chlorosis Betwee

n-

subject 

DLTA 1 2.492 0.083 0.774 

 

  Isolate 2 716.526 23.861 < 0.001 

  DLTA × isolate 2 19.446 0.648 0.524 

 

  Rank 1 36.061 1.201 0.274 

  Error 278 30.03   

 Within-

subject 

Dpi (time) 16 453.014 30.822 < 0.001 

  Dpi × DLTA 16 72.983 4.966 < 0.001 

  Dpi × isolate 32 169.722 11.548 < 0.001 

  Dpi × DLTA × 

isolate 

32 18.059 1.229 0.176 

  Dpi × rank 16 68.442 4.657 < 0.001 

  Error 4 448 14.698   

Necrosis Betwee

n-

subject 

DLTA 1

  

5 306.765 5.191 0.023 

  Isolate 2 8 687.176 8.498 < 0.001 

  DLTA × isolate 2 518.625 0.507 0.603 

  Rank 1 4 213.683 4.122 0.043 

  Error 278 1 022.294   

 Within-

subject 

Dpi (time) 16 50 290.751 471.633 < 0.001 

  Dpi × DLTA 16 521.837 4.894 < 0.001 

  Dpi × isolate 32 1 174.404 11.014 < 0.001 

  Dpi × DLTA × 

isolate 

32 97.077 0.91 0.612 

  Dpi × rank 16 532.962 4.998 < 0.001 

  Error 4 448 106.631   

Sporulatio

n 

Betwee

n-

subject 

DLTA 1 78 429.364 49.22 < 0.001 

  Isolate 2 7 718.209 4.844 0.009 

  DLTA x isolate 2 557.922 0.35 0.705 

  Rank 1 125 619.850 78.835 < 0.001 

  Error 278 1 218.520   

 Within-

subject 

Dpi (time) 16 13 002.747 100.073 < 0.001 

  Dpi × DLTA 16 2 548.793 19.616 < 0.001 

  Dpi × isolate 32 1 297.766 9.988 < 0.001 

  Dpi × DLTA × 

isolate 

32 85.636  0.659 0.929 



  Dpi × rank 16 6 742.437 51.892 < 0.001 

  Error 4 448 129.932   

 320 

The development of sporulating area differed between the daily leaf temperature 321 

amplitudes ± 2.5°C (DLTA5) and ± 5°C (DLTA10), in a similar way for all isolates (Table 1). 322 

Again, interaction terms showed that the temporal dynamics of the sporulating area varied 323 

according to the temperature treatment and the isolate (Table 1). Pycnidia appeared at 20 dpi 324 

on 3.5% of the leaves under DLTA5 and 24 dpi on 19.1% of the leaves under DLTA10 (Fig. 325 

5d-f). From 24 to 61 dpi, the mean sporulating area was higher under DLTA5 than under 326 

DLTA10. For the three isolates, the final sporulating area was significantly higher under 327 

DLTA5. Sporulating area was 18%, 15%, and 9% larger on leaves under DLTA5 than on 328 

leaves under DLTA10 for isolates 1, 2, and 3, respectively. 329 

 330 



 331 

Fig. 4. Growth of necrotic (a-c) and sporulating area (d-f) for isolates 1 (a, d), 2 (b, e), and 3 332 

(c, f) of Zymoseptoria tritici, for two daily leaf thermal amplitudes (DLTA): ± 2.5°C 333 

(DLTA5, dashed lines) and ± 5°C (DLTA10, solid lines). Error bars are confidence interval 334 

(95%). 335 

3.2.2. Effect of DLTA on components of fitness 336 

Overall, the mean incubation period was shorter under DLTA5 than under DLTA10 for all 337 

isolates (Table 2; Fig. 5a-d). The pair-wise comparisons, however, indicated that this 338 

difference was significant for isolates 1 (P = 0.005) and 3 (P < 0.001) and not for isolate 2 (P 339 



= 0.369; Fig. 5). Under DLTA10, the incubation period was increased by 1.4, 0.8, and 1.8 dpi 340 

on average compared to DLTA5, for isolates 1, 2 and 3, respectively, and by 1.3 dpi when 341 

considering all isolates together. 342 

 343 

Table 2. Statistical summary of the ANOVA on the effects of DLTA (daily leaf temperature 344 

amplitude, 2 levels), isolate (3 levels), the rank of the leaf (2 levels, defined as a covariate) 345 

and all interactions on the incubation period, latent period and density of pycnidia. P-values 346 

indicated in bold are significant. 347 

Variable Source df Mean square F-ratio P-value 

Incubation 

period 

DLTA 1 119.371 31.51 < 0.001 

 Isolate 2 3.213  0.848 0.429 

 DLTA × isolate 2 5.187 1.369 0.256 

 Rank 1 65.318 17.242 < 0.001 
 Error 278 3.788   

Latent 

period 

DLTA 1 87.964 8.613 0.004 

 Isolate 2 185.136 18.127 < 0.001 

 DLTA × isolate 2 3.034 0.297 0.743 

 Rank 1 6.229 0.61 0.435 

 Error 270 10.213   

Density of 

pycnidia 

DLTA 1 4 654.721 32.52 < 0.001 

 Isolate 2 936.062 6.54 0.002 

 DLTA × isolate 2 397.127 2.775 0.064 

 Rank 1 46 169.564 322.565 < 0.001 
 Error 278 143.132   

 348 

The mean latent period was also shorter under DLTA5 than under DLT10 globally (Table 349 

2; Fig. 5e-h), but this effect may be marginal given that the pair-wise comparison was unable 350 

to retrieve significant differences between the two temperature treatments for each isolate (P < 351 

0.05 when considering all isolates together). Under DLTA10, the latent period was increased 352 

by 1.3, 0.7, and 1.4 dpi on average for isolates 1, 2 and 3, respectively, and by 1.2 dpi when 353 

considering all isolates together. 354 



The density of pycnidia, also influenced by the DLTA overall (Fig. 5i-l), was significantly 355 

different for isolates 1 (P < 0.001) and 3 (P = 0.004) but not for isolate 2 (P = 0.682). The 356 

density of pycnidia was on average 32% higher under DLTA5 (32 pycnidia.cm-2) than under 357 

DLTA10 (24 pycnidia.cm-2) (Fig. 5l). Under DLTA10, the density of pycnidia decreased by 358 

37%, 11% and 25% on average for isolates 1, 2 and 3, respectively, and by 24% when 359 

considering all isolates together. 360 

 361 



 362 

Fig. 5. Effect of two daily leaf temperature amplitudes (DLTA): ± 2.5°C (DLTA5; black bars) 363 

and ± 5°C (DLTA10; hatched bars) on incubation period (a-d), latent period (e-h), and density 364 

of pycnidia (i-l) for Zymoseptoria tritici isolates 1 (a, e, i), 2 (b, f, j), 3 (c, g, k), and all 365 

isolates together (d, h, l). Values are means. Error bars are confidence interval (95 %). P-366 

values (* P < 0.05, ** P < 0.01, *** P < 0.001, ns for not significant) were determined from 367 

the ANOVA (Table 2).  368 



4. DISCUSSION 369 

We established in field conditions that the daily amplitude can be highly dependent on the 370 

type of temperature even if the average remains the same: air commonly measured by a 371 

weather station vs leaf, i.e., in more general terms ‘environmental’ vs ‘body’ temperature. 372 

Concretely, the temperature range of a wheat flag leaf is greater than that of air temperature. 373 

This can be explained by two mechanisms. During the day, solar radiation hits the leaf, 374 

increasing its surface temperature relative to the air. During clear-sky nights, the leaf loses 375 

energy due to thermal radiation, and its surface becomes cooler than air. Moreover, the 376 

microclimate at the weather station, even if placed near the field plot, may differ from the 377 

plant canopy microclimate (evapotranspiration, turbulent boundary layer, advection, slope, 378 

etc.). Therefore, the use of air temperature from weather stations, as commonly done, seems 379 

inappropriate, as highlighted empirically by Bernard et al. (2013) for Z. tritici. This leads to 380 

erroneous interpretation of the effect of temperature on the development of foliar fungal 381 

pathogens, which depends non-linearly on the amplitude of the temperature (see Fig. 3c). To 382 

our knowledge, Bonde et al. (2012) were the first to investigate the temperature amplitude 383 

effect on a foliar fungal pathogen (Phakopsora pachyrhizi, the causal agent of Asian soybean 384 

rust) by simultaneously measuring leaf and air temperatures. However, they concluded that air 385 

and leaf temperature were nearly equal. These contrasting results may come from their 386 

particular experimental set-up in growth chambers with light systems that did not induce 387 

temperature excess in soybean leaves. Moreover, their conclusion relates more to the impact 388 

of the variation in temperature patterns representative of the different locations throughout the 389 

growing season than to the impact of the diurnal temperature amplitude. 390 

Our experimental results suggest that a higher daily leaf temperature amplitude (despite 391 

similar mean temperature) resulted in two detrimental effects for the pathogen: an increase in 392 

the length of the latent and incubation periods and a decrease in the density of fruiting bodies 393 



(pycnidia). The effect size differed between these variables however. More precisely, while 394 

the growth of the necrotic area (Fig. 4a-b) was marginally affected, which can be viewed as 395 

the expression of damage, the growth of the sporulating area (Fig. 4d-f) and the three 396 

components of fitness, which are strong drivers for a polycyclic plant pathogen, were much 397 

more impacted (Fig. 5). Overall, the higher amplitude (± 5°C) resulted in lower pathogen 398 

performance. The growth of the sporulating area was slowed down and the final area was 399 

reduced, the incubation period and latent period were lengthened and, more strikingly, the 400 

density of pycnidia was reduced. These results obtained with three isolates from two different 401 

climatic areas will have to be extended to populations acclimated to various climatic regimes 402 

differing both in terms of temperature average and variance, but we currently lack field data 403 

to investigate this relationship at the biogeographical level.  404 

Our study has inherent limitations that need to be discussed. The laboratory experiment 405 

was not repeated sensu stricto contrary to what Shakya et al. (2015) did, in the sense that each 406 

treatment (DLTA5 and DLTA10) was not replicated in each of the two growth chambers. 407 

However, as mentioned in the Material and Methods section, the growth chambers were twin 408 

(same model) and we verified by dedicated physical measurements that light and RH 409 

conditions were similar. This point is crucial considering the potential impact of several 410 

abiotic factors on the development of Septoria tritici blotch (Benedict 1971; Shaw 1991; 411 

Boixel et al. 2022). Furthermore, our experimental design was relevant from a biological 412 

point of view as the ‘replicates’ were not at the level of the chamber but at the scale of the 413 

individual leaf: we measured independently the temperature for each inoculated leaf section, 414 

i.e. the temperature really perceived by the pathogen, even if from a purely statistical point of 415 

view all replicated leaves within a growth chamber appeared as ‘pseudoreplicates’ (Colegrave 416 

& Ruxton, 2018). The statistical disadvantage of this approach was compensated by the 417 

technical advantage of having several independent temperature measurements at the 418 



individual leaf level. The leaf temperature is not spatially and temporally homogeneous, even 419 

in the case of true replicates. This was not the case in the experimental study of Shakya et al. 420 

(2015), for instance. 421 

In addition, all plants in our experiment were maintained at a similar thermal regime 422 

during the first 72 h after spore deposition on the leaves to facilitate the start of the disease 423 

(Fantozzi et al. 2021). We cannot exclude however that the DLTA could also influence the 424 

start of the disease development. The impact of moisture, which is a parameter difficult to 425 

manage as it depends on temperature, is also known to be significant in Z. tritici (Boixel et al. 426 

2022). The temperature-moisture interaction poses experimental problems in many other 427 

fungal plant pathogens and for this reason it is rarely investigated during the early stages of 428 

infection (e.g. during the first 24 h post-infection, when testing the impact of temperature on 429 

infection efficiency in Puccinia striiformis f. sp. tritici; de Vallavieille-Pope et al. 2018). 430 

Nevertheless, it should be acknowledged that spore germination and hyphal growth on the 431 

leaves are crucial steps in many pathosystems and models need to integrate the corresponding 432 

epidemiological components (de Wolf & Scott 2007; Chaloner et al. 2021). 433 

The difference in disease development observed under two thermal amplitudes is partly 434 

due to the ‘rate summation’ effect, also called Kaufmann effect, which explains the 435 

differences in the growth of organisms under constant and various levels of fluctuating 436 

environments (Cossins and Bowler 1987; Scherm and van Bruggen, 1994b). We verified this 437 

effect for the studied host-pathogen interaction, using a simple modelling approach (see 438 

Supplementary Material S1); the model allowed us to test this effect on a wider range of 439 

DLTA than in our experimental approach (Fig. S1.4).  Not related to a particular biological 440 

process, the Kaufmann effect is the mathematical consequence of the nonlinear shape of many 441 

biological functions together with the amplitude inherent in many environmental factors 442 

(Bozinovic et al. 2011; Ruel and Ayres 1999; Scherm and van Bruggen 1994a). This raises 443 



the difficult question of the choice of the function to use for a given TPC (symmetric vs 444 

asymmetric, number of parameters, etc.; Angilletta, 2006; Shi & Ge, 2010) (Fig. S1.1, S1.3). 445 

This mathematical effect, called the Jensen’s inequality (Jensen, 1906), expresses the fact that 446 

the value of a non-linear function of an integral differs from the integral of the non-linear 447 

function. We compared development near the optimal mean leaf temperature to maximize the 448 

effect of temperature fluctuations on pathogen development (Scherm and van Bruggen, 449 

1994b). The high leaf temperature obtained under the highest amplitude slowed down, and 450 

probably even stopped the development of the fungus for several hours each day. In addition, 451 

during the night, when temperatures were the lowest, the pathogen development was slower 452 

under the highest amplitude. As a mathematical consequence of non-linear thermal reaction 453 

norms, the latent period was longer under the highest amplitude (Fig. 5h).  454 

How the temperature fluctuates during a day (frequency) has an impact on the dynamics of 455 

the biological responses to temperature. However, the physiological inertia of each biological 456 

process involved in these responses is still poorly understood. As this issue is difficult to 457 

study experimentally, we relied on additional simulations (Supplementary Material S1) to 458 

quantify the influence of the fluctuation regime on the Kauffman effect, by transforming the 459 

sinusoidal daily variation of temperature into different step-functions corresponding to a 460 

temperature sampling at different time-step. We observed that when the sampling time step 461 

increased (from 0.25 to 6 h), the estimation of latent period slightly decreased, but it was 462 

always higher that when estimated using daily mean temperature (Fig S1.4). A similar trend 463 

was observed by Niehaus et al. (2012) on embryos and larvae of anurans for which growth 464 

and development proceeded more rapidly than expected in variable environments. Xu (1996) 465 

suggested that a time step up to 4 h is short enough to account for the diurnal fluctuating 466 

temperatures. Our experimental design in growth chambers, which results in a steady 467 

fluctuation during the day, could not generate short-time temperature extremes (e.g. during 468 



sunflecks) that can also influence the development of the fungal pathogen (Bonde et al. 2012). 469 

Accounting for temperature extremes necessitates decreasing the time step of temperature 470 

used for simulations down to below 15 min to ensure that short-term extremes are captured 471 

(Gutschick and BassiriRad 2003). A time step of 1 h however proved to be sufficiently short 472 

for simulation of late blight, a fast epidemic, when temperatures remain close to the optimum 473 

(Narouei-Khandan et al. 2020). 474 

In addition to the Kaufmann effect, physiological mechanisms may lead to an acceleration 475 

or – most likely – a retardation of the development under fluctuating temperature conditions, 476 

as previously suggested for insects (Worner, 1992). According to Niehaus et al. (2012), two 477 

biological phenomena can generate a mismatch between the predicted and actual fitness in 478 

fluctuating environments. Chronic exposure to an extreme temperature can have a deleterious 479 

effect on fitness, referred to as thermal stress (e.g. Pincebourde and Casas, 2019) and/or can 480 

trigger a beneficial response, referred to as thermal acclimation (e.g. Stillman and Somero, 481 

1996). The development of a fungal pathogen in plant tissues might be also accompanied by 482 

overall ‘homeostatic’ and ‘compensatory’ effects. This hypothesis could be confirmed by 483 

comparing the impact of similar DLTA on the fungal growth in planta and in vitro, following 484 

the methodology developed by Boixel et al. (2019), for instance. Moreover, this leads us to 485 

analyze our results with caution as seasonal fluctuations in field conditions, at much larger 486 

time steps, was shown to drive the thermal adaptation in Z. tritici populations (Suffert et al. 487 

2015). Given the population diversity in Z. tritici (Boixel et al., 2019), it is likely that intra-488 

day thermal fluctuations studied here could have an impact on the adaptive dynamic of a local 489 

population. This could explain for instance how it adapts to the most stressful thermal 490 

conditions in certain geographic areas. 491 

 492 



5. CONCLUSION 493 

Incorporating microclimatic conditions (‘phylloclimate’) and the thermal reaction norm of 494 

plant pathogens when studying their interaction with plant hosts is a convincing way to 495 

develop future disease management in the frame of agroecology (Nicholls and Altieri 2007). 496 

Our study suggested the importance of considering daily leaf temperature amplitudes – and 497 

not only the average leaf temperature or daily air temperature amplitudes – when investigating 498 

the development of foliar fungal pathogens. Interestingly, our results parallel the conclusions 499 

of Paaijmans et al. (2010) who found that it is necessary to consider daily fluctuations in 500 

water temperature to predict mosquito development and the epidemiological dynamics of 501 

malaria. The dynamic of a polycyclic epidemic is characterized by several embedded 502 

infection cycles of the pathogen. Selective dynamics within a pathogen population can be 503 

amplified by a high number of these cycles, a high diversity in the thermal responses of the 504 

individuals, and the effective thermal amplitudes (Suffert et al., 2015). Small variations in 505 

temperature conditions can increase the variability in the responses, but at some points in the 506 

infection cycle, synchronization can occur, leading again to a more uniform reaction (Fantozzi 507 

et al. 2021). The phenomenon of alternating phases of variability and synchronization was 508 

already mentioned in the epidemiology book by Zadoks and Schein (1979). Our results 509 

contribute to define the adequate amplitude and time step that matter for these 510 

epidemiological processes. Therefore, differences in latent period under the two amplitudes 511 

that we highlighted at the scale of a single infection cycle are expected to be magnified over 512 

the course of the epidemic. Our results also have two major implications for foliar fungal 513 

pathogen studies: (i) leaf temperature amplitude has to be considered to study the acclimation 514 

of pathogens, and (ii) epidemiological models need to keep a high temporal resolution as the 515 

choice of the time step is crucial to obtain accurate forecasts. These models would also greatly 516 

benefit from integrating the spatial heterogeneity of leaf temperature within canopies as the 517 



thermal amplitude can differ according to the leaf micro-environment. This point is 518 

particularly critical when using models for disease forecasting and climate change 519 

assessments (Garcia-Carreras and Reuman 2013; Paaijmans et al. 2010). Leaf temperature 520 

should be characterized experimentally on very small plots, due to its high spatial and 521 

temporal variability and its dependence on crop architecture. For larger-scale studies, the most 522 

pragmatic way is to use microclimatic models (e.g. Berry et al., 1991) – or even 523 

phylloclimatic models for a finer consideration of canopy architecture (Chelle, 2005) – to 524 

simulate leaf temperatures from air temperatures and other climatic variables (radiation, wind, 525 

humidity) from weather stations as it is now done for ectotherm organisms (Bramer et al. 526 

2018).  527 
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