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Abstract

Predicting litter performance in lactating sows is an essential step towards the

development of decision support systems for precision feeding in lactating sows.

Numerous factors affecting litter performance have been described in literature.

However, predictive models working on-farm in real time are not available. The

main objectives of this research was to (i) explore 4 different machine learning

strategies, and (ii) identify the best supervised learning algorithm in order to

obtain reliable predictions of litter performance. This study was carried out with

data obtained from 6 experimental farms over the last 20 years. Algorithms were

trained to predict the litter weight at weaning using a set of 4 numeric and 3

categorical features, and a method for predicting secondary litter performance

and nutrient output in milk from the predicted litter weight at weaning was

evaluated. To evaluate the reliability of predictions within each farm, the mean

error per farm (MEf) and the mean absolute percentage error per farm (MAPEf)

were computed. The best performance for the prediction of litter weight at
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weaning was obtained with an ensemble algorithm with farm-level training and

testing (MEf = -0.14 kg; MAPEf = 9.01%), but performance with simple linear

regression was very close (MAPEf = 9.30%). Learning across all farms only

achieved comparable results with the neural networks algorithm, but at higher

computational costs. The method for predicting secondary litter performance

and nutrient output from the predictions of litter weight at weaning reveals

that the MEf remains close to 0, and that the MAPEf only increases by a few

percentage points. This study confirms the effect of numerous factors known

in the literature to affect litter performance, such as litter size and parity of

sows, but also revealed huge variations between farms. According to this study,

reliable predictions could be obtained with interpretable supervised algorithms

trained at farm level, with features that can be easily measured on-farm. This

study thus shows that on-farm data are necessary to accurately train models

and make reliable predictions at farm level. These predictions could be used

by decision support systems in order to develop precision feeding approaches in

lactating sows.

Keywords: Litter performance, Lactating sows, Supervised learning, Precision

livestock farming

1. Introduction1

Precision livestock farming (PLF) is a novel approach in livestock produc-2

tion systems that relies on intensive use of technology and process engineering3

to improve livestock sustainability and efficiency (Wathes et al., 2008; Pomar4

et al., 2019). As part of PLF, precision feeding (PF) principles are based on on-5

line measuring devices, computational methods, and feeding devices that make6

it possible to feed animals individually, with the right amount of nutrients pro-7

vided at the right time (Pomar et al., 2019; Gaillard et al., 2020). The variability8

of nutrient requirements according to physiological stage has been successfully9
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integrated into traditional nutrition models in swine such as InraPorc® (Dour-10

mad et al., 2008) and NRC (2012). However, handling the variability of nutrient11

requirements over time and between animals is a major area of study that PF12

systems should take into account in order to improve the overall efficiency of13

the livestock feeding chain (Vranken and Berckmans, 2017; Pomar et al., 2019).14

In lactating sows, milk production leads to large, variable nutrient require-15

ments among individuals (Noblet et al., 1990; Gauthier et al., 2019). In contrast16

with dairy cows, available methods to directly measure sow milk production are17

either unaffordable and labour intensive at farm level, or may reduce piglet18

growth (Quesnel et al., 2015). However, measurements of litter performance19

can be used as proxies for milk production and provide estimates of nutrient20

output in milk at lower expense (Noblet et al., 1990; Hansen et al., 2012; Ques-21

nel et al., 2015). The effects of numerous factors affecting litter performance22

have been reported in the literature. Litter size is considered to be the main23

factor influencing milk production and litter performance because it affects the24

number of functional mammary glands (Auldist et al., 1998; Ngo et al., 2012a),25

followed by stage of lactation, parity of sows, nutrition, and environmental fac-26

tors such as temperature (Quesnel et al., 2015). Furthermore, genetic selection27

in maternal lines over the past decades has resulted in a dramatic increase in28

sow prolificacy and milk production combined with increased variability in litter29

performance (Silalahi et al., 2016).30

Numerous factors affecting litter performance have been described in litera-31

ture. However, predictive models working on-farm in real time are not available,32

although this is precisely what PF systems require for lactating sows (Gauthier33

et al., 2019). There is therefore a need for processes providing reliable predic-34

tions of litter performance from simple measurements. The main objective of35

this research was to explore different learning strategies along with different su-36
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pervised machine learning algorithms to obtain reliable on-farm predictions of37

litter weight at weaning (LWW), as a proxy for milk production. This study38

was carried out with data obtained in 6 experimental farms over the last 2039

years.40

2. Material and Methods41

2.1. General Outline42

The questions raised by the prediction of LWW in lactating sows, in the43

context of precision livestock farming, included (i) Which machine learning al-44

gorithm is best adapted for this data? and (ii) Which is the best learning45

strategy to reliably use the resulting machine learning system on-farm? Lit-46

ter weight at weaning is an easy-to-measure phenotype that is closely related47

to milk production in lactating sows. Assuming that piglets were mainly fed48

with milk, it was thus selected as the target of machine learning algorithms.49

In this study, real observations of LWW were measured on-farm by farmers50

or using automatic connected scales, thus, predicting LWW comes under the51

field of supervised machine learning. Moreover, because the outcome to be pre-52

dicted is a continuous value, different supervised learning algorithms dedicated53

to regression tasks were selected. In order to identify the best way to gener-54

alize the machine learning algorithms on new data for a given farm, several55

learning strategies, each being a different way of splitting the database, were56

defined (section 2.3, Figure 1) and algorithms were trained according to a 5-fold57

cross-validation scheme (section 2.4). In the following sections, we describe the58

database, the different supervised algorithms that were used, and the different59

learning strategies evaluated for predicting LWW. After that, we evaluate the60

prediction of other litter performance drawn from the predicted LWW and used61

for the calculation of nutrient requirements (section 2.6).62
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2.2. Data preparation and preliminary statistical analysis63

A database with 23,259 observations from 6 different farms was used to train64

supervised learning algorithms. The data were collected between January 200065

and January 2019. The dataset was composed of 4 numeric features, namely66

the duration of the lactation, the litter size at birth (LSB), the litter size at67

weaning (LSW), and the litter weight at birth (LWB), and 3 categorical features,68

namely the parity of sows, the month of farrowing, and the farm name. Cleaning69

steps of the database have been performed to remove unreliable and uncommon70

observations from the database. Observations presenting a negative LWW or71

greater than 300 kg, a lactation period shorter than 20 days or longer than72

35 days, a LWB higher than 80 kg, or a parity greater than 20 were removed.73

Observations with one or several missing features were also removed. The data74

set was thus reduced to 20,368 complete observations.75

A preliminary statistical analysis of the database was conducted on the fea-76

tures, the LWW target, and on other performance criteria that are commonly77

used to evaluate litter performance and calculate nutrient requirements for milk78

production in lactating sows. The litter weight gain (LWG, in kg) was com-79

puted as the difference between LWW and the total weight at birth of weaned80

piglets. The litter average daily gain (LADG, in kg/d) was computed as LWG81

divided by the duration of lactation. The piglet weight at birth (PWB, in kg)82

was obtained by dividing LWB by LSB. The piglet weight at weaning (PWW,83

in kg) was obtained by dividing LWW by LSW. The piglet weight gain (PWG,84

in kg) was computed as the difference between LWW and PWB. The piglet85

average weight gain (PADG, in g/d) was computed as LADG divided by the86

LSW. The dry matter (DMm), energy in milk (Em), and nitrogen in milk (Nm),87

were computed according to the equation in Noblet and Etienne (1989):88
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DMm, kg/d = (0.72× LADG− 7× LSW )÷ 1000 (1)

Em,MJ/d = (20.6× LADG− 376× LSW )÷ 1000 (2)

Nm, g/d = 0.0257× LADG + 0.42× LSW (3)

Statistical analyses of the database was performed with Python 3 using the89

ANOVA linear model (statsmodels 0.11.1 Seabold and Perktold, 2010), with90

statistical significance of P < 0.05. Parity was analyzed for the fixed effects of91

farm and month of farrowing. The duration of lactation, LSB, LWB, PWB and92

LSW were analyzed for the fixed effects of farm, parity and month of farrowing.93

PWW, PADG, LWW, LADG were analyzed for the fixed effects of farm, parity,94

litter size at weaning, and month of farrowing.95

2.3. Learning strategies96

In order to identify the best strategy able to generalize the machine learning97

algorithms for a given farm, four learning strategies (Figure 1) were explored,98

in combination with the 8 supervised learning algorithms described in section99

2.4. These learning strategies were chosen in order to evaluate the genericity100

of the adjusted algorithms, depending on the availability of data in the farm101

where the algorithm is to be used. In the AllFarms learning strategy, machine102

learning algorithms were trained on 80% of the database and tested on the re-103

maining part, with all the features, including farm name feature. This strategy104

aims at discovering how algorithms could map the relation between target and105

features in a multi-domain context. Splitting procedure is stratified to ensure106

that farm frequencies are the same for training and testing. With this strategy,107

the obtained algorithms are common to the six farms and might be used for108

prediction in each of these farms, considering a farm effect. In the NoFarm-109
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Feature learning strategy, machine learning algorithms were trained and tested110

in the same way as for the AllFarms strategy, but with less supervision since111

the farm name feature was removed from the set of available features. With112

this strategy, prediction might be performed without any information on the113

farm, i.e., for a new farm. In the leave-one-farm-out (LOFO) learning strategy,114

the splitting, training, and testing procedures were conducted recursively, i.e.,115

once per farm. Machine learning algorithms were trained with the full data sets116

provided by 5 farms, and tested on the full data set of the remaining farm, in117

order to check if it is possible to predict accurately data from a different domain118

than the one used for training an algorithm. With this strategy, the obtained119

algorithms might be used for prediction on a farm not considered at training120

(Bascol et al., 2017). In the PerFarm learning strategy, machine learning al-121

gorithms were trained recursively and tested farm by farm, with respect to an122

80/20 ratio between training and testing sets. With this strategy, a farm-specific123

algorithm is adjusted and used on each farm, which requires having a sufficient124

amount of data from the farm for learning.125
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Figure 1: Training and test sets according to the different learning strategies. Color represents
the farm name feature. Grey represents a learning strategy where the farm name feature is
removed.
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Prior to training, parity and month of farrowing features were encoded as126

one-hot vectors for all learning strategies. The farm name feature was trans-127

formed into one-hot vectors in the AllFarms and LOFO learning strategies.128

2.4. Algorithm selection & hyperparameter tuning129

Each learning strategy was tested with 8 supervised learning algorithms that130

can be used for regression tasks and are provided in the scikit-learn library (Pe-131

dregosa et al., 2011). These algorithms are the Linear Regression (LR), the Least132

Absolute Shrinkage and Selection Operator (LASSO), the k-Nearest-Neighbors133

(kNN), the Random Forest (RF), the Gradient Tree Boosting for regression134

(GTB), the Support Vectors for Regression (SVR), the Voting Regressor (VR)135

and the Multi-Layer Perceptron (MLP). The 8 supervised algorithms choosen136

for the experimentation are the more popular to achieve regression tasks (Géron,137

2019) and are generally associated with high performance. As a preprocessing138

step, training and test data were standardized separately for LR, LASSO, kNN,139

GTB, SVR, VR, and MLP algorithms, regardless of the learning strategy.140

Hyperparameter combinations were evaluated to identify the optimal train-141

ing for each algorithm (Table 1). For any hyperparameter combination, al-142

gorithms were trained according to a 5-fold cross-validation scheme (Pedregosa143

et al., 2011). As no assumptions could be made on the right values of continuous144

hyperparameters, several power of tens were tried for the alpha hyperparam-145

eter of LASSO, for the C and epsilon hyperparameters of SVR, and for the146

alpha hyperparameter of MLP (Buitinck et al., 2013). For RF, a random search147

was first performed to reduce the hyperparameter space (Bergstra and Ben-148

gio, 2012). The average performance of an algorithm and a given combination149

of hyperparameters was computed from the performance obtained during the150

cross-validation.151
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Table 1: Hyperparameters and data transformation of the selected supervised learning algorithms1

Algorithm2 Preprocessing of features3 Hyperparameter name4 Hyperparameter values

LR Standardization fit intercept True, False
Lasso Standardization alpha [10−10, 101] ∩ Z
kNN Standardization n neighbors [1, 50] ∩ N

weights uniform, distance
RF5 - max depth None

min samples leaf 3,4,5
min samples split 8, 10, 12
n estimators 300, 400, 500

GTB Standardization loss ls, lad, huber
n estimators 1, 8, 16, 32, 64,

102, 2 · 102, 5 · 102, 103, 5 · 103

learning rate [0.01, 0.05, 0.1, 0.25, 0.5, 1]
max depth [1, 8] ∩ N

SVR Standardization kernel rbf
epsilon 0.1,1,10, 20, 100
C 0.1,1,10, 20, 100
gamma scale, auto

VR Standardization estimators LASSO, SVR, MLP
MLP Standardization hidden layer sizes 2, 10, 100, 200, 300, 400, 500

activation tanh, relu, logistic
solver lbfgs, sgd, adam
alpha 10−5, 10−3, 10−1, 101, 103

1 Performance with one hyperparameter combination was evaluated 5 times according to a 5-fold cross-
validation scheme.

2 LR: Linear Regression, Least Absolute Shrinkage and Selection Operator: LASSO, kNN: k-nearest
neighbors, RF: Random Forest, SVR: Support Vector for Regression, GTB: Gradient Tree Boosting,
VR: Voting Regressor, MLP: Multi-Layer Perceptron

3 Standardization of training and testing sets were carried out separately
4 Hyperparameter names according to Buitinck et al. (2013)
5 Hyperparameter space was first reduced with a random search on hyperparameters (Bergstra and

Bengio, 2012)

10



2.5. Evaluation of learning strategies and algorithm performance152

For a given learning strategy and a given algorithm, the hyperparameter153

combination that yields the best training performance according to the 5-fold154

cross-validation scheme was chosen to train the final model, and make pre-155

dictions of LWW over the corresponding test set (Figure 1). The quality of156

predictions was assessed through two main criteria. The first was the mean157

error at farm level (MEf):158

MEf =
1

nf

nf∑
i=1

yi − ŷi (4)

where MEf , f ∈ [1, 6] ∩ N, is the ME of farm f in kilograms, nf is the size of159

the test set in farm f, yi is the ith observation, and ŷi is the ith prediction.160

The second was the mean absolute percentage error per farm (MAPEf):161

MAPEf =
1

nf

nf∑
i=1

‖yi − ŷi‖
yi

× 100 (5)

where MAPEf , f ∈ [1, 6]∩N, is the MAPE of farm f as a percentage, nf is the162

size of the test set in farm f, yi is the ith observation, and ŷi is the ith prediction.163

A Nemenyi test was carried out to compare learning strategies based on164

the average ranks obtained by the 8 supervised algorithms across the 6 farms,165

according to the MAPEf metric (Demšar, 2006). The test was considered sig-166

nificant when P < 0.05.167

2.6. Predictions of secondary litter performance criteria and nutrient output in168

milk169

Further predictions of secondary litter performance criteria (LWG, LADG,170

PWW, PWG, PADG) and nutrient output in milk (DMm, Em, Nm) were com-171

puted. To obtain these secondary predictions, the transformations mentioned172
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in section 2.2 were applied to predicted values of LWW obtained with the su-173

pervised algorithm and learning strategy that yielded the best performance.174

Predictions of LWG, LADG, PWW, PWG, PADG, DMm, Em, and Nm were175

then estimated at the farm level through the MEf and MAPEf metrics.176

3. Results177

In this section, the results of the preliminary statistical analysis of the178

database are first presented. Then, learning strategies and algorithms are com-179

pared for the prediction of LWW, and predictions of secondary outcomes are180

evaluated.181

3.1. Preliminary statistical analysis of the database182

The results of the preliminary statistical analysis of the database are pre-183

sented in table 2. The number of litters varied between farms from 272 in farm184

5 up to 7,476 in farm 1. The effect of farm on parity was significant, with the185

lowest value of 1.9 (farm 5) and the highest value of 3.9 (farm 3; P < 0.001).186

However, the effect of farm did not explain much of the variability (R2 = 0.03;187

RSD = 1.9). The effects of farm, parity, and month of farrowing were sig-188

nificant for the duration of lactation (R2 = 0.23; P < 0.001). More precisely,189

weaned piglets were older in farms 1, 2, 3, and 6 (about 28 days) than in farms 4190

and 5 (about 25 and 21 days, respectively). The effects of farm and parity were191

significant for LSB (R2 = 0.12; P < 0.001). The smallest litter at birth was192

composed of 12.4 piglets (farm 1), and the largest was composed of 14.6 piglets193

(farm 3). The effect of farm, parity, and month of farrowing was significantly194

on LSW (R2 = 0.21; P < 0.001). LSW differed greatly between farms, from195

9.6 piglets (farm 1) up to 12.1 piglets (farm 3). The effects of farm, parity, and196

month of farrowing were also significant for PWB and LWB (P < 0.001). The197

effects of farm, parity, LSW and month of farrowing were significant on PWW,198
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PADG, LWW, LADG, DMm, Em, and Nm (P < 0.001). The coefficient of deter-199

mination was the lowest for PWB (R2 = 0.06), intermediate for PWW, PADG200

and LWB (R2 of 0.22, 0.18, and 0.19, respectively), and the highest for LWW,201

LADG, DMm, Em, and Nm (R2 of 0.61, 0.54, 0.52, 0.50, and 0.57, respectively).202
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Table 2: Influence of farm, parity, litter size at weaning, and month of farrowing on lactation characteristics, litter
performance, and nutrient output in milk1

Farm Statistics2

1 2 3 4 5 6 RSD3R2 F P LSWM

Number of litters 7476 6467 2673 605 272 2875
Parity 2.6 2.9 3.4 3.9 1.9 3.2 1.9 0.03 *** - - NS
Lactation length, d 27.9 27.9 28.7 25.3 21.4 27.9 1.8 0.23 *** *** - ***
LSB 12.4 13.3 14.6 13.8 13.8 13.5 3.4 0.06 *** *** - NS
LSW 9.6 10.6 12.1 11.1 11.6 11.3 1.8 0.21 *** *** - ***
PWB, kg 1.41 1.43 1.45 1.54 1.3 1.51 0.28 0.06 *** *** - ***
PWW, kg 8.23 7.95 8.72 8 5.92 9.03 1.28 0.22 *** *** *** ***
PADG, g/d 245 234 253 255 217 270 43 0.18 *** *** *** ***
LWB, kg 17.1 18.6 20.8 20.4 17.1 20.1 4.7 0.13 *** *** - ***
LWW, kg 78.7 84 104.7 85.4 68.4 101.5 12.8 0.61 *** *** *** ***
LADG, kg/d 2.34 2.46 3.03 2.7 2.5 3.03 0.42 0.54 *** *** *** ***
DMm, kg/d 1.62 1.7 2.1 1.87 1.72 2.1 0.3 0.52 *** *** *** ***
Em, MJ/d 44.6 46.8 58 51.5 47.2 58.1 8.7 0.5 *** *** *** ***
Nm, g/d 64.2 67.8 83.1 74 69.2 82.6 10.8 0.57 *** *** *** ***

1 LSB: litter size at birth, LSW: litter size at weaning, PWB: piglet weight at birth, PWW: piglet
weight at weaning, PADG: piglet average daily gain, LWB: litter weight at birth, LWW: litter weight
at weaning, LADG: litter average daily gain, DMm: dry matter in milk, Em: net energy in milk, Nm:
nitrogen in milk

2 Data were analyzed using ANOVA linear models that included the effect of farm (F), parity (P), litter
size at weaning (LSW), and month of farrowing (M). ***: P < 0.001; *: P < 0.05; NS: non
significant; - : not included in the ANOVA.

3 RSD: residual standard deviation
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Mean LADG varied according to farm (P < 0.001), between 2.34 and203

3.03 kg/d (Table 2, Figure 2a). Its variability was also dependent on the farm204

(Figure 2a), with a larger variability in farms 1, 2, and 6 than in farms 3, 4, and205

5. Mean LADG increased according to LSW (P < 0.001), from 1.29 kg/d (LSW206

= 5) up to 3.20 kg/d (LSW = 15), whereas it slightly decreased for LSW above207

15 (Figure 2b). PADG decreased when LSW increased, from 259 (± 77.5) g/d208

(LSW = 5) down to 159 (± 34.8) g/d (LSW = 17) (Figure 2c), with a con-209

comitant decrease in its variability. With respect to parity, LADG increased210

(P < 0.001) from 2.43 (Parity 1) up to 2.68 kg/d (Parity 3) and slightly de-211

creased for higher parities (Figure 2d). A similar trend was found for LWW.212

The month of the year affected (P < 0.001) LADG with the lowest values in213

July (2.51 kg/d) and the highest in December (2.65 kg/d).214
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(a) (b)

(c) (d)

Figure 2: Influence of (a) farm on litter gain (kg/d), (b) litter size at weaning on litter gain,
(c) litter size at weaning on piglet gain (g/d), and (d) parity of sows on litter gain. Violin
plot with nested boxplot displays the data distribution vertically with a white point for the
median value. Dots connected with a line represents mean values. > is equal to the mean
plus one standard deviation. ⊥ is equal to the mean minus one standard deviation.
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3.2. Comparisons between learning strategies and supervised learning algorithms215

The quality of these predictions was first assessed at farm level according216

to the MEf metric. These results are presented as box plots describing the217

farm dispersion of MEf values (Figure 3), according to the learning strategy218

and the algorithm used. In the AllFarms learning strategy, the MEf obtained219

for the prediction of LWW range from 0.0 (±0.29) kg (MLP) to 0.0 (±0.75) kg220

(LR), depending on the algorithm. In the NoFarmFeature learning strategy,221

the MEf are higher than in the AllFarms strategy, with much more variability222

between farms. They vary between 0.0 (±5.59) kg (LR) and 1.0 (±4.27) kg223

(GTB), depending on the algorithm. The highest between farm variability in224

MEf was obtained for the LOFO learning strategy with mean values ranging225

from -3.0 (±8.7) kg (Lasso) to 0.0 (±5.12) kg (MLP). Conversely, the lowest226

between farm variability in MEf was obtained for the PerFarm learning strategy227

with values ranging from -1.0 (±0.24) kg (kNN) to 0.0 (±0.55) kg (MLP).228
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Figure 3: Box plots of mean error per farm (MEf, in kg) for the predictions of litter weight at
weaning (LWW) according to supervised algorithms and learning strategies. For each box plot,
the black line represents the median value and whiskers represent 1.5 times the interquartile
range (LR, Linear Regression; LASSO, Least Absolute Shrinkage and Selection Operator;
kNN, k-nearest-neighbors; RF, Random Forest; SVR, Support Vector for Regression; GTB,
Gradient Tree Boosting; VR, Voting Regressor; MLP, Multi Layer Perceptron; AllFarms, all
farms learning strategy; NoFarmFeature, no farm feature learning strategy; LOFO, leave-one-
farm-out learning strategy; PerFarm, per farm learning strategy)
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The quality of the predictions of LWW assessed at farm level according to229

the MAPEf metric are presented in figure 4 as box plots describing the farm230

dispersion of MAPEf values, according to the learning strategy and the algo-231

rithm used. These values are expressed as a percentage of the mean value. The232

MAPEf obtained for the prediction of LWW in the AllFarms learning strategy233

range from 9.0 (±2.06) % (MLP) to 11.0 (±2.98) % (Lasso) (Appendix A - Table234

A.5). The MAPEf obtained in the NoFarmFeature learning strategy are higher235

than with the AllFarms strategy, with values ranging from 10.0 (±1.69) % (SVR)236

and 12.0 (±2.86) % (LR) (Appendix A - Table A.6). The MAPEf obtained in237

the LOFO learning strategy are the highest among all the learning strategies238

with values ranging from 12.0 (±1.91) % (MLP) to 14.0 (±3.68) % (Lasso) (Ap-239

pendix A - Table A.7). Conversely, MAPEf obtained in the PerFarm learning240

strategy are the lowest among the learning strategies with values ranging from241

9.0 (±2.0) % (VR) to 10.0 (±2.25) % (kNN) (Figure 4; Appendix A - Table242

A.8).243
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Figure 4: Box plots of mean absolute percentage error per farm (MAPEf, %) for the predictions
of litter weight at weaning (LWW) according to supervised algorithms and learning strategies.
For each box plot, the black line represents the median value and whiskers represent 1.5
times the interquartile range (LR, Linear Regression; LASSO, Least Absolute Shrinkage and
Selection Operator; kNN, k-nearest-neighbors; RF, Random Forest; SVR, Support Vector
for Regression; GTB, Gradient Tree Boosting; VR, Voting Regressor; MLP, Multi Layer
Perceptron; AllFarms, all farms learning strategy; NoFarmFeature, no farm feature learning
strategy; LOFO, leave-one-farm-out learning strategy; PerFarm, per farm learning strategy)
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Learning methods were ranked according to the MAPEf metric (Figure 5).244

For a given learning strategy, the average rank was computed according to the245

ranks obtained by each algorithm in each farm. The average ranks were 1.33,246

2.00, 2.71, and 3.96, for AllFarms, NoFarmFeature, LOFO, and PerFarm learn-247

ing strategies, respectively, and the critical difference computed according to248

the Nemenyi test was 0.677 (P < 0.05). According to this test, the rankings249

of PerFarm and AllFarms do not differ significantly, and these learning strate-250

gies performed significantly better than the NoFarmFeature and LOFO learning251

strategies (Figure 5). The rank obtained by the NoFarmFeature was statistically252

higher than for the LOFO learning strategy, which was at lowest of all.253
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Figure 5: Ranking of learning methods based on their average ranks across datasets and ma-
chine learning algorithms, according to the mean absolute percentage error per farm (MAPEf,
%) metric. The black line connects all learning strategies that do not perform statistically
differently according to the Nemenyi test.
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3.3. Predictions of secondary outcomes254

Secondary litter performance criteria and nutrient output in milk were de-255

rived from the predictions of LWW obtained with the PerFarm learning strategy,256

and the VR algorithm, which performed the best. They were first assessed at257

farm level according to the MEf metric, which are presented for each farm in258

table 3. The MEf obtained for the prediction of LWW and LWG are very simi-259

lar, and range from -0.59 kg (farm 5) to 0.19 kg (farm 4), compared to average260

values of 87.04 kg and 71.85 kg for LWW and LWG, respectively. The MEf261

obtained for the prediction of LADG range from 30 g/d (farm 5) to 10 g/d262

(farm 4). The MEf obtained for the prediction of PWW and PWG range from263

-0.07 kg (farm 5) to 0.01 kg (farm 3). The MEf obtained for the prediction of264

PADG range from -3.69 g/d (farm 5) to 0.16 g/d (farm 4). The MEf obtained265

for the prediction of DMm range from -0.02 kg/d (farm 5) to 0.01 kg/ (farm 4).266

The MEf obtained for the prediction of Em range from -0.61 MJ/d (farm 5) to267

0.16 MJ/d (farm 4). The MEf obtained for the prediction of Nm range from268

-0.76 g/d (farm 5) to 0.21 g/d (farm 4).269
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Table 3: Mean value and MEf of the prediction of LWG, LADG, PWW, PWG, PADG, DMm, Em, and Nm

derived from the prediction of LWW obtained with the PerFarm learning strategy and the VR algorithm1

LWW LWG LADG PWW PWG PADG DMm Em Nm

kg kg kg/d kg kg g/d kg/d MJ/d g/d

Mean 87.04 71.85 2.58 8.28 6.84 246.79 1.78 49.20 70.76

Farm 1 -0.23 -0.23 -0.01 -0.03 -0.03 -0.93 -0.01 -0.15 -0.19
Farm 2 -0.31 -0.31 -0.01 -0.03 -0.03 -1.02 -0.01 -0.23 -0.29
Farm 3 0.11 0.11 0.00 0.01 0.01 0.15 0.00 0.05 0.06
Farm 4 0.19 0.19 0.01 0.00 0.00 0.16 0.01 0.16 0.21
Farm 5 -0.59 -0.59 -0.03 -0.07 -0.07 -3.69 -0.02 -0.61 -0.76
Farm 6 -0.02 -0.02 0.00 -0.01 -0.01 -0.08 0.00 0.02 0.02
Mean of MEf -0.14 -0.14 -0.01 -0.02 -0.02 -0.90 -0.00 -0.13 -0.16
STD of MEf 0.27 0.27 0.01 0.03 0.03 1.33 0.01 0.25 0.32

1 MEf: mean error per farm, LWW: litter weight at weaning, LWG: litter weight gain, LADG:

litter average daily gain, PWW: piglet weight at weaning, PWG: piglet weight gain, PADG: piglet

average daily gain, DMm: dry matter in milk, Em: energy in milk, Nm: nitrogen in milk, VR:

Voting Regressor
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Predictions of secondary litter performance criteria and nutrient output in270

milk were then assessed at farm level according to the MAPEf metric, and271

expressed as a percentage of mean value (Table 4). For all criteria, the best pre-272

dictions were obtained in farm 3 with an average value of 8.0% (±0.7%) across273

the nine criteria. The quality of predictions was slightly lower for farm 4 and274

6 (average MAPE of 8.6% and 10.0%, respectively). The worst prediction was275

obtained for farm 1 (average MAPE of 13.8%), with farm 2 and 5 falling in the276

middle (average MAPE of 11.5% and 11.8%, respectively). Mean MAPE across277

farms was the lowest for LWW and PWW with 9.0% and 9.2%, respectively.278

For LWG, LADG, PWG, PADG, DMm, Em, mean MAPE accross farms was279

higher (11.3% on average). Mean MAPE across farms fell in the middle for Nm280

(10.3%).281
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Table 4: MAPEf (%) for LWG, LADG, PWW, PWG, PADG, DMm, Em, and Nm derived from the prediction of
LWW obtained with the PerFarm learning strategy, and the VR algorithm

LWW LWG LADG PWW PWG PADG DMm Em Nm

Farm 1 12.29 14.84 14.77 12.66 15.28 15.21 15.38 15.96 13.85
Farm 2 9.70 11.84 11.83 9.83 11.98 11.97 12.35 12.84 11.05
Farm 3 6.84 8.21 8.20 6.87 8.23 8.23 8.53 8.84 7.70
Farm 4 7.15 8.89 8.89 7.26 8.95 8.94 9.25 9.60 8.34
Farm 5 9.54 12.17 12.29 9.77 12.44 12.57 12.87 13.43 11.42
Farm 6 8.52 10.26 10.24 8.65 10.40 10.37 10.62 10.99 9.65
Mean of MAPEf 9.01 11.03 11.04 9.17 11.21 11.22 11.50 11.94 10.33
STD of MAPEf 1.82 2.22 2.21 1.92 2.36 2.35 2.32 2.42 2.06

1 MAPEf: mean absolute percentage error per farm, LWW: litter weight at weaning, LWG: litter weight

gain, LADG: litter average daily gain, PWW: piglet weight at weaning, PWG: piglet weight gain,

PADG: piglet average daily gain, DMm: dry matter in milk, Em: energy in milk, Nm: nitrogen in

milk, VR: Voting Regressor
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4. Discussion282

4.1. Factors influencing litter performance criteria and nutrient output in milk283

According to the ANOVA, a large proportion of the variance of the crite-284

ria related to milk production (i.e. LADG, LWW, DMm, Em, and Nm) was285

explained by the effects of farm, parity, litter size at weaning, and month of286

farrowing. For LADG, 54% of the variance was explained, which is consistent287

with the results of Ngo et al. (2012b), who obtained a value of 50%. In contrast,288

the proportion of the variance of litter characteristics at birth (LSB, LWB) or289

piglet performance (PWB, PWW, PADG) explained by these effects was much290

lower, with values between 12% and 22%. According to these results, it ap-291

pears that criteria related to litter performance should therefore be easier to292

accurately predict than those related to piglet performance. Among the fac-293

tors affecting the prediction of these parameters, it appears that the number294

of suckling piglets affecting the number of functional teats explained a greater295

proportion of the variability of LADG (i.e. from 1.3 kg/d for 5 suckling piglets296

up to more than 3 kg/d for 15 piglets), whereas the effect of parity (about 0.25297

kg/d between extreme values) and month of farrowing (about 0.1 kg/d between298

extreme values) contributed less to explaining its variability.299

The LADG increased between sows of first and third parity, and subsequently300

decreased. Beyer et al. (2007) and Dourmad et al. (2012) also observed that301

milk production, for which LADG is a proxy, increased between sows of first302

and second parity, and was the highest for fourth parity sows.303

The reduced LADG observed in the summer months, compared to the win-304

ter months, may be related to the effects of temperature. The effects of high305

temperatures on the metabolic activity of the mammary gland are known to be306

partly due to the reduction in feed intake of sows resulting from heat stress,307

which consequently reduces the amount of nutrients available for milk synthesis308
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(Renaudeau et al., 2001). Another finding on the effect of high temperatures309

was a partial redirection of blood flow to the skin capillaries in order to increase310

body heat losses (Renaudeau et al., 2003).311

In the present data set, LADG strongly changes with litter size, with greater312

LADG and smaller PADG as litter size increases. LADG linearly increased313

between 5 and 15 piglets, and tended to decrease after that, whereas PADG314

showed a curvilinear decrease, with highest values for 5-6 suckling piglets and315

a large drop for litters with more than 15 piglets at weaning. These results316

are consistent with Dourmad et al. (2012), who observed that milk production317

peaked at 12-14 suckling piglets, whereas the amount of milk available per piglet318

peaked at 7 piglets and decreased linearly above this value. The increase in319

LADG up to 15 piglets is due, first, to the increase in the number of functional320

glands, since there is one teat per piglet, and, second, to a stronger stimulation321

of milk production and a higher suckling intensity (Auldist et al., 1998). On322

the other hand, the decrease in LADG for litters with more than 15 piglets323

at weaning might be due to behavioral problems resulting from an imbalance324

between the number of piglets and the number of functional teats (Orgeur et al.,325

2004).326

The mean and the variability of LADG in the present study showed large327

differences between the 6 farms. In fact, this farm effect may be linked to other328

factors that are known to affect litter performance, such as the genetic origin of329

sows, feeding practices during lactation, farming practices, and environmental330

conditions (Quesnel et al., 2015). Collecting data on these effects is a rather331

tedious task, and features representing them were not available in our data set,332

though they would have been of interest. The farm effect can, however, be of333

help in examining them through a unique criterion.334
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4.2. Performance of the different learning strategies335

The MEf of the prediction of LWW showed large differences, depending on336

the learning strategy. The MEf obtained with algorithms trained according to337

the LOFO learning strategy were generally more variable, with values ranging338

from -10 to +10 kg of litter weight at weaning (e.g. between -11% and +11%339

of the mean LWW), depending on the farm. This clearly indicates that this340

recursive learning strategy is not accurate, regardless of the algorithm used.341

The MEf in the NoFarmFeature learning strategy ranged from -8 to +8 kg of342

litter weight at weaning. Compared to LOFO, this strategy slightly reduces343

the occurrence of structural errors between predictions and observations, but344

is still not accurate enough, regardless of the algorithm used. In contrast, the345

MEf obtained with AllFarms and PerFarm were centered on 0, with a very346

low variability that can be expressed in just hundreds of grams of litter weight347

at weaning, regardless of the algorithm used and the farm. These strategies,348

regardless of the data used at learning, showed a great ability to fit and correctly349

predict LWW with all algorithms. This clearly indicates that the farm feature is350

of major importance for accurate prediction of LWW. The absence of the farm351

feature in the LOFO and the NoFarmFeature prediction strategies resulted in352

inaccurate predictions of average LWW with rather large deviations for some353

farms.354

However, because prediction errors may cancel each other out, the MEf355

metric is not sufficient to accurately evaluate the performance of a prediction356

strategy. In addition to ME, MAPE gives more insights on the extent of pre-357

diction errors, both over or under estimations. The MAPEf for the prediction358

of LWW also shows large differences, depending on the learning strategy. The359

Nemenyi test for this metric indicates that the PerFarm and AllFarms learning360

strategies were ranked similarly over the farms and the algorithms. These two361
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strategies performed better than the NoFarmFeature learning strategy, which362

in turn performed better than the LOFO learning strategy. This difference in363

efficiency of learning strategy with respect to MAPE is consistent with what364

was previously obtained for ME.365

Among all the strategies, the lowest MAPEf values were obtained in the Per-366

Farm learning strategy, and the results suggest little difference between simple367

and advanced machine learning algorithms. In the AllFarms learning strategy,368

low MAPEf were also obtained but with great differences depending on the algo-369

rithm. With this learning strategy, kNN, SVR, GTB, VR and MLP algorithms370

better predict the LWW outcome than LR or LASSO algorithms. This indi-371

cates that LR and LASSO algorithms are unable to generalize over a dataset372

that results from multiple Gaussian distributions, even when trained with an373

indication on the source of each distribution (i.e., the farm name feature). Fur-374

thermore, the better performance of complex machine learning algorithms (such375

as neural-networks and ensemble algorithms) in the AllFarms learning strategy376

might be due to their ability to model non-linear relationships between features377

(Warner et al., 2020).378

In contrast with the AllFarms learning strategy, using a more complex algo-379

rithm in the PerFarm learning strategy only improved performance marginally.380

It seems that the non-linear relationships between features caught by advanced381

machine learning algorithms in the AllFarms learning strategy are only induced382

by the different farms in the training sets. Training algorithms at farm level383

thus makes it possible to learn more appropriate relationships between target384

and features, reduces computational time, and leads to more interesting predic-385

tive performance than training algorithms over multiple farms. This observation386

could be compared to clusterwise regression techniques (Gitman et al., 2018),387

which aim to partition data into clusters before fitting linear regressions per388
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cluster, in order to minimize the overall error. In the case of predicting litter389

performance during lactation, the underlying model between performance and390

our set of features looks specific to each farm. These observations are in line391

with Pietersma et al. (2003) and Warner et al. (2020), who found superior ma-392

chine learning algorithm performance using small data sets in dairy cow herds,393

and with Gauthier et al. (2021), who found better performance using time se-394

ries clustering applied to farm specific data, for further prediction of daily feed395

intake in lactating sows.396

4.3. Prediction of litter performance criteria and nutrient output in milk, for397

precision livestock farming398

The best prediction of LWW, as assessed with the two farm metrics used in399

this study, show better performance in the PerFarm learning strategy, with small400

differences according to supervised algorithms. The mean MAPEf obtained401

with the best algorithm is 9.008% (VR algorithm). Considering the small set of402

features used, this error seems acceptable. The residual part of the variability403

that was not predictable might reflect the share of variability in the data that404

was not caught during training with our set of features. This could, for instance,405

be nutritional features or behavioral features, which are known to affect milk406

production and consequently litter growth (Orgeur et al., 2004; Etienne et al.,407

2000). The MAPEf also shows farm-specific variations, with extreme values408

ranging from 6.8 to 12.3% (in the case of the VR algorithm). These differences409

in residual variability between farms could be due to differences in the period410

of data collection (in farm 1 data collection occureed between 2000 and 2019,411

while in farm 4 it only occured in 2017), changes in the genetic origin of sows412

over the period of data collection, or changes in other factors affecting the milk413

production. For instance, it would be interesting to consider the delivery of414

creep feed to piglets, which may vary according to farmer practices, and could415
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help explain the difference between predicted LWW and observed LWW. It416

would also be interesting to train an algorithm by replacing the LSW feature417

used in this study with the mean LS across the lactating period. This could418

give better insight into milk production, by taking into account the events that419

may change LS and LWW, such as deaths and cross fostering of piglets.420

Predicting secondary outcomes is necessary for implementing precision feed-421

ing systems for lactating sows in practice (Gauthier et al., 2019), or for any other422

application relying on the prediction of a proxy for milk production. When using423

the best learning strategy (PerFarm) and the best supervised learning algorithm424

(VR), ME values do not differ from zero for LWW as well as for the secondary425

outcomes related to milk production. The MAPEf of secondary outcomes show426

only a very small reduction compared to the MAPEf of LWW (11% for LADG,427

Em and Nm on average, compared to 9% for LWW), indicating that the pre-428

cision of this technique is nearly as good as for LWW. Thus, the prediction of429

secondary outcomes offers almost the same predictive performance as the pre-430

diction of LWW, with only a very limited decrease in predictive performance431

compared to LWW. With this method, training models for only LWW can be432

used to reliably predict multiple outcomes derived from this criteria.433

4.4. Use of the algorithm in practice434

This study highlights key elements for embedding an algorithm able to pre-435

dict litter performance and nutrient output in milk in decision support systems436

for the precision feeding of lactating sows. This algorithm provides individ-437

ual estimations of LWW and nutrient outputs in milk in lactating sows, thus438

making it possible to evaluate daily nutrient requirements for each individual439

lactating sow (Dourmad et al., 2008; NRC, 2012; Gauthier et al., 2019). From440

the perspective of precision feeding, the present results indicate that a limited441

number of features can be sufficient, but the algorithm should be trained at farm442
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level. Aggregating data from different farms does not significantly improve per-443

formance. It is suggested that training the algorithms at farm level helps take444

into account factors influencing milk production and litter performance related445

to environmental conditions, animal behavior, or farming practices that are not446

easy to measure.447

As for computational cost and the prediction performance achieved by the448

different algorithms, it is suggested that the LASSO and LR algorithms are449

the best suited for obtaining fast and reliable predictions of litter performance450

and nutrient output in milk. The loss of interpretability and the computational451

cost that advanced machine learning algorithms such as GTB, VR, and MLP452

entail, are not offset by improved prediction in that situation. Moreover, from453

a practical point of view, these simple algorithms might be trained on-farm,454

on a standard PC, with no dedicated infrastructure needed, and the prediction455

equations could be easily embedded in an on-farm decision support system. This456

is even more important as predictive performance may decrease when farming457

practices or sow genetics evolve within the farm, thus requiring training the458

algorithm with new data. LWW and secondary outcomes can thus be predicted459

with few predictors and good reliability, while requiring computational resources460

available at the farm level.461

5. Conclusion462

Based on previous studies that provided good descriptions of the factors463

influencing milk production, litter performance criteria, and nutrient output in464

milk in lactating sows, the present study showed that these factors could be465

used and easily collected on-farm in order to build simple yet reliable predictive466

models of litter weight at weaning, at the farm level. Secondary outcomes467

used by precision feeding decision support systems can be accurately obtained468
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from the predictions of litter weight at weaning, and used to provide accurate469

estimations of individual nutrient output in milk for nutrition decision support470

systems for lactating sows.471
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Gauthier, R., Largouët, C., Gaillard, C., Cloutier, L., Guay, F., Dourmad,535

J.Y., 2019. Dynamic modeling of nutrient use and individual requirements536

of lactating sows. Journal of Animal Science 97, 2822–2836. URL: https:537

//academic.oup.com/jas/advance-article/doi/10.1093/jas/skz167/538

5494821https://academic.oup.com/jas/article/97/7/2822/5494821,539

doi:10.1093/jas/skz167.540
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Appendix A. Mean Absolute Percentage Errors626

In this appendix, the mean absolute percentage errors at farm level, ob-627

tained for a given learning strategy and all supervised learning algorithms, are628

presented. MAPE per farm is provided, along with its mean value, and its629

standard deviation across farms.630

Table A.5: Mean absolute percentage error per farm (%) for the prediction of litter weight at weaning, according
to the AllFarms learning strategy, for each algorithm1. Best score per line is in boldface.

LR Lasso kNN RF SVR GTB VR MLP

Farm 1 13.501 13.532 13.740 12.965 12.361 12.533 12.587 12.312
Farm 2 9.987 9.985 10.694 10.125 9.664 9.740 9.651 9.695
Farm 3 6.821 6.825 7.180 6.928 6.510 6.721 6.513 6.419
Farm 4 15.223 15.223 8.781 9.248 8.459 7.911 9.771 7.274
Farm 5 11.919 11.913 11.516 11.194 9.927 10.805 10.537 9.071
Farm 6 9.883 9.883 9.606 9.387 9.129 9.228 9.181 9.160
Mean of MAPEf 11.222 11.227 10.253 9.974 9.342 9.490 9.707 8.989
STD of MAPEf 2.719 2.723 2.081 1.853 1.751 1.883 1.801 1.876

1 LR: Linear Regression, LASSO: Least Absolute Shrinkage and Selection Operator, kNN: k-nearest

neighbors, RF: Random Forest, SVR: Support Vector for Regression, GTB: Gradient Tree Boost-

ing, VR: Voting Regressor, MLP: Multi-Layer Perceptron

Table A.6: Mean absolute percentage error per farm (%) for the prediction of litter weight at weaning, according
to the NoFarmFeature learning strategy, for each algorithm1. Best score per line is in boldface.

LR Lasso kNN RF SVR GTB VR MLP

Farm 1 13.127 13.128 13.589 12.817 12.317 12.329 12.452 12.315
Farm 2 10.504 10.500 11.107 10.818 10.438 10.555 10.351 10.457
Farm 3 7.975 7.971 8.613 8.078 7.500 7.735 7.610 7.612
Farm 4 13.932 13.928 10.391 11.532 11.618 11.702 12.143 11.427
Farm 5 16.153 16.144 10.210 11.467 9.824 10.727 11.644 10.442
Farm 6 11.356 11.359 11.996 11.488 11.080 11.276 11.139 11.202
Mean of MAPEf 12.174 12.172 10.984 11.034 10.463 10.721 10.890 10.576
STD of MAPEf 2.611 2.610 1.549 1.450 1.546 1.461 1.617 1.469

1 LR: Linear Regression, LASSO: Least Absolute Shrinkage and Selection Operator, kNN: k-nearest

neighbors, RF: Random Forest, SVR: Support Vector for Regression, GTB: Gradient Tree Boosting,

VR: Voting Regressor, MLP: Multi-Layer Perceptron
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Table A.7: Mean absolute percentage error per farm (%) for the prediction of litter weight at weaning, according
to the Leave-One-Farm-Out learning strategy, for each algorithm1. Best score per line is in boldface.

LR Lasso kNN RF SVR GTB VR MLP

Farm 1 13.675 14.872 14.347 15.573 13.761 14.886 14.256 13.312
Farm 2 11.283 12.282 12.149 14.282 11.151 13.487 12.107 11.134
Farm 3 8.277 9.800 9.822 10.963 8.546 9.094 8.955 8.073
Farm 4 15.129 15.181 11.555 13.785 13.324 13.111 13.687 13.074
Farm 5 17.192 20.344 12.316 12.216 11.346 12.389 13.433 12.222
Farm 6 11.834 11.822 13.077 13.834 12.323 12.656 12.099 11.426
Mean of MAPEf 12.898 14.050 12.211 13.442 11.742 12.604 12.423 11.540
STD of MAPEf 2.861 3.360 1.382 1.481 1.714 1.761 1.742 1.740

1 LR: Linear Regression, LASSO: Least Absolute Shrinkage and Selection Operator, kNN: k-nearest

neighbors, RF: Random Forest, SVR: Support Vector for Regression, GTB: Gradient Tree Boosting,

VR: Voting Regressor, MLP: Multi-Layer Perceptron

Table A.8: Mean absolute percentage error per farm (%) for the prediction of litter weight at weaning, according
to the PerFarm learning strategy, for each algorithm1. Best score per line is in boldface.

LR Lasso kNN RF SVR GTB VR MLP

Farm 1 12.873 12.872 13.542 12.829 12.250 12.274 12.291 12.378
Farm 2 9.954 9.936 10.513 10.229 9.685 9.805 9.698 9.666
Farm 3 6.930 6.915 7.651 7.367 6.855 6.934 6.841 6.822
Farm 4 7.142 7.172 7.342 7.292 7.240 7.251 7.150 7.002
Farm 5 10.170 9.844 10.015 9.333 9.793 9.405 9.543 9.617
Farm 6 8.685 8.704 9.531 9.046 8.583 8.779 8.522 8.678
Mean of MAPEf 9.292 9.241 9.766 9.349 9.067 9.075 9.008 9.027
STD of MAPEf 2.025 2.000 2.053 1.877 1.803 1.773 1.822 1.874

1 LR: Linear Regression, LASSO: Least Absolute Shrinkage and Selection Operator, kNN: k-nearest

neighbors, RF: Random Forest, SVR: Support Vector for Regression, GTB: Gradient Tree Boost-

ing, VR: Voting Regressor, MLP: Multi-Layer Perceptron
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