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Abstract: The Global Ecosystem Dynamics Investigation (GEDI) LiDAR on the International
Space Station has acquired more than 35 billion shots globally in the period between April 2019
and August 2021. The acquired shots could offer a significant database for the measure and mon-
itoring of inland water levels over the Earth’s surface. Nonetheless, previous and current studies
have shown that the provided GEDI elevation estimates are significantly less accurate than any
available radar or LiDAR altimeter. Indeed, our analysis of GEDI’s altimetric capabilities to
retrieve water levels over the five North American Great Lakes presented estimates with a bias
that ranged between 0.26 and 0.35 m and a root mean squared error (RMSE) ranging between 0.54
and 0.68 m. Therefore, our objective in this study is to post-process the original GEDI water level
estimates from an error model taking instrumental, atmospheric, and lakes surface state factors
as proxies, which affect the physical shape of the waveforms, hence introducing uncertainties
on the elevation estimates. The first tested model, namely a random forest regressor (RFICW )
with the instrumental, atmospheric, and water surface state factors as inputs, was validated
temporally (trained on a given year and validated on another) and spatially (trained on a given
lake and validated on the remaining four). The results showed a significant decrease in elevation
estimation errors both temporally and spatially. The temporally validated models showed an
RMSE on the corrected elevation estimates of 0.18 m. Concerning the spatially validated model,
the results varied based on the lake data used for training. Indeed, the most accurate spatially
validated model showed an RMSE of 0.17 m, while the least accurate model showed an RMSE
of 0.26 m. Finally, given that an elevation correction model using all the factors (instrumental,
atmospheric, and water surface state factors) presents a best-case scenario, as water surface state
factors are only available over a selected number of lakes globally, three additional models based
on random forest were tested. The first, RFI , uses only instrumental factors as correction factors,
RFIC uses both instrumental and atmospheric factors, while the third, RFIW , uses instrumental
and water surface state factors. The temporal validation of these models showed that the model
using instrumental factors, while less accurate than the remaining two models, was capable of
correcting the original GEDI elevation estimates by a factor of two across the five lakes. On the
other hand, the RFIC model was the most accurate between the three, with a slight degradation
in comparison to the full model. Indeed, the RFIC model showed an RMSE on the estimation of
water levels of 0.21 m.
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1. Introduction

Freshwater are renewable yet finite resources that are vital for life. Due to increasing
risks of climate change, surface freshwater available in the form of lakes, rivers, reservoirs,
snow, and glaciers are becoming significantly threatened [1].

Freshwater only accounts for about 3% of all the water found on earth. However,
most of it is not readily available, as around 69% of freshwater is found in the form of ice
in glaciers and polar ice caps, and 30% is found in the form of groundwater. Despite its
importance to all life forms, freshwater is unequally distributed, and water volumes are
not constant due to unequal volumes of water replenishment and water depletion. Fresh-
water is replenished through direct rainfall, whereas its consumption is mostly the sum of
evaporation, ground seepage, outlet flow, and anthropogenic activities, such as irrigation.
Therefore, for proper management of freshwater from lakes, rivers, and reservoirs, the
monitoring of water volumes and water levels is crucial.

The most accurate way to monitor water levels and, by extension, water volumes is
through the use of water level readings from operational networks that monitor water
volume changes by recording the elevation of surface water levels through time. Nonethe-
less, the cost of installation and maintenance of such stations has led to the decline in their
numbers worldwide [2]. Currently, the vast majority of lakes remain ungauged, especially
those located in hard-to-access areas or in developing countries [3]. In this context, there is
a need to develop alternate methods for the global monitoring of inland freshwater bodies,
such as with remote sensing data.

In the last four decades, 18 satellite missions were deployed using different radar
altimeters to monitor continental or ocean water levels, and 7 are currently in operation
(i.e., SARAL, Jason-2, Cryosat-2, HY-2A, Sentinel-3, Jason-3, and Jason-CS/Sentinel 6).
Water level estimation with radar altimetry is obtained through dedicated algorithms,
known as retrackers, that are developed to accurately derive the radar range (i.e., the
distance between the satellite and the surface) over the different kinds of surfaces
on Earth (e.g., ocean, continental ice sheets, or sea ice [4]). Many studies assessed
the accuracy of the different radar altimetry missions over different lakes worldwide.
For example, the study by Shu et al. [3], which assessed the performance of 11 major
radar altimetry missions that have flown since the 1990s over 12 lakes, found a mean
RMSE after bias removal as low as 0.04 m (range between 0.03 and 0.05 m) over the
five Great Lakes (Superior, Huron, Erie, Ontario, and Michigan) using the ice sheet
retracker from the Sentinel-3 mission, and as high as 0.27 m (range between 0.25 and
0.31 m) using the sea ice retracker from ERS-1. In the study of Schwatke et al. [5], the
performances of ENVISAT and SARAL over the Great Lakes were evaluated, and their
findings indicated that both missions achieved very low RMSE which ranged from
0.02 to 0.06 m. Finally, the study of Frappart et al. [6], that assessed the performances
of eight radar altimeter missions over ten of the largest Swiss lakes, found similar
performances between Sentinel-3A and B missions operating in the synthetic aperture
radar acquisition mode and the open-loop tracking mode [7]. An unbiased RMSE
lower than 0.07 m was obtained over the studied lakes with an almost constant bias of
−0.17 ± 0.04 m.

In addition to radar altimetry for water level retrieval, light detection and ranging
(LiDAR) sensors have also been assessed in their capabilities for such a task. Currently,
two spaceborne LiDAR sensors are in operation: the Advanced Topographic Laser
Altimeter System (ATLAS) onboard the second-generation Ice, Cloud, and Land Ele-
vation Satellite (ICESat-2), and the Global Ecosystem Dynamics Investigation (GEDI)
onboard the International Space Station (ISS). The ATLAS and GEDI instruments, albeit
being LiDAR-based sensors, differ in their mode of operation. On the one hand, ATLAS
is equipped with a single 532 nm wavelength laser (and one backup laser) that emits
six beams that are then arranged into three pairs (~3 km spacing between pairs with a
pair spacing of 90 m), a footprint diameter of ~17 m, and a footprint spacing of 0.7 m [8].
On the other hand, GEDI is a full waveform system with three operating 1064 nm lasers,
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where the output of one of the full-power lasers is split in two (coverage lasers), and
beam dithering units (BDU) that rapidly deflect light by 1.5 mrads (~600 m) are used
in order to produce eight tracks of data. These tracks represent on the ground a series
of 25 m-wide footprints spaced 60 m along the track and 600 m across [9].

Several studies assessed the accuracy of ICESat-2 and GEDI in their ability to
estimate water levels. Regarding ICESat-2, the study of Frappart et al. [6] showed that
of the ten largest Swiss lakes, the accuracy of ATLAS was better than 0.06 m (RMSE),
with an almost constant bias of 0.42 ± 0.03 m. The results presented in the study of
Zhang et al. [10] showed that ICESat-2 observations were highly correlated with gauge
measurements over Tibetan plateau lakes with an RMSE of 0.10 m. In the Study of
Yuan et al. [11], the altimetric capabilities of ICESat-2 over reservoirs in China with
areas greater than 10 km2 were within 0.06 m in terms of relative altimetric error, with
a standard deviation (SD) better than 0.02 m. The study of Ryan et al. [12], using the
first 12 months of ICESat-2 acquisitions, showed that ICESat-2 provided good accuracy
overall (±0.14 m) for the 3712 global reservoirs that were studied, with surface areas
ranging from 1 to 10,000 km2. Yet, GEDI elevation estimates were found to be less
accurate than ICESat-2 elevation estimates from any of the radar altimeter missions.
Indeed, for the first version of GEDI data, Frappart et al. [6], in their performance
analysis of different radar and LiDAR altimetry missions, found that GEDI was the
worst performing sensor, with an RMSE on the estimation of water levels ranging from
~0.20 to ~0.50 m and a bias ranging from ~−0.15 to ~0.20 m. In the study of Xiang
et al. [13], which assessed the performance of ICESat-2, ICESat-1, and GEDI to retrieve
water levels over the five Great Lakes and the lower Mississippi River, obtained similar
findings (i.e., GEDI was the least accurate). Indeed, an RMSE on the estimation of water
levels of 0.28 m (biases = −0.10 ± 0.23 m) over the Great Lakes was obtained, and an
RMSE of 0.40 m (biases = −0.24 ± 0.24 m) when estimating river water levels using
GEDI data. In contrast, using ICESat-2 data, RMSEs of 0.06 (biases = −0.01 ± 0.05 m)
and 0.12 m (biases = −0.08 ± 0.07 m) were obtained for water level estimates over the
five Great Lakes and the lower Mississippi river, respectively. Finally, in the study
of Fayad et al. [14], the comparison between the second version of GEDI elevation
estimates and gauge station readings over Lake Geneva showed an estimation bias of
0.63 ± 0.24 m.

Although GEDI performances are lower than almost all existing altimeter missions
(either radar or LiDAR) in terms of altimetric accuracy, in its 27 months of operation
(April 2019 until August 2021), GEDI has acquired more than 36 billion shots globally.
Therefore, coupled with its small footprint size, GEDI data could prove to be a valuable
additional source of information for the monitoring, over the duration of GEDI’s lifespan,
of inland water bodies, regardless of their surface area. Nonetheless, for GEDI to be
beneficial for the estimation of water levels, sources of errors affecting the performance
of the elevation estimates need to be accounted for. In fact, the accuracy of acquired
GEDI elevations are subject to numerous factors that introduce errors on the estimated
elevations by modifying the physical shape of the waveforms. These factors can be
classed into three main groups: (1) instrumental, (2) atmospheric, and (3) water surface
state factors. Instrumental factors include, but are not limited to, the viewing angle
(VA) [15], the acquiring laser or beam (i.e., coverage or full-power lasers in the case of
GEDI) [14], the amplitude of the echoed water surface return [14], the width of the echoed
water surface return [14], and the signal to noise ratio (SNR) [14]. Atmospheric factors
mostly include the type and composition of clouds at the acquisition time [16,17]. Finally,
water surface state factors can include air and water temperatures, atmospheric pressure,
humidity, wind and gust speeds, wind–waves information (i.e., height, direction, and
period), and swell–waves information (i.e., height, direction, and period) [18]. Therefore,
our objectives in this study are to (1) assess the accuracy of GEDI water level estimates
over the five Great Lakes; (2) propose a series of models that will estimate the errors on
the acquired GEDI waveforms as function of the previously mentioned factors, in order
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to correct GEDI elevation estimates; (3) assess the influence of each group of factors
on the uncertainty of the acquired GEDI elevations; (4) assess the generalizability of
our approach.

This paper is organized into five sections. A description of the studied lakes and
datasets is given in Section 2. The results are given in Section 3, followed by a discussion in
Section 4. Finally, the main conclusions are presented in the last section.

2. Study Areas and Datasets
2.1. Studied Lakes

The Great Lakes region is made up of large and deep interconnected surface fresh-
water systems in east–central North America. Along the border between the United
States and Canada are the five main lakes: Erie, Huron, Ontario, Michigan, and Superior
(Figure 1). By surface area, the Great Lakes represent the largest expanse of freshwater
on Earth, spanning a total surface area of 244,106 km2. By volume, the Great Lakes
system represents the second-largest volume, holding 21% of the world’s readily avail-
able surface freshwater. The surface areas of the studied lakes vary greatly between
19,010 km2 and 82,100 km2 (Table 1). Exceeding 50,000 km2, Lake Superior, Michigan,
and Huron rank among the five largest lakes in the world, and the two remaining lakes
have surface areas of approximately 20,000 km2. The average water level elevation for
the majority of the lakes is between 174 and 183 m, while Lake Ontario has an average
water level elevation of approximately 75 m. Table 1 presents the associated information
about the five lakes.
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Table 1. Global Ecosystem Dynamics Investigation (GEDI) acquisition dates between April 2019 and
October 2020 and available GEDI shots count over the studied lakes.

GEDI Acquisi-
tion Dates Count

GEDI Shots
Count

Average Water
Level (April
2019 through
October 2020)

Approximate
Size (km2)

Lake Superior 337 6,358,428 183.718 m 82,100

Lake Michigan 249 2,753,218 177.291 m 57,800

Lake Huron 230 3,000,920 177.139 m 59,600

Lake Erie 113 1,102,068 174.877 m 25,670

Lake Ontario 116 1,062,200 75.302 m 19,010

2.2. Datasets
2.2.1. In Situ Water Levels from Gauging Stations

The water levels are continuously monitored by a network of 86 hydrometric coastal
stations located throughout the Great Lakes shoreline and the connecting channels. The
Canadian Hydrographic Service of Canada’s Department of Fisheries and Oceans operates
the monitoring gauge stations located on the Canadian shoreline, and the NOAA’s Center
for Operational Oceanographic Products and Services (CO-OPS) monitors the stations
situated on the American side. Both CO-OPS (https://tidesandcurrents.noaa.gov/stations.
html?type=Water+Levels, accessed on 14 March 2022) and the Fisheries and Oceans Depart-
ment of Canada (https://www.qc.dfo-mpo.gc.ca/tides/en/tide-and-water-level-station-
data, accessed on 14 March 2022) provide the historical water level records free of charge. In
this study, the reference lake level data was acquired from 44 of the 86 in situ hydrometric
stations. The non-retained hydrometric stations were located in the connecting channels,
bays, and lakes located along the shoreline of the five main lakes. These stations do not
exactly measure the water level of the lakes as they are generally separated from the rest of
the lake by island chains or are influenced by the rhythm of the rivers flowing into the bay.
For that reason, in order to reliably analyze the accuracy of the GEDI sensor, these stations
have not been considered in the study.

The accuracy of the GEDI data is assessed in this study based on the similarity between
the altimeter measurements from GEDI and the measurements recorded at the same time
at the gauge station closest to a given GEDI acquisition date (Figure 2) within a maximum
radius of 100 km. As shown in Figure 2, the footprints acquired on 31 October 2019,
and composing a GEDI track spanning 260 km over Lake Erie, are compared to in situ
measurements of five different gauge stations. Regarding the chosen 100 km maximum
radius, it was shown (dashed rectangle in Figure 3) that the water level measurements are
very close, with a difference not exceeding 5 cm on average. This observation led us to use
the GEDI shots that are less than 100 km from a gauge station in this study, and thus avoid
comparisons of measurements that are too far apart, which could strongly influence the
evaluation of the accuracy of GEDI elevations.

2.2.2. GEDI Data Products

The NASA Global Ecosystem Dynamics Investigation (GEDI) is a spaceborne LiDAR
instrument launched to the International Space Station (ISS) in late 2018. Since April 2019,
the instrument produces high-quality measurements of surface vertical structures. The
GEDI system records the amount of returned light energy emitted by a 1064 nm laser pulse
with a PRF of 242 Hz reflected off by the ground, vegetation, and even clouds within a
25 m footprint. The collection of photons returned and collected by the LiDAR sensor
are converted to an electronic voltage and recorded as a function of time in 1 ns (15 cm)
intervals. A full waveform is the distribution of the recorded voltage (laser energy reflected)
as a function of height above the ground. The waveform can be processed to provide

https://tidesandcurrents.noaa.gov/stations.html?type=Water+Levels
https://tidesandcurrents.noaa.gov/stations.html?type=Water+Levels
https://www.qc.dfo-mpo.gc.ca/tides/en/tide-and-water-level-station-data
https://www.qc.dfo-mpo.gc.ca/tides/en/tide-and-water-level-station-data
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height and profile metrics. The surface height is derived from two-way travel time of the
electromagnetic wave multiplying it by the velocity of the light in vacuum and dividing it
by two.
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Figure 3. Mean absolute differences of the in situ water level measurements as a function of the
distance of the gauge stations (by pairs).

Different levels of products can be downloaded depending on the amount of pro-
cessing applied to the data after collection. NASA’s Land Processes Distributed Active
Archive Center (LP DAAC) processes and publishes all GEDI lower-level data products
(Level 1 and Level 2), which include the geolocated raw waveforms, as collected by the
GEDI system (L1B), footprint-level elevation and canopy heights metrics (L2A), and the
footprint-level canopy cover and vertical profile metrics (L2B). In this study, from Version 2
of the L1B data product, we extracted the received waveforms, their geolocation (longitude
and latitude), as well as their acquisition time. In addition, from the L2A data product, we
extracted the following variables derived from the processing algorithm 1 (based on the
‘selected_algorithm’ variable from the L2A data product): (1) the latitude, longitude, and
elevation of the lowest mode; (2) the latitude, longitude, and elevation of the instrument;
(3) the number of detected modes (num_detectedmodes); (4) the width of the Gaussian
fit to the received waveform (rx_gwidth); (5) the amplitude of the smoothed waveforms
lowest detected mode (zcross_amp); (6) the viewing angle (VA) at acquisition time [14];
finally, (7) the signal to noise ratio (SNR) [14].
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2.2.3. Transformation of Elevations

The geolocated elevations of the GEDI waveforms collected by the LiDAR system
were relative to the WGS 84 ellipsoid. The water height collected by the gauge stations
on the Great Lakes were referenced to the International Great Lakes Datum 1985 (IGLD
85). When comparing these datasets, GEDI elevations and lake level heights needed to be
referenced through the same vertical datum. Consequently, the elevations provided by
GEDI and water heights from gauge stations were converted to the North American Vertical
Datum 1988 (NAVD 88). The conversion of the water-level stations data between the IGLD
85 and the NAVD 88 was conducted through NOAA’s National Geodetic Survey (NGS)
online transformation tool (https://geodesy.noaa.gov/cgi-bin/IGLD85/IGLD85.prl#FILE,
accessed on 14 March 2022). For GEDI elevations, the web application ‘Vdatum’ was used
to vertically transform the WGS 84 ellipsoidal heights to NAVD 88 (https://vdatum.noaa.
gov/, accessed on 14 March 2022).

2.2.4. Filtering the GEDI Waveforms

The quality of LiDAR returns is strongly degraded by transmission, absorption, and
scattering in the atmosphere due to the presence of clouds, water (vapor and meteor),
and aerosols [19,20], as such, some GEDI acquisitions are unusable. Consequently,
four filtering operations were performed to remove those lower quality GEDI returns.
Focusing our interest on measurements acquired over only water surfaces, the first
filtering consists of the removal of all waveforms with more than a single energy peak
(multimodal data). Waveforms that show multiple modes are characteristic of GEDI
footprints, including complex geometries, while over flat surfaces, such as over water,
GEDI waveforms exhibit a single mode. The second filter consists of eliminating all
waveforms that report elevations much higher than the corresponding 30 m Shuttle Radar
Topography Mission (SRTM) elevations. The GEDI acquisitions reporting elevations
that exceeded the SRTM measurements by 50 m were not considered in the dataset.
In fact, these GEDI acquisitions generally correspond to the elevation of clouds hit by
the GEDI laser beam. Finally, two filters based on the median of absolute deviations
(MAD) were used in order to minimize the potential impact of the residual outliers [21].
The third filter was computed over each track (acquired shots along a given beam on a
given date) of GEDI measurements (GEDIT) by first calculating the median of all GEDI
elevations along each track (MT). Next, the absolute deviation from the median was
calculated for each GEDI shot along each track (ADT = |GEDIT −MT |), followed by
the median of absolute deviations (MADt = median(ADT), and finally the standard
deviations (σT = 1.4826 ·MADT) were calculated. Only GEDI measurements within the
range of [MT − 2σT , MT + 2σT ] were retained at this stage. Next, given that the MADT
filter removes some GEDI shots by comparing them to same-track acquisitions (outliers),
some tracks affected by atmospheric conditions could exhibit a very high bias (higher
than ±5 m) in comparison with acquisitions from other tracks. In order to remove such
tracks, a fourth filter, also based on MAD, was applied. This last filter was calculated
over all GEDI measurements from all the tracks (GEDIA), where the median of all GEDI
elevations was first calculated (MA). Next the absolute deviation from the median of
each measured elevation was then calculated (ADA), followed by the median of absolute
deviations (MADA) and the standard deviation (σA = 1.4826 ·MADA). Finally, GEDI
measurements within the range of [MA − 5σA, MA + 5σA] were retained.

Over the five studied lakes, 14.27 million GEDI acquisitions were available with 85.6%
of viable acquisitions.

2.2.5. Geostationary Operational Environmental Satellites (GOES)

As mentioned earlier, three types of factors (instrumental, atmospheric, and water
surface state) were utilized in the error budget models in order to correct GEDI water
level estimates. Regarding the atmospheric factors, we used atmospheric variables from
the Geostationary Operational Environmental Satellite-R series (GOES-R). GOES-R is the

https://geodesy.noaa.gov/cgi-bin/IGLD85/IGLD85.prl#FILE
https://vdatum.noaa.gov/
https://vdatum.noaa.gov/
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latest generation of geostationary satellites, with its first launch in November 2016 (became
GOES-16 when it achieved geostationary orbit). GOES-R continually monitors the Western
Hemisphere from approximately 36,000 km above the Earth. Onboard GEOS-R is an ad-
vanced baseline imager (ABI) instrument. The ABI comprises a 16-band radiometer, with
spectral bands covering the visible, near-infrared, and infrared portions of the electromag-
netic spectrum [22]. From ABI data, many higher-level-derived products can be generated
and used in a large number of environmental applications [22]. In this study, five cloud
(C) products from the full-resolution cloud and moisture imager (CMI) products (Level 2)
were used (https://docs.opendata.aws/noaa-goes16/cics-readme.html#about-the-data,
last accessed on 20 April 2022):

• Clear sky mask (CSM): The main purpose of the CSM product is to distinguish between
cloudy (pixel value of 1) and clear pixels (pixel value of 0) in a satellite scene at each
GEDI acquisition. CSM data are available at a resolution of 2 km over the CONUS at a
temporal resolution of 5 min.

• Cloud type (CT): The cloud type product is used to classify the dominant cloud types
and contains 10 classes. CT data are available at a resolution of 2 km over the CONUS
at a temporal resolution of 5 min.

• Cloud top temperatures and heights (CTT and CTH, respectively): The CTT and
CTH products contain information regarding cloud top heights (CTH) and cloud top
temperatures (CTT) for all the pixels identified as cloudy from the CSM product in a
given satellite scene. Both CTT and CTH are available at a resolution of 5 km over the
CONUS at a temporal resolution of 5 min.

• Cloud optical depth (COD): The Cloud Optical Depth product contains an image with
pixel values identifying the measure of the extinction due to condensed water or ice
clouds at a wavelength of 0.64 um. COD data are available at a resolution of 2 km over
the CONUS at a temporal resolution of 5 min.

2.2.6. Water Surface State Factors

Regarding the water surface state factors (W) used in the error budget models, they
were downloaded from the National Oceanic and Atmospheric Administration (NOAA)
Environmental Modelling Center (EMC) using the Great Lakes Wave model (GLWU) that
is based on the 3rd generation wave model WAVEWATCH III (https://polar.ncep.noaa.
gov/waves/index.php, last accessed on 20 April 2022). The GLWU was implemented on
an unstructured grid with a spatial resolution of 0.25◦ × 0.25◦ and a temporal resolution of
1 h. A total of 12 factors were downloaded and used in this study:

• Information on swell waves: Includes three variables—height, period, and direction.
• Information on wind generated waves: Includes three variables—height, period,

and direction.
• Information on wind: Includes two variables—direction and speed.
• Information on gusts: Includes two variables—direction and speed.
• Water surface temperature.
• Current direction.

3. Methodology

In order to improve the altimetric capabilities of GEDI acquisitions, we propose a series
of models that estimate the difference between GEDI and in situ elevations by means of a
random forest regressor (RF). These models take a given set of factors (e.g., instrumental,
atmospheric, wave surface state) as input for each GEDI acquisition, and produce the
estimated difference between GEDI and in situ elevations as output (i.e., the error). Adding
the estimated error to the original GEDI elevation estimates thus produces a corrected
GEDI elevation estimate.

https://docs.opendata.aws/noaa-goes16/cics-readme.html#about-the-data
https://polar.ncep.noaa.gov/waves/index.php
https://polar.ncep.noaa.gov/waves/index.php
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Therefore, the proposed methodology could be separated into three parts. First, an
assessment of GEDI elevation accuracy was made over the five Great Lakes over the period
from April 2019 through October 2020. Second, several error budget models were proposed
in order to reduce the inaccuracy (in terms of both the bias and random errors) on GEDI
elevation estimates by accounting for one or more of the three sources of errors (namely
instrumental, atmospheric, and water surface state). Third, the proposed models were
assessed based on their ability to improve the accuracy of GEDI elevations over the spatial
(training a correction model over a given lake and validating it over another lake) and
temporal (training a correction model over a given year and applying it over another)
domains, and as a function of available input factors (i.e., instrumental, atmospheric, and
water surface state).

The choice to use RF was motivated by the fact that RF is able to mix quantitative and
categorical variables, offers a measure of importance of the variables, and is known to be
very performant [23]. Compared with linear models, RF is advantageous for being able to
also model nonlinear relationships between the variable to explain and the explanatory
variables. For this study, the number of trees in the RF was set to 500 trees, with a tree-depth
equal set to the square root of the number of available factors.

3.1. Experimental Settings and Models Validation
3.1.1. Exploring Temporal Dependencies

In order to assess how our proposed model, which estimates the errors of GEDI’s ele-
vation estimates, generalizes to future GEDI acquisitions for a given lake, model validation
should be performed on data that are temporally far from the training data. Therefore, our
first evaluation of the random forest regression model that uses the entirety of the factors
(Instrumental I, Atmospheric C, and water surface state W) (Table 2) as predictors was
based on splitting the dataset into two parts, the first part comprised acquisitions made
in 2019 and the second comprised data acquired in 2020 (Table 3). As such, the model
was trained over the 2019 dataset and validated on the 2020 dataset, and the process was
repeated in reverse, where the model was trained on the 2020 dataset, and then validated
on the 2019 dataset. This procedure was carried out for each lake independently. The choice
to test the models on lake-by-lake basis was due the unequal number of GEDI acquisitions
over the five lakes, for example, ~44% of acquisitions were taken over Lake Superior, while
only ~7% of shots were acquired over each of Lake Erie and Lake Ontario. As such, by
testing a single model using the combined data from all the lakes, the results would be
biased towards the lake with the highest GEDI count, and intrinsic differences of the GEDI
shots across the lakes might be lost.

Table 2. Summary of the three groups of factors used in this study for the correction of GEDI
elevation estimates.

Variables Group Source Variables

Instrumental (I) GEDI

• Water surface peak amplitude (A)
• Water surface peak width (gwidth)
• Viewing angle (VA)
• Signal to noise ratio (SNR)
• Acquiring beam (beam)

Cloud and atmospheric (C) GOES-R

• Cleary sky mask (CSM)
• Cloud type (CT)
• Cloud top temperatures (CTT)
• Cloud top heights (CTH)
• Cloud optical depth (COD)
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Table 2. Cont.

Variables Group Source Variables

Water surface state (W) Great Lakes wave model
(GLWU)

• Information on swell waves: Includes three
variables—height, period, and direction

• Information on wind generated waves: Includes three
variables—height, period, and direction

• Information on wind: Includes two variables—direction
and speed

• Information on gusts: Includes two variables—direction
and speed

• Water surface temperature
• Current direction

Table 3. Summary of the models and input variables that are tested in this study.

Model ID Data Used Validation Strategy Section Reference

RFICW I, C, and W Trained on 2019 acquisitions and validated over
2020 acquisitions and vice versa: lake by lake Section 3.1.1

RFI I Trained on 2019 acquisitions and validated over
2020 acquisitions and vice versa: lake by lake Section 3.1.2

RFIC I and C Trained on 2019 acquisitions and validated over
2020 acquisitions and vice versa: lake by lake Section 3.1.2

RFIW I and W Trained on 2019 acquisitions and validated over
2020 acquisitions and vice versa: lake by lake Section 3.1.2

RFi→j
Where i is the lake used for
training and j the lake used

for validation

I, C, and W Training on one lake and validating on another Section 3.1.3

3.1.2. Exploring GEDI Elevation Error Budget

The proposed models in Section 3.1.1 present a best-case scenario, where a large
number of factors corresponding to instrumental, atmospheric, and water surface state
for each GEDI footprint are present. Nonetheless, such large and rich dataset is hard to
obtain for different lakes globally. Therefore, it is essential to test the loss of accuracy
by omitting certain factors from the proposed model in Section 3.1.1 and reperforming
the same training/validation test. In this study, as stated previously, the used factors
were organized into three main categories. The first category are instrumental factors
(I, Table 2), and these variables are available for all acquired GEDI shots. The second
category are factors related to atmospheric conditions and cloud composition at acquisi-
tion time (C, Table 2). These variables, while harder to obtain than I, could be acquired
from the different satellites orbiting around the Earth. Finally, water surface state factors
(W, Table 2) are scarce, and are only available for heavily monitored water bodies, such
as those presented in this study. Therefore, in this study, three variants of the random
forest regression model were tested. The first model only used instrumental factors.
The second model used instrumental and atmospheric factors. Finally, the third model
used instrumental and water surface state factors. As with Section 3.1.1, model train-
ing/validation was based on the year of acquisition (i.e., model trained on data acquired
in 2019 and validated on data acquired in 2020, and vice versa). Table 3 summarizes the
models that were tested in this study.
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3.1.3. Exploring Geographical Location Effect

To evaluate whether the proposed model could be transferred from a study region to
another, a random-forest-based model using all the available factors (I, C, and W, Table 2)
as predictors was independently trained on a given lake and validated on the remaining
four (Table 3). Moreover, to assess the performance of the spatially transferred models, for
each of the five lakes, an additional random forest model was trained and validated within
the lake with fivefold cross-validation (CV). Moreover, for the fivefold cross-validation,
two constraints were imposed: (1) footprints belonging to the same track were assigned
exclusively to one of the data partitions (training or test) with the aim to avoid possible
spatial bias in the evaluation procedure; (2) the tracks were chosen randomly from either the
2019 or 2020 datasets in order to reduce any potential errors due to temporal dependencies.

3.2. Models Performance Evaluation

Models performance was assessed using the mean difference (bias) between GEDI-
derived elevation estimates (either original or corrected after application of models detailed
in Section 3.1) and in situ elevations, the unbiased root mean squared error (ubRMSE),
the root mean squared error (RMSE), and the coefficient of determination (R2). ubRMSE,
RMSE, and R2 are defined as follows:

ubRMSE =

√√√√ 1
N

N

∑
i=1

(Pi −Oi)
2 −

(
1
N

N

∑
i=1

(Pi −Oi)

)2

(1)

RMSE =

√√√√ 1
N

N

∑
i=1

(Pi −Oi)
2 (2)

R2 = 1− ∑N
i=1(Oi − Pi)

2

∑N
i=1
(
Oi − P

)2 (3)

where Oi is the observed value (in situ), Pi is the predicted value (GEDI), P is the mean of
the predicted values, and N is the sample size.

4. Results
4.1. Overall GEDI Elevation Estimates Accuracy

The accuracy of the GEDI elevation estimates was assessed for each lake separately.
The distribution of the mean differences between GEDI and in situ elevations (bias) in
Figure 4 shows that the bias was similar across the lakes. Indeed, ~45% of acquisitions
(GEDI shots grouped by acquisition date and acquiring beam) had a bias between
−0.4 m (underestimation) and 0.3 m (overestimation), and ~68% of acquisitions had a
bias between −0.4 and 0.5 m. There were, however, acquisitions with large differences
between the estimated GEDI and in situ elevations (either under- or overestimations,
(|bias| > 0.8 m), and their percentage differed by lake. However, the percentage of these
shots ranged between 10.8% of viable GEDI shots (Lake Erie) and 13.6% of viable GEDI
shots (Lake Huron). Regarding the underestimation case, Lake Erie have acquisitions
over seven dates (Figure A1) where GEDI elevation differences from in situ elevations
were lower than−0.8 m, with a maximum difference between GEDI and in situ elevations
of −1.8 m. Over Lake Ontario, 13 acquisition dates (Figure A1) showed a bias of less
than −0.8 m, with a maximum difference to in situ data of −3.0 m. For Lake Michigan,
there were 28 acquisition dates (Figure A1), where the difference between GEDI and
in situ elevations was lower than −0.8 m, with a maximum difference between GEDI
and in situ elevations of −3.0 m. Over Lake Superior, 34 acquisition dates (Figure A1)
have a difference from in situ elevations lower than −0.8 m, with a maximum difference
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lower than −2.32 m. Finally, over Lake Huron, 21 acquisition dates (Figure A1) had a
difference to in situ elevations lower than −0.8 m, with a maximum difference lower
than −4 m. Regarding the over-estimation case, Lakes Erie, Huron, Michigan, Ontario,
and Superior had 10, 20, 19, 11, and 29 acquisition dates (Figure A1), respectively, where
the bias was higher than 0.8 m. Moreover, the highest difference ranged between 2.6 m
(Lake Erie) and 3.9 m (Lake Huron).
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Regarding the unbiased root mean squared error (ubRMSE), Figure 5 shows that the
distribution of ubRMSE values was similar across lakes Erie, Huron, and Michigan. For
these three lakes, the distribution of ubRMSE was lower than 0.3 m for more than 95% of
all the tracks (a track corresponds to multiple GEDI shots acquired on the same date and
with the same beam). For Lake Ontario, the distribution of ubRMSE was lower than 0.3 m
for 92.8% of acquisitions, while for Lake Superior, 87% of the shots had a ubRMSE less than
0.3 m. Finally, there were only three acquisition dates (two over Lake Huron and one over
Lake Michigan) where the ubRMSE was higher than 1 m (Figure A1).

In terms of RMSE (Figure 6), GEDI tracks had similar RMSE distributions on the
estimation of water surface elevations across the five lakes. Moreover, ~50% of acquisitions
had an RMSE ranging between 0 and 0.4 m, and ~80% of acquisitions had an RMSE in the
range [0 m, 0.7 m]. The overall RMSE (calculated over all GEDI shots for each lake) ranged
between 0.57 m (Lakes Erie and Superior) and 0.68 m (Lake Ontario).
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4.2. Modeling of Elevation Errors Using RFICW

In this section, the results of the models introduced in Section 3.1.1 (namely RFICW ,
Table 3) are presented. The results show that, qualitatively, the model was able to improve
the quality of GEDI elevations (Figure 7, GEDI vs. RFICW). The boxplots representing
corrected GEDI elevations from the RFICW model over Lake Huron (Results for the remain-
ing Lakes can be found in Appendix B) have a median that is closer to in situ elevations
in comparison with the original GEDI elevations estimates (Figure 7, GEDI). Moreover,
boxplots from the RFICW model are also smaller (i.e., smaller variations) in comparison
with the original GEDI elevation estimates.

This is especially noticeable for the original acquisitions with a high bias and
ubRMSE (e.g., July and October through December 2019, and March and June through
July 2020, Figure 7 GEDI vs. RFICW ). Quantitatively, the distribution of the bias pre-
sented in Figure 8 shows that the RFICW elevations were similar for acquisitions made
in 2019 (trained on 2020 data) and those obtained in 2020 (trained on 2019 data). More-
over, for Lakes Huron, Ontario, and Michigan, most of the bias ranged between −0.20
and 0.20 m. In addition, for Lakes Huron and Ontario, 20% of GEDI acquisitions made
in 2020 over Lake Huron were underestimated, with a bias ranging between −0.40 and
−0.20 m, while ~25% of elevations were overestimated for Lake Ontario, with a bias
ranging between 0.20 and 0.40 m. For Lake Erie, the bias ranged between −0.40 and
0.20 m, with a small percentage of acquisitions having a bias between 0.20 and 0.40 m.
Finally, over Lake Superior, the corrected elevations acquired in 2019 (RFICW ′20→′ 19)
mostly had a bias that ranged between −0.20 and 0 m, while corrected elevations that
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were acquired in 2020 (RFICW ′19→′ 20) had a bias that ranged between 0 and 0.20 m.
Overall, for the five lakes, the bias of corrected elevations acquired in 2019 ranged
between −0.06 and 0.09 m, and between 0.02 and 0.10 m for elevations acquired in
2020. The ubRMSE for the majority of corrected acquisitions of the five lakes was lower
than 0.10 m, while some acquisitions, especially those acquired in 2020 (RFICW ′20→′ 19,
Figure 9), had a ubRMSE between 0.10 and 0.20 m for Lake Erie (16.1% of viable GEDI
shots) and Lake Ontario (7.6%). Finally, in terms of RMSE, the majority of corrected
GEDI elevation estimates (Figure 10) for Lakes Huron (85.7% for 2019 and 75.6% for
2020), Michigan (81.2% for 2019 and 93.5% for 2020), and Superior (81.1% for 2019
and 82.1% for 2020) were less than 0.20 m for both acquisition years (RFICW ′20→′ 19,
RFICW ′19→′ 20, Figure 10). For Lakes Erie and Ontario, the corrected GEDI elevation
estimates were less precise, with ~42% of acquisitions (for both 2019, and 2020) having
an RMSE between 0.20 and 0.40 m over Lake Erie, while for Lake Ontario, 20.0% of
2019 acquisitions and 29.5% of 2020 acquisitions had an RMSE between 0.20 and 0.40 m
(Figure 10). Overall, the RMSE values for the estimation of in situ elevations using
the RFICW ′20→′ 19 model were 0.19 m (0.22 m for RFICW ′19→′ 20 model), 0.14 m (0.21 m),
0.31 m (0.25 m), 0.16 m (0.12 m), and 0.15 m (0.15 m) for lakes Erie, Huron, Ontario,
Michigan, and Superior, respectively.
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Figure 8. Stacked histograms of the distribution of the mean difference (bias) between GEDI (resp.
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spond to the mean difference calculated for GEDI shots grouped by acquisition date and the acquiring
beam. RFICW ′19→′ 20 (resp. RFICW ′20→′ 19 ) corresponds to the RFICW model, trained over 2019 (resp.
2020) data and validated on 2020 data (resp. 2019).
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Figure 9. Stacked histograms of the distribution of the unbiased root mean squared error (ubRMSE)
between GEDI (resp. RFICW ′19→′ 20 and RFICW ′20→′ 19 ) and in situ elevations across the five studied
lakes. The distribution corresponds to the ubRMSE of GEDI shots grouped by acquisition date and
the acquiring beam. RFICW ′19→′ 20 (resp. RFICW ′20→′ 19 ) corresponds to the RFICW model, trained
over 2019 (resp. 2020) data and validated on 2020 data (resp. 2019).

4.3. Modelling of Elevation Errors Using RFI , RFIC, and RFIW

To analyze the factor effects on the accuracy of corrected GEDI elevation estimates,
the three models presented in Section 3.1.3 for the correction of GEDI elevation estimates
(using, separately: instrumental factors; both instrumental and atmospheric factors; and
both instrumental and water surface state factors) were tested. Figure 7 shows that over
Lake Huron, the model trained using only the instrumental factors (RFI) (i.e., VA, SNR, A,
and gwidth) was the least accurate model in estimating GEDI’s elevation errors. However,
the RFI model showed median values and variations that were better than the original GEDI
elevation estimates (GEDI, Figure 7). The models trained using either instrumental and
atmospheric factors (RFIC) or instrumental and water surface state factors (RFIW) shown
in Figure 7 are boxplots of corrected GEDI elevations with similar median values and
interquartile ranges. However, RFIC appears to be slightly more accurate. Quantitatively,
in terms of bias (Figure 11), the three models (RFI , RFIC, and RFIW) had a larger range of
bias values than that of the RFICW model, ranging from −0.6 to 0.8 m across the five lakes.
Nonetheless, the RFIC model had fewer GEDI acquisitions with bias values between 0.2
and 0.4 m (16.3% of acquisitions) and between 0.4 and 0.6 (2.3% of acquisitions) compared
with the RFIW model (24.8% of acquisitions between 0.2 and 0.4 m and 6.0% between 0.4
and 0.6 m) and the RFI model (28.16% of acquisitions between 0.2 and 0.4 m, and 13.6% of
shots between 0.4 and 0.6 m).
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In terms of ubRMSE (Figure 12), the accuracy of RFIC showed similar performance
to the full model (RFICW), where the majority of shots had a ubRMSE in the [0 m, 0.10 m]
range. The ubRMSE in the [0.10 m, 0.20 m] range corresponded to a maximum of 17.0%
of tracks (case of Lake Ontario). The RFIW model was slightly less accurate than the RFIC
model, with a lower percentage of tracks (GEDI shots acquired on the same date with the
same beam) with a ubRMSE in the [0 m, 0.10 m] range. Finally, the RFI model was the least
accurate between the four models with a percentage of shots having a ubRMSE between
0 and 0.10 m, ranging between 50.1 and 65.6% depending on the lake. In terms of RMSE,
Table 4 shows that the lowest RMSE corresponded to results obtained with the RFICW model
followed by the RFIC model and then the RFIW model. The RFI model showed the highest
RMSE values between the four tested models. Nonetheless, a significant improvement
on GEDI elevation estimation was obtained with the RFI model in comparison with the
original GEDI elevation estimates (decrease in RMSE by around 40% with the RFI model).
Indeed, the RFIC model showed an RMSE that ranged between 0.19 and 0.24 m for Lakes
Erie, Huron, Michigan, and Superior, and 0.30 m over Lake Ontario, while the RMSE on the
elevation estimates using the RFIW model was 0.38 m for Lake Ontario, and was between
0.27 and 0.26 m for the remaining four Lakes. Finally, the RFI model showed an RMSE
ranging between 0.35 and 0.45 m (Table 4). Finally, regarding the models coefficient of
determination (R2) on the estimation of the error budget (i.e., the difference between GEDI
and in situ elevation estimates), the results presented in Table 4 show that the RFICW model
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had the highest explained variance with an R2 that ranged between 0.74 (Lake Ontario) and
0.92 (Lake Michigan). For the model using only instrumental and atmospheric variables
(RFIC), a small decrease was observed in R2 in comparison with RFICW , with R2 ranging
between 0.70 (Lake Ontario) and 0.89 (Lake Michigan). Finally, with the instrumental-only
model (RFI), only 0.37 (Lake Erie)–0.54 (Lake Michigan) of the error budget variance could
be explained (Table 4).
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Table 4. Summary statistics of the RMSE and ubRMSE on the estimation of water surface elevations
from the original GEDI estimates, and the four tested models presented in Sections 3.1.1 and 3.1.2.

RMSE (m) ubRMSE (m) Error Budget Explained
Variance R2

Lake UE * RFICW RFI RFIW RFIC UE * RFICW RFI RFIW RFIC RFICW RFI RFIW RFIC

Erie 0.57 0.21 0.35 0.26 0.24 0.44 0.19 0.31 0.25 0.21 0.78 0.37 0.64 0.76

Huron 0.66 0.18 0.41 0.30 0.22 0.59 0.18 0.38 0.29 0.22 0.91 0.50 0.74 0.86

Ontario 0.68 0.24 0.45 0.38 0.35 0.61 0.29 0.45 0.38 0.34 0.74 0.49 0.67 0.70

Michigan 0.64 0.14 0.35 0.26 0.19 0.52 0.13 0.32 0.23 0.17 0.92 0.54 0.78 0.89

Superior 0.57 0.15 0.36 0.26 0.21 0.46 0.16 0.29 0.22 0.17 0.86 0.39 0.68 0.82

UE * represents the uncorrected GEDI water level estimates.
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4.4. Analysis of Spatial Independence on the Corrected GEDI Elevations

Table 5 (bias), Table 6 (ubRMSE), Table 7 (RMSE), and Table 8 (R2 on the estimated
error budget) assess the precision of each of the five models that were trained on a given
lake and validated on the remaining four. The results show that models trained over
Lakes Huron (~2.25 M GEDI shots), Michigan (~2.1 M GEDI shots), and Superior (~4.84 M
GEDI shots) provide the best correction of GEDI elevation estimates, with a bias ranging
between −0.03 and 0.15 m for Lake Huron, between −0.01 and 0.04 m for Lake Michigan,
and between −0.03 and 0.07 m for Lake Superior. For these three lakes, the ubRMSE (m)
(Table 6) ranged between 0.14 and 0.21 m (resp. RMSE between 0.15 and 0.24 m) for Lake
Huron, between 0.17 and 0.20 m (resp. RMSE between 0.16 and 0.21 m, Table 7) with
Lake Michigan, and between 0.15 and 0.19 m with Lake Superior (resp. RMSE between
0.16 and 0.21 m, Table 7). Error budget explained variance (R2) ranged between 0.84 and
0.93 for Lake Huron, between 0.86 and 0.93 for Lake Huron, and between 0.86 and 0.91
for Lake Superior. Finally, Lakes Erie (~0.88 M GEDI shots) and Ontario (~0.89 M GEDI
shots) show the lowest generalization accuracy with a bias (Table 5) that ranged between 0
and 0.12 m for Lake Erie and between 0.05 and 0.16 m for Lake Ontario, with a ubRMSE
ranging between 0.19 and 0.29 m (Lake Erie) and between 0.16 and 0.24 m (Lake Ontario)
(Table 6). Finally, the RMSE (resp. R2) of the models trained on Lakes Erie and Ontario
ranged between 0.20 and 0.29 m (R2 between 0.76 and 0.88) and between 0.17 and 0.29 m
(R2 between 0.63 and 0.85) (Table 7), respectively.
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Overall, the models that provided the best generalizability provided accuracies on
the corrected GEDI elevations that were very close to the fivefold cross-validation results.
Indeed, when validated across the four other lakes, a model trained on Lake Huron showed
a difference in RMSE in comparison with the respective fivefold cross-validation models
that ranged between 0.03 m (RMSE of 0.17 m over Erie using the model trained over
Huron vs. 0.14 m with the CV model over Lake Erie; Table 7) and 0.08 m (RMSE of 0.18 m
over Superior using the model trained over Huron vs. 0.10 m with the CV model over
Lake Superior; Table 7). Similar accuracies were obtained with models trained over Lakes
Michigan or Superior and the respective fivefold cross-validated models (difference in
RMSE lower than 0.09 m) (Table 7). Moreover, a model trained over Lake Huron (RMSE
= 0.24 m) provided better accuracies on the GEDI elevation estimates over Lake Ontario
than the fivefold cross-validated Lake Ontario model (RMSE = 0.28 m) (Table 7). Regarding
the performance of the models trained over Lakes Erie or Ontario, the difference between
the accuracies obtained with these models and the respective fivefold cross-validated
models ranged between 0 and 0.17 m for a model trained over Lake Erie, and between 0.02
and 0.18 m with a model trained over Lake Ontario (Table 7). In terms of R2, results in
Table 8 show that the fivefold cross-validated models have an R2 that ranges between 0.82
(Lake Ontario) and 0.94 (Lake Huron), while the R2 from a model trained over a lake and
validated on another (cross-lake validation) was slightly lower for all lake combinations,
and the difference in explained variance between the fivefold cross-validated models and
the cross-lake models was dependent on the lake used for training. For example, in the
case of Lake Erie, a fivefold cross-validated model could explain 88% of the error budget
variance, while the R2 of the cross-validated models ranged between 0.84 (Lake Huron)
and 0.86 (Lakes Michigan and Superior). In contrast, in the case of Lake Ontario, a fivefold
cross-validated model could only explain 82% of the error budget variance, while cross-lake
models showed higher values (ranging between 0.85 and 0.91) except for a model trained
over Lake Erie that explained only 75% of the error budget variance (Table 8). Boxplots
tracking the original estimated elevations by GEDI over the five lakes and the five tested
models presented in Section 3.1.3 can be found in Appendix C.

Table 5. Summary statistics of the bias on the estimation of water surface elevations using a random
forest model trained using I, C, and W variables over a lake and applied to the remaining four. The
diagonal line represents the results of the 5-fold cross-validation.

Training

Erie Huron Ontario Michigan Superior

V
al

id
at

io
n Erie −0.06 −0.10 0.05 0.04 0.03

Huron 0.11 0.01 0.16 0.02 0.07
Ontario 0.00 −0.15 −0.04 −0.04 −0.03

Michigan 0.12 −0.03 0.16 0.00 −0.01
Superior 0.07 −0.07 0.11 −0.01 0.01

Table 6. Summary statistics of the ubRMSE on the estimation of water surface elevations using a
random forest model trained using I, C, and W variables over a lake and applied to the remaining
four. The diagonal line represents the results of the 5-fold cross-validation.

Training

Erie Huron Ontario Michigan Superior

V
al

id
at

io
n Erie 0.12 0.14 0.16 0.16 0.16

Huron 0.26 0.12 0.25 0.16 0.19
Ontario 0.29 0.19 0.27 0.20 0.18

Michigan 0.21 0.15 0.24 0.11 0.15
Superior 0.19 0.17 0.25 0.17 0.10
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Table 7. Summary statistics of the RMSE on the estimation of water surface elevations using a random
forest models trained using I, C, and W variables over a lake and applied to the remaining four. The
diagonal line represents the results of the 5-fold cross-validation.

Training

Erie Huron Ontario Michigan Superior

V
al

id
at

io
n Erie 0.14 0.17 0.16 0.16 0.16

Huron 0.29 0.12 0.29 0.16 0.21
Ontario 0.28 0.24 0.28 0.21 0.21

Michigan 0.25 0.15 0.29 0.11 0.16
Superior 0.20 0.18 0.28 0.16 0.10

Table 8. Summary statistics of the coefficient of determination (R2) on the estimation of the difference
between GEDI and in situ water levels using a random forest model trained using I, C, and W
variables over a lake and applied to the remaining four. The diagonal line represents the results of
the 5-fold cross-validation.

Training

Erie Huron Ontario Michigan Superior

V
al

id
at

io
n Erie 0.88 0.84 0.85 0.86 0.86

Huron 0.76 0.94 0.75 0.93 0.88
Ontario 0.78 0.85 0.82 0.88 0.91

Michigan 0.77 0.91 0.69 0.93 0.91
Superior 0.80 0.84 0.63 0.87 0.93

5. Discussion

The results presented in this study show a severe limitation of uncorrected GEDI’s
altimetric capabilities for the estimation of water levels. Indeed, from the 12 million GEDI
shots acquired over a span of 18 months (April 2019 through October 2020), the assessed
uncertainties of GEDI elevation estimates are three times higher than the worst performing
radar retracker, namely the ERS-1 sea ice retracker, in the study of Shu et al. [3]. For
example, with the ERS-1 sea ice retracker, the RMSE on the altimetry-derived water level
estimates ranged from 0.25 m (Lake Superior) to 0.31 m (Lake Huron), with a bias ranging
from 0.53 m (Lake Superior) to 0.78 m (Lake Superior). In contrast, with uncorrected GEDI
estimates, the RMSE on the water level estimates ranged from 0.57 m (Lake Erie) to 0.68 m
(Lake Ontario), with a bias that ranged from 0.43 m (Lake Erie) to 0.61 m (Lake Ontario). On
the other hand, the uncertainties obtained with GEDI were consistent with other studies,
such as the study of Xiang et al. [13] over the five Great Lakes, or the studies of Fayad
et al. [14,18] and the study of Frappart et al. [6] over several lakes in France and Switzerland.
Therefore, model-free GEDI elevation estimates are not recommended for the retrieval of
water surface levels.

The proposed correction models that take instrumental, atmospheric, and wave surface
variables into account in order to correct GEDI elevation estimates appear to greatly reduce
uncertainties on these elevation estimates. Using the full model (based on instrumental,
atmospheric, and wave surface: RFICW), fivefold cross-validated results showed an error
(RMSE) on the estimation of water levels that ranged between 0.10 m and 0.14 m for lakes
Erie, Huron, Michigan, and Superior, and 0.28 m for Lake Ontario. Moreover, the bias
seemed to be mostly eliminated, with a bias ranging from −0.06 m (Lake Erie) to 0.01 m
(Lake Superior). The proposed full model also generalizes well across the temporal and
spatial domains. The temporal validation (training of model on a given year and validation
on another year) of RFICW shows errors (RMSE) on the retrieved water levels that ranged
from 0.14 m (Lake Michigan) to 0.29 m (Lake Ontario), with a bias ranging from −0.07 m
(Lake Erie) to 0.03 m (Lake Ontario).
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Nonetheless, accounting for the fact that the tested full model showed an increase
in accuracy by at least 92% with more than 74% of the variance explained, the remaining
unexplained variance could be due to two factors. First, a large number of dependent
variables were used for the modelling of GEDI elevation errors. However, given the
complex interaction between LiDAR and the atmosphere and the water surface, not all
the factors affecting the precision of LiDAR altimetry could be accounted for. Second,
the available dependent variables used in this study were not error-free, because they
were not direct measurements but resulted from models. For example, the accuracy on
significant wave heights was around 10%, with a bias of less than 5%, or ~30 cm [24].
These two factors might explain some of the remaining uncertainty on the corrected
GEDI elevation estimates.

Regarding the spatial validation (training of model on a given lake and validation on
another lakes), the uncertainty of GEDI’s corrected water level estimates differed based
on the training and validation sites. Data over Lakes Michigan, Superior, and Huron were
able to retrieve water levels well, with a mean RMSE ranging from 0.17 m (RFICW trained
with Michigan data) to 0.19 m (RFICW trained with either Ontario or Superior data). Lakes
Erie and Ontario showed lower generalization capabilities, with a mean RMSE of 0.26 m
(RFICW trained with either Erie or Ontario data). Moreover, Lake Ontario was the lake
where model generalization was the least accurate (corrected water level estimates using
a model trained from other lakes), since the RMSE on water level estimates over Lake
Ontario ranged from 0.21 m (model trained using Superior or Michigan data) to 0.24 m
(model trained using Erie data).

The generalization capabilities of the proposed full model (RFICW), either spatially or
temporally, seems to be greatly affected by the number of GEDI acquisitions that the model
was trained on. Indeed, the three most generalizable models were the models trained
over Lake Superior (~4.84 M shots over 337 dates, Figure 13), Lake Huron (~2.25 M shots
over 230 dates, Figure 13) and Lake Michigan (~2.16 M shots over 249 dates, Figure 13),
whereas the models trained over Lakes Ontario and Erie showed less accurate results due
to a smaller amount of training data (~0.88 M shots each, 113 dates over Lake Erie, and 116
over Lake Ontario, Figure 13). Indeed, by comparing the Jensen–Shannon divergence (JSD)
between the original distribution of GEDI errors over Lake Huron and the distribution of
modeled GEDI elevations errors obtained from models trained over Lakes Erie, Ontario,
Michigan, and Superior (Figure 14), the modeled distribution with the least divergence was
obtained from the model trained over Lake Michigan (JSD of 0.11), followed by the model
trained over Lake Superior (JSD of 0.16). The distribution of GEDI elevation errors obtained
from Lakes Erie and Ontario had the highest divergence to the original distribution of
GEDI elevation errors with JSDs of, respectively, 0.29 and 0.37.

Although model generalizability seems correlated to the number of available acquisi-
tions, since a higher number of training data increases the probability of the model being
trained with shots acquired over different conditions, another factor that can have an
influence on the accuracy of a generalization model is the range of distributions of GEDI
elevation errors used for training. As such, a model trained over a given lake can only
estimate the differences between GEDI and in situ water levels (i.e., errors) within its sam-
pling distribution, leading to more uncertainties when correcting GEDI elevation estimates
when the original differences between GEDI and in situ elevations are outside of this range.
The effect of this factor can be seen in the distribution of modeled GEDI elevation errors
in Figure 14. For example, the range of the distribution of GEDI elevation errors over
Lake Huron extends from −3.1 m to 3.9 m (Figure 13), while a model trained using Lake
Erie data can only estimate GEDI elevation errors from −0.4 m to 2.6 m (Figure 14a). This
range (−0.4–2.6 m) corresponds to the range of the original distribution of errors over Lake
Erie (Figure 13). Similarly, a model trained over Lake Michigan can only estimate errors
within the range −3.0–2.6 m (Figure 14b), and −2.3–2.7 m for Lake Superior (Figure 14c).
Conversely, a model trained over Lake Ontario, given its original distribution of GEDI
elevation errors that extends from −4.0 to 4.0 m (Figure 13), can estimate errors within the
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full range of errors over Lake Huron (Figure 14d). This could also explain, for example,
why the models trained over Lakes Huron, Ontario, Michigan, and Superior presented
lower uncertainties in the estimation of the differences between GEDI and in situ elevations
over Lake Erie, while a model trained over Lake Erie was less accurate when validated
over the other four lakes.

The tested RFICW model variants, while very spatially and temporally accurate, given
the used set of variables, is practically infeasible over many other sites, as information on
waves and other surface variables are hard to acquire. Indeed, the wave variables were
obtained from NOAA’s Great Lakes waves’ model, that is based on the third-generation
wave model, where data is only available over a selected number of lakes. Moreover, a
significant number of lakes do not have significant waves. Therefore, from an operational
standpoint, a model for the correction of GEDI elevation estimates using instrumental
and atmospheric variables without water surface information is easier to train and deploy
than a full model. In this study, the random forest models using instrumental only and
instrumental and atmospheric variables showed high accuracy in the correction of GEDI’s
elevation estimates. Moreover, while a model trained using only instrumental variables
(RFI) was the least accurate, the obtained results with such a model improved the original
GEDI elevation estimates by a factor of two. Regarding the RFIC model, only a small
degradation in performance was observed in a comparison to the full model (RFICW).
Moreover, in this study, we used atmospheric data from the GOES-R satellites that only
cover the American continent; globally, atmospheric data collected from other satellites
can be used, such as the Meteosat Second Generation (MSG) series of satellites that cover
Europe, Africa, and the Indian Ocean, and Himawari 8, that covers the Mid-Pacific. Quan-
titatively, to measure the effect of each variable on the accuracy of the model, a variable
importance test was carried out. Variable importance is based on the mean decrease in
the mean squared errors (MSE) and is measured as follows: first, the MSEf of the full
model (model using all the variables from all the lakes) is calculated; next, the variable to
calculate its importance is permuted through N iterations, and at each iteration, the model
accuracy (MSEv) is calculated; finally, the variable importance is the difference between the
MSEf and the average of the MSEv. The variable importance test showed that the group
of variables with the highest effect (percentage increase in the mean square error of the
regressions—%IncMSE) are the instrumental and atmospheric variables with a %IncMSE
of, respectively, 46.2% and 45.8%. The %IncMSE of water surface state variables was 26.8%.
Moreover, the %IncMSE of individual variables shows that the viewing angle (VA) was
the most important variable, with an importance factor that is at least two times higher
than the remaining input variables. Following VA is the cloud height (CTH), followed by
the period of wind-generated waves. The cloud height and the height of wind-generated
waves have almost the same importance. The variable importance of all the variables can
be found in Figure A11.

Finally, the proposed models in this article were developed to decrease the inaccuracy
of GEDI elevation estimates at the footprint scale. As such, specific emphasis on uncer-
tainties originating from in situ measurements and impacts of autocorrelation between
successive GEDI shots were not take account. In addition, over a given lake on a given
date, a high number of measurements from each track are acquired (mean of 2000 GEDI
footprints by track in this study), whereas only a few sampling points over a lake’s surface
could prove enough. Therefore, going forward, an aggregate of corrected GEDI elevation
estimates from each track could be calculated to further decrease the inaccuracy of these
estimates. Aggregation could simply be the result of averaging the elevations of corrected
GEDI elevation estimates within each track, if elevation estimates are independent in space
and time; in that case, elevation errors could be quantified using the standard deviation of
the mean. Alternatively, in the presence of autocorrelation between successive GEDI shots,
autocorrelation must be modeled and estimated using techniques such as block-kriging,
with uncertainty at the lake scale being computed accordingly. The relevance of such an
approach was developed in the study of Abdallah et al. [25].
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6. Conclusions

Our analysis of the accuracy of the original GEDI water level estimates over the five
Great Lakes, which showed uncertainties (RMSE) ranging from 0.54 to 0.68 m, confirms
that GEDI elevation estimates are not accurate enough for them to be an additional source
of information for the retrieval and monitoring of inland water levels. Therefore, modeling
of the uncertainties to correct these elevation estimates is required in order to benefit from
the extensive dataset acquired by GEDI over the Earth’s surface.

In this study, random-forest-based models were used in order to estimate the differ-
ences between the original GEDI elevation estimates and in situ measurements (i.e., errors).
The proposed models used a combination of factors related to instrumental, atmospheric,
and water surface state factors as inputs, as these factors could have an effect on the ac-
curacy of GEDI acquisitions. The first proposed random forest regression model (RFICW),
which uses all of these factors, showed high accuracy on the estimation of the GEDI’s errors,
thus greatly improving GEDI elevation estimates. Indeed, temporal validation of the model
(RFICW) trained on data from a given year and validated on data from another year showed
an RMSE on the corrected elevation estimates (resp. R2) ranging between 0.14 and 0.24 m
(R2 ranging between 0.70 and 0.92). Concerning the spatial validation (RFICW , trained over
a lake and validated over the remaining four), the results varied based on the data of the
lake used for training. For instance, the most accurate spatially validated model showed an
RMSE that ranged between 0.16 and 0.21 m (R2 ranging between 0.86 and 0.93), while the
least accurate model showed an RMSE that ranged between 0.16 and 0.29 m (R2 ranging
between 0.63 and 0.85).

From an operational standpoint, the proposed full model was hard to train and deploy
because it used factors of water surface states that are only available for a select few lakes
worldwide. Therefore, three additional models with a reduced number of input factors
were used. The first model used instrumental factors only, as they are always available,
while the second model (RFIC) used atmospheric factors as well as instrumental factors, and
the third model used water surface state factors (RFIW) in addition to instrumental factors.
The results showed that, using only the instrumental factors, a correction with a factor of
two could be obtained in comparison with the original GEDI elevation estimates. Regarding
the two remaining models (RFIC and RFIW), they showed similar correction capabilities,
with the RFIC model being slightly more accurate. Moreover, only a small degradation in
the correction capabilities was observed with the RFIC model (RMSE ranged between 0.19
and 0.35 m, R2 ranged between 0.69 and 0.89) in comparison with the full model (RFICW).
Therefore, even in the absence of water surface state variables, our proposed methodology
can be used in order to greatly reduce the uncertainty of GEDI elevation estimates globally.
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Figure A1. Bias (m) and ubRMSE (m) of GEDI acquisition time series across the five lakes. Each dot
represents the bias or ubRMSE of multiple GEDI shots from the same track (i.e., shots acquired on the
same date with the same beam).
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Figure A2. Box plot by track of the original estimated elevations by GEDI over Lake Erie and the 
four tested models presented in Sections 3.1.1 and 3.1.2. The blue line represents in situ elevations. 
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Figure A4. Boxplot by track of the original estimated elevations by GEDI over Lake Michigan and the
four tested models presented in Sections 3.1.1 and 3.1.2. The blue line represents in situ elevations.
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Figure A5. Boxplot by track of the original estimated elevations by GEDI over Lake Superior and 
the four tested models presented in Sections 3.1.1 and 3.1.2. The blue line represents in situ eleva-
tions. 
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Figure A6. Boxplot by track of the original estimated elevations by GEDI over Lake Erie and the 
five tested models presented in Section 3.1.3. The green line represents in situ elevations. 𝑅𝐹 rep-
resents the 5-fold cross-validation results over Lake Erie. 𝑅𝐹ு௨ → 𝐸𝑟𝑖𝑒 , 𝑅𝐹ை௧ → 𝐸𝑟𝑖𝑒 , 𝑅𝐹ெ → 𝐸𝑟𝑖𝑒, and 𝑅𝐹ௌ௨ → 𝐸𝑟𝑖𝑒 represent the results of the models trained over Lakes 
Huron, Ontario, Michigan, and Superior, respectively, applied over Lake Erie. 

Figure A6. Boxplot by track of the original estimated elevations by GEDI over Lake Erie and the
five tested models presented in Section 3.1.3. The green line represents in situ elevations. RFCV

represents the 5-fold cross-validation results over Lake Erie. RFHuron → Erie , RFOntario → Erie ,
RFMichigan → Erie , and RFSuperior → Erie represent the results of the models trained over Lakes
Huron, Ontario, Michigan, and Superior, respectively, applied over Lake Erie.
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Figure A7. Boxplot by track of the original estimated elevations by GEDI over Lake Huron and the
five tested models presented in Section 3.1.3. The green line represents in situ elevations. RFCV

represents the 5-fold cross-validation results over Lake Huron. RFErie → Huron , RFOntario → Huron ,
RFMichigan → Huron , and RFSuperior → Huron represent the results of the models trained over Lakes
Erie, Ontario, Michigan, and Superior, respectively, applied over Lake Huron.
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Figure A8. Boxplot by track of the original estimated elevations by GEDI over Lake Ontario and the
five tested models presented in Section 3.1.3. The green line represents in situ elevations. RFCV repre-
sents the 5-fold cross-validation results over Lake Ontario. RFErie → Ontario , RFHuron → Ontario ,
RFMichigan → Ontario , and RFSuperior → Ontario represent the results of the models trained over
Lakes Erie, Huron, Michigan, and Superior, respectively, applied over Lake Ontario.
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Figure A9. Boxplot by track of the original estimated elevations by GEDI over Lake Michigan and 
the five tested models presented in Section 3.1.3. The green line represents in situ elevations. 𝑅𝐹 
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trained over Lakes Erie, Huron, Ontario, and Superior, respectively, and applied over Lake Michi-
gan. 

Figure A9. Boxplot by track of the original estimated elevations by GEDI over Lake Michigan
and the five tested models presented in Section 3.1.3. The green line represents in situ eleva-
tions. RFCV represents the 5-fold cross-validation results over Lake Michigan. RFErie → Michigan ,
RFHuron → Michigan , RFOntario → Michigan , and RFSuperior → Michigan represent the results of
the models trained over Lakes Erie, Huron, Ontario, and Superior, respectively, and applied over
Lake Michigan.
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Figure A10. Boxplot by track of the original estimated elevations by GEDI over Lake Superior and 
the five tested models presented in Section 3.1.3. The green line represents in situ elevations. 𝑅𝐹 

Figure A10. Boxplot by track of the original estimated elevations by GEDI over Lake Superior and the
five tested models presented in Section 3.1.3. The green line represents in situ elevations. RFCV repre-
sents the 5-fold cross-validation results over Lake Superior. RFErie → Superior , RFHuron → Superior ,
RFOntario → Superior , and RFMichigan → Superior represent the results of the models trained over
Lakes Erie, Huron, Ontario, and Michigan, respectively, and applied over Lake Superior.
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Figure A11. Variables’ order of importance in the error estimation random forest regression model
with the percentage mean increase in MSE (%IncMSE) (higher values mean higher importance). WW
represents wind generated waves variables. SW represents swell waves variables.
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