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A B S T R A C T   

Optimizing food processes is a complex task made harder by gaps in knowledge on process performance 
mechanisms, by the complexity inherent to the food product itself, and by the many heterogeneous variables 
involved in prediction models. Microfiltration of skim milk with a 0.1-µm pore-size membrane is a typical 
example (MF). MF is commonly used as a unit operation to separate the two major milk protein into valuable 
fractions for cheesemaking and food formulations. However, despite its importance for the dairy industry, the MF 
process has never been optimized to integrate conflicting stakeholder objectives such as maximizing quality of 
product outputs while minimizing cost inputs and addressing environmental impacts. This work addressed the 
multiobjective optimization of 0.1-µm skim milk MF by considering conflicting stakeholder-defined objectives 
and integrating expert and scientific knowledge into the formulation of the multiobjective problem. The mul-
tiobjective MF problem was modelled by considering the quality of product outputs, operating variables, process 
design and cost inputs, and using both scientific data and expert knowledge. Over a thousand Pareto-optimal 
solutions were found, including solutions close to current industry practice but also innovative new solutions. 
This work opens new perspectives for using multiobjective optimization techniques to design and optimize food 
processes.   

1. Introduction 

Crossflow microfiltration of skim milk (MF) with a 0.1-µm pore-size 
membrane is commonly used in the dairy industry as a unit operation to 
separate two main groups of proteins: native casein micelles (retentate 
fraction), which are used to make cheese, and milk serum proteins 
(permeate fraction), which are mainly used as ingredients to formulate 
food for specific populations (e.g. elderly people, infants) (Gésan-Gui-
ziou et al. 1999; Saboya & Maubois, 2000; Brans et al. 2004). The 
rationale for this study stems from the fact milk MF today is still 
designed and run empirically based on the know-how of dairy processors 
and equipment manufacturers (Belna et al., 2020). All industrial MF 
process designs employ the same set of stages in order to simplify the 
sizing problem. This empirical approach makes it hard to define an 

optimization methodology via a scientific and therefore repeatable 
approach. 

A multiobjective optimization process essentially requires three 
steps: formulation of the multiobjective problem, mathematical or 
algorithmic modelling of the objectives, and the optimization step itself. 
Formulating the multiobjective optimization problem for MF is a com-
plex task, due to: i) the need to simultaneously consider the quality of 
product outputs (input milk, permeate fraction, retentate fraction), 
operating conditions, design, and cost input; ii) competing contradictory 
objectives, for example maximizing the milk serum protein recovery 
ratio while minimizing economic costs; iii) the large number of het-
erogeneous variables involved (ordinal, cardinal, discrete, continuous), 
and iv) the non-linearity of certain relations between variables and 
objectives (Belna et al., 2020). The formulation of the MF multiobjective 
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problem—from definition of the problem to identification of the deci-
sion variables, objectives, and their influential relations—has already 
been achieved in Belna et al. (2020). The remaining obstacle to multi-
objective optimization is to model the optimization objectives. Howev-
er, modelling the objectives in terms of decisions on optimal membrane 
type, operating variables, process design, economic costs and product 
characteristics is a complex task made harder by the lack of predictive 
MF performance models. This lack of appropriate models stems from a 
lack of knowledge on the mechanisms involved in the MF process 
(Jimenez-Lopez et al., 2008; Tolkach & Kulozik, 2006) and the 
complexity inherent to the allied products (milk, retentate fraction and 
permeate fraction). In order to translate the relationships between MF 
system variables and optimization objectives mathematically or algo-
rithmically, it is necessary to collect and collate the existing knowledge 
and generate any missing knowledge. This knowledge can come from 
various different sources, such as extant literature, pilot-scale laboratory 
data, industrial production runs, or experts. 

Coupling knowledge integration and optimization is an interesting 
strategy for solving multiobjective problems in a field where the avail-
able knowledge is incomplete (Hobballah et al., 2018). In order to 
describe the influential relations between variables and optimization 
objectives, practitioners usually employ scientific experiments. How-
ever, if the body of experimental work is too substantial and expert 
knowledge is available, then knowledge can be gathered from experts. 
By asking experts about their knowledge on a specific scientific phe-
nomenon, it is possible to define the influential relations between the 
variables describing that phenomenon. In recent years, two studies have 
used this integration of expert knowledge to model food processes. The 
first combined expert knowledge and rheological data on French bread 
to predict state of the dough and bread based on key characteristics of 
the raw materials and processing conditions (Ndiaye et al., 2009a). The 
second predicted cheese ripening based on from biochemical measure-
ments and sensory observations of its characteristics as a function of the 
temperature and relative humidity of the ripening chamber (Baudrit 
et al., 2010; Sicard et al., 2011). To our knowledge, only Hobballah et al. 
(2018) has developed a method to integrate expert knowledge into the 
formulation of a multiobjective problem. This formulation method, 
developed for the design of wood fibre-based thermal insulation, was 
recently transposed and adapted to the food process of the 0.1-µm skim 
milk microfiltration (Belna et al, 2020). However, it remains to be 
demonstrated whether this approach can also serve to model the opti-
mization objectives and the implementation of the full multiobjective 
optimization. 

To address this goal, this study set out to model the objectives and 
solve the MF multiobjective problem by coupling the integration of 
expert and knowledge and scientific data with multiobjective optimi-
zation techniques. 

2. Background 

2.1. Milk microfiltration: Principle and main operating variables 

MF is a membrane operation that separates casein micelles from 
serum proteins to reach a volume reduction ratio (VRR) equal to 3. This 
VRR, defined as the ratio of feed flow rate (Qfeed) to retentate extraction 
flow rate (Qr), makes it possible to adjust the target concentration of 
casein micelles in the retentate fraction. 

It has been already demonstrated that a high crossflow velocity (v) 
(~7 m.s− 1 for ceramic membranes) at low (<1 bar) transmembrane 
pressure (TMP) results in high MF performances, i.e. high permeation 
flux (the mass flux that permeates through the membrane, Jp) and high 
serum protein transmissions (TrSP) (Le Berre & Daufin, 1996; Gésan- 
Guiziou et al., 1999; Jimenez-Lopez et al., 2008; Tremblay-Marchand 
et al., 2016; Heidebrecht et al., 2018). The crossflow velocity is set up 
to create friction and minimize the accumulation of trapped proteins and 
fouling at the membrane surface. TMP, defined as the pressure 

difference between retentate side and permeate side, is the driving force 
of the operation, and it forces the permeate to pass through the mem-
brane. The transmission ratio of serum proteins characterizes the ability 
of the membrane to let the serum proteins pass through. However, high 
crossflow velocities induce high pressure drops and are not generally 
compatible with low TMP. In order to simultaneously apply a high 
crossflow velocity and a low TMP), microfiltration needs to be carried 
out with specific membrane technologies. 

Skim milk MF can use either ceramic or polymeric spiral-wound 
membranes, with three different types of membrane technologies. It 
can be carried out with ceramic membranes using the uniform trans-
membrane pressure (UTP) system (Sandblöm, 1974), which can main-
tain a low and even TMP throughout the length of the membrane by 
circulating permeate in co-current mode to retentate. Even though the 
UTP system offers very good performance and has enabled the emer-
gence of industrial-scale MF (Le Berre & Daufin, 1996; Gésan-Guiziou 
et al., 1999), it still has major drawbacks. It has very high energy con-
sumption and investment costs, as permeate circulation requires an 
additional pump on the permeate side. In the 2000s, two alternatives 
were proposed to make MF more economically attractive. The first 
alternative eliminates the need for the permeate-side pump by using 
innovative ceramic membranes called permeability gradient membranes 
(GP® and Isoflux®) (Garcera & Toujas, 1998; Skrzypek & Burger, 2010). 
These membranes make it possible to vary the permeability (and hy-
draulic resistance) properties between the inlet and outlet of the mem-
branes, to compensate for TMP gradients. However, these ceramic 
membranes are designed to work with a predefined retentate pressure 
drop in order to deliver good filtration performances in terms of 
permeation flux and serum protein transmissions, which makes them ill- 
adapted to all the operating conditions sought by the industry. The 
second alternative is polymeric spiral-wound microfiltration mem-
branes (SW). These polymeric membranes have a more cost-competitive 
but offer lower filtration performances (Lawrence et al., 2008). Each 
type of membrane thus has its own expected performances (Table 1), 
which leads to conflicting objectives. Designing and conducting MF in 
an optimal way thus requires a multiobjective optimization process to 
find a compromise. 

This study considered three membrane technologies for MF: i) a 0.1- 
μm ceramic UTP tubular membrane, i.e. Pall 7P1940 UTP (19 channels, 
4-mm diameter, 1.68 m2 filtration area); ii) a 0.1-μm ceramic GP® 
tubular membrane, i.e. Pall 7P1940 GP (19 channels, 4-mm diameter, 
1.68 m2 filtration area); and iii) an 800-kDa polymeric spiral wound 
(SW) membrane, i.e. Synder FR 3A 6338 (46-mil spacers, 15.9 m2 

filtration area). These three membranes are widely used in industry, and 
termed “ceramic UTP”, “ceramic GP” and “polymeric SW”, respectively, 

Table 1 
Order-of-magnitude performances of the membrane technologies for a volume 
reduction ratio of 3 and depending on operating conditions.  

Performance Ceramic UTP Ceramic GP Polymeric SW 

Filtration 
temperature 
(◦C) 

50 50 8–12 

Permeation flux 
(L.h− 1.m− 2) 

75–100 75 10 

Serum protein 
transmissions 
(%) 

65–70 60 20–50 

Membrane costs 
(€)* 

High Very high Very low 

Membrane 
lifetime 
(years) 

10 10 2–3 

Production 
schedule for 
24 h 

2 × 8 h runs + 2 
cleaning and 
disinfection steps 

2 × 8 h runs + 2 
cleaning and 
disinfection steps 

At 12 ◦C, 1 × 20 h 
run + 1 cleaning 
and disinfection 
step 

*Confidential. 
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in this paper. 
The full description of the MF optimization framework can be found 

in Belna et al., (2020). In a first approach, the assumptions and choices 
made were intended to simplify the multiobjective problem (Table 2). 
Additional assumptions were then made during subsequent data 

acquisition and modelling, especially for the models used to design the 
process. 

2.2. Formulation of the multiobjective problem 

The multiobjective problem is generally defined as a set of k con-
flicting objectives: to be optimized subject to m constraints, where ob-
jectives and constraints are defined according to a set of n decision 
variables (Hwang & Masud, 1979; Ndiaye et al,. 2009b): 

Optimize. f
→
( x→) = [f1( x→), f2( x→),⋯, fk( x→)]

subject to gj( x→) ≤ 0 for j = 1,⋯, p and hj( x→) = 0 for j = p+ 1,⋯,m
(1) 

where x→= (x1, x2,⋯, xn) is the vector of decision variables, 
fi( x→) for i = 1,⋯, k are the objective functions, and gj( x→) and hj( x→) are 
the inequality and equality constraints, respectively, of the problem. 

Solving a multiobjective optimization problem with conflicting ob-
jectives consists in identifying Pareto-optimal compromises. A 
compromise is Pareto-optimal if it is Pareto-dominant (Deb, 1999; Van 
Veldhuizen and Lamont, 2000; Reyes-Sierra & Coello Coello, 2006; 
Ndiaye et al,. 2009b), i.e., any improvement in one objective degrades at 
least one other objective. The Pareto-optimal compromises, which are a 
set of optimal but non-equivalent solutions, are located on a front named 
Pareto front. The Pareto front can serve to choose of an optimal solution 
in terms of accommodating decisionmaker preferences (technical, 
economical, etc). The Pareto dominance can be defined as: 

x→= (x1,⋯, xn) is said to dominate x′
→

= (x′

1,⋯, x′

n) (written 

x→≺ x′
→

) if and only if ∀i ∈ {1,⋯, n}, xi ≤ x′
i and.∃ j ∊ {1,⋯, n}, xj < x’

j 

The first step in the effort to optimize skim milk MF is to formulate 
the multiobjective problem, which was carried out by Belna et al. 
(2020). In this first step, the relevant optimization objectives and experts 
were chosen. The necessary knowledge domains were identified, eval-
uated using a scoping matrix, and rated according to two criteria Belna 
et al. (2020): the relative importance of capturing knowledge from the 
domain, and the ease of capturing knowledge from the domain (Milton, 
2007). First, knowledge was collected using semi-structured interviews 
in each knowledge domain to identify the pertinent variables and their 
relations (Cooke, 1994) and the allied influence relations. Then, the 
influence relations extracted from interview transcripts were repre-
sented as causal maps that represent the relations between decision 
variables and optimization objectives, including the necessary inter-
mediate variables (Montibeller & Belton, 2006). Finally, maps of 
collected knowledge were constructed and merged. The outcome of this 
process was five objectives chosen: maximize the casein concentration in 
the retentate fraction (CDCNr, referred to hereafter as retentate concen-
tration), maximize the serum protein concentration in the permeate 
fraction (CDSPp, called permeate concentration), maximize the serum 
protein recovery ratio in the permeate fraction (ηp, called permeate re-
covery), minimize the investment cost (CI), and minimize the production 
cost (CPR). The MF problem was formulated using this selection of 
optimization objectives. The experts did not consider environmental 
impacts as an optimization objective but more as a decision criterion on 
the different Pareto-optimal solutions. In this work, a part of the envi-
ronmental impact is considered through the production costs, i.e., water, 
vapor and electricity consumption rates. 

In the food domain, metaheuristics are mainly used to solve multi-
objective problems for operations such as drying (Vitor & Gomes, 2011; 
Janaszek-Mankowska, 2018), frying (Amiryousefi et al., 2014) or heat 
exchangers (Deka & Datta, 2017; Janaszek-Mankowska, 2018). The 
scholarship has used two main metaheuristics: the non-dominated 
sorting genetic algorithm-II (NSGA-II) (Deb et al., 2002), and particle 
swarm optimization (PSO) (Kennedy & Eberhart, 1995). Following the 
“no free lunch theorem” (Wolpert & Macready, 1997) where there is no 
algorithm better than all the others for any optimization problem, 

Table 2 
Assumptions and choices made in the MF optimization framework.  

Hypothesis Description 

Milk history and pre- 
treatment 

Bovine milk was stored at 4 ◦C for 48 h, skimmed, 
thermized (at 68 ◦C for 30 s), and bactofuged to 
decrease the bacterial count of the processed milk. In 
order to reach mineral equilibria prior to filtration, 
the skim milk was held at filtration temperature for 
20 min. Pre-treatments and storage conditions were 
set as constants. 

Filtration temperature The temperature was set to the routine MF 
temperature, i.e., 50 ◦C for ceramic GP and ceramic 
UTP, and 12 ◦C for polymeric SW. 

Transmembrane pressure Transmembrane pressure was constant and similar at 
each stage of the MF process. 

Geometrical description of 
MF stages 

The MF plant was described geometrically, 
with n the number of stages, i the ith line in parallel 
in one stage, and j the jth module on line i. For a given 
stage, there was the same number of modules on 
each line i. 

Module description The module is composed of only 19 membranes for 
ceramic UTP, 37 membranes for ceramic GP, and one 
membrane for polymeric SW. All these 
configurations are classically used in the industry. 

Retentate recirculation 
flowrate 

Retentate recirculation flow (Qrec) was expressed as 
an equivalent to a 7-membrane module for ceramic 
membranes and to a single-membrane module for 
polymeric membranes. 

Volume reduction ratio, VRR VRR values were limited to values up to 3.0 in this 
study, whereas industrial installations can reach 
values of up to 3.5. 

Diafiltration In this study, the MF system is performed in 
continuous mode without diafiltration. During 
diafiltration, adding a solvent increases the recovery 
of serum protein in the permeate, which therefore 
becomes more diluted. Adding solvent increases the 
volume of the MF permeate fraction, which 
influences the design of the ultrafiltration process 
(upstream of the MF). Ultrafiltration process design 
is outside the scope of this study. 

Casein permeation In this study, we do not consider casein permeation 
and we make no distinction between casein micelles 
and free caseins. There is scarce data on casein 
permeation as function of influence parameter 
(filtration temperature, concentration factor, 
membrane type and diafiltration mode (ratio and 
solvent)) in the literature (Zulewska and Barbano, 
2013; Zulewska et al., 2009; Beckman & Barbano, 
2013; Hartinger & Kulozik, 2020) and none of it is 
relevant for the three filtration technologies studied 
here. 

Cleaning and disinfection 
considerations 

Cleaning and disinfection procedures were defined 
according to industrial standards and assumed to be 
effective and reproducible for each type of 
membrane. Consequently, water flux was assumed to 
be constant, and chemical degradation of the 
membranes was assumed to be negligible throughout 
their lifetime. 

Investment costs The investment cost was calculated from:Cost of 
equipment (i.e., tanks, pumps, heat-exchangers, 
membranes, modules, sensors, plant automation and 
cleaning plant) 
.Cost of the hours worked by people involved in the 
conception and commissioning of the MF process  
(i.e., engineering department, project follow-up, 
installation and commissioning, automation 
programming). 

Production costs Production cost was estimated from water, energy 
and chemicals consumption and maintenance and 
membrane replacement costs.  
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NSGA-II was used in this study. NSGA-II is a robust and widely-used 
metaheuristic that is recognized as one of the most efficient evolu-
tionary multiobjective algorithms (Yusoff et al., 2011), and it can be 
freely implemented in various open-sources multiobjective optimization 
frameworks. 

3. Modelling the optimization objectives 

3.1. Methodology for modelling the optimization objectives 

In order to solve the multiobjective problem of MF optimization, it 
was necessary to formalize the optimization objectives through mathe-
matical equations or algorithms. The literature already contains some 
influence relations, such as Darcy’s law describing the influence re-
lations between permeation flux, transmembrane pressure, filtration 
resistance and permeate viscosity. However, several relationships be-
tween variables were not described in the literature and needed to be 
modelled in this work. Ideally, experiments should be done to obtain 
data for modelling these influence relations, which makes it possible to 
simultaneously account for the variance in the variables of the same 
dataset and their reliability through a necessary and sufficient number of 
repetitions. However, this may require a large number of experiments to 
combine all the operating conditions for each influence relation that 
needs to be described. Here, for the sake of pragmatism, the influence 
relations between variables were essentially modelled based on existing 
data that has been obtained in experiments conducted over the past few 
years. The objective of the modelling step was to define the equations of 
the optimization objectives and made them sufficiently representative of 
the MF system over the ranges of variation in the existing data. This 
strongly constrained the domain of validity of the optimization objective 
equations since the data available did not cover the whole validity 
domain of the MF system. The technical objectives of the MF (retentate 
concentration, permeate concentration, permeate recovery) can be 
evaluated via experimental research, which is not the case for the eco-
nomic cost objectives. We therefore had to mobilize two different stra-
tegies for building the equations of the optimization objectives. For each 
influence relation, the modelling was done based on either a published 
equation, an experimental dataset, or expert knowledge (Fig. 1). Some of 
the existing datasets had to be completed by further trials to make them 
robust enough for mathematical modelling. When there were no existing 
equations and further experimental trials were impossible, we used 

expert knowledge to formalize the influence relation. The formalization 
of the influence relation was either quantitative or qualitative. 

A second strategy was implemented to estimate the objectives of 
minimizing investment and production costs. The approach mobilized 
was to start from an existing installation and to break it down into 
functional blocks (upstream environment, feed and retentate areas, 
permeate area, stages, downstream environment, and cleaning and 
disinfection area) in order to retrieve the purchase price. A benchmark 
industrial unit was chosen for each of the different membrane types, and 
each MF unit was broken down into functional blocks. The cost of each 
functional block was determined from equipment cost databases, from 
consultation with suppliers when the data available was not consistent 
enough, and from expert knowledge in cases where no data was avail-
able (Fig. 2). The functional blocks were used to evaluate the investment 
cost of other MF units to validate the methodology. This strategy was 
carried out using expert knowledge with additional data from equip-
ment suppliers. 

Multiple linear regressions made it possible to build models that 
were sufficiently representative for the MF optimization objectives. 
These models have an R2 between 0.71 and 0.99, and more than 60% of 
the objective equations have an R2 higher than 0.85. The set of influence 
relations was modelled using a combination of 10% existing equations 
or laws, 80% data, and 10% expert knowledge. 

3.2. Modelled optimization objectives 

The modelling of the five objectives following the proposed meth-
odology is given in the sections below. The modelling was done using 
experimental and industrial data, part of which is confidential, and so 
values of some of the coefficients cannot be given here. 

3.2.1. Casein concentration (dry basis) in the retentate fraction: Retentate 
concentration 

Retentate concentration (CDCN,r) is the ratio of casein concentration 
in retentate (CCN,r) to retentate dry matter (DMr) (Eq. (2)). Casein con-
centration in the retentate fraction depends on the casein concentration 
in the feed milk (CCN,milk) and the volume reduction ratio (VRR). 
Retentate dry matter is a function of casein concentration in the reten-
tate fraction (CCN,r) and the serum protein transmission rate at each 
stage (n) of the MF process (TrSPn). TrSPn, TMP, and hydraulic resistance 
of the fouled membrane (R1) are dependent on type of membrane, and 

Fig. 1. Strategy for modelling MF objectives on product specifications.  
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their ranges reflect industry-practice reality.   

Subject to. 

VRR=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

VRR1 if n= 1 with 1<VRR1 ≤ 3
VRR2 if n= 2 with 1<VRR1 <VRR2 ≤ 3
VRR3 if n= 3 with 1<VRR1 <VRR2 <VRR3 ≤ 3
VRR4 if n= 4 with 1<VRR1 <VRR2 <VRR3 <VRR4 ≤ 3
VRR5 if n= 5 with 1<VRR1 <VRR2 <VRR3 <VRR4 <VRR5 ≤ 3

(3)  

41.55 < CCN,r < 105.26 (4)  

105.47 < DMr < 174.15 (5)  

T =

{
12 if MT = SW
50 otherwise (6)  

⎧
⎨

⎩

0.016 < TrSPk < 0.65 if MT = SW
0.43 < TrSPk < 0.78 if MT = GP
0.34 < TrSPk < 0.82 if MT = UTP

(7)  

⎧
⎨

⎩

0.48 < TMP < 1.25 if MT = SW
0.8 < TMP < 1.4 if MT = GP
0.31 < TMP < 0.6 if MT = UTP

(8)  

{
12 < Qrec < 21 if MT = SW
37 < Qrec < 43 otherwise (9)  

μp =
{

1.73E − 3 if MT = SW
6.48E − 4 otherwise (10)  

⎧
⎨

⎩

8.12E12 < R1 < 5.94E13 if MT = SW
5.93E12 < R1 < 1.78E13 if MT = GP
2.64E12 < R1 < 1.07E13 if MT = UTP (11)  

where 
Jp1 is permeation flux at stage 1, µp is permeate viscosity, Qrec is 

retentate recirculation flowrate, T is filtration temperature, MT is 
membrane type, and a to i are the equation coefficients. 

3.2.2. Serum protein concentration (dry basis) in the permeate fraction: 
Permeate concentration 

Permeate concentration (CDSP,p) is expressed as a ratio of serum 
protein concentration in the permeate fraction (CSP,p) to dry matter of 
the permeate fraction (DMp). CSP,p is a function of TrSPn, and dry matter 
of the permeate fraction is a function of serum protein concentration in 
the permeate fraction (Eq. (12)). TrSP is influenced by type of mem-
brane, which explains why the range of the variable is also membrane 
type dependent. In fact, transmission rate is higher with ceramic mem-
branes (UTP and GP), and especially ceramic UTP, than for the poly-
meric SW membrane. 

CDSP,p =
CSP,p

DMp
=
a •

∑n
k=1(d− e•VRRk − f•(Jp1•μp•(g•VRR1 − h•Qrec1 ) )− i•Qrec )

n
b+ c • CSP,p

for 0 < n

≤ 5
(12) 

Subject to. 

Fig. 2. Strategy for the modelling of MF objectives on economic costs.  

CDCN,r
=
CCN,r

DMr
=

VRR • CCN,milk

a+ b • CCN,r − c •

∑n

k=1

(
d − e • VRRk − f •

(
Jp1 • μp • (g • VRR1 − h • Qrec1)

)
− i • Qrec

)

n

for 0 < n ≤ 5
(2)   
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⎧
⎨

⎩

0.016 < TrSPk < 0.65 if MT = SW
0.43 < TrSPk < 0.78 if MT = GP
0.34 < TrSPk < 0.82 if MT = UTP

(13)  

0.59 < CSP,p < 5.56 (14)  

56.3262 < DMp < 61.89 (15)  

where 
VRRk is volume reduction ratio at MF stage k, Jp1 is permeation flux 

at MF stage 1, µp is permeate viscosity, Qrec is retentate recirculation 
flowrate, and a to i are the equation coefficients. 

3.2.3. Serum protein recovery ratio in permeate fraction (Permeate 
recovery) 

The permeate recovery (ηp) is the ratio of the serum protein quantity 
in the permeate fraction (qSP,p) over the serum protein quantity in the 
feed milk (qSP,milk) (Eq. (16)). In the permeate fraction, the serum protein 
quantity is expressed as a function of the serum protein concentration 
(CSP,p), the feed volume of milk to be filtered by the MF (Vfeed), the 
volume reduction ratio (VRR) and the permeate density (ρp). In the feed 
milk, the serum protein quantity is expressed as the serum protein 
quantity in the feed milk (CSP,milk), the volume of the produced permeate 
fraction (Vp) and the milk density (ρmilk). 

ηp =
qSP,p
qSP,milk

=
CSP,p •

(
Vfeed − (

Vfeed
VRR)

)
• ρp

CSPmilk • Vfeed • ρmilk
(16)  

3.2.4. Investment cost 
The investment cost (CI) was broken down into six costs corre-

sponding to the investment costs of the different ‘functional’ blocks (Eq. 
(17)), i.e., the feed and retentate areas, MF stages, permeate area, 
cleaning and disinfection, downstream environment and upstream 
environment. The cost of feed and retentate areas (COf&r) differs ac-
cording to whether the membrane is polymeric or ceramic (Eq. (18)). It 
is made up of the process feed tank (COCA), the feed pump (COPA), and 
structural cost to take into account piping, valving and sensors. The cost 
of MF stages (COStages) includes the cost of the on-stage retentate pump 
(COPE), the permeate circulation pump (for the ceramic UTP only), the 
cost of the exchanger used to hold a constant filtration temperature 
(COEXM), and a structural cost (piping, valving and sensors) depending 
on the retentate recirculation flow rate and the cost-to-buy of the 
membranes (Eq. (19)). The cost of the permeate area (COresP) is corre-
lated with the number of permeate extraction networks (Eq. (21)). The 
number of networks depends on the geometrical arrangement of the 
modules on the MF stage (jk), a constant that takes into account piping, 

valving and sensors and a pump in the case of polymeric SW (COPP). In 
this specific case, the pump is used to prevent retrofiltration which can 
damage the polymeric membrane. The cost of the cleaning and disin-
fection area (COMC) is considered constant regardless of the type of 
membrane. The cost of the downstream area (COdown) includes the cost 
of all necessary milk processing equipment, i.e., a storage tank (COC-

down), a heat exchanger to bring the milk to filtration temperature 
(COEXdown), an exchanger to hold the milk at filtration temperature for 
20 min in order to reach physical–chemical equilibria (COhold), a transfer 
pump (COPA), and fixed costs corresponding to piping, valving and 
sensors (FFAm) (Eq. (24)). The cost of the upstream area (COup) includes 
the cost of the equipment necessary for storing the permeate and 
retentate fractions obtained from the MF (Eq. (25)). Storage of the two 
fractions requires a tank (COCP, COCR) and a cooler (CORP, CORR), and 
also involves fixed costs corresponding to piping, valving and sensors 
(FFup). 

CI = COf&r +COStages +COresP +COMC +COdown +COup (17) 

With. 

COf&r =

{
(a+ b • QPA + COPA • Fenc) • REASW + COCA • Fenc if MT = SW
c • REA + (COCA + COPA) • Fenc otherwise

(18)     

COresP =

{
s • REASW • max(jk) + COPP if MT = SW
s • REA • max(jk) otherwise

(21)  

COdown = COCdown +COEXdown +COPA +FFdown +COhold (22)  

COup =

{
COCP + COCR + FFup + CORR if MT = SW
COCP + COCR + FFup + CORR + CORP otherwise (23)   

Subject to:  

VRR0 = 1 (24)  

where 
VRR0 is volume reduction ratio at MF stage 0, which is in fact the 

state of the feed with no concentration, QPA is feed pump flowrate, Fenc is 

COStages =

⎧
⎨

⎩

(
(COEXM + COPE) • Fenc +

∑n

k=1

(
d • QPE,k + e

))
• REASW + COmembranes if MT = SW

(
(COEXM + COPE) • Fenc +

∑n

k=1

(
f • QPE,k + g

))
• REA + COmembranes otherwise

(19)  

COmembranes =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[( 1
VRRk− 1

−
1

VRRk

)

•

(

(h+ l • TMP1 + m • n) − (o+ p • TMP1 + q • r) • log
(

1
VRRk

))]

• 1000Qfeed

ACSW
• COCSW if MT = SW

[( 1
VRRk− 1

−
1

VRRk

)

•

(

(h+ l • TMP1 + m • n) − (o+ p • TMP1 + q • r) • log
(

1
VRRk

))]

• 1000Qfeed

ACGP
• COCGP if MT = GP

[( 1
VRRk− 1

−
1

VRRk

)

•

(

(h+ l • TMP1 + m • n) − (o+ p • TMP1 + q • r) • log
(

1
VRRk

))]

• 1000Qfeed

ACUTP
• COCUTP otherwise

(20)   
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cost of project management, REASW is automation ratio when using 
polymeric SW, REA is automation ratio when using ceramic GP or UTP, 
QPE,k is pump flowrate on stage k, COmembranes is cost of the membranes, 
COCSW is cost of one module of polymeric SW, COCGP is cost of one 
module of ceramic GP, COCUTP is cost of one module of ceramic UTP, and 
a to s are equation coefficients. 

3.2.5. Production cost 
The production cost (CPR) is influenced by the cost of utilities such as 

electricity, water and vapor (COut) and the annual cost of maintenance 
(COmt/y) (Eq. (25)). Cost of maintenance is expressed as: a ratio of in-
vestment cost to cost of membrane replacement according to type of 
membrane and their respective lifetime. This cost is calculated for two 
production runs and two cleaning operations per day for ceramic UTP 
and GP and one production run and one cleaning operations per day for 
polymeric SW. 

CPR = COut +COmt/y = COut +

(

RMT • CI+
COmembranes

MLT

)

(25) 

Subject to. 

MLT =

{
2 if MT = SW
10 otherwise (26)  

where 
RMT is maintenance ratio (-), CI is investment cost (€), COmembranes is 

membrane cost (€) and MLT is membrane lifetime (yr). 
The objective functions reflect the assumptions and choices that 

determine the framework of the study. The solution space of the opti-
mization is strongly constrained and restricted to the validity domains of 
the decision variables, where the ranges of variation of the polymeric 
membrane descriptors are wider than those for the ceramic membranes. 

After modelling, several variables influence the same optimization 
objectives. The following example highlights the conflicting aspect of 
the microfiltration optimization objectives. The volume reduction ratio 
(VRR) influences the permeate recovery (np) and the production cost 
(CPR). The increasing of VRR increases the permeate recovery (Eq.29) as 
well as the COmembrane (Eq. (20)) and by the way the CPR; knowing that 
the permeate recovery is an objective to maximize while the production 
cost is an objective to minimize. 

4. Skim milk microfiltration optimization 

4.1. Multiobjective optimization 

The MF multiobjective optimization problem can be summarized as:   

maxCDSP,p = max

⎛

⎜
⎜
⎝
a •

∑n

k=1(d− e•VRRk − f•(Jp1•μp•(g•VRR1 − h•Qrec1) )− i•Qrec )
n

b+ c • CSP,p

⎞

⎟
⎟
⎠ (28)  

maxηp = max

⎛

⎜
⎜
⎝

CSP,p •
(
Vfeed − (

Vfeed
VRR)

)
• ρp

CSPmilk • Vfeed • ρmilk

⎞

⎟
⎟
⎠ (29)  

minCI = min
(
COf&r +COStages +COresP +COMC +COdown +COup

)
(30)  

minCPR = min
(

COut +

(

RMT • CI +
COmembranes

MLT

))

(31) 

Subject to. 

VRR=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

VRR1 if n= 1 with 1<VRR1 ≤ 3
VRR2 if n= 2 with 1<VRR1 <VRR2 ≤ 3
VRR3 if n= 3 with 1<VRR1 <VRR2 <VRR3 ≤ 3
VRR4 if n= 4 with 1<VRR1 <VRR2 <VRR3 <VRR4 ≤ 3
VRR5 if n= 5 with 1<VRR1 <VRR2 <VRR3 <VRR4 <VRR5 ≤ 3

(32)  

41.55 < CCN,r < 105.26 (33)  

105.47 < DMr < 174.15 (34)  

T =

{
12 if MT = SW
50 otherwise (35)  

⎧
⎨

⎩

0.016 < TrSPk < 0.65 if MT = SW
0.43 < TrSPk < 0.78 if MT = GP
0.34 < TrSPk < 0.82 if MT = UTP

(36)  

⎧
⎨

⎩

0.48 < TMP < 1.25 if MT = SW
0.8 < TMP < 1.4 if MT = GP
0.31 < TMP < 0.6 if MT = UTP

(37)  

{
12 < Qrec < 21 if MT = SW
37 < Qrec < 43 otherwise (38)  

μp =
{

1.73E − 3 if MT = SW
6.48E − 4 otherwise (39)  

⎧
⎨

⎩

8.12E12 < R1 < 5.94E13 if MT = SW
5.93E12 < R1 < 1.78E13 if MT = GP
2.64E12 < R1 < 1.07E13 if MT = UTP

(40)  

0.59 < CSP,p < 5.56 (41)  

56.3262 < DMp < 61.89 (42)  

VRR0 = 1 (43)  

MLT =

{
2 if MT = SW
10 otherwise (44) 

The multiobjective optimization was done by NSGA-II using the 
Pymoo framework (Blank & Deb, 2020) implemented as per Deb et al. 
(2002). Population size was set to 1000 and offspring size was set to 
2500. Distribution parameter was set to 30 and crossover and mutation 
operators were set to probabilities of occurrence of 0.9 and 0.5, 

maxCDCN,r = max

⎛

⎜
⎜
⎝

VRR • CCN,milk

a+ b • CCN,r − c •
∑n

k=1(d− e•VRRk − f•(Jp1•μp•(g•VRR1 − h•Qrec1) )− i•Qrec )
n

⎞

⎟
⎟
⎠ (27)   
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Fig. 3. (a) Parallel coordinates plot of the Pareto-optimal solutions found by NSGA-II multiobjective optimization of the MF process, with the decision variables on 
the left side of the vertical line, and the optimization objectives in bold on the right side of the vertical line. (b) A zoomed-in view of the parallel coordinates plot on 
the 3 main decision variables, showing the type of membrane (MT), number of MF stages (n) and volume reduction factor of the MF process (VRR) with the 
optimization objectives in bold. Three colours were used to highlight the types of membrane used in each Pareto-optimal solution: green for polymeric SW, blue for 
ceramic GP, and red for ceramic UTP. The yellow line represents the industrial process. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
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respectively. Tolerances on decision variables, objective functions and 
constraint values were set to 0.1, 0.01 and 0 (strict compliance), 
respectively. To simplify the modelling process, all the decision vari-
ables were set the same tolerance based on the limitation due to the 
measurement on the VRR. The same approach was used for the tolerance 
on the objective values and the limitation was set according to dry-basis 
serum protein concentration (CDSP,p). All the parameters were set up 
after preliminary tests. The termination criterion was the maximum 
number of evaluations, which was set to 5,000,000. Milk volume treated 
per day (Vfeed) was set to 230 m3 and the milk and permeate composi-
tions corresponded to typical average values i.e. casein concentration in 
milk, CCN,milk = 27 g.kg− 1 and serum protein concentration in milk, CSP, 

milk = 6.32 g.kg− 1. Permeate density (ρp) was 990 kg.m− 3 and milk 
density (ρmilk) was 1032 kg.m− 3. 

4.2. Optimization results and discussion 

4.2.1. Overall results 
The multiobjective optimization of 0.1-µm skim milk MF resulted in 

over 1000 Pareto-optimal solutions. A parallel coordinates plot of the 
Pareto-optimal solutions is given in Fig. 3a. 

Polymeric SW membranes represented 58.8% of all the Pareto- 
optimal solutions, followed by ceramic UTP at 24.5% and ceramic GP 
at 16.7%. The solution space of the optimization, which was restricted to 
the validity domains of the decision variables, is less constrained for 
polymeric membranes than for ceramic membranes: ranges of variation 
of the decision variables (e.g. TMP, Qrec) were larger for polymeric 
membranes than for ceramic membranes. This presupposes a greater 
number of possible configurations and potentially a greater number of 
Pareto-optimal solutions for polymeric SW. 

When considering number of MF-system stages (n), Pareto-optimal 
solutions with 1, 2 or 3 MF stages represented 70% of all solutions, 
and the remaining 30% was represented by solutions with 4 or 5 MF 
stages (Fig. 3a and 3b). Note that Pareto-optimal solutions with a small 
number of MF stages (i.e., 1, 2 or 3) were unable to achieve a VRR higher 
than 2.75 and consequently a high casein concentration in the retentate 
fraction. These results are consistent with industrial installations, which 
tend to use 4 or 5 solutions when high concentration values are desired 
(VRR ≥ 3.0). This distribution of solutions according to number of MF 
stages can be explained by the sharp evolution in the rheological 
properties of casein concentrates as a function of concentration (and 
VRR): in the range of VRR between 3.0 and 3.5, the rheological 
behaviour of casein micelle concentrates changes drastically to become 
non-Newtonian, which results in strong drops in permeation flux. Ac-
cording to the principle of minimizing membrane area (Jeantet et al., 
2011), the drop in flux leads to a higher theoretical number of MF stages. 

This study thus highlights that solutions employing a low number of 
stages may represent interesting alternatives provided there is no need 
to strongly concentrate the caseins in the retentate and exceed a VRR of 
3.0. The solutions proposed satisfy the goal of minimizing the cost, 
because a higher number of stages requires higher investment which 
thus leads to higher production costs. Therefore, the difference observed 
between the solutions proposed in this study, which have 3 or less 
stages, and a conventional plant configuration may come from the 
limitation used here on the VRR model (1.0 < VRR ≤ 3.0), as the drastic 
change in rheological behaviour of the casein micelle concentrates when 
VRR greater than 3.0 results in strong drops in permeation flux and thus 
leads to a higher number of MF stages. The fact that a majority of Pareto- 
optimal solutions used a small number of stages may be explained by the 
fact that a lower number of stages requires a lower investment cost. Note 
that most of the data used for the design were obtained at constant 
permeation flux (Jp) and not at constant TMP, which can also lead to 
imprecision in establishing the sizing equation and, from there, in 
calculating the number of stages. 

The values for feed flowrate of the MF system (Qfeed) clustered 
around two typical values, i.e., 12 m3.h− 1 for polymeric membranes and 

14.5 m3.h− 1 for ceramic membranes. These values are consistent with 
what is observed in industry practice in the same feed conditions. 

Qrec values were not homogeneously distributed but fell into two 
typical ranges of values, i.e., 12–20 m3.h− 1 and 37–43 m3.h− 1, which 
correspond to classical values for polymeric and ceramic membranes 
respectively (Gésan-Guiziou et al., 1999; Jimenez-Lopez et al., 2008; 
Zulewska & Barbano, 2013). 

Permeation flux (Jp) also fell into two ranges of values, i.e., 5–20 L. 
h− 1.m− 2 and 75–120 L.h− 1.m− 2, which again correspond to classical 
values for polymeric SW and ceramic membranes, respectively 
(Zulewska et al. 2009). 

The values for the index of module position on MF stage k, jk, on each 
line ik were homogeneously distributed among their respective ranges 
regardless of membrane type (MT), which thus resulted in a large 
number of different combinations represented. As it is only a geomet-
rical index, this decision variable influences the sizing of the retentate 
recirculation pump but does not have a significant influence on the 
optimization objectives. 

To facilitate readability, (Fig. 3b) gives a zoom-in on the Pareto- 
optimal solutions based on three significant decision variables (type of 
membrane (MT), number of MF stages (n), and volume reduction factor 
of the global MF process (VRR). 

The optimization objective values (Fig. 3b) warrant several obser-
vations. Retentate concentration (CDCNr) is consistent with the values 
found in the literature. Regardless of MT, the solutions were fairly ho-
mogeneously distributed between 0.37 and 0.54 g.kg− 1 DM (dry matter) 
for a VRR of between 1.63 and 3.0, respectively. The upper bound of the 
retentate concentration, CDCNr, (0.54 g.kg− 1 DM) corresponds to the 
casein concentration in milk multiplied by the VRR of 3.0 in the case of 
this study where there are no product losses. 

Ceramic membranes, and particularly ceramic UTP, give higher 
permeate concentration (CDSPp) and permeate recovery (np) values than 
polymeric membranes. The three membrane types cover different ranges 
of permeate concentrations with very little overlap, i.e., ceramic UTP 
0.08–0.09 g.kg− 1 DM, ceramic GP 0.06–0.08 g.kg− 1 DM, and polymeric 
SW 0.02–0.06 g.kg− 1 DM. As an example, the CDSPp observed for 
ceramic UTP is greater than 0.08 g.kg− 1 DM which corresponds to a CSPp 
greater than 4.94 g.kg− 1 and a np greater than 0.5. These permeate 
concentration and permeate recovery values are routinely found in in-
dustry practice with ceramic membranes. For illustrative comparison, 
the CDSPp observed for polymeric membranes was lower than 0.07 g. 
kg− 1 DM which corresponds to a CSPp lower than 4.2 g.kg− 1 and a np 
lower than 0.45. The ceramic GP gave CDSPp and np values that were 
intermediate between ceramic UTP and polymeric SW membranes. This 
last observation was already highlighted in Mercier-Bouchard et al. 
(2017) and Tremblay-Marchand et al. (2016) but on limited ranges of 
operating conditions. 

Analysis of the investment cost (CI) and production cost (CPR) found 
that solutions using ceramic membranes were logically more expensive 
than solutions with polymeric membranes (Fig. 3b), as ceramic mem-
branes cost more i) in investment (€1 million–€2.5 million for ceramic vs 
€800,000–€1.8 million for polymeric) and ii) in production 
(€150,000–€800,000/year for ceramic vs €102,000–€553,000/year for 
polymeric membranes. This can be explained by the added permeate 
pump required to use the ceramic UTP and the high investment cost 
required to specifically manufacture the ceramic GP to get controlled 
variable permeability properties throughout the length of the filtering 
path. The surprising finding was Pareto-optimal solutions with a higher 
CI for ceramic GP than ceramic UTP. Indeed, even if the ceramic 
membrane does not need an additional pump, it still has a slightly higher 
CI than ceramic UTP membranes (Table 3). Consequently, for MF sys-
tems equipped with a large number of membranes, the investment cost 
will be higher with GP than UTP membranes. 

These results confirm the existence of compromises in the choice of 
MF membrane type, operating conditions, and design to obtain the 
process that best meets end-user requirements. Indeed, polymeric 
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Fig. 4. (a) Parallel coordinates plot of the Pareto-optimal solutions found by NSGA-II multiobjective optimization of the MF process, with the decision variables on 
the left side of the vertical line, and the optimization objectives in bold on the right side of the vertical line. (b) A zoomed-in view of the parallel coordinates plot on 
the 3 main decision variables, showing the type of membrane (MT), number of MF stages (n) and volume reduction factor of the MF process (VRR) with the 
optimization objectives in bold. The yellow line represents the industrial process, the dotted line represents an equivalent Pareto-optimal solution, the dashed line 
represents a cheaper equivalent Pareto-optimal solution, and the dotted-and- dashed line represents an innovative Pareto-optimal solution. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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membranes do not offer the best performances in terms of serum protein 
concentration and recovery efficiency, but this is offset by their rela-
tively low investment and production costs, which makes them 
competitive with ceramic membranes. These factors which emerge from 
the global analysis of optimization solutions, support the current expert 
knowledge and literature in terms of design and performances in the 
field. 

4.2.2. Analysis of particular Pareto-optimal solutions 
In the Pareto front of solutions, there is a solution close to what is 

usually found in the dairy industry. Industrial facilities are generally 
designed with identical MF stage filtration areas with the same number 
of membranes, the same geometrical arrangement of the membranes, 
and the same operating conditions for each MF stage. Here we compare, 
a solution usually implemented at industrial scale, called “Industrial 
process” to three Pareto-optimal solutions: i) a solution equivalent to the 
one usually implemented at industrial scale, called “Equivalent Pareto- 
optimal solution”; ii) a solution equivalent to the industrial process 
but cheaper in terms of economic costs, called “Cheaper equivalent 
Pareto-optimal solution”; and iii) “An innovative Pareto-optimal solu-
tion involving polymeric membranes not commonly used at industrial 
scale” (Fig. 4). These solutions represent four MF facilities designed to 
process the same quantity of milk per day but with differences in design 
and performances. 

Regarding the optimization objectives, the Equivalent Pareto-optimal 
solution gave similar values to the Industrial process working with the 
same membrane type (MT), number of MF stages (n) and volume 
reduction ratios (VRRn) but a slightly different filtration area (Ak) and 
membrane surface distribution among the stages (jkin) (see Table 3). 
There were no significant differences between Industrial process and 
Equivalent Pareto-optimal solution in terms of values of the optimization 
objectives, regardless of the objectives: all differences between values of 
objectives were less than 2%. However, the Industrial process was 
designed for a 177.6 m2 membrane surface distributed evenly across the 
5 MF stages whereas the Equivalent Pareto-optimal solution was designed 
for a 166.72 m2 membrane surface that is not evenly distributed across 
the 5 MF stages (see Table 4). The Industrial process and the Cheaper 
equivalent Pareto-optimal solution were designed to have the same feed 
capacity (Qfeed) and to concentrate up to a volume reduction ratio of 3.0 
(VRR). These solutions used similar values for retentate concentration 
(CDCN,r = 0.53 g.kg− 1 DM) due to the protein concentrations processed 
up to the same volume reduction ratio (VRR = 3.0), and the same 
permeate concentration (CDSP,p = 0.08 g.kg− 1 DM). However, permeate 
recovery (np) was lower in the Cheaper equivalent Pareto-optimal solution 
(np = 0.43), with a loss of 14% compared to the Industrial process (np =

0.51). These differences in permeate recovery can be explained by the 
operating conditions (see Table 5) and especially by the higher TMP of 
the Cheaper equivalent Pareto-optimal solution (1.34 bar) than the Indus-
trial process (0.80 bar). In terms of investment cost and production cost 
objectives, the Cheaper equivalent Pareto-optimal solution can save 19% 
and 27%, respectively, compared to the Industrial process. Indeed, the 
Cheaper equivalent Pareto-optimal solution was designed to use 106.56 m2 

of membrane surface unevenly distributed across 5 stages whereas the 
Industrial process was designed to use a 177.6 m2 membrane surface 
distributed evenly across the 5 MF stages (see Table 4). The differences 
in the investment and production costs can be explained by both the 

Table 3 
Decision variables used in the MF optimization problem and values of the ob-
jectives (in bold) for selected Pareto-optimal solutions (alternative solutions) 
compared to a standard industrial solution.  

Decision 
variables/ 
Optimization 
objectives 

Industrial 
process 

Equivalent 
Pareto- 
optimal 
solution 

Cheaper 
equivalent 
Pareto- 
optimal 
solution 

Innovative 
Pareto- 
optimal 
solution 

MT 1 (GP) 1 (GP) 1 (GP) 0 (SW) 
Qfeed (m3.h− 1) 14.71 14.74 14.84 11.99 
Qrec1 (m3.h− 1) 40.01 40.08 41.32 15.47 
n 5 5 5 3 
Jp1 (L.h− 1.m− 2) 100.63 80.60 119.67 9.24 
VRR1 1.3 1.57 1.7 1.41 
VRR2 1.5 1.95 2.1 1.78 
VRR3 1.8 2.47 2.5 2.11 
VRR4 2.3 2.83 2.8 – 
VRR5 3.0 2.98 2.9 – 
jki1 2 4 3 2 
jki2 2 4 2 1 
jki3 2 2 2 1 
jki4 2 1 1 – 
jki5 2 1 1 – 
CDCNr (g.kg− 1 

DM) 
0.53 0.53 0.52 0.44 

CDSPp (g.kg− 1 

DM) 
0.08 0.08 0.07 0.07 

np 0.50 0.51 0.43 0.33 
CI (€) 1 774 431 1 751 361 1 443 187 1 108 872 
CPR (€) 370 162 363 972 269 114 260 234  

Table 4 
Distribution of the membrane surface over the sequential MF stages.  

Membrane 
surface (m2) 

Industrial 
process 

Equivalent 
Pareto- 
optimal 
solution 

Cheaper 
equivalent 
Pareto-optimal 
solution 

Innovative 
Pareto- 
optimal 
solution 

Stage 1  35.52  71.04  53.28  378.83 
Stage 2  35.52  35.52  17.76  242.34 
Stage 3  35.52  35.52  17.76  162.11 
Stage 4  35.52  17.76  8.88  – 
Stage 5  35.52  8.88  8.88  – 
Total surface  177.60  168.72  106.56  783.29  

Table 5 
Operating conditions and filtration performances for standard industrial and 
alternative solutions.  

Variable Industrial 
process 

Equivalent 
Pareto-optimal 
solution 

Cheaper 
equivalent 
Pareto-optimal 
solution 

Innovative 
Pareto-optimal 
solution 

tf (h)  15.94  15.90  15.80  19.54 
Qfeed (m3. 

h− 1)  
14.71  14.73  14.84  11.99 

v (m.s− 1)  6.65  6.66  6.87  2.57 
TMP 

(bar)  
0.8  0.80  1.34  0.48 

VRR1  1.3  1.57  1.7  1.41 
Jp1 (L. 

h− 1. 
m− 2)  

100.63  80.60  119.67  9.24 

TrSP1  0.70  0.69  0.59  0.56 
VRR2  1.5  1.95  2.1  1.78 
Jp2 (L. 

h− 1. 
m− 2)  

62.57  60.85  80.77  7.25 

TrSP2  0.69  0.67  0.58  0.55 
VRR3  1.8  2.47  2.5  2.11 
Jp3 (L. 

h− 1. 
m− 2)  

55.19  45.74  73.57  6.42 

TrSP3  0.68  0.66  0.57  0.53 
VRR4  2.3  2.83  2.8  – 
Jp4 (L. 

h− 1. 
m− 2)  

48.69  39.11  70.51  – 

TrSP4  0.67  0.65  0.56  – 
VRR5  3.0  2.98  2.9  – 
Jp5 (L. 

h− 1. 
m− 2)  

42.93  36.82  68.69  – 

TrSP5  0.65  0.64  0.56  –  
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distribution of the membrane surface on the stages of the unit and the 
associated operating conditions, especially VRR management of the MF 
stages (see Table 5). For the same membrane type, a smaller required 
surface means lower investment and production costs. The Cheaper 
equivalent Pareto-optimal solution emerged as a good candidate alterna-
tive in terms of four out of five optimization objectives, but the loss of 
permeate recovery points to issues in terms of whether the solution is 
viable in industrial-scale practice. In fact, when calculating the ratio of 
quantity of serum proteins in the permeate to cost of production, the 
Cheaper equivalent Pareto-optimal solution remains attractive at €400/kg 
against €470 €/kg for the Industrial solution. The Innovative Pareto- 
optimal solution was designed to work with a polymeric SW membrane 
of 783.29 m2 surface area unevenly distributed across three MF stages 
(see Tables 3 and 4). A smaller VRR means a lower number of MF stages 
required. Here, VRR = 2.11 corresponds to a 3-MF-stage process, which 
thus leads to a lower casein concentration in the retentate (CDCN,r =

0.44 g.kg− 1 DM; see Table 3). This Innovative Pareto-optimal solution 
performed badly on permeate recovery (np = 0.33). However, the value 
of this solution is that a small (-16%) decrease in retentate concentration 
comes with a very significant decrease in investment cost (− 37%) and 
production cost (− 30%). This kind of solution can be used in industry 
practice for production requiring relatively low removal of serum pro-
tein from the retentate and a relatively low casein concentration. 

The approach developed here makes it possible to propose Pareto- 
optimal solutions at lower cost and innovative MF processes that have 
never been implemented. 

5. Conclusion 

Here we proposed an innovative approach for optimizing 0.1-µm- 
membrane skim milk microfiltration, which is a complex food process, 
as a multiobjective problem. This new approach was made possible by 
combining and integrating different types of knowledge, by modelling 
the optimization problem objectives, and by the multiobjective opti-
mization itself. The problem was formulated and solved by coupling the 
integration of expert and scientific knowledge with multiobjective 
problem theory. We considered 15 decision variables including type of 
membrane (polymeric SW, ceramic UTP and ceramic GP) to optimize 
five objectives (three technical objectives and two economic) using the 
well-known and now-classical NSGA-II metaheuristic algorithm. The 
optimization provided over 1000 Pareto-optimal solutions, including 
one that was close to a ‘standard’ industrial process and another that 
provided comparable results at lower economic cost. Among these 
Pareto-optimal solutions, 58.8% used a polymeric SW membrane, 24.5% 
used a ceramic UTP membrane and 16.7% used a ceramic GP mem-
brane. The computational Pareto-optimal solutions offer alternative and 
potentially innovative process pathways that need to be validated in 
order to assess their feasibility at industrial scale. 

This work shows that coupling the integration of expert and scientific 
knowledge with multiobjective optimization is a successful method for 
modelling the multiobjective problem of skim milk microfiltration and 
more generally of any food processes that have not been scientifically 
characterized. These computational approaches helped us to think 
outside the box of classical MF process design schemes, to re-evaluate a 
priori unattractive technical solutions or scientifically validate new ones, 
even if huge number of Pareto-optimal solutions found make it not 
humanly feasible to choose the single preferred solution, even for an 
expert. To address this last difficulty, an additional multicriteria deci-
sion support step will be necessary to guide the decisionmaker through 
the process of selecting one or more preferred solutions from among a 
vast set of Pareto-optimal solutions. 
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